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ABSTRACT 
In this study, we have provided a review of electrospun cellulose micro/nanofibres from ionic liquids and co-
solvents from which we identify a lack of previous studies focusing on the structural morphology of the dry-
jet wet electrospun native cellulose fibres from ionic liquids. We have therefore aimed in this study to 
investigate factors influencing the structural morphology of cellulose/ionic liquid electrospun fibres and 
investigate the coagulation parameters on this morphology. The electrospinning of 10% w/v 
cellulose/([C2MIM][OAc] /MIM) (1/1, v/v) solution was shown to produce macroporous fibres with average 
diameters of 2.8±1.4 µm with pore sizes from 100–200 nm. We have found that coagulation bath type and 
immersion time affect the morphological structure of the electrospun fibres. The fibre spinnability, formation, 
and morphological structure are mainly dependent on the method used to collect and coagulate/solidify the 
fibres. The physical properties of the dissolved cellulose were measured and these are discussed in terms of 
the solution spinnability. The structural morphology of the electrospun cellulose fibres was characterised by 
scanning electron microscope (SEM), and lastly the extraction of ionic liquid from the fibre body was 
confirmed by 1H nuclear magnetic resonance (1H NMR). The electrospun cellulose fibres morphology shows 
the formation of both micron and nanometre sized fibres with different morphological “macroporous” 
structures.   
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INTRODUCTION 

Native cellulose, the most abundant natural resource on earth, is a linear polysaccharide and known for its 
excellent biocompatibility, biodegradability, physical strength, chemical resistance, thermal and mechanical 
properties and regenerative and sustainable properties1, 2. It has been widely used as a high affinity with other 
substances, in textile, paper and packaging industries, catalyst carriers, insulation clothing and in biomedical 
material fields3-6. The use of native cellulose is traditionally found in wood based paper and cotton based 
textile fibre industries. 
 
With the ability to regenerate cellulose, a range of modification possibilities with regard to the material 
macrostructure will be achieved by changing the process parameters during dissolution and coagulation7-9. 
Regenerated cellulose fibres are nowadays being used as the basis of functionalised fibres and reinforced 
composites fibres10-11. Fabrication and regeneration of native cellulose fibres have drawn great attention in 
recent years12-17. However, cellulose regeneration has been long struggling with the use of environmentally 
hazardous solvents such as N-methylmorpholine-N-oxide (NMMO)18, N-methylmorpholine N-oxide/water 
(NMMO/water)19-21, NaOH/urea aqueous solution22-23, lithium chloride/dimethylacetamide (LiCl/DMAc)6, 20, 

24, 25 and dimethyl sulfoxide (DMSO)/trimethylamine (TMA)/sulphur dioxide (SO2)26. Moreover, cellulose is 
seldom soluble in common solvents due to its considerable inter and intra molecular hydrogen bonding. 
Furthermore, its high crystallinity supported by an intricate hydrogen bonding network and dense packing of 
polymer sheets by hydrophobic interaction also restrict its solubility in common solvents27. Basically, the most 
common of these solvents so far is the N- methylmorpholine N-oxide (NMMO) which today represents a 
significant and growing industry for producing textile fibres under the generic name of Lyocell28. As a result, 
it is difficult to create non-derivative cellulose fibrous membranes because it cannot be dissolved in common 
solvents or melted. Therefore, selecting proper solvents is important in completing the regeneration process 
of cellulose. A huge amount of effort has been dedicated for several decades to find effective and eco-friendly 
solvents29. 
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Ionic liquids (ILs), organic molten salts with low melting points, low or zero vapour pressure, large liquid 
ranges and high thermal stability, can be used for direct dissolution of cellulose30-34. Ionic liquids have been 
considered as potential green solvents for both polar and nonpolar compounds35 and have exhibited a large 
number of chemical, physical, and electrical properties36-38. They have been used in regeneration of cellulose 
into gels, fibres, and films by controlling their chemical composition39-42. Regenerated cellulose fibres in the 
nanometre range display improved properties, such as high surface area to mass ratio, high length to diameter 
ratio and enhanced surface reactivity43. Electrospinning, first patented in 193444-48, is one of the simplest and 
most effective widely used techniques for producing micro/nanofibres from a wide variety of polymers, 
polymer blends and nanoparticle-impregnated polymers49-54. This revolutionary technique is driven by an 
external electric field on the surface of applied polymeric fluids either in a molten polymer state or in a polymer 
solution state or even in polymer solutions incorporated with functional particles55-56. 
 
The nanoscale cellulose fibres have been researched in various applications in technical textiles such as tissue 
engineering, wound dressing, filtration, fire resistant and antibacterial cellulose fibres5, 57-60. However, 
electrospinning of natural biopolymers such as cellulose is still a challenge and the basic reason for this is due 
to either the environmentally non-friendly traditional solvents or the rheological complexity of cellulose 
dissolved in ionic liquids29. Although ILs can dissolve cellulose very well, electrospinning of cellulose 
dissolved in ILs is difficult and hard to control for continuous jets and nanofibre production. In other words, 
the difficulties of the solidification mechanism by drying of the jet and evaporating of the solvent components 
and thus the fabrication of cellulose electrospun nanofibre with ILs are because of the high viscosity of ILs, 
the strong interactions with the cellulose molecules, the rigidity of cellulose chains and the very low vapour 
pressure property of ionic liquids36, 59 - 70. Furthermore, the high viscosity of the polymer solvent and the zero 
volatility of ILs lead to the standing up of the electrospun fibres vertically, and to the adhesion and contraction 
of the wet fibres during the electrospinning6. 
 
Recently, research was published to overcome the challenges of spinnability of cellulose with ionic liquids. 
Such research used co-solvents with ionic liquids to decrease the viscosity66, 68 and surface tension61 of the 
solvent without any cellulose precipitation, decrease the entanglement density of the network66, and increase 
electrical conductivity17, reactivity and processability of cellulose in the solvent61, 62, 66-70. In fact, it has been 
demonstrated that co-solvents, which act as a precursor for imidazolium-based ionic liquids, are necessary for 
some reactions to be executed71. In addition, researchers used coagulation liquid medium to coagulate the spun 
fibres for dual goals, the first is to dissolve and wash off the ionic liquid within the coagulant and the second 
is to control the morphology of the regenerated electrospun fibres72. It has been indicated clearly that as far as 
coagulant liquids are of different polarity (e.g. polarity index from low to high: acetone \ ethanol \ water), the 
spun fibres and/or film will have different structural properties such as porosity and crystallinity72-74. However, 
Table 1 reviews and summarises all published work, based on the best of the authors’ knowledge, of 
electrospinning of nanofibres from native cellulose dissolved in ionic liquids (ILs)36, 59-70. We can perceive 
from this review a lack of previous studies focusing on the structural morphology of the dry-jet wet electrospun 
native cellulose fibres from ionic liquids. 
 
In this study, the dry-jet wet electrospinning process of native cellulose in a mixture of room temperature ionic 
liquid 1-ethyl-3-methylimidazolium acetate [C2MIM][OAc] and co-solvent 1-Methylimidazole (MIM) to 
produce micro/nanosized cellulose fibres was investigated. We have chosen this ionic liquid [C2MIM][OAc] 
from the large array of possible ionic liquids, as a result of its desirable properties, such as low toxicity, low 
viscosity, low melting temperature, low corrosiveness and high cellulose dissolution capacity75-77. It has the 
advantage over most other ILs of being the most efficient and handling solvent at disrupting the intermolecular 
hydrogen bonding network in cellulose at room temperature64, 78. In addition, we have choose the MIM co-
solvent which is a precursor for many imidazolium-based ILs in general and for [C2MIM][OAc] in particular. 
Furthermore, based on its viscometry and solubility data, it increases dramatically the dissolution rate of 
cellulose and thus provides better solubility of cellulose at lower solution viscosity79. We have used our 
laboratory dry-jet wet-electrospinning setup, which is modified especially for the electrospinning of cellulose 
with ionic liquids with a coagulation bath containing water or ethanol that act as a co-solvent for the ILs and 
an anti-solvent for the cellulose, removing the ILs, and coagulating the electrospun fibre. A grounded charge, 
in the form of flat metallic sheet was covered in halves with aluminium foil and nonwoven fabric and 
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immersed at the bottom of coagulation bath filled with water or ethanol to receive the cellulose fibres. It is 
worth noting that the dry-jet wet electrospinning is different from the dry-jet wet spinning79. Dry-jet wet 
spinning technology “also called air-gap wet spinning” which can be used to spin high-performance fibers 
combines both the advantages of melt spinning through the elongational flow in the air-gap region, and wet 
spinning through the double diffusion in the coagulation bath80-84.The dry-jet wet electrospinning provides a 
simple, fast practical and economically attractive method of fabricating polymer micro/nanofibres36, 60-71.   
 
The aim of this study is to discover the key factors influencing cellulose/ionic liquid electrospun fibre 
properties and explore the coagulation parameters which are coagulation type and time on the electrospun 
cellulose fibre structures. It has been found in our studies that the fibre spinnability, formation, structure and 
morphology are mainly determined by the method used to collect and solidify the fibres. The viscosity, surface 
tension and electrical conductivity of the dissolved cellulose in [C2MIM][OAc]/MIM were measured and 
discussed. The structural morphology of the electrospun cellulose fibres was characterised and assessed by 
SEM and 1H NMR. We aim through this study to give a fundamental understanding of the electrospinning of 
cellulose and to improve the properties and the performance of the cellulose nanofibres produced by 
electrospinning. 
 

<< Please Insert Table I >> 

 
MATERIALS AND METHODS 
 
Materials 
 
Microcrystalline cellulose powder (Avicel® PH-101) (Mw = 53470, Mn = 24235) with specific weight of 
0.600 g.cm-3, ionic liquid 1-Ethyl-3-methylimidazolium acetate [C2MIM][OAc]  with molecular weight of 
170.21 g/mol and specific weight of 1.027 g.cm-3 at 25 Ԩ, co-solvent 1-methylimidazole (MIM) with 
molecular weight of 82.10 g/mol, specific weight of 1.03 g.cm-3 at 25 Ԩ and boiling point of 198 Ԩ, distilled 
water, ethanol with specific weight of 0.7893 g.cm-3, heavy water (deuterium oxide) (D2O) and liquid nitrogen 
were purchased from Sigma- Aldrich (Gillingham, UK) and were used without further purification. 
 
Solution preparation and electrospinning 
 
Cellulose samples were dried at 70 Ԩ for 3 h in a vacuum oven. Then predetermined weight of dried cellulose 
was dispersed in appropriate volume of co-solvent (MIM) and was allowed to stay for 10 min in a sealed 
vessel. Subsequently, the same volume of ionic liquid [C2MIM][OAc] was added and the vessel content was 
then mechanically stirred using a magnetic stir bar in a temperature controlled oil bath at 70 °C for 12 h. 
Cellulose was dissolved in ([C2MIM][OAc]/MIM) (1/1, v/v) at concentrations of 0, 1, 6, 7, 8, 9, 10, 12, 15% 
(w/v). A dry-jet wet electrospinning technique was employed to produce micron-nano scale cellulose flexible 
fibres. Each cellulose solution concentration was fed from a 5 mL capacity syringe (Fisher Co., Leicestershire, 
UK) to a vertically orientated (19 gauge) blunt-ended metal needle ‘spinneret’ via Teflon tubing. The inner 
and outer diameter of the needle were 0.686±0.038 mm and 1.067±0.013 mm, respectively. The volume feed 
rate was digitally controlled by a positive displacement microprocessor syringe pump (Model 200 Series, Kd 
Scientific Inc., USA). The needle was connected to one electrode of a high voltage direct-current power 
supply, which is capable of generating a voltage up to 60 KV (EH60P1.5, Glassman, USA). A flat metallic 
sheet of (20, 5, 2) mm dimensions was covered in halves with aluminium foil and meltspun polypropylene 
(PP) nonwoven fabric with fineness of 3±0.30 (Denier per fibre) and grounded as the counter electrode on the 
bottom of a coagulation bath filled with ethanol to receive and precipitate the cellulose fibres. We have chosen 
this collector covering system for comparison between the precipitated cellulose and meltspun polypropylene 
fibre diameters. 
Typical operating electrospinning process parameters were flow rates of 0.15 mL/h, applied voltage of 20 kV, 
and a vertical electrospinning working distance between the tip of the needle and the surface of the ethanol 
bath of 12 cm. The experiments were maintained under environmental conditions at room temperature of 23±2 
°C and 25-30% RH relative humidity. When the electrospinning was completed, the entangled web of flexible 
fibres was removed. In order to study the effect of the coagulation bath system on the structural morphology 
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of the electrospun cellulose fibres, four main exposure and immersion systems were employed. In practice, 
the first is to expose the collected 10% (w/v) cellulose fibres from ethanol coagulation bath after 
electrospinning to liquid nitrogen. The second is to put the collected 10% (w/v) cellulose fibres into an oven 
at 70 Ԩ for 24 h. The third is to immerse the collected 10% (w/v) cellulose fibres into ethanol bath at room 
temperature for 1, 3 and 5 days. The fourth is to immerse the collected 10% (w/v) cellulose fibres into distilled 
water bath at room temperature for 1, 3 and 5 days. 
 
Characterisation 
 
Samples nomenclature were coded in this work as ‘CX%’ which identify the electrospinning cellulose 
solutions at different concentrations. ‘X’ indicates the concentration of cellulose % (weight/volume) (w/v) in 
a binary of [C2MIM][OAc]/MIM (1:1). The 2D surface morphology of the electrospun cellulose fibres were 
observed by scanning electron microscopy (SEM; Hitachi S-2600N, Japan) with a secondary electron detector. 
All the air dried samples were cut into small sizes, adhered to an aluminium stub 12.7 mm diameter with the 
aid of carbon adhesive tapes and sputter coated with high resolution sputter coater (Emitech K550X, UK) with 
gold layers under high vacuum. An acceleration voltage of 3 - 5 kV was used with a typical working distance 
of 5.9-10.9 mm. The fibre diameters in each sample were evaluated from different regions of the sample stub. 
Images were captured at different magnifications in the range of 500x to 30000x for all electrospun cellulose 
fibres. The average fibre diameters from SEM images were measured by means of image analysis (SemAfore 
5.21 software, JEOL CO., Finland). The pore size of the macropores on the fibres were measured with at least 
50 measurements to determine the mean size.  
 
The viscosities of all prepared cellulose/([C2MIM][OAc]/MIM) solutions at different concentrations were 
measured on a Brookfield digital viscometer (Brookfield DV-II Viscometer, USA). Readings were taken at 
23±2 °C using spindles and chamber of SC4-34/13R and SC4-25/13R. Polymer solution volume of 9.4 mL 
for C0, C1 and C6% (w/v) and polymer solution volume of 16.1 mL for C7 to C15% (w/v) samples were 
placed in a beaker, into which the spindle of the viscometer was immersed and rotated at a shear rate in the 
range from 60 to 1 rpm (equivalent to 1 – 0.017 ିܿ݁ݏଵሻǡ in order to characterise the rheological properties of 
the cellulose/([C2MIM][OAc]/MIM) solutions. Each sample was allowed to equilibrate at the measurement 
temperature for 10 min before the shear rate was increased. 
 
The surface tension of [C2MIM][OAc], MIM and solutions of cellulose/([C2MIM][OAc]/MIM) was 
measured and analysed by means of the pendant drop method using a CAM 200 contact angle goniometer 
(KSV Instruments Ltd., Finland). A pendant drop method in six parallel measurements using a micro-syringe 
with an automatic dispenser and a CCD fire wire camera (512x480) with telecentric zoom optics combined 
with LED based background lighting allowing capturing images at frame intervals from 10 ms to 1000s was 
carefully conducted. The surface tension ்ܵ was calculated by using the equation; 
 

                                                                           ்ܵ ൌ ǤఘǤௗమௌ                                                                             [1] 

 
Where g is the acceleration of gravity, ߩ is the difference in density of the air and the polymer solution, de is 
the equatorial diameter of the droplet and ܵ is the shape factor, as referenced in 85. Polymer solution densities 
were measured by recording the mass of 1 ml of the polymer solutions in volumetric flasks at 23±2 °C and 
were used in surface tension measurements. Each measurement was replicated three times and the mean values 
were used in surface tension measurements. 
 
Electrical conductivity of all cellulose/([C2MIM][OAc]/MIM) solutions at different concentrations was 
examined by Novocontrol broadband dielectric impedance spectrometer (Montabaur, Germany), with 
integrated alpha-A high performance frequency analyser in 0.1 Hz to 10 MHz frequency range. Samples were 
tightened by using vacuum sealed parallel electrodes (diameter of 18 mm) as a specimen holder cell with a 
spring for sealing out the air and the data was analysed by using WinFit software. All measurements were 
carried out at a temperature of 23±2 °C and the spectrometer was set to a bias of 1 volt and each sample was 
measured between frequency sweeps of 1.0 Hz to 1.8 MHz. 
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For the 1H NMR analysis, 1H spectra were recorded at 23±2 °C using a wide-bore Bruker Avance II 
spectrometer (Bruker BioSpin AG, Switzerland) with a proton resonant frequency of 400 MHz. Spectra were 
obtained using a single 90ஈ pulse sequence with a pulse length of 6.5 µs, acquisition time of 1.25 s and a delay 
time of 3 s. The cellulose fibres were then suspended in 1.5 ml of D2O with high isotopic purity and transferred 
to a 5 mm NMR tube for measurement after 5 days of D2O immersion. 
 
RESULTS AND DISCUSSION 
Viscosity, surface tension and electrical conductivity of cellulose/([C2MIM][OAc]/MIM) solutions 
 
The shear viscosities of dissolved cellulose in a binary of [C2MIM][OAc]/MIM (1:1 by volume) at cellulose 
concentration of 0, 1, 6, 7, 8, 9, 10, 12, and 15% (w/v) were plotted under room temperature of 23±2 °C as a 
function of shear rate and shown in figure 1. The shear viscosities of the dissolved cellulose increased 
noticeably with the increase in cellulose concentration which are to be expected for all types of polymer 
solutions. Generally, as the viscosity of the dissolved cellulose increased, the chain overlap/entanglement of 
the cellulose molecules will also be increased, to a sufficient level to cause the elongation of the jet and to 
prevent breakup of the ejected jet, but not high enough to suppress capillary instability to happen, resulting in 
great difficulty in electrospinning and formation of beads in the nanofibrous web morphology. All the curves 
showed shear thinning behaviour, i.e., the viscosity decreases as the shear rate increases. That indicates that 
all the dissolved cellulose in a binary [C2MIM][OAc]/MIM are non-Newtonian liquids68. 
 
Figure 2 (A) shows the dependence of shear viscosity of a binary [C2MIM][OAc]/MIM solvent mixture on 
cellulose concentration C (% w/v) at different shear rate (Ȗ=0.0167 to Ȗ=1 [sec-1]). The curves showed three 
different regimes which are the dilute regime, semidilute unentangled regime, and semidilute entangled 
regime. The dependence of viscosity Ș at shear rate of 0.1 - 1.sec-1 of a binary [C2MIM][OAc]/MIM solvent 
mixture on cellulose concentration is shown in figure 2 (B) which has been obtained from figure 2 (A). The 
critical concentrations and the values of the slopes are determined using the cross model86. Based on figure 2 
(B), the increase of the viscosity ߟ can be identified with a power law dependence for each concentration C 
regime in equation 287. 
 
ߟ                                                                                 ൌ ݇Ǥ                                                                                                   [2]ܥ

 

<< Please Insert Figure 1 >> 

In the dilute regime with low cellulose concentrations, the shear viscosity increases linearly with increasing 
concentration with an exponent n= 1 and the interaction between discrete cellulose chains is low. Above a 
critical polymer concentration C=6%, the polymer chains can interact without entanglement (unentangled 
semidilute regime, with an exponent (n = 3.9)). While, in the semidilute entangled regime (C=10% w/v and 
above), the shear viscosity follows a scaling mode of concentration with an exponent n of 3.5 and favours 
chains entanglement and thus stronger interactions. In fact, this is consistent with that observed for the 
cellulose acetate in alcohols/DMSO88 and celluloses in an ionic liquid [AMIM][Cl]89. For cellulose (Avicel® 
PH-101) (Mw = 53470), the boundary concentrations were found at C=6 and C=10 (% w/v) in a binary 
[C2MIM][OAc]/MIM solvent mixture. We have found that the electrospun fibres morphology depend 
strongly on the spinning dope viscosity and its molecular interaction as shown in figure 5. Finally, for cellulose 
(Avicel® PH-101) with a binary [C2MIM][OAc]/MIM (1/1) solvent mixture, continuous flexible fibres can 
only be electrospun for cellulose concentrations of 10% w/v and above. In comparison, individual porous 
grains (monoliths) or blocks are observed for cellulose concentrations lower than C= 10% w/v. 
 
 

<< Please Insert Figure 2 >> 

The surface tension of dissolved cellulose in a binary mixture of [C2MIM][OAc]/MIM (1:1 by volume) at 
cellulose concentration of 6, 7, 8, 9, 10, 12, and 15% (w/v) and the surface tension of pure [C2MIM][OAc] 
and co-solvent MIM are given in table 2. Each sample was measured, analysed and calculated in triplicate and 
the mean values of the triplicates and the standard deviation were calculated and recorded. The surface tension 
values of the dissolved cellulose in [C2MIM][OAc]/MIM decreased with increase in cellulose concentration. 
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For example the surface tension decreased from 41.82±1.12 mN.m-1 for [C2MIM][OAc]/MIM (1/1: v/v) and 
40.48±0.32 mN.m-1 for C 6% w/v to 37.19±0.91 mN.m-1 for C 15% w/v. In addition, our reported surface 
tension values of the pure solvents used are as follows, the surface tension of ionic liquid [C2MIM][OAc] at 
room temperature is 45.78± 0.76mN.m-1, and the surface tension of co-solvent MIM at room temperature is 
34.3± 0.55 mN.m-1. The standard deviation values are low which indicate that the values tend to be close to 
the mean (the expected value). It has been indicated that cellulose performs as a polymeric surfactant when 
dissolved in [C2MIM][OAc], and in general most polymers perform as surfactants when dissolved in a 
solvent90-92. It is generally considered that the surface tension plays an important role in determining the range 
of polymer solution concentrations from which continuous uniform nanofibres can be obtained in 
electrospinning93. This is consistent with most properly chosen electrospun polymer solutions (whatever the 
method of electrospinning) where the viscoelastic forces completely dominate the surface tension. In other 
words, a direct correlation has been observed between uniform fibre diameter and polymer solution viscosity 
and surface tension94. In comparison, when low molecular weight polymers are used or polymer solution 
concentration is significantly reduced, the viscoelastic forces dramatically diminish and thereby the surface 
tension plays a strong role in the morphology of the resulting fibres95. Hence, when the surface tension forces 
are dominant, they attempt to reduce surface area per unit mass, and thus beaded fibres are consequently 
produced96. Briefly, it is clearly seen that the concentration of cellulose and the co-solvent MIM in 
[C2MIM][OAc] strongly affected the surface tension of solution. In other words, the surface tension can be 
reduced by increasing the concentration of cellulose and the co-solvent MIM in [C2MIM][OAc]. 
 

<< Please Insert Table II >> 

 
The electrical conductivity ı as a function of frequency [Hz] of dissolved cellulose in a binary of 
[C2MIM][OAc]/MIM (1:1 v/v) solutions at cellulose concentration of 6, 7, 8, 9, 10, 12, and 15% (w/v) is 
presented in the figure 3. The value of the electrical conductivity at the lowest measured nearly zero frequency 
has been considered as a direct current (DC) conductivity for comparative purpose which suits the case of the 
DC high voltage power supply used in our work. However, figure 3 shows all electrical conductivity curves 
are increasing as the frequency increased. Therefore, differences between all dissolved cellulose solutions 
were assessed at the lowest frequency (1.0 Hz, nearly zero). For the dissolved cellulose at various 
concentration systems, the electrical conductivity increases as the cellulose concentration decreased. For 
example, the electrical conductivity increases from 263µS.cm-1 at 15% (w/v) cellulose concentration to 413 
µS.cm-1 at 6% (w/v) cellulose concentration. In other word, these curves indicate that with increasing 
[C2MIM][OAc]/MIM content, the charge density of the cellulose solution increased. In fact, this is expected 
as [C2MIM][OAc] ionic liquid exhibits a high electric conductivity at ambient temperature of 2500 µS.cm-1 
97, and pure cellulose is a material which is electrically insulating with electrical resistivity of ͳͲଵଶ ߤȳǤ cm 
and thus its electrical conductivity is ͳͲିଵଶ µS.cm-1 98. As a matter of fact, the electrical conductivity of the 
polymer solution mirrors the charges density on the jet and thus higher elongation forces are imposed to the 
fibres under an applied electrical field. In other words, under the same applied voltage and spinning distance, 
a polymer solution with higher electrical conductivity will cause higher elongation to the jet along its length 
and thus electrospinning fibres with smaller diameter 99. Briefly, the electrical conductivity of the polymer 
solution is a key factor in determining the electrospinning current, net charges density, fibres morphology and 
electrospinning ease95. 
 
Electrospinning of cellulose/([C2MIM][OAc]/MIM) solutions 
 
The cellulose/([C2MIM][OAc]/MIM) (1/1, v/v) solutions were electrospun at different concentrations of 6, 7, 
8, 9, 10, 12, 15% (w/v) by using a modified dry-jet wet electrospinning technique. In this study, ionic liquid 
[C2MIM][OAc], having lower viscosity, higher conductivity, higher solubility in water and higher suitability 
for cellulose dissolution than other ionic liquids used in electrospinning of cellulose such as [C4MIM][Cl] and 
[AMIM][Cl], was utilized as a solvent for cellulose60, 63, 65-69. These enhanced properties have given us ease 
of electrospinning process and allowed us to achieve smaller fibre diameters. In addition, we have chosen the 
co-solvent MIM as it has been confirmed that it provides better solubility of cellulose with increased 
dissolution rate and lower solution viscosity among the other co-solvents such as DMSO and DMAc used in 
the dry-jet wet spinning of cellulose79. In this technique, the metal needle ‘spinneret’ connected to a Teflon 
tube and containing the cellulose/([C2MIM][OAc]/MIM) solution was placed vertically to the ethanol 
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coagulation bath. In order to solidify the electrospun fibres, a dry-jet wet electrospinning was used with a 
coagulation bath containing water or ethanol. When water was used as a coagulation bath, it was observed 
that all cellulose fibres landed at the surface of the water bath, piled up and did not sink through the water. As 
a result, the wet cellulose fibres ([C2MIM][OAc] is a non-volatile solvent) merge with each other like a film 
without forming fibrillation as shown in figure 4. This could be supported by the fact that the specific weight 
of water is higher than the measured specific weight of cellulose (Avicel)/([C2MIM][OAc]/MIM) solutions 
at all studied concentrations. Hence, the specific weight of [C2MIM][OAc], MIM, and cellulose (Avicel) are 
1.027 g.cm-3, 1.03 g.cm-3 and 0.6 g.cm-3 respectively. However, to electrospin cellulose 
([C2MIM][OAc]/MIM) fibrous assembly based on dry-jet wet electrospinning, a coagulation bath containing 
ethanol is suitable as ethanol has a specific weight of 0.7893 g/cm3 and the measured specific weight of 
cellulose solutions are in range of 1.035 g.cm-3 for 6% (w/v) and 0.993 g.cm-3 for 15% (w/v) cellulose 
concentration. 
 
 

<< Please Insert Figure 3 >> 

<< Please Insert Figure 4 >> 

It is well known that the dry-jet wet electrospun cellulose fibre diameter and morphology is mainly controlled 
by changing the cellulose concentration, the electrospinning process parameters, the feeding rate of fibres and 
the extraction rate of ionic liquid and co-solvent36, 60-71. We have found that the cellulose concentration played 
a major role in cellulose fibre diameter, whereas the processing parameters such as the applied voltage and 
electrospinning working distance have little impact on the cellulose fibre diameter. The total flow rate of the 
cellulose solution for stable electrospinning was considered based on the strength of the applied electric field 
which will control the mass gravity, and the syringe pump flow rate. Because [C2MIM][OAc] is a non-volatile 
solvent and the boiling point of MIM is 198 Ԩ, complete extraction of the [C2MIM][OAc] (washing of the 
[C2MIM][OAc]) during electrospinning process and ethanol coagulation bath was not possible. Strictly 
speaking, in order to investigate the effect of the ethanol coagulation bath on the extraction rate of 
[C2MIM][OAc] and thus the structural morphology of the electrospun cellulose fibres, we have employed 
four main exposure and immersion systems. The first system is to expose the collected cellulose fibres from 
the ethanol coagulation bath after electrospinning to a liquid nitrogen. Liquid Nitrogen will freeze and solidify 
the electrospun fibres rapidly allowing us to examine the structural morphology of the cellulose fibres and to 
assess the extraction rate directly after removal from the ethanol bath. The same is true for oven exposure as 
far as the residue of the co-solvent MIM will be completely evaporated. It has been already reported by 
Miyauchi et al. that ionic liquid [C2MIM][OAc] has high solubility in ethanol63. Nevertheless, based on the 
literature works, the extraction rate of ionic liquid from electrospun cellulose fibre during immersion in the 
ethanol coagulation bath was not clear. Furthermore, the effect of immersing the cellulose fibre in ethanol or 
water and the extraction rate of ionic liquid on the structural morphology of the electrospun cellulose fibres 
was not presented, to the best of the author's knowledge, in published literature36, 59-70. Based on the presented 
exposure and immersion systems, we will show hereinafter by the SEM images the structural morphology of 
the electrospun micro/nanosized cellulose fibres. 
 
Morphology of dry-jet wet electrospun cellulose fibres 
 
Figure 5 (A-F) shows the SEM images of the cellulose fibres that were electrospun from the 
([C2MIM][OAc]/MIM) solutions at 6, 8, 9, 10, 12, 15% (w/v) cellulose concentration and directly immersed 
into distilled water bath at room temperature for 5 days after collection from ethanol coagulation bath. At the 
cellulose concentration of 6, 8, 9% (w/v), as shown in figure 5 (A-C), many intensified and connected grains 
(monoliths) or blocks with rough surfaces and porous structures were found. In fact, this is in full agreement 
with the unentangled semidilute regime in the dependence of viscosity Ș at shear rate of 0.1 [sec-1] curve 
presented above in figure 2 (B). As explained above, in the unentangled semidilute regime, the polymer chains 
can interact without entanglement which will prevent the continuous fibre formation. As the concentration of 
cellulose increased to 10, 12, and 15% (w/v), continuous cellulose fibres with rough surfaces and porous 
structures were achieved. This is also consistent with the curve in figure 2 (B) that continuous flexible fibres 
can only be electrospun for (Avicel) cellulose concentrations of 10% w/v and above. 
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The average diameters of these electrospun fibres were non-uniform in fibre diameters and were in averaged 
micron sizes of 2.8±1.4 µm, 6.25±1.25 µm and 7.75±1.75 µm for 10, 12, and 15% (w/v), respectively. When 
the cellulose solution concentration of 15% w/v was electrospun, fibres with greater diameter were obtained. 
This is attributed to the larger content of cellulose that would increase the viscosity and thus obstruct the 
whipping motion during electrospinning process. Generally, the high viscosity, low electrical conductivity 
and non-volatility of the [C2MIM][OAc] limited the electrospun fibres to be just in micron-sized diameters. 
One interesting observation is the precipitated electrospun cellulose fibres on meltspun polypropylene (PP) 
fibres with fineness of 3±0.30 (Denier per fibre) in figure 5 (D, E) for comparison between dry-jet wet 
electrospun and melt spun fibres diameters. In addition, it is worth noting that the diameters of dry-jet wet 
spun cellulose fibres were ranged from 109.17 - 202.86 Titer Denier (dtex) after drawing with a draw ratio of 
5 – 10 100. 
 
To further support this hypothesis related to the porous structures of these fibres after immersion into distilled 
water for 5 days, we presented SEM images for electrospun cellulose fibres after collection from ethanol 
coagulation bath and exposed to different exposure systems. Figure 6 (A, B) shows the SEM images of the 
collected cellulose fibres at 10% w/v concentration from the ethanol coagulation bath after electrospinning 
course and directly being exposed to liquid nitrogen (A) or put into an oven at 70 Ԩ for 24 h (B). The 
morphologies of electrospun cellulose fibres after liquid nitrogen exposure were mainly smooth with some 
bulges on the surface of the fibres. The bulges phenomenon can be explained by the skin formation during 
electrospinning process by the action of ethanol coagulation bath67. Nevertheless, although almost all of the 
cellulose/[C2MIM][OAc] was preserved inside the fibres, part of [C2MIM][OAc] simultaneously tried to go 
out of the cellulose fibre into ethanol to form some bulges. 
 

<< Please Insert Figure 5 >> 

The SEM image in figure 6 (B) indicated that [C2MIM][OAc] was kept inside the cellulose fibre body during 
the electrospinning course and ethanol bath collection due to its non-volatility. Hence, part of the co-solvent 
MIM has evaporated during the electrospinning and any residues were completely evaporated after drying at 
an oven at 70 Ԩ for 24 h. It can be confirmed clearly that due to [C2MIM][OAc] is a non-volatile solvent, 
complete removal of the [C2MIM][OAc] during the electrospinning course was not achieved. 
 

<< Please Insert Figure 6 >> 

Figure 7 (A-C) shows the SEM images of the collected cellulose fibres at 10% w/v concentration from the 
ethanol coagulation bath after electrospinning and directly being immersed in ethanol bath at room 
temperature for 1, 3 and 5 days. As expected, the bulges on the surface of the cellulose fibres were denser and 
larger with increasing immersion time in ethanol bath. It is known that ethanol and water can completely 
dissolve [C2MIM][OAc] used in the dissolution of cellulose and that supports the hypothesis of 
[C2MIM][OAc]/ethanol exchange which was not completed by immersion with ethanol bath63. In other words, 
five days were not sufficient to extract the ionic liquid [C2MIM][OAc] from the cellulose fibre body. In 
contrast, when immersing collected cellulose fibres at 10% w/v concentration from the ethanol coagulation 
bath after electrospinning in distilled water for 5 days, electrospun fibres with macroporous structure with 
pore sizes from 100–200 nm were obtained indicating better extraction of [C2MIM][OAc] ionic liquid from 
the fibre body. 
 

<< Please Insert Figure 7 >> 

<< Please Insert Figure 8 >> 

Figure 8 (A-C) shows the SEM images of the collected cellulose fibres at 10% w/v concentration from the 
ethanol and directly were immersed in distilled water bath at room temperature for 1, 3 and 5 days. After 
one day of immersion, cracks and bulges appeared on the surface of the cellulose fibres as shown in figure 8 
(A). On the third day, as shown in figure 8 (B), the cracks and bulges became larger and more numerous, 
indicating that water dissolves [C2MIM][OAc] faster than ethanol. Figure 8 (C) shows that [C2MIM][OAc] 
was almost completely dissolved in the water and the fibre surfaces have become rough and porous due to 
the removal of [C2MIM][OAc]. 
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It is clear from the SEM image in figure 9 that, as water gets in the electrospun fibres to dissolve the ionic 
liquid [C2MIM][OAc], it leaves nano and macropores along all the surfaces of the fibres. As mentioned 
before, the macroporous structure "big pores with thin walls" of the fibres is due to the [C2MIM][OAc] traces 
being removed. One interesting observation that can be made here is that, the pores appear to be uniformly 
distributed through the length of the fibre. Interestingly, these regenerated macroporous electrospun cellulose 
fibres have higher surface area, compared with pure cellulose fibres, which are in great demand for a wide 
range of applications such as ion-exchange resins, ultra-filtration materials and carriers for catalysts and 
reagents101. 

<< Please Insert Figure 9 >> 

 
Proton nuclear magnetic resonance ሺ1H NMR) characterisation 
 
To further support this observation, removal of the residual [C2MIM][OAc] in the cellulose fibres was 
confirmed by pulsed 1H NMR. 1H NMR analysis after cellulose fibres immersion in D2O for the first case, i.e. 
immediately after immersion, showed the same 1H NMR spectrum of pure D2O with chemical shift at a range 
of 4 - 6 ppm, with no detectable presence of the ionic liquid. Figure 10 (B) shows the 1H NMR spectrum of 
(D2O) with one OH proton peak at a chemical shift of approximately 4.8 ppm which corresponds to the 
residual H2O in D2O102, 103. In contrast, the 1H NMR spectrum of cellulose fibres immersed in D2O for 5 days 
presented in Fig. 10(A) shows chemical shifts at 1.34, 1.77, 3.76 and 7.32 ppm. Hence, assignments of the 
spectral bands, which are labelled a-g, are made with reference to the chemical structure of [C2MIM][OAc] 
shown in figure 10 (C), presented from our previous work104. Due to the effect of 1H-1H dipolar broadening 
the cellulose spectral bands are not observed in the NMR spectrum. The aforementioned chemical shifts are 
associated with the [C2MIM][OAc] ionic liquid dissolved in the D2O105. Therefore, this confirms the presence 
of [C2MIM][OAc] ionic liquid in the water within the five days, which must have been removed from the 
fibre during that period. 
 

<< Please Insert Figure 10 >> 

 
CONCLUSION 
 
In this work, the dry-jet wet electrospinning of cellulose in mixed solvent systems of [C2MIM][OAc]/MIM 
was researched for the first time. In addition, we have presented a comprehensive review of electrospun 
cellulose fibres from different types of ionic liquids and co-solvents and their electrospinning conditions and 
characterisations. The rheological properties of the cellulose/([C2MIM][OAc]/MIM) solutions obtained as a 
function of concentration of cellulose enabled us to determine the semidilute unentangled and entangled 
regimes and thus the proper cellulose concentration for electrospinning of continuous fibres. Electrospun 
cellulose jets collected in a water coagulation bath was film-like without forming fibrillation. In contrast, 
electrospun cellulose jets collected in ethanol coagulation bath were dive into ethanol forming fibre webs. It 
has been found that the cellulose (Avicel)/([C2MIM][OAc]/MIM) (1/1, v/v) solutions could only electrospin 
fibres at a cellulose concentration of 10% w/v (the optimal concentration) and above. It has been also 
confirmed by exposing the electrospun cellulose fibres into liquid nitrogen and oven temperature that the 
[C2MIM][OAc], was not completely extracted during the electrospinning course. The use of RTILs and co-
solvent ([C2MIM][OAc] and MIM) to electrospin fibres, followed by [C2MIM][OAc] extraction through 
water immersion, demonstrates an advantage for fibre spinning with macroporous structure. The size of the 
electrospun cellulose fibres were influenced by the concentration of cellulose in [C2MIM][OAc]/MIM which 
directly affected the viscosity of cellulose solutions. SEM images showed the formation of both micron and 
nanometre sized fibres with different morphological structures. 1H NMR provided evidence for the presence 
of [C2MIM][OAc] ionic liquid within the electrospun fibre. Finally, dry-jet wet electrospinning offers promise 
in the preparation of micro/nanosized macroporous cellulose fibres for use in a wide range of applications due 
to the larger surface area. 
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