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Abstract

A classical physical example of the sideways heat equasioagresented by re-entry vehicles in the atmosphere
where the temperature at the nozzle of a rocket is so higtathyathermocouple attached to it would be destroyed.
Instead one could measure both the temperature and heatdluauchy data, at an interior boundary inward
the capsule. In addition, we assume that there exists a tigateswhich is significantly dependent on space, time
and temperature, and hence it cannot be neglected. This ggeeto a non-characteristic Cauchy inverse bound-
ary value problem in the sense that the interior accessitimdary is overspecified, whilst the exterior hostile
boundary is underspecified as nothing is prescribed on i& prbblem is ill-posed in the sense that the solution
(if it exists) does not depend continuously on the Cauchg.d& order to obtain a stable numerical solution,
we propose two regularization methods to solve the semaflipeoblem in which the heat source is a Lipschitz
function of temperature. We show rigorously, with errorirastes provided, that the corresponding regularized
solutions converge to the true solution strongyLfuniformly with respect to the space coordinate under some
a priori assumptions on the solution. These assumptions place inaiseestrictions on the applicability of the
results since in practice we always have some control andlkage about how large the absolute temperature and
heat flux are likely to be. Finally, in order to increase tlimicance of the study, numerical results are presented
and discussed illustrating the theoretical findings in geainaccuracy and stability.

Keywords and phrasedlonlinear heat equation; lll-posed problem; Cauchy prohl€ontraction principle;
Regularization method.
MSC codes65N15, 65N20, 65N21, 35K05, 35K58

1. Introduction

Inverse heat conduction problems (IHCP) arise in many physituations where a certain hostile part of
the boundary of a body that is hegtaubled is inaccessible to measuremﬂwﬂﬁ, 11]. In this tas missing
information is compensated for by additional observatiorasle through measurement on the complementary ac-
cessible part of the boundary of the body or, even inside ¢y iiself. Apart from the re-entry vehicle example
mentioned at the beginning of the abstract, one can envi applications related to: (i) the accurate deter-
mination of the temperature 'spike’ inside a cannon at firf2§]; (ii) the safety analysis of elements of nuclear
reactors where the temperature measurement at the adiaber wall of a hollow cylinder is used to find the
unspecifieglinavailable temperature and heat flux at the outer wall thabruptly cooled,ml]; and (iii) the de-
termination of ther temperature and heat flux at the surfA@eparticle board, on which a thin layer of lacquer
coating is applied,[[4]. All these practical applicatiorde mathematically modelled by the following IHCP:
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find the temperature(x, t) for (x,t) € [0, L] x [0, 27] from known boundary temperaturgL,t) = g(t) and heat
flux ux(L, t) = h(t) measurements satifying the following problem:

U(X 1) = Ugx(X, 1) + F(X t,u(x,t)), O<x<L, 0<t<2n,
ulL,ty=9g), O0<t<2n, (1.1
Ug(L,t) = h(t), 0<t<2r,

whereg, h are given functions (usually ih?(0,27)). Moreover, to investigate stability and simulate thel rea
situation of measured data, the Cauchy dpsandh are perturbed so as to contain errors in the form of the input
noisy Cauchy datg® andh? (also inL?(0, 2r)) satisfying

o —gf| +[|h* - hl| < &, (1.2)

where||-|| denotes th&2(0, 2r)-norm ance > 0 is a small positive number representing the level of ndgough
the semilinear problenfi{l.1) is formulated in the one-disi@mal setting of a finite slab of length> 0, it can be
also extended to higher-dimensional cuboids with a prafeesideways coordinate.

The main diference with the classical linear IHCP is that in the goveyrgamilinear heat equation in{lL.1),
the given sourcé- may depend on not only the independent variable$) put also on the dependent variable
u. The time intervalt € [0, T], whereT > 0 is a given finite time of interest, does not necessarily irecihat
T = 2, which herein is taken only for the convenience of the Faws@zies development in Section 2. Note also
that we have no intial condition prescribedtat 0, which may occur when the heat conducting device is already
in service and the initial temperature is an extra unknowhealetermined. We also mention here the case of
internal measurements when it is sometimes necessarydmdee the surface temperature and heat flux from a
measured temperature history at a fixed locatiga (O, L) inside the bodyﬂﬂl]. Note that in this case the initial
temperature at= 0 has to be supplied, at least on the space intergal. However, internal measurements are
intrusive and may damage the material. In this case, nomudéise testing, where measurements are taken at the
boundary only, is preferred and our formulation[in]1.1) msdsuch a situation.

In the linear case, i.eF = F(x,t) does not depend om the problem[{I]1) has at most one solution using
classical analytical sideways continuation for the paliadteat equation. It can also easily be remarked that in
this linear case one can take= 0 by superposition with the solution of a direct and well-gagroblem with heat
sourceF(x,t), and homogeneous initial and boundary conditions. THdn 4 0, the existence of a solution holds

if and only if the functiont — h(t) + % fot %dr is a function of class twol__[_iZ].

In the semilinear case, i.ef = F(x,t,u), for F € C([0,L] x [0, 27] x R), uniqueness of the solution of
problem [I21) follows from the well-known uniqueness tleoifor general parabolic partialfBrential equations
of second-order with lateral Cauchy data, see, e.g., Chémém].

However, even if uniqueness holds, the problem is stipbdked in the sense that the solution, if it exists, it
does not depend continuously on the data. Any small petiorban the observation data &t= L can cause large
errors in the solution which are increasing with decreasiritpm L to 0. Therefore, most classical numerical
methods often fail to give an acceptable approximation efstbiution and regularization techniques are required
to restore stability,m 5].

In recent years, the linear homogeneous sideways heati@uuiat. F = 0 in the first equation in (1.1), has
been researched by many authors and various numerical dsetfaoe been proposed, e.g. the boundary element
Tikhonov regularization methoﬂl8], the conjugate gratlimethod |L—1|4], and, following the footsteps of Profes-
sor L. Elden, a few others based on filtering methods of regalton, e.g. the dierence regularization method
[ﬁ], the ’optimal filtering’ method|E3], the sequential wdowing of the dataﬂ4], the Fourier methdd] 28], the
quasi-reversibility method][éEIZO], the wavelet, waveBaterkin and spectral regularization methads [9, 22], to
mention only a few. However, the more important but chalieggemilinear sideways heat equation with the heat
source depending nonlinearly on the temperature, whicbreéo many applications related to reactioffsion,
combustion and radiation processes, is yet to be investigadm the filtering perspective, although it is worth cit-
ing here I[_—;Lhmg], who used the finitefidirence method and a Lie-grougidrential algebraic equations algorithm,
respectively, but both without any regularization, andrtiere rigorous stud)L_LiG] of Professor Klibanov and his
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colleagues, who proposed minimizing a strictly convex ®ikbv-type functional with Carleman weight functions
embedded in it. Therefore, our study is a major extensiohafihear case, which requires novel filtering propos-
als, see equationE_(Z114) ahd (3.39), and proofs of new ogenees theorems, see Theorems 3.1 and 3.2, based
on the contraction mapping principle.

In summary, we propose two new methods that are based omaanlintegral equations to regularize problem
@) under twaa priori conditionson the solution. As will be shown in next section, for the detaar sideways
heat problem[{T]1), its solution (true solution) can be @spnted as an integral equation which contains some
instability terms. In order to restore stability we repldbese instability terms by some regularization ones and
show that the solution of our regularized problem convetgeke solution of the original semilinear problem (if
such solution exists), as the regularization parameteistemzero.

The paper is organized as follows. In Section 2, the fornanatf the problem and the regularization methods
are given. In Section 3, a stability estimate is proved urderiori conditions on the solution and the Lipschitz
source term. Numerical results are presented and disciusSzttion 4 and finally, conclusions are summarised
in Section 5.

2. Mathematical analysis
Let (-) denote the inner product I?(0, 2r). For f € L%(0, 27), we have the complex Fourier series
2n
ft) ~ Srez <f(t),e““‘>eim, Where<f(t),e‘im> = 5 [ f(t)e”™dt. For time being, the symbel denotes that the
0

right-hand side is the Fourier series of the left-hand sitlis. well-known that the Fourier series éfe L%(0, 2r)
converges in_?(0, 27) to f. Pointwise convergence holds fifis continuous in [027] and if f(0) = f(27). In
case the latter condition does not hold we consider thep2riodic extensiorf* of f defined byf*(t) = f(t) for
t € [0, 2x], f*(2r) = f*(0) andf*(t + 27) = f*(t) for all t € R. This will not afect the values of any integrals over
the interval [024] (since [ f(tydt = [ f*(ydt = [*™* f*(t)dt for anya € R), though it may change the value
of f att = 2r.

The L2(0, 2r)-norm of f is

’ 2
117 =22 )" [(f(0, ™) (2.3)
nez
The principal value ofVin is
1+1i)4/In/2, n>0,
N @ +10)Inl/ (2.4)
@-i)+In/2, n<O.
Let the solution of problen{1l.1) be represented by the cermpburier series
L 2n
u(x t) ~ U*(x,t) = Z Un(¥)e™, with un(x) = (u(xt),e™™) = > f u(x, t)e Mt (2.5)
nez 0

where, as abovey'(x, -) is a Zr—periodic extension i of the functionu(x, -). Sinceu*(x, -) can be represented as
a Fourier series we know that this series convergegxo) in L2(0, 2r). Based on this agrgument, from now on,
for simplicity, we identifyu* with u.

From [I.1), we have the following systems of second-ordédinary diferential equations:

d?u

52 (9 + intn(9) = Fa(U)(x)

Un(L) = g = (90, &™), (2.6)
du, —in

2 () = hn = (h(t). ™).

3




whereF,(u)(X) = <F(x t, u(x, t)), e"”t> >= f F(x t, u(x, t))e"dtfor all n € Z.

sinh((z-x) Vin)

For n € Z\{0}, multiplying the first equation if{26) b 7

we obtain

and integrating both sides fromto L,

Un(x) = cosh((L - x) Vin)un(L) -

inh((L - ) Vi F sinh(z— %) Vi
sin (( X)\/ﬁ)u;](l_)_fsmh((z X)M)Fn(u)(z)dz neZ\(0}). (2.7)

Vin Vin

In the casen = 0, multiplying the first equation if{2.6) s~ x and integrating both sides fromto L, we obtain

L
Uo(X) = Uo(L) — (L — X)up(L) + f (- X)Fo(u)(2dz (2.8)
Denoting
L
E(g, h,v)(X) :=g-(L—-Xx)h+ f(z— X)Fo(V)(2dz (2.9)

X

from Z3), [ZT) -[ZDP) the exact form afis given by

sinh((L - x) Vin)  sinh((z— %) Vi)
> L) = h{(L - ‘/_ n— hn —
u(x, t) neZZ\{O} cosh((L - x) Vin)g N f N

+ F(go, ho, u)(%). (2.10)

Fn(u)(2)dz| €

X

We remark that the term co§fi — x) Vin) satisfies

eVin/2L-x) 4 g VInl/2(L-x)

|COS|"((L X)\/_| | Vin(L-x) +e—‘/_(L ¥ < 5 < eVin/2(t-x (2.11)
and
: Vinl/2(L-x) _ g VInl/2(L-x) Vin72(L-x) _ 1
|cosh((L —x)Vin | | ViRl | g Vin-x| 5 & > (2.12)
2 2
Also,
eVi2ex _ 1 [sinh((z-x) Vin)|  evi72ex
< _ < O<x<z<L. (2.13)
2+n] Vin |

Thus, we obtain that the three functions

sinh((L - x) Vin)  sinh((z- x) Vin)
Vin ’ Vin
in (ZI0) are unbounded, as functions of the variabler x € [0, L). Consequently, small errors in high frequency

components can blow up and completely destroy the solution € [0,L). A natural idea to stabilize the prob-
lem is to eliminate all high frequencies or to replace themalyounded approximation. With this in mind, we

replace cosf(L—x) V), sinh((:ﬁx) \/E)’ sinh((if—g) vin) by oS ((L— ) V), Sinhr® (\(/Ii__n—x) \/m)’ Sinr® ((\/izﬁ_x) \/ﬁ)’

respectively. Our idea of regularization method is of camging two new kernels, co¥t) ((L - X) \/ﬁ) and
4
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sinh'®) ((z—x) \/ﬁ)

T which have the following two properties:

sin® ((z—x) \/ﬁ)

. are bounded, as functions of
vin

(A) If ¥ = y(e) > 0 is fixed, the terms co3# (L - x) Vin) and
n e Z\{0}.
(B) If the parametey > 0 is small, then for smah, the kernel cosi) ((L — x) Vin) is close to cosf{(L - X) Vin)
sink ) ((z—x) \/ﬁ) ) sinh((z—x) \/ﬁ)
and the kernel\/_— is close t - .
in Vin
. . i { (z-¥) vin
Property (B) describes how close the kernels ?ﬁ@%{(L -X) \/ﬁ) andu\;ﬁxm)
sinh((z—x) \/ﬁ)
Vin
is the agreement. Property (A) describes the degree ofreamis dependence, i.e., when the terms’é@s(l(nL -
i sink () ((z—x) \/ﬁ) . . . .
X) \/ﬁ) andT are bounded, the regularized solution will depend contistyoon the data.

To approximatau, we introduce the first regularized solutiohsatisfying

are to cosH(L - x) Vin)

and , respectively, in the low frequency components. Obvigukly smaller the parametgrthe closer

sint®@ ((L-x) Vin) | .
W(xt) = cosi® ((L - x) Vin)g - _ hﬁ] gt
neZZ\{O} ( ) \/m
~ sin@ ((z- %) Vin) o
- > f _ Fn(U?)(2dZz €™ + F(gE, he, 1P)(X). (2.14)
neZ\{0} | % Vin

Here, cosH® (L — x) Vin) and sinfi® ((z— x) Vin) are defined for alh € Z\{0} by

cosi® ((L - x) Vin) := cosh((L - x) Vin) + vin P"®(x L, n), (2.15)
sin?® ((z— ) Vin) := sinh((z— x) Vin) + Vin P"©)(x z ), (2.16)
whereP®(x, z n) is given by
[R(L, n) - 1]eVinEx
2+in '

The well-posedness of the solution to the integral equ#d) depends on the filter functid¥©) (L, n) and
the regularization parametgfs) > 0. In this paper, we assume that the filter functi®f) (L, n) satisfies

PY@)(x,z n) = (2.17)

|Ry(£)(|_’ n)|e\/Wy <y, yelo,L], (2.18)
R n) - 1 T < y (P, yelo,L]. (2.19)

From [ZTI5) and(Z17), we have
R}’(S)(L’ n)e\/m(l——x) +e Vin(L-x)
2 b
so that one can see that the filtering applies to the unboucaiegonent.
For illustration, we give a couple of examplesR¥®) which satisfy the condition§[Z118) arld{2.19).

cosh® ((L - x) Vin) =

Example 1 Let RI(‘E) be as
e VIn2L

Ye) +e V2L
5

R(L,n) = (2.20)



First, we deduce the following inequality:

e VIn2L

R)’(S) L,n e\/Wy - @@
| 1 ( )| y(€) + e V2L

o VIITZy

o VITZ(L-y) ( L
- <
(7(8) +e WL)(L_W - (y(g) te «/—|n|/_2L)V/ L7 \y(e) + e V2L

y/L
) < eI, (2.21)
which shows thal{2-18) holds.
To prove that[[Z9) holds, consider the function[0, L] — R, defined by
X) =) Ve I = e yelo, L,

wherel := —[n[/2 - Iny()"/-. Depending on the sign df, we have tha is increasing and mgxo,j x(y) =

x(L) = e_;(TL if I > 0, andy is decreasing and mgxo. 1] x(y) = x(0) = 1 if I" < 0. In both cases, we obtain that

~ VInl/2L
X0 = y(&) Ve VT < max (y) < 1+ = (2.22)
yelo.L] ¥(e)
Using [Z20) and{Z.22) we obtain that
— VIn72y
£ _ (S
|R)1/( )(L, n) — 1| e VIr2y — Y(S)W <y, yelo, L], (2.23)
which shows thal{{Z19) holds.
Example 2 Let us choos&g(s) as follows:
YLy = | o <N, (2.24)
k= 0, if |n > N,, '
with N, satisfying lim,_,o N, = +c0. It then follows that
RO )|e™ < e and [REO(Ln) - 1)e T < e VN yeo,L]. (2.25)

Therefore,RZ(g) given in [Z2%) satisfie§{2118) arld (2.19) witfz) = e - VN-/2,

Before we establish the properties of the regularized iswipket us introduce some notation first. For a Hilbert
space B, we denote

L*(0.L;B) = [f : [0.L] - B|ess suif@)lls < oo}

O<z<L

with the norm

IfllLe(o,LB) = esssufiif(2)lls.

O<z<L
Forr > 0 andg, let us also introduce the spaces
Gy(0.27) = {6 € L2(0.21); ) InZeV2W|(g(t), e ™) < oo, (2.26a)
nez
V(0.27) = {6 € L2(0.20); ) In'[(6(0). e™)® < oo, (2.26b)
nez
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and their norms given by

Bllcro2n) = | InZre 2o Ka(t), ey, (2.27a)
nez
; 2
llvioze) = | INP* KO, &) (2.27b)
nez

Itis easy to see tha®{(0, 2r) = V'(0, 2r) andV°(0, 2r) = L?(0, 2n).

3. Regularization and error estimates

Throughout this section, we assume tRat [0, L] x [0, 21] x L?(0, 2r) — L?(0, 2x) is a Lipschitz function,
i.e. there exists a constalt > 0 such that

IF (% u(%, )) = F (% V(6 ) < Ke flu(x ) = v(x Il ¥x e [0,L], Yu,ve C([0,L]; L%(0,21)).  (3.28)

The next theorem and remark give error estimates betweemnueolutionu of problem [I.11) and the regu-
larized solutioru? satisfying [Z1H).

Theorem 3.1. Lety(g) be a regularization parameter such tiak y(s) < e’ and

lim y(g) =0,
0 . (3.29)
lim — is a non-negative real number.
£—0 (&)
Then, the integral equatioI2)has a unique solution‘ue C ([0, L]; L2(0, 2r)).
Let R©) satisfy conditiongZI8)and (Z19)
(a) Suppose that the problef@]) has a solution u satisfying
||u”L°°(O,L;GE(O,27r)) + ||UX||L°°(0,L;GE(O,27r)) AR (3.30)
for some known constady > 0. Then,
Juf(x, ) — u(x, )| < Exx(e)¥",  xelo,Ll, (3.31)
where
P 3KZL?
E;> V3 exp( )+ Vo1, exp(KZL?). (3.32)
¥(€) 2
(b) Assume that there exists-r0 such that
RO(L,n) - e W < M(e,r)y(et,  ne Z\(0), Yy e o, L], (3.33)
whereM(g,r) — 0 ase — 0. Suppose that the proble@l) has a solution satisfying
Ul (0,161 (0.20)) + Ul (0,161 (0.20)) < L25 (3.34)
for some known constad® > 0. Then,
uf(x, ) — u(x. )| < Eax(e)¥",  xe[o,Ll, (3.35)
where
€ 3K% L? v 2,2
E;> V3 P e V2rM(e.r) T2 exp(KEL?). (3.36)
y(e
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Remark 3.1. Under assumptioff3.30) the estimatd3.31) via 32), does not yield the continuous dependence
of the solution at x= 0. Therefore, we need a stronger assumption on u, #.B4) to obtain the error estimate
@339) via 338) at x= 0. To obtain the approximation of the solution a0 with assumptiorf3:30) we select

a number x € (0, L) such thaﬂgiip0 Xs = 0 and then we have

U (e, ) = U0, )|| < U (e, ) = U(Xe, )| + IUCXe, ) = U(O, )l < Exy(e)*'" + %.Es, (3.37)

where B = sup., llux(X,-)Il. Itis easy to show that for evemye) > 0, there exists a unique,x (0, L) such

thatli_mo X = 0and x = y()*/-. This implies thaf% = % Using the inequalityn x > —1 for every x> 0,

we obtain x < |n(L1 } which yields
)

L
Y
In (%)
In order to obtain error estimates under easier to check aakev assumptions thdn (3.30) ahd (B.34), next
we develop a second regularized solutidhsatisfying the integral equation

sinhv® ((L - x) Vin)
; (X’ t) ) ne;\‘?O} \/m

U (% -) = u(0, )|| < (E1 + Eg) (3.38)

cosi® ((L - x) Vin)g; -

hﬁ‘ e

L in® ((2— )\ «
_ Z lf sin (E/Zﬁ X) ‘/E) Fn(US)(Z)dZ+fﬁV(S)(X,Ln)Fn(Ua)(Z)dZ gnt E(gg, hg,U%)(x). (3.39)
X

neZ\{0 0
Instead of conditiond(3B0) and (3134), we will assume

lu(O, Il + Nlux(O, Il < I3, (3.40a)

1U(0, lIvr(0.20) + IUx(O, lvr(0.20) < L4, With 1 >0, (3.40b)

for some known non-negative constafitsand 4, respectively. We then obtain error estimates betweerrtee t
solutionu and the regularized solutidn®, as given by the next theorem and remarks.

Theorem 3.2. Lety(g) be as in Theorem 3.1 and assume thBi-L< 1. Then the integral equatio8.39) has a
unique solution Y € C([0, L]; L?(0, 2x)).

Let R satisfy conditiongZI8)and (Z19)
(a) Suppose that the problef@]) has a solution u satisfyin@.20&) Then,

2
|UE(x,) = u(x, )| < Ea(@) y /fg + 4(%) y(e)¥t, xelo,L], (3.41)

for somex € (O, Kgle - 1), where

1+41
EA@) = J e EY T (3.42)

(b) Assume that there exists-r0 such that@:33)holds. Suppose that the probldinl) has a solution u satisfying
(3Z0B) Then,

2
|Uf(x, ) = u(x. )| < Ea(@) \/2nm2(s, rI2+ 4(%) y(e)¥t, xelo,L]. (3.43)
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Remark 3.2. Under assumptiorf3:204) the estimatg8.41) does not yield the continuous dependence of the
solution at x= 0. Therefore, we need a stronger assumptions of u £&.70D) to obtain the error estimat@.43)
at x= 0. In the same way as in Remark 3.1, there exists 0, L) such thatim,_,o X, = 0 and

L
(53

Remark 3.3. For the the cut-¢f regularizing filter Z23) condition @33)is satisfied withM(e,r) = N-" and
Ne) = etV T2,

|U?(Xe. ) = u(0,-)|| < (E3 + Ea(@)) (3.44)

First, we have the following lemmas which will be useful imping Theorems 3.1 and 3.2.

Lemma 3.1. For 0 < y(g) < € we have

&) T =1, 0<x<L, (3.45a)
X<y(e)t, 0<x<L. (3.45h)

The proof is omitted.

Lemma 3.2. For n € Z\{0} and0 < () < e}, we have the following inequalities:

PE(xzn)|<ye)T, 0<z<x<lL, (3.46a)
|cosw<8> (- «/E)| <) T, xe[oL], (3.46b)
sinky®) ((z— X) Vin) .
= <y(e)Tt, 0<x<z<L. (3.46¢)
vin

Proof. From [ZIT) andiZ19), we obtain {3.:%6a), as follows:

1- RO, m)eVmeX| e
PY€(x, z n :( <280 )T, 0<z<x<L
PO(x.z.n) e >y < 7@
From [ZI%),[[2Z717)[(218) and(3.45a), we obtain (3 46b)ollows:
|cosr°((‘9) (L= Vin | <z |R7(5)(L e Vint—=| 2| - Vin(L—x)| < y(s) Ty e VB < y(e)'T

From [ZI8),[Z1B) and(3.4bb), we also obt&in (3.46c)ple\fs:

sinhv® ( |R7(8)(L, n)eVin-» |e‘ Vin(z-x)
+
vin 2+ 2|
L e B0 <y 0<xs<z<L
v— v—
[
Lemma 3.3. For 0 < y(¢) < €%, we have the following inequalities:
[F 01, 1o, wa) () = F(gz, o, w2) (%
L
< (€)™ (91— Gal + Iy — hal) + f 7(e) T [Fowr)(@ - Fow,)@|dz  x [0, L] (3.47)
X



and for ne Z\{0}

o )

neZ\{0}

& sini® ((z— X) \/ﬁ)
e

2
(Fa(w1)@ - Fn<wZ)<z))d4

X

L
+21]F(g0. ho. w09 - Flgo. o) < KE(L =) [ ()T Iws(z ) - wez P dz - xe[o.L]. (3489

Proof. We invoke [Z.P) and Lemma 3.1 to deduce that

(g he w9 - F(gz. he. w)(9)] =

L
(1 -02) - (L-x)(h—hp) + f(Z— X)(Fo(w1)(2) - Fo(Wz)(Z))d2<

L
< ()T 11 - ol + Iy — o] + f N

X

Fo(w)(2) ~ Fo(w)()|dz

as required.
Using [328),[[(3.48c)[1[3:37) and Holder's inequality, el#ain

2 ),

neZ\{0}

- Sintv® ((z— %) Vin)
J—=
sink® ((z— X) \/ﬁ)

vin

2
(Fawn)(@ - Fn(wZ)(z>)d4

2
IFn(W1)(@) — Fn(W2)(2)1* dz

X
L

+21]F(go ho. wi)(9 — Flgnhow)(¥] <20t -9 3 [
neZ\{0}

X

L
+27(L - X) f () *T*

L
Fo(w1)(?) - Fo(Wz)(Z)|2dZS L-% f 1e) TR 2 wa(z. ) — F (2, Wo(z, I dz

L
KAL) [ 1) Itz - watz )P dz
X
as required. O
Lemma 3.4. For n € Z\{0}, we have

F eV
Vin
X

09~ D = e g, - ) -

7 Fn(u)(@dz xe][0,L]. (3.49)

Proof. Differentiating[Z]7) with respect togives

u : cosh((L - x) Vin) A cosh((z- x) Vin)
v Slnh((L - X) \/ﬁ) On — N h — f = Fn(Uu)(2)dz (3.50)
and adding[(3:30) t¢{Z0) we complete the proof. O

We are now in a position to prove Theorems 3.1 and 3.2.
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3.1. Proof of Theorem 3.1
The proof is divided into two steps.

Step 1.The existence and uniqueness of the solutfoa G ([O, L]; L%(0, 271)) to the integral equatiofZI4)
Forw e C ([0, L]; L3(0, 2r)), we consider the following function

sinft®) ((L —X) \/ﬁ) hgw gnt

T (xtwxt) = > |cost®((L - x) Vin)g; -

neZ\(0) Vin
sin® ((z- x) Vin o
a Z lf (\/m )Fn(W)(Z)dZ ent 4 F(gg, hg, w)(X). (3.51)
neZ\{

and we aim to apply the Banach fixed point theorem. For thishawe to show that there exists an integer
numbermy such that theng-compound poweff ™ is a contraction mapping. In fact, we will prove that for gver
wa, W, € C([0, L]; L2(0, 27)) andm > 1, we have

_ _ LKZ\™ (L — )™
7m0t - 77w D < () S s - (352)

where||| - ||| is supremum norm ilﬁ:([O, L]; L%(0, 271')). We shall prove this inequality by induction. Indeed, for
m = 1, using [3:2B), we have

- sint® ((z- x) vin)
vin

2
|7 - wa(x ) - T (e )| < 20 Y (F(w@ - Fn<w2)<z))d4

neZ\(0}

+2nfF (g5, g, wi) (9 ~ (G5, wa) (0| < K2(L %) f &) Iwa(z,") - wolz )2 dz
2

2()

Thus, [Z5P) holds fom = 1. Next, supposing thdi{3JF2) holds for= p, we prove that it also holds fon = p+1.
We have

—— (L = X) IIwg — Wl

||jl°+1(x,.,wl(x,-))—5'0+1(x,-,Wz(><,-))||2 e )ijp(z Wiz ) = TP (2 Wa(z. - ))|| dz

(L X)p+1

prnr — Wyl

L
KA (K%L)p(L_Z)p

p+1
2
v ) ) e el dzs(«ﬂ(s))

Therefore, by the induction principle, we obtadin (3.52).
We consideJ : C ([0, L]; L%(0, 27)) — C([0, L]; L%(0, 2r)) defined by[3H1) and satisfying{3152). Since

. K2L\™ (L - xm
S E=R

(L-x)™o
mp!

follows that the equatioy ™(w) = w has a unique solution® € C ([0, L]; L?(0, 2r)). We claim thatT (u) = u”.
11

< 1. It means thaﬁmo is a contraction. It

there exists a positive integer numlmag such that ( " )2)



In fact, we have™ (J(u?)) = 7 (1) because off (T™(u?)) = . (u*). Then, the uniqueness of the fixed point
of 7™ leads ta () = V¥; i.e., the equatiod7(w) = w has a unique solutio” € C([0, L]; L%(0, 2r)). Finally,
from (ZI3) and[[3.32) it then follows the desired conclasioat the integral equatiof{Z114) has a unique solution
u* € C([0, L]; L*(0, 27)).

Step 2.Estimate the errorg3.:31)and [@33) between the first regularizatiorf @nd the true solution u.

Proof of part (a). Using the triangle inequality, we have
Juf () = w0 ]| < U ) = v )| + [V x ) = ux )| = [Fa )] + |79 (3.53)

whereve is defined by

HCHERDY

neZ\{0}

cosi® ((L - x) Vin)g, -

. W(s) _ 0
sinfv® ((L - x) Vin) hn‘ n
vin

L sint?® ((z-x) \/ﬁ)
[

From the proof of Step 1, we know that the nonlinear integrplagion [35W) has unique solutiori €
C ([0, L]; L*(0, 27)). We first estimate the tertly. Forn e Z\{0}, combining to[ZTH) andT3b4), we get

Fn(V)(2)dz| €™ + F(go, ho, V*)(X). (3.54)

neZ\{0}

— 2 — —~ 2
(| =2r Y Jur(d) = Ve[ + 2|Fgh, h, 1)) — Flgo, ho, v)(X)|
neZ\{0}

sinf?® ((L - x) Vin)
vin

|cosr°((€) (L-% \/ﬁ)r |o5 - gn|2 +

< brn Z

2
s =
neZ\{0}

~ sintr® ((z- %) Vin) 2
+ 6 ne;fm f N (Fa(u)(@ - Fn<v8)(z))d4

— — 2
+ 2n|F(g8, h, U)(X) - F(do, ho, V)|

where we have used the inequality« b + ¢)? < 3(a@® + b? + ¢2).
We now apply Lemmas 3.2 and 3.3 to obtain

Tl < oo (| 3 a0+ - af o[ 3 Il po-rof

neZ\{0} neZ\{0}

L
+6rLy(e)t f |y(s)|%z[ > |Fn<u8)(z)—Fn(v8)<z)|2+|Fo(u£)(z)—Fo(v€)<z)|2]dz
% neZ\(0}

L
2x-2L

<3 (o - o + I - h) + 3KELy(e) f Y& T w@)-v@)'dz  (355)

X

Multiplying by y(s)‘Z—LX both sides of[(3.35) and using{lL.2), we get

ye) E @) dz

5 L
3~11(x)|2 < 3(%) + 3K§Lfy(g)%z

12



Applying Gronwall’s inequality to this yields

2
?Il(x)|2 < 3(%) exp(3K2L(L - X)).

Ye)

Therefore, we obtain

3KZL(L — ‘
U (x ) = v )| < Vé(yfg))exp[ : ; X))y(e)t.

Next, we estimat¢A,(x)|. From [ZI0),[Z25)HZ7) anf{3149), we have

L

Un(x) = cosh® ((L - x) Vin)g, -

Vin Vin

X
L

Vin(z-x
+%(1_Ry(a>(L,n))l o Vin(L- x>( _ ) f et n(u)(z)ol%

siniv® ((L - x) «/m)h f sinv® ((z- x) Vin)

sinlv® ((L - x) \/_ . smhy(s) (z X) \/_)

= cost® ((L - x) Vin)g - N f N
;(1 RE(L,n)) [u (x) — i‘/(%)] Vn e Z\{0}.
Combining [354) and(357) yields
F Sintv® ((z- x) vin)

VE(X) — Un(X) = Wa(X) - f

X

Vin

where

Yo(X) = = (RV(E)(L n)-1)e Vﬁx[e‘/ﬁxun(x)—e‘/ﬁxw”—\/(f)], vn e Z\{0}.
N

The term#A, can be estimated as follows:

0P =213 V) ~ tn () + 24]F(Go. o v) — Figo. ho. 0] < 00 + ()

nez\(0}
where

W =41 > ‘;(RV(@ (L) -1)e ¥ i
neZ\{0}

& sin® ((z— X) \/ﬁ)
vin

L) =4r

neZ\{0}

Using [ZI9) we have

J~1(X)527T7(6)2TX[ > eV hur+ ] e«/mduﬂ(xﬂz]

neZ\{0} neZ\{0} |n|

< 21y(e) ¥ Iulf? + lludi?

L= (0,L;G2(0, 27r))]
13

L*(0,L;GP(0,27))

(Fn(v)(@ - Fa(W)(@)dz  ¥ne Z\{0},

\/ﬁxun(x) -

2
(Fa(v)@ - Fn(u)(z))o% + 20]F(go. ho. V) ~ F(go. ho. )]

< Zﬂy(s)z_txfi.

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

Y
13 61)

(3.62)

(3.63)



It readily follows from [3.48) that
L
50 < 262 - @ [T ) -z dz

Using [3.68) and(3.64) int@ (3.60) yields
L
| < 20000 E 12 4 2By [ )T

X

— 2
3{2(2)| dz

Multiplying by y(s)%x both sides and using Gronwall's inequality we obtain
V(%) = u(x || < V2rTyexp(KEL(L - X)) y(e)t.

Combining [35B),[(3.36) an@(3166), we deduce that
3KZL(L - X)

U (%) = u(x, )| < [\/5()/;)) exp( > ) + V2T exp(KEL(L - x))] y(e)t,

which implies [3:3IL) and completes the proof of part (a) oféditem 3.1.

Proof of part (b). This part can be proved similarly as part (a). Rewfifle [3459)

Ph(x) = :—ZL(RV(‘S) (L,n) - 1) e Vinx

Vin

and observe in passing thRi{3.33) implies that

E (R (L,n) - 1)’ I e Vinx| < %I\W(s, Ny(e)t, neZ\{0).

As in (383), we obtain

T —~ X U (X 2
Jl(x)SZnMZ(s,r)y(s)zf[ DT eV u o2+ >’ |n|2reva]
A néZn 0] Inl

~ 2x ~ 2x
< 22M (e, 1)y(8) TR w0 L6t 02y * IKIFw 061 020y | € 2PMP(E, 1)¥(6) T 15,

Combining [Z.6K) and (3:69) yields

L
—_ 2 — _
&Zlg(x)| < 27M?(e, 1) 73 + 2K2L f y(e) T

X

7o) T ?tz(z)|2 dz

Applying Gronwall’s inequality, we deduce that
V(%) = u(x )| < V2rM(e. 1)z exp(KZL(L - X)) ¥(e)t.

Combining [3.5B),[(3:36) anf{3170), we deduce that
3KZL(L — x)

U (%) = u(x, || <

which implies [3:33b) and completes the proof of part (b) oédiem 3.1.
14

nre‘/mxun(x) - n“e‘/mx—u”(_x)], r>0,

V3 (729)) exp( 5 ) + V2rM(e, 1) 15 exp(K% L(L - x)) y(g)%

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)



3.2. Proof of Theorem 3.2
The proof of Theorem 3.2 consists of two steps.

Step 1.The existence and uniqueness of solutighelC ([O, L]; L2(0, 277)) to (339)
For anyw e C ([0, L]; L(0, 21)), we define

G (xt,w(x 1) = Z cosh® ((L - X) \/ﬁ)gﬁ il (( _ 9 \/ﬁ) he [
neZ\{0} \/m
~ sintr® (z-% \/ﬁ) ~ o
- > f : Fn(U%)(2dz+ f PY)(x, z N)Fn(U9)(Ddz| €™ + F(g. hs w)(¥).  (3.71)
neZ\{0} | Vin 0

The proof of this step is nontrivial and it isftérent from the proof of Step 1 in Theorem 3.1. We have to
prove that the mapping is a contraction mapping by using a new norm. Let us definedhexfing norm on
C ([0, L]; L2(0, 21)):

Ifll = sup {y(&) CIf(x I}, ¥feC([0,L]; L%(0,2n)). (3.72)

O<x<L

Itis easy to show tha||; is a norm orC ([0, L]; L%(0, 2r)). We claim that for every, w, € C([0, L]; L%(0, 21)),
we have

& (w) - G (we)|, < KeLiwa - wls (3.73)
First, from [34Y) we have

L 2

sinhy®) ((z - X) \/ﬁ) _ _ 2
f . (Fa(W1)(@) - Fa(Wo)(2)) dZ + |F(g§. h§. wi)(x) — F(g§. h§. w2)(X)|
neZM 0} |5 Vin

1 2
< 5 KEL -0 Iwi-walf. xe[0.L].  (3.74)

Second, usind(3.4ba), as in the proof of Lemma 3.3, we have

X 2 X

> | [P zn Fu@ - Famd@dd <x@F [ 4@ Y IFiw)@ - Fuwa@R oz
neZ\{0} 0 0 nez

X

1 X - 1 X
< ng%y(s)zT f (&) T Wa(z ) — Wa(z, )2 dz < EXZK%y(e)ZT Wy — wall2. (3.75)
0

. . . 1 —
Then, for 0< x < L, using the inequalitysy + a)* < (1 + @) a2 + (1 + E‘) a3, for any real numberay, a, @ > 0
together with[Z13), we conclude that
— —_ 2 X X 1
60w ) - G- v M < AR+ @ - walf 4 Y FRE (14 2) L - 92w - i
By choosinga = £*, we obtain

G (x-wa(x.9) ~ G (6w )| < KEL Iwa —wel . vxe (O.L). (3.76)
15
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On the hand, letting = L in 878), we have
2|5 = 2 _ 212 2
Y@ 2[G (L Wil ) - G (L wall, )| < KELZliwg — w2, (3.77)
and lettingx = 0 in (373), we have
—_ —~ 2
|16 0., w10, ) - G (0., wa(0, )| = KEL? s — Wl (3.78)
Combining [376){3148), we obtain
Yt

é(xv ) Wl(X7 )) - é(xv ) WZ(X7 ))H < KFL ”Wl - W2||l ) ¥Xxe [O’ L]v

which leads to[(343). Sind€rL < 1 it means thag is a contraction. It follows that the equatié(w) =whas a
unique solutiorw € C ([0, L]; L(0, 2r)) and this completes the proof of Step 1.

Step 2. For establishingBZ1)we estimate the errgfU® — ull; in the norm@Z2)of C([0, L]; L2(0, 27)).

Proof of part (a). Consider the function

W) = y(e) ¢ D [U) — un(9] €™, (3.79)
nez

Let us find an upper bound f(ﬁﬁ/Hl = SUB[o,L] ||47/(x, )H The norm exists because the two functidisandu

belong toC ([0, L]; L%(0, 2r)).
We first observe that

[Wo|| =2n 3 [Wa] + 2evte) [F (g5 16 U) 0 - F (oo, 1) ()] (3.80)
neZ\{0}

Applying (3.49) atx = 0, we have

_U%(0) _ m( _ﬁ) eV
Un(0) N On N o Fn(U)(2dz ne Z\|0},
which implies that
VL ((0)) [ ey B ¢ eVinz-L)
e (<0> vm) —Fo0dz = 6o - v— [ S Fwes nezo. @ay

From [Z1I7),[(357) and{3.B1), we deduce that
Sintv® ((L - x) «/ﬁ)h fL sintv® ((z - x) vin)

— cosiH® (L — x) Vin\a. —
Un(x) = cosh® ((L - x) Vin)gy = = Fn(u)(2)dz

1 ©) Vit | (0 (e

2(1 R@(L,n))e ( n(0) — «/ﬁ) N Fn(U)(2)dz

sintv® ((L - x) vin) - Sintv® ((z— %) vin)
— cosH® (L — x) Vin\a. — _
cosH® ((L - x) Vin)gs e [ e R
;(1 RE(L,n))e - Vin X(u (0)-%)- f PY)(x, z, n)Fn(u)(2)dz (3.82)
0

16



From [3:39),[[3.79) and(3B2), we have
Wi(¥) = ¥(&)t [UF() = tn(¥)]

. W(S) L_ n
= 7(e) [0+ coSH (2= ) VIT) (G~ G) — — ((. 9) (hﬁ—h“)‘
vin
| i@ (@-xvin) d
) | f = (Fa(U)@ - Fa(U)(@) dz
ROR: f PY(x, 2 1) (Fn(U%)(@) — Fa(U)(2) dz‘, (3.83)
LO
where
g /(0)

Dn(X) = (RV()(L n-1)e ( n(0) - «/ﬁ) n e Z\{0}.

Then

[Wa()l = ()T |UZ(X) — n(X)]
sintv®@ ((L - x) vin)
Vin

< y(e) [|d>n(x)|+|cosﬁ(8)((z X) Vin)

|oF — an| + |hf, — |

sinv® ((z— x) Vin)
Vin

o]

X

Fa(U%)@ - n(U)(Z)|dZ+f|PY(8)(X zn) (Fn(U*)(2) - n(U)(Z))|dZ]

neZ\{0}. (3.84)
From Lemmd_312, we get

[Wa09] < 5 100 + [650)] + ) (165~ o] + |~
L

¢ [ Yo HFUI@ - Faw@ldz ne 20 (3.85)
0
From the inequality
(a1+a2+a3)2<2(l+ )a1+2(l+ 1)a%+(l+'o})a§, (3.86)

for any real numbers;, (j = 1,2, 3) anda > 0 and thanks to Holder’s inequality, we deduce that

233 |;l7l7n(X)|2§ > [277( )[|un(0)| + |un(0)| ]+8¢r(1+ )y(g) (|gﬁ—gn|2+|hﬁ—hn|2)]

neZ\{0} neZ\{0}
+ )
neZ\{0}

Using again[(3.86) in{3.347), and Holder inequality we abta

— — 2
F (g8, 6, U*) (9 = F (g, ho, u) (¥)

L

27 (1+ @) Lfy(g)%z IFr(U%)@) - Fn(u)(z)|2dz‘. (3.87)

0

2my(e) T

L
<47r(l+ )7(6) (|gg—go|2+|hg—h0|2)+2n(1+a)|_ f 1@ T Fo(U9)@ - Fo(W@)| dz  (3.88)

X

17



We can now combine the results 6T (1.2}, (3.2B), (B. 19)1.08.6.8T) and[3.88), to obtain

L
[ wox )|| <4(1+ 1)(ﬂ) +(1+%) (U0, )12 + lux(©. -)||2]+(1+a)K§|_f||47/(z, -)||2dz
0

2 — 2
<4l1+= [ I§+(1+&)K§L2||w|| , xe[0,L]. (3.89)
¥(e) a 1
The latter inequality holds for ak € [0, L] and the right-hand side df {3189) is independenk eb, we get
— 2 1 1 — 12
1w, < 4(1 + :)y(s)_zsz + (1 + :) 3+ @+ aREL2 W
1 0% 0% 1
Then,
(1- @+ DKL ||w|| < 4(1+ ) v(e) 26 (1+ i)fg - (1 + i) (73 + 4y(e) %),
04 [07
Sincea € (O, ﬁ - 1) it follows that the left-hand side bracket is positive. Tiniglies that
F
+ %) (I% + 4’)/(8)_282)

=TI 2 _|laoll? (1
y(e) T ”Un(x) - u”(X)H < H(W”l = (1 —(1+ a,')KZ |_2)
F

Thus [Z41) holds.
Proof of part (b). First, we re-writed, as
X R@(L,n)-1)n"e ‘/'—X(nu 0)—n' U (© )), n e Z\{0}.
Dn(X) = ( (Ln)-1) ORLEV= \{0}
Using [3.68), as in(3.85), we obtain

|Wn(x)| M(s DN [1Un(O) + [ O)]] +¥(e) ™[It — an| + |1 — ]

L
+ [ Yo HFUI@ - Faw@ldz nez\0
0
Using inequality [3:86), as if.{3.B7), we obtain
23 |wn(x)| > [ex(t+ 3)en 2 o2 + i fuoF |
neZ\(0 neZ\(0}
Py [87r(l+ )7(6) (|gﬁ—gn|2+|hﬁ—hn|2)]

neZ\{0

L 2z
+ Z [2n(1+a)|_j; y(g)T|Fn(U8)(z)—Fn(u)(z)|2dz].

neZ\{0}
Finally, as in [3:38B), we obtain

I W(x )|| <27r(1+ ) M2 (e, 1) [IUC0. NIZr (0.2 + 11Ux(0. )i 0 20)|

+4(1+ 1)(%)2+(1+@K§LJ|’@(Z-)|’2dZ

1\ - 1 2 — 12
< 2n(1+ 5) M%(e, 1) 12 + 4(1+ 5)(%) +(1+a)K2L2 ||(WH1
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We obtain
||(W||i <21 (1 + %) M2(e, 1) 12 + 4(1 + %) (%)2 +(1+@)K2L2 ||(T47||i

Finally, we get

2 —2 2 1+% M2(e, 1) 12 + 4 1+% y(e) 262
ot - f < < LD A B0

Hence, inequalityl{3:43) holds. This concludes the prodflfeorem 3.2.

4. Numerical results and discussion

As showed in Sections 2 and 3, the two regularized solutibrdU* satisfying the integral equatiorlS {21 14)
and [3:3D), respectively, can be resolved uniquely by fpeidt iteration.
Let us introduce the uniform mesh

L —
Xk = KAX, AX= K’ k=0,K, KeN\{0},
tn=MAt, At= % m=0,(M-1), M e N\{0},

whereK andM are given positive integers and, for conveniendds even.

The outline of the remainder of this section is as followsst-iwe explain modelling a data function from its
discrete values. Second, we give some numerical detaitedatproximations of the right-hand sides of equations
(Z12) and[[3:39). Finally, a couple of examples are preskand discussed.

4.1. Modelling data

Lemma 4.1. Let ve H?(0, 2r) and set y, := V(t)) for m = 0, (M — 1). A function¥ is called interpolating function
of data setivm)mzm for v, if it satisfies, 1,

M/2 M-1
i 1 i
W= Y ™ forte[0.2r), wherely == » vpe ™. (4.90)
M
n=-M/2+1 m=0
Then, we have
M/2 .
W)= >, U™ =vy form=0,(M-1). (4.91)
n=-M/2+1

Moreover, the error between v afds bounded by
IV =] < CALYIV”Il (4.92)
where C is a positive constant independent of v Ahd

Proof. One can find the proof of this lemma in textbooks, see Q [@Bhpter 2. The relationship betwegn ~
andvy, shown in equation§{4.P0) arfld(4191) is well-known as therdie Fourier transform (DFT) and the inverse
discrete Fourier transform (IDFT), respectivel}, [5]. O
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Definition 5.1 Now assume the Cauchy data g ang H?(0, 27). Let (g, hs,) be the discrete data on the time
grid (tm)m:m measured with pointwise errors

O = Om + g rand(m),  hE, = hm + g rand(m), (4.93)
where(gm, hm) = (0(tm), h(tm)), the function ran@) generates a vector of M random numbers from a uniform

distribution in[-1, 1] ande > O indicates the level of noise disturbing the data. Using tiserdte data(gf, hr,)
we construct the noisy data functiofgg, h#) as follows:

M/2 M-1
~ ~ A 1 i
g (t) = Z g™ forte[0,27), whereg; = v Z g;e‘m”% (4.94)
n=-M/2+1 m=0
and
N M2 A QM1 o
@)= > he™ forte[0,2r), wherehf = v D b (4.95)
n=—M/2+1 m=0
Now, we have the following lemma which shows thgt, (¥) is a noisy data function ofy( h).
Lemma 4.2. We have the following estimate:
llg - @Il + lIh — Fl| < &, (4.96)

wheregg = & + 2C(At)2 max||g”|l, [Ih’|]}.

Proof. Using the modelling formuld{4:90) and the discrete form afdeval’s identity, se£|[5], Chapter 3, i.e.

1
o2+ 2
D, W= > el
n=-M/2+1 m=0
we have
. M/2 ~ 1 M-1
IG-l= > 16 -6 =15 D 16—l < (/2.
n=-M/2+1 m=0

Using [£92), we have
llg - 8il < CAY?llg”ll

These imply that
. ~ ¢ ~ & 2
lg = G°ll < 1Ig - &°ll + llg - 8l < 5 + C(AY?Ig”|
and a similar inequality holds fdih — h#||. Thus [Z39b) holds. O

4.2. Numerical details

As mentioned before, the numerical solutions to equatiBiiBd) and[[3.39) can be found by a fixed-point
convergent iteration. To comput€ and U®, we need to evaluate the integrals in the right-hand sidebesie
equations. For eadh= 1, K, we need to approximate the integral

Xu . Xu
fx a(n, %, 2) (F(z t, u¥(z t)), €"ydz = #(2)dz

| X
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for two cases: X, Xu] = [0, %] or [Xi, Xu] = [X, L].
Givenu®, a previous numerical solution of the fixed-point iteratitite integrands = ¢(u°, Xk, z, n) has only
discrete values with repect e [X|, X ]. Using the Newton-Cotes formulas, we have

Xy p
fx o@dz~ Ax Y Apjdi. p=2K,
| j=1

where the coiicientsA, j are given in|ﬂ1], p.886, or irm6].

In our numerical practice, computation is implemented irtfdo programming language with double precision
floating point numbers. Since the aforementioned transpisuch as DFT:W,) — (V) (equation [[4.90)) and
IDFT: (V) = (Vi) (equation[{£91)) can be performefieiently using the fast Fourier transform (FFT) technique,
we adopt the subroutines ft1f andcf ftlb of FFTPACKS, [10], to accomplish the DFT and IDFT, respesdtiv

4.3. Numerical tests

In this subsection we test a couple of numerical examplesderdo assess and verify the accuracy and stabil-
ity of the regularized solutiong® andU*®.

Example 1.We takeL = 0.5 and consider the analytical solution given by

2
u(x, t) = exp(—3x(t - %ﬂ) ) = UX 1), (x1)e][0,0.5]x][O0,2n], (4.97)

with the nonlinear Lipschitz source (with Lipschitz comdt& g = 1)

|ul

Fxtu)=——

+R(x 1), (4.98)

whereR = Uy — Uyx — % The nonlinearity in[[4.98) is characteristic to a reactibfiusion equation.
From [43T), the Cauchy data is given by

5r 3 5r

2 2 2
g(t) = (L((OS, t) = eXp[—g (t — E) ), h(t) = WX(OS, t) = —S(t — %) eXp[-E (t — F) ),

te[0,27].  (4.99)

The graph of the exact solutiofh{4197) is shown in Figure.1{d)e exact Cauchy dath(4]199) are plotted in
Figure 2(a) together with the desired solution at the boonga= 0 given byu(0,t) = 1.

The numerical solutions® andU? solving [Z12) and(3.39), respectively, are obtained withmeshV x K =
100x50. The number of iterations (starting from the zero triigtial guess) was 7 when the relative error between
two subsequent iterations was less than®16lerance, and the iterative process was terminated. Euntbre, in
both cases = 0 and 2x 1072, the root mean square errors between the two regularizet@m@u®, U¢ and the
exact solution[{4.97) were obtained equally accurate whemegularization parametg(s) becomes smaller than
1072; in other words, the two regularization methods have theesarder of accuracy. This can also be visualised
from Figures 1(b)-1(e) which show the graphsuéfandU? for noisy = 2 x 1072) Cauchy data[{Z£93). From
top to bottom of figures one can see that the regularizedignfutire in better agreement with the exact solution
(shown in Figure 1(a)), ag(¢) decreases. However, from Figures 1(b)-1(e), one canwbsdee sensitivity of the
numerical solutions to noise & 2 x 1072) via the fluctuating countour lines, especially near therftauy x = 0.
This is to be expected since the stability decreases wittarching sideway leftwards from the overprescribed
boundaryx = L. The numerical results af(0,t) also degrade close to the end of the time intetval2r which is
consistent with the remarks madelih [7]. Despite the fluatnatoccuring, the shaping of the numerically retrieved
solutions confirm the estimates predicted in Theorems 3B a proper choice of the regularization parameter
v(g) concerns the term/y(e) in expressiond{3:32) and(3136) of Theorem 3.1, &nd¥3AAd)[Z3ZB) of Theorem
3.2. That is, once this term is kept under control, the cayemre and stability of the numerical solutions can be
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guaranteed. The best choiceydk) in our numerical experiments for Example (&) = ¢/20.

Example 2. In contrast to Example 1, in this example an analytical smutor u(x, t) is not explicitly available.
Consider a non-smooth functidaft) with compact support given by

_[3G-t-%]). if t-%F[<3
b(t) = { 0, otherwise (4.100)

Letu(0,t) = b(t). LetL = 5 and consider the following well-posed linear problems:

Vi —Vyxx = 0, (x,t) € (0,5) x [0, 2n], We —Wyx = sin(v(x,t)), (xt) e (0,5)x[0,?2n],
v(x,0) = 0, x € (0,5), and w(x,0) = 0, x € (0,5),
v(0,t) = b(t), te]0,2n], w(0, t) = 0, t € [0, 2n],
vw(5t) = 0O, t € [0, 2n]. wy(5,t) = 0O, t € [0, 2n],
(4.101)

Since we cannot obtain the exact solutionsvandw, we approximate them numerically using the second-order
Crank-Nicolson finite dierence method (FDM)E]M]. Then, it is obvious thiéx,T) = w(X, t) + v(X, t) satisfies the
following nonlinear problem:

O —Oxx = sin—w(x 1), (xt)e(0,5)x]0,?2r],

a(x,00 = 0, x € (0,5),

60.1) = bit), te [0, 21], (4.102)
050 = O, t e [0, 27].

Let us define the Cauchy data suchgés = {(1,t) andh(t) = (1, t) and consider solvind_(1l.1) for a function
u(x, t) satisfying

U — Uxx = Sin(u-w(xt), (xt)e(0,1)x]O0,2n],
{ uLt)y = o), t € [0, 2n], (4.103)
ux(1,t) = h(t), t € [0, 2n].

The nonlinearity in the first equation iR{4.103) is chardsti to a sine-Gordon equation.

The graphs of the functiori.{Z.7I00) and the Cauchy dgth) (obtained by solving the probleri{4.102) are
shown in Figure 2(b).

In Example 2, in order to obtain the "exact” solution and isuChy data, we have solved the two well-posed
mixed direct problems il {ZID1) with the mesh 18001 using the FDM. Afterwards, the obtained results were
interpolated to the computation domat) € [0, 1] x [0, 27] by adopting the subroutineGSF3P, [E], where we
employed two mesh resolutionk:x M = 100x 80 and 10& 160. Similarly to Example 1, the fixed-point iterative
process was terminated after 7 iterations (starting fraerz#ro trivial initial guess) with the error tolerance 10
Again, the two regularization methods produced numerait®ns with the same order of accuracy and therefore,
for brevity and clarity, only the numerical results i6%0, t) are illustrated in the next figure.

Figurel3 illustrates the convergence of the regularizedtisol u?(0, t) to the exact solutioT41ID0), age)
tends to zero (from the left to the right of the figure), for a&thmesh siz& x M = 100x 80. Here the Cauchy data
(¢, he) in equation [Z33) are disturbed by= 2x 1072, 2x 1072 and 0 (from the top to the bottom of the figure).
From Figurd B it can be seen, as expected, that better daitygields a more accurate and stable solution. The
proper choice of regularization parameigt) for this example ig/(g) ~ 5e.

Clearly in FigurdB, there are some wiggles occuring riear0 andt = 2r, which degrade the accuracy of
the numerical solutions near these endpoints. It is reddena believe that the issue is relevant to the periodicity
of the input data, which in this example is violated; a corhpresive survey of this matter can be foundLin [5],
Chapter 6. However, the error estimates of the regulariakdisns in an interior of the interval [@x] are actually
much better than the courterparts evaluated fully irR4Q including the endpoints, and moreover, they improve
with either increasingvl from M; = 80 to M, = 160 (fore = 2 x 1072 ande = 0) or, decreasing from 2 x 1072
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to zero. Indeed_, in Tablg 1, we provide numerical evidencgufaport the latter assertion. Therein, two kinds of
error estimatesA1 p, A1p) and (A2 p, A2 p) are defined in form of the root mean square errors, as follows

Mp-1 Mp-5
: 1 < ) P
Arp=4|= >, IFO.tm) - btm)%,  Agp= (0, trm) — b(tm)[?,
Mp ;6 \ Mp-9 mZ:S
1 Mp—1 1 Mp-5
/"\1,p = 'vE |U8(0, tm) - b(tm)|2, /"\2,p = |U£(O’ tm) - b(tm)|2’ (4-104)
Mp WZG \ Mp-9 mZ:S

for p = 1,2, where ('\Lp, /"\LP) plays the role of the error estimate on the full interval2f, while (Az,p,z"\zﬁp)
stands for the error estimate well-inside the interior efititerval [Q 2x].

| v(e) = 102 || M; =80 || M, =160
£ A1 A1 Aoy Ay Ao A1 Aop Aop
2% 10_2 1.061E-1 1.060E-1 8.226E-2 8.219E-2 2.088E-1 2.087E-1 1.491E-1 1.490E-1
2% 10—3 8.937E-2 8.925E-2 3.533E-2 3.537E-2 1.384E-1 1.383E-1 1.837E-2 1.845E-2
0 8.831E-2 8.819E-2 3.453E-2 3.457E-2 1.393E-1 1.392E-1 1.025E-2 1.041E-2

Table 1: Example 2, mean square erroiﬁ,,(, 1"\1,p) and Q'\zvp,z"\zp) are defined in equatiol{Z704) corresponding to the reigelh
solution (17, U?), andp = 1,2 meansM,. Here the regularization parametge) = 1072 in all cases.

5. Conclusions

This study has achieved a major extension over the much megstigated linear sideways heat equation. The
semilinear sideways heat equation, governing reactiffosion applications, has been solved using two new reg-
ularization methods based dn{2.14) aihd (183.39) for the tinguhonlinear integral equatiofi {Z]10). Convergence
and stability estimates, as the noise level tends to zeke been formulated and proved. Numerical examples

support the theoretical findings of the paper. Further watkoansider extending the current study from Lipschitz

heat sources to locally Lipschitz ones in order to allow foegen wider range of physical applications related, for
example, to combustion and radiative heat transfer. Oftiaddil interest would be to extend the inverse analysis

to the sideways heat equation in which the nonlinear heatsdéuin (L) also depends on the gradiet
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(a) Exact solution

(d) U (x. 1), y(e) = 1073 (e)Us(x, 1), y(e) = 1073

Figure 1: Example 1, graphs of the exact solutibn {4.97) &ednumerical solutions?(x,t) and U?(x,t) solving [ZI3) and[(3:39),
respectively, obtained from noisy & 2 x 10°2) Cauchy datd{Z.93).
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Figure 2: Graphs of exact solutia/0, -) and exact Cauchy datg,) = (u(L, ), ux(L, -)) for Examples 1 and 2.
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Figure 3: Example 2, convergence tendency of the reguthsakitionu?(0, t) (— o —) to the exact solutior.{ZZID0) (—), @) decreases
(from left to right). Here the Cauchy datgf(h®) in @33) are disturbed by = 2 x 1072, 2x 102 and 0 (from top to bottom).
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