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ABSTRACT

The Kelvin–Helmholtz instability has been proposed as a mechanism to extract energy from

magnetohydrodynamic (MHD) kink waves in flux tubes, and to drive dissipation of this wave

energy through turbulence. It is therefore a potentially important process in heating the solar

corona. However, it is unclear how the instability is influenced by the oscillatory shear flow

associated with an MHD wave. We investigate the linear stability of a discontinuous oscillatory

shear flow in the presence of a horizontal magnetic field within a Cartesian framework that

captures the essential features of MHD oscillations in flux tubes. We derive a Mathieu equation

for the Lagrangian displacement of the interface and analyse its properties, identifying two

different instabilities: a Kelvin–Helmholtz instability and a parametric instability involving

resonance between the oscillatory shear flow and two surface Alfvén waves. The latter occurs

when the system is Kelvin–Helmholtz stable, thus favouring modes that vary along the flux

tube, and as a consequence provides an important and additional mechanism to extract energy.

When applied to flows with the characteristic properties of kink waves in the solar corona,

both instabilities can grow, with the parametric instability capable of generating smaller scale

disturbances along the magnetic field than possible via the Kelvin–Helmholtz instability. The

characteristic time-scale for these instabilities is ∼100 s, for wavelengths of 200 km. The

parametric instability is more likely to occur for smaller density contrasts and larger velocity

shears, making its development more likely on coronal loops than on prominence threads.

Key words: instabilities – waves – MHD; Sun: corona – Sun: filaments, prominences – Sun:

magnetic fields.

1 IN T RO D U C T I O N

Recent observations of oscillating prominence threads by the Inter-

face Region Imaging Spectrometer (IRIS; De Pontieu et al. 2014)

and the Hinode Solar Optical Telescope (Tsuneta et al. 2008) show

that they can ‘fade out’ in cool lines (Ca II and Mg II) whilst si-

multaneously emerging in hotter lines (Si IV; Okamoto et al. 2015).

This could be a signature of heating in these structures. Okamoto

et al. (2015) compared their oscillations in the plane-of-sky motion

(measured from Ca II broad-band images) and in the line-of-sight

velocity field (from Doppler shifts in the Mg II K line using spectra

from IRIS); they found relative phase shifts of these oscillations be-

tween 90◦ and 180◦. Forward modelling of simulated data showed

that these observed relative phase shifts are consistent with the res-

⋆ E-mail: a.s.hillier@exeter.ac.uk

onant absorption of a magnetohydrodynamic (MHD) kink wave

(Antolin et al. 2015).

A key component of the model of Antolin et al. (2015) is that

the surface of an oscillating flux tube can become unstable to the

Kelvin–Helmholtz (KH) instability (first seen associated with trans-

verse kink waves in the simulations of Terradas et al. 2008), a shear

flow instability common in astrophysical systems. Instances of the

occurrence of this instability include the following: the interaction of

the solar wind with the flanks of the magnetosphere (e.g. Hasegawa

et al. 2004), erupting regions (Ofman & Thompson 2011), the flanks

of coronal mass ejections (Foullon et al. 2011; Möstl, Temmer &

Veronig 2013), and where emerging magnetic flux interacts with

prominences (e.g. Berger et al. 2010; Ryutova et al. 2010; Berger,

Hillier & Liu 2017). The KH instability can drive turbulence and

is a potential way to dissipate the energy of surface Alfvén waves

in magnetic flux tubes (Hollweg & Yang 1988; Ofman, Davila &

Steinolfson 1994; Terradas et al. 2008; Antolin et al. 2015). So the

C© 2018 The Author(s)
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1144 A. Hillier et al.

key question is: How do these shear flows develop at the surface of

an oscillating flux tube?

The existence of an unstable shear flow at the surface of a flux

tube undergoing a transverse kink wave can be understood from the

eigenfunction of the linear wave (e.g. Sakurai, Goossens & Hollweg

1991; Goossens, Hollweg & Sakurai 1992; Goossens et al. 2009;

Goossens et al. 2012). In the case where the density is discontin-

uous at the surface of the tube, a discontinuous shear flow exists

there, but this becomes smooth for a continuous density profile (e.g.

Goossens et al. 2009). However, for the smooth profile this shear

flow can be enhanced by a process known as resonant absorption.

First proposed by Ionson (1978), resonant absorption occurs be-

cause of a resonance between a kink wave travelling along a flux

tube and an Alfvén wave, which leads to a velocity singularity

at the tube surface in ideal MHD (Sakurai et al. 1991; Goossens

et al. 1992), though non-ideal effects make this shear flow veloc-

ity finite but large (Goossens, Ruderman & Hollweg 1995). These

small-scale flows enhance the dissipative processes (Wentzel 1974,

1978, 1979; Hollweg 1978). Recent theoretical and numerical work

has been devoted to transverse kink waves (Goossens et al. 2009),

and has shown that their non-linear dynamics develop KH unstable

flows (Terradas et al. 2008; Antolin, Yokoyama & Van Doorsse-

laere 2014; Antolin et al. 2015, 2016, 2017; Terradas, Magyar &

Van Doorsselaere 2018). The instability acts to extract energy from

the large-scale mode and to distribute it to smaller scales where

dissipation can act effectively. The cause and nature of this eventual

heating, however, is still under investigation (Magyar & Van Doors-

selaere 2016; Howson, De Moortel & Antolin 2017; Karampelas,

Van Doorsselaere & Antolin 2017; Antolin et al. 2018). For a recent

review of wave-based heating in the solar atmosphere see Arregui

(2015).

The general mechanism of the KH instability is that it breaks

up the shear layer at the boundary between two flows by creating

vortices (Chandrasekhar 1961). This may lead to turbulence via

secondary 3D instabilities. For MHD flows, magnetic tension works

to suppress the KH instability and favours unstable modes that do

not vary along the field. To understand the growth of the magnetic

KH instability in coronal loops, Soler et al. (2010a) investigated

how it develops on the surface of a rotating flux tube. They found

that the physics of the linear instability are not greatly altered by the

change in geometry. However, the influence of oscillations in the

shear (as occurs in an MHD wave) on the growth of the instability

is yet to be understood.

Oscillatory shear flows have been well studied in hydrodynamics.

Kelley (1965) investigated the instability of an oscillating shear flow

including gravity and surface tension as suppression mechanisms for

the classical KH instability. In the limit of zero-net shear flow (flow

oscillating around a mean of zero), the instability can be described

by a Mathieu equation for the vertical displacement of the interface.

This exhibits both a KH instability and a subharmonic parametric

instability driven by a resonance between the surface gravity waves

and the oscillating shear flow, for different parameters.

Parametric instabilities occur in many circumstances when there

is periodic forcing in a system that supports waves. If the wave has

small amplitude, this instability is caused by the triadic interaction

of the primary wave with a pair of (typically) smaller scale daugh-

ter waves. For example, internal gravity waves in density stratified

fluids, such as the Earth’s oceans, are unstable to parametric in-

stabilities that can transfer energy to smaller scales that are then

dissipated (McEwan & Robinson 1975; Drazin 1977). Another ex-

ample is that of rotating fluids with elliptical streamlines, which

can be unstable to the elliptical instability, a parametric instability

involving the coupling of pairs of inertial waves with the elliptical

deformation (Kerswell 2002). Of most relevance to this paper is the

parametric instability of Alfvén waves. This instability is believed

to play a role in reducing the correlation between velocity and mag-

netic field fluctuations in the solar wind as the waves propagate out

into the heliosphere (e.g. Malara, Primavera & Veltri 1996). The

decay of an Alfvén wave via this instability has also been observed

in experiments (Dorfman & Carter 2016).

An important extension to the work of Kelley (1965) was per-

formed by Roberts (1973). This work investigated the development

of the parametric instability in an oscillating MHD flow where the

flow direction is aligned with the magnetic field. The magnetic

field provides a tension that acts in a similar fashion to the sur-

face tension treated in Kelley (1965), working to suppress the KH

instability and enabling the existence of surface Alfvén waves. If

these waves are resonant with the oscillation frequency of the shear

flow, they become parametrically unstable. Zaqarashvili & Roberts

(2002) extended this concept to show that the parametric instability

can drive the transfer of energy from fast magnetoacoustic waves

into Alfvén waves. One possible application of the MHD paramet-

ric instability has been the investigation of periodic gravitational

forcing resulting in a field-aligned flow. Parametric growth of os-

cillations was found to result in an enhanced strength of a magnetic

field through the parametric instability, with application to the solar

dynamo (Zaqarashvili 2000, 2001; Zaqarashvili, Oliver & Ballester

2002).

In this paper, we investigate how the presence of an oscillatory

shear flow in the presence of a uniform magnetic field perpendicu-

lar to the flow (i.e. the vorticity vector and the magnetic field vector

are aligned) can influence the development of the KH instability,

or alternatively lead to parametric instabilities. We analyse the sim-

plest model possible: a discontinuous oscillatory shear flow in a

local Cartesian domain, and we derive the linear stability criteria

analytically. We find that the oscillatory shear flow can be unstable

to either the KH instability, or to a parametric instability involving

the excitation of surface Alfvén waves, depending on the parame-

ters. Finally, we discuss the implications of our results for driving

turbulence in the solar corona by kink waves.

2 MODEL AND LI NEAR STA BI LI TY ANALYS IS

2.1 Model

Our motivation is to describe the development of the KH instability

as this grows when driven by MHD oscillations in coronal flux tubes

(an example of such a situation is shown in Fig. 1a). There are a

number of possible flow profiles associated with oscillations of a

flux tube, two are shown in the cross-sections shown in Fig. 1(b).

However, this is a complicated configuration that would be difficult

to treat analytically. In this paper, we investigate a simpler prob-

lem that provides a good approximation to the relevant dynamics

of this system. We perform a local Cartesian analysis looking at

the apex of the flux tube, where the amplitude of the velocity shear

driven by the fundamental kink mode is largest, and the side of the

flux tube with strong oscillatory shear flow with a set-up shown in

Fig. 1(c). Thus in this model we have an oscillatory shear flow in

the presence of a uniform horizontal magnetic field. Note that we

neglect variations of the flow around and along the tube to allow us

to make analytical progress. We also neglect the spatial and tem-

poral variation of the magnetic field that would be associated with

the magnetic oscillation. This is justified because the background

MNRAS 482, 1143–1153 (2019)
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MHD instabilities of oscillating flows 1145

Figure 1. Panel (a): a large-scale schematic diagram of an oscillating flux tube rooted in the solar photosphere. The black dashed lines show the magnetic

field lines, and the black arrows show the direction of oscillation. The shaded region represents dense material in the tube. The red line marks the position of

the cross-section displayed in panel (b). Panel (b): image of the cross-section of the flux tube with flow patterns. The lines and arrows show: (i) a snapshot in

time of the streamlines of the dipole flow formed around a kink oscillating flux tube (instability in this setting was investigated numerically by Terradas et al.

2008), note that the direction of the flow arrows will reverse periodically with the wave motion, and (ii) the shear flow in a flux tube associated with surface

Alfvén waves (instability in this setting was investigated numerically by Antolin et al. 2015). The blue boxes show the local region modelled in this paper as

shown in panel (c). Panel (c): diagram of the local Cartesian model investigated in this paper with different densities and magnitudes of the velocity field in the

regions above and below the density jump. Both regions have a velocity field that oscillates in phase at the same frequency and have the same magnetic field

strength, both in the x-direction.

flux tube is dominated by the axial component of the magnetic

field.

The next approximation we make is that the oscillations in our

model are driven by a periodic force in the momentum equation,

not self-consistently via an MHD wave. As a result of our forcing

there should be a pressure response in the system, which we neglect

because our focus is on incompressible disturbances (where the

pressure response is small compared to the background pressure).

This omission, however, could be problematic when considering

velocities comparable with the fast-mode wave speed. We also ne-

glect the magnetic field oscillations associated with the wave, as

they are small in comparison to the background field along the flux

tube, which should dominate the dynamics.

The equations governing our model are

∂ρ

∂t
+ V · ∇ρ = 0, (1)

ρ
∂V

∂t
+ ρV · ∇V = −∇P + J × B + F (z, t) ŷ, (2)

∂B

∂t
= ∇ × (V × B), (3)

∇ · V = 0, (4)

∇ · B = 0, (5)

where V is the velocity field, B is the magnetic field, ρ the density,

P the gas pressure, J the current density, and F (z, t) ŷ is a forcing

term that maintains an oscillatory shear flow of frequency ω0. We

consider a shear flow in Cartesian geometry with the flow in the y-

direction, gradients in the flow in the z-direction, and the magnetic

field in the x-direction.

We take a uniform density in each layer, with the density dis-

continuity aligned with that of the velocity, i.e. at z = 0. This is

necessary for our basic oscillatory state to be an exact solution of

the governing equations. This state is described as follows:

ρ0 =
{

ρ− if z < 0,

ρ+ if z > 0,
(6)

MNRAS 482, 1143–1153 (2019)
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1146 A. Hillier et al.

Vy,0 =
{

V− cos(ω0t) if z < 0,

V+ cos(ω0t) if z > 0,
(7)

Vx,0 = Vz,0 = 0, (8)

P = P0, (9)

Bx,0 = B, (10)

By,0 = Bz,0 = 0. (11)

We also define the velocity difference �V0 = V+ − V−. Here we

note that the y-component of the background state equation resulting

from equation (2) is

ρ0

∂Vy,0

∂t
= F (z, t). (12)

The other equations are trivially satisfied by the background state.

2.2 Linear analysis

Linearizing about the basic state of an oscillatory shear flow in the

form G = G0 + g, where G0 is a background state variable and g is

the corresponding linear perturbation, leads to the following set of

equations:

∂ρ

∂t
+ Vy,0

∂ρ

∂y
+ vz

∂ρ0

∂z
= 0, (13)

ρ0

∂v

∂t
+ ρ0Vy,0

∂v

∂y
= −∇p + j × B0, (14)

∂b

∂t
= −Vy,0

∂b
∂y

+ B ∂v

∂x
, (15)

∇ · v = 0, (16)

∇ · b = 0. (17)

Taking perturbations to be normal modes of the form

f (x, y, z, t) = f̃ (z, t) exp(ikxx + ikyy) for the scalar quantities and

f (x, y, z, t) = f̃ (z, t) exp(ikxx + ikyy) for vector quantities, we

may derive an equation for the temporal evolution of the verti-

cal Lagrangian displacement of the fluid (η̃z) that relates to the

z-component of the velocity ṽz = ∂η̃z/∂t . Using that the physi-

cal variables are constant in the regions both above and below

the discontinuity and the requirement that the perturbation de-

cays to 0 at z = ±∞ in an ideal MHD gives the z dependence

of the eigenfunction as exp (− k|z|). Therefore, we can define

η̃z(z, t) = η(t) exp(−k|z|), and by matching the solutions across

the interface, the following equation for η is found:

d2η

dt2
+ 2iky(α+V+ + α−V−)

dη

dt
+

[

iky

(

α+
dV+

dt
+ α−

dV−

dt

)

− k2
y(α+V 2

+ + α−V 2
−) +

k2
xB

2

2π(ρ+ + ρ−)

]

η = 0, (18)

where α± = ρ±/(ρ+ + ρ−). The derivation of this equation is

presented in Appendix A. If we set η = η̂ exp(−iky

∫

α+V+ +
α−V−dt), upon rearranging we get

d2η̂

dt2
+

[

k2
xB

2

2π(ρ+ + ρ−)
−

1

2
k2

yα+α−�V 2
0 (1 + cos(2ω0t))

]

η̂ = 0.

(19)

Using the Alfvén speed in the + region, i.e. VA+ =
√

B2/4πρ+,

and the wavenumber k0, we can determine the following dimen-

sionless quantities:

t = T
VA+k0

, (20)

�V = VA+MA, (21)

kx = k0Kx, (22)

ky = k0Ky, (23)

η̂ = η′

k0
, (24)

where T, �V, Kx, Ky, and η
′
are dimensionless and MA = �V/VA +

is the Alfvénic Mach number. For cases where ω0 �= 0 we are free

to select k0 such that ω0 = 1, giving the dimensionless equation

d2η′

dT 2
+

α+

2

[

4K2
x − α−K2

yM2
A (1 + cos(2T ))

]

η′ = 0. (25)

This is a Mathieu equation, which takes the general form

d2f

dT 2
+ (a − 2ε cos(2T ))f = 0, (26)

where a and ε are constants. Equation (25) is equivalent to equa-

tion (26) if f = η
′
, and

a = 2α+K2
x − 1

2
α+α−K2

yM2
A, (27)

ε = 1
4
α+α−K2

yM2
A. (28)

This realization is useful because the properties of the Mathieu

equation are well understood (e.g. Bender & Orszag 1978).

2.3 General solutions to the Mathieu equation

To understand the linear instabilities of an oscillating shear flow, it is

helpful to first consider the general Mathieu equation (equation 26),

and its resulting instabilities. We can rewrite equation (26) as

d2f

dT 2
+ af = 2ε cos(2T )f = ε (exp(2iT ) + exp(−2iT )) f . (29)

The solutions to this equation must obey Floquet’s theorem, i.e. f =
C1exp (iωT)φ(T) + C2exp (− iωT)φ∗(T), where φ(T) is a function

that is periodic with the same periodicity as the time-varying coeffi-

cients, C1 and C2 are arbitrary constants, and ∗ denotes the complex

conjugate. Here φ(T) is given by φ(T ) = 
∞
p=−∞Ap exp(2ipT ),

where p is an integer. Using this form of f, inductive solutions to

equation (29) can be determined:
[

−(ω + 2p)2 + a
]

Ap = ε(Ap−1 + Ap+1). (30)

MNRAS 482, 1143–1153 (2019)
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MHD instabilities of oscillating flows 1147

This is an infinite system of equations for the coefficients Ap. One

can determine ω from the requirement that this system has non-

trivial solutions. These consist of tongues of instability centred on

certain frequencies.

Analytic solutions to these equations can be obtained in the limit

ε ≪ 1 from equation (30). For p = 0, we must have

ω2 ≈ a, (31)

which describes an oscillation with ω = ±
√

a. For p �= 0, this

implies that to have a non-zero coefficient Ap, we must have

a = p2, (32)

i.e. there is a resonance between the excited wave and the oscillatory

forcing, which is a parametric instability. More generally, it can be

shown that instability occurs within fingers of instability (for a >

0) that are bounded by

a = p2 ± ε + O(ε2), (33)

and the maximum growth rate at the centre of the dominant p = 1

resonance is

σ ≡ Im[ω] =
ε

2
+ O(ε2) (34)

(see e.g. Bender & Orszag 1978).

3 EX P L O R I N G T H E NATU R E O F T H E

INSTABILITIES

Now that we have an ordinary differential equation (ODE) in the

form of a Mathieu equation, we can explore the consequences of

having an oscillatory shear flow. To gain intuition, it is helpful to

consider the case of constant shear (i.e. setting ω0 = 0 so that the

term cos 2ω0t = 1 in equation 19). In this regime we select our

normalizing wavenumber k0 to be an arbitrary real wavenumber

greater than 0. In this case the dimensionless Mathieu equation

becomes

d2η′

dT 2
+ α+

[

2K2
x − α−K2

yM2
A

]

η′ = 0, (35)

which has constant coefficients and normal mode solutions of the

form η
′
∝ exp (± iωT). This leads to

ω2 = α+
(

2K2
x − α−K2

yM2
A

)

, (36)

where the first term arises from magnetic tension and is stabilizing,

while the second comes from the shear and is destabilizing. In this

equation, the first term on the right-hand side (RHS) is the square of

the MHD kink wave frequency in the incompressible limit, which

describes a surface Alfvén wave, and the second term describes the

Doppler shifting of this wave by the shear flow. When the second

term becomes larger than the first, ω2 is negative and the system

is unstable to the MHD KH instability with a growth rate given by

|ω| (e.g. Chandrasekhar 1961). This can be mathematically stated

as the following condition for the onset of instability:

M2
A >

2K2
x

α−K2
y

. (37)

Simply put, if the Alfvénic Mach number becomes sufficiently large,

for a given wavevector direction, then the shear flow can overcome

magnetic tension and the system becomes unstable. If there is no

perturbation at all in the direction of the magnetic field (Kx = 0),

then there is no suppression by magnetic tension and the system is

unstable for any non-zero velocity difference. But as the angle of

the wavevector to the magnetic field tends towards zero the driving

force is reduced and the tension force is increased so the system

tends towards stability. The Kx = 0 modes are rather special as they

would correspond in our model to modes with no, or possibly global,

variation along the flux tube; instead, their variation is confined

primarily to around the circumference of the flux tube.

When the oscillatory term is included (i.e. ω0 �= 0, and we solve

equation 25), then as in Kelley (1965) and Roberts (1973) both the

KH instability and parametric instabilities will be possible. This can

be seen in Fig. 2, which gives numerical solutions to the temporal

evolution of η
′

from solving equation (25) first by splitting this

equation into two coupled equations for η
′

and dη
′
/dT and solving

these with a first order, forward difference solver. Solutions are

given for MA = 0.2, and α+ = 0.01 for different points in K -space

(these points in K -space are shown in Fig. 3). These show a KH

unstable mode (panel a), p = 1 parametric unstable modes (panels

b, d, and e), p = 2 parametric unstable mode (panel f), and a stable

mode (panel c). Looking at this figure, it is clear to see that the

KH instability is a direct instability of our system (shown by the

fact there is only a solid black line in panel a), but the parametric

instability involves a resonantly enhanced wave so the solution takes

both positive and negative values (see the switch between solid –

positive η
′

– and dashed – −η
′

– lines in panel b). We explore the

different instability behaviour in this section.

3.1 Properties of the instabilities in the limit of weak shear

In this section, we consider a limit of equation (19) where the

amplitude of the oscillatory shear flow (proportional to cos 2T) is

small in a similar fashion to Section 2.3, as also considered by

Kelley (1965) and Roberts (1973). We use this to develop solutions

for the growth rate of the two instabilities. Strictly speaking, we take

ε ≪ 1 (as defined in equation 28) and follow the method presented

in Bender & Orszag (1978). Physically this corresponds to the limit

where the square of the shear rate is small compared to the square

of the oscillation frequency, and one example where this may occur

is when the wave driving the shear flow has a small amplitude.

3.1.1 Magnetic KH instability

From Section 2.3 when the resonance condition is not satisfied, then

the wave frequency is given by ω = ±
√

a and by direct comparison

it is possible to state the frequency of the surface wave in the small

shear limit. This is given as

ω = ±
√

α+

2

√

4K2
x − α−K2

yM2
A. (38)

This is very similar to equation (36), the only difference being

that the second term underneath the square root is a factor of 1/2

smaller, which results from averaging the shear kinetic energy over

one period.

To have a direct instability of the system, the stiffness of the

boundary between the two flows (i.e. the flux tube boundary) needs

to disappear, i.e.

M2
A >

4K2
x

α−K2
y

, (39)

which means that the non-oscillatory term in equation (19) is nega-

tive. For instability the Alfvénic Mach number has to be
√

2 greater

than the case with the same wavevector K for a non-oscillatory

shear flow (see equation 37). As can be expected for the MHD KH
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1148 A. Hillier et al.

Figure 2. Calculation of the variation of η
′

with T for MA = 0.2, and α+ = 0.01 using θ = 1.48 (where θ = tan −1(Ky/Kx)) in panels (a) and (c), θ = 1.20 in

panel (b), θ = 1.45 in panel (d), θ = 1.5 in panel (e), and θ = 1.45 in panel (f). K = 20 (where K =
√

K2
x + K2

y ) is used for panels (a) and (b), K = 100 for

(c) and (d), K = 300 for (e), and K = 200 for (f). The dash–triple dot line in panels (a)–(d) gives the predicted growth rate. The solid lines show positive and

the dashed lines negative values of η
′
. The positions in K-space for each of these panels are marked in Fig. 3.

instability, the shorter the wavelength in the direction of the flow

and the longer the wavelength in the direction of the magnetic field

the more likely the system is to be unstable. Though it is impor-

tant to remember that for this inequality to accurately describe the

onset of direct instability, 1
4
α+α−K2

yM2
A ≪ 1. Fig. 2(a) compares

the predicted growth rate of the KH instability to the solution of

equation (25) showing that for these parameters the solution in the

asymptotic limit and the solution match well. For panel (c), though

predicted to be unstable in the asymptotic limit, the KH mode does

not grow for these parameters as they are beyond the applicability

of this limit. We will look at this further in Section 3.2. Note that

θ = tan −1(Ky/Kx).

3.1.2 Subharmonic resonance

If the system is stable to the KH instability, then a perturbation

takes the form of a surface wave instead. The frequency of the

surface shear Alfvén wave is given by equation (38). There exists a

parametric resonance between this wave and the oscillatory driver

when, as stated in Section 2.3, the following condition is satisfied:

ω2 = a = p2, for p = 1, 2, 3, . . . . (40)

Note this is different to the resonance process behind resonant ab-

sorption discussed in Section 1. As the strongest resonance occurs

for p = 1, then the fastest growing modes satisfy

ω = ±1, (41)

which is equal to half the frequency of the oscillatory forcing,

indicating subharmonic resonance. This corresponds to counter-

propagating surface Alfvén waves that become unstable if their

frequency magnitudes are equal to the frequency of the oscillatory

shear flow.

The parametric instability is not just confined to the exact res-

onance, there is an envelope around this exact resonance that is

unstable (see e.g. Section 2.3), with the width of the envelope be-

ing given by 2ε (e.g. Bender & Orszag 1978). We note here that

for a larger Alfvénic Mach number or α+ ∼ α−, then more of the

parameter space is unstable to parametric instabilities because ε

becomes larger. From this we can define the following band where

the dominant subharmonic parametric instability is possible:

3

8
α−K2

yM2
A > K2

x −
1

2α+
>

1

8
α−K2

yM2
A. (42)

The maximum growth rate of the instability happens when the

exact resonance condition is satisfied. This growth rate is given by

(e.g. Bender & Orszag 1978)

σmax =
ε

2
=

1

8
α+α−K2

yM2
A. (43)

Of note here is the dependence of the growth rate on M2
A. This is

contrary to the KH modes, which grow at a rate proportional to

MA. Figs 2(b) and (d) compare the predicted growth rate of the

parametric instability to the solution of equation (25) with a first-

order forward difference solver for the same parameters with the

solution in the asymptotic limit proving to be accurate.

From this analysis we can see that the parametric instability

is quite different to the magnetic KH instability. While the latter

grows fastest for modes that minimize Kx (i.e. wavelengths along

the magnetic field as long as possible are preferred), modes unstable

to the parametric instability must have finite Kx. Therefore, it is

MNRAS 482, 1143–1153 (2019)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
2
/1

/1
1
4
3
/5

1
2
4
4
0
0
 b

y
 E

d
w

a
rd

 B
o
y
le

 L
ib

ra
ry

 u
s
e
r o

n
 1

3
 D

e
c
e
m

b
e
r 2

0
1

8



MHD instabilities of oscillating flows 1149

Figure 3. Numerically computed logarithm of the growth rate in K-space. Blue regions are approximately stable (with σ ≤ 10−2). The top left-hand region

(which emanates from Kx = Ky = 0) is KH unstable, whereas the five fingers of instability (yellowish regions pointing down) to the right of the KH band

(associated with Kx = p/
√

2α+ for Ky = 0) are parametrically unstable. These fingers of instability are associated with p = 1–5 in equation (40). The capital

letters A–D mark different instability bands, where A = KH instability, B = parametric (p = 1), C = parametric (p = 2), D = parametric (p = 3). The green

dashed line marks the critical wavenumber for the growth of the KH instability in the asymptotic limit. The solid red line gives the fastest growing parametric

mode in the asymptotic limit, with the dashed red lines marking the band of approximate resonance valid for small Ky. In this calculation α+ = 0.01 and MA =
0.2. The labelled blue arrows show the position in K-space of the six calculations shown in Fig. 2.

the parametrically unstable modes that are good at kinking and

disturbing the boundary between the two flows along the direction

of the magnetic field.

3.2 Solutions to the Mathieu equation

Fig. 3 plots the base 10 logarithm of the growth rate and shows

the regions of instability on the (Kx, Ky) plane. The values were

computed by solving equation (25). In this figure, α+ = 0.01 and

MA = 0.2. We analyse equation (25) numerically using a Floquet

method. First, we write equation (25) as a system of two coupled

ODEs. We then compute the monodromy matrix of linearly inde-

pendent solutions, which is accomplished by integrating the ODEs

over one period π for initial conditions such that all variables except

one are set to zero (using a 4/5th order Runge–Kutta method). The

eigenvalues of the monodromy matrix allow us to obtain the com-

plex growth rates of the instability. As can be seen in Fig. 3 there

are regions of stability (blue) but also bands of instability shown in

green and yellow.

In Fig. 3 there are a number of bands in K-space where the

system becomes unstable. There are two distinct instabilities that

exist in the unstable bands. In the band in the top left (associated

with small Kx), above the green dashed line, the system is KH

unstable (see Fig. 2a). However, the other bands are related to the

resonant growth of waves (see Figs 2b and d). Panel (c) shows a

region that is expected to be KH unstable based on the asymptotic

limit, but the instability is switched off as it is impinged by the

resonance. The instability bands are well separated for small Ky,

but as Ky increases the resonance impinges on the KH instability. In

Fig. 3 the dashed green line marks the theoretically predicted cut-

off for the KH instability (see Section 3.1.1) and the solid red line

with the dashed red lines mark the p = 1 subharmonic resonance

growing through a parametric instability (see Section 3.1.2). For the

parameters used in the calculation of Fig. 3 the asymptotic limits

are expected to hold when Ky ≪ 100 (i.e. ε ≪ 1).

From Fig. 3 we can see that, though crude, where the upper bound

of the parametric instability as calculated by the asymptotic limit

meets the marginal stability curve of the KH instability (again in

the asymptotic limit) can be used as an approximate wavevector for

where the resonance begins to impinge on the KH instability. This

wavevector is given by

Kx = 1√
α+

, (44)

Ky = 2√
α+α−

1
MA

. (45)

Fig. 3 shows a total of five parametrically unstable regions, which

are associated with p = 1–5 in equation (40). Each of these fingers

of instability start from Ky = 0, i.e. from the x-axis, but because

as p gets larger the resonance gets weaker the fingers of instability

get thinner. This makes them harder to accurately plot in the figure

near Ky = 0 as they are more challenging to resolve in K-space. For

a given Ky, we find that the largest growth rate is associated with

a KH mode, with the p = 1 resonance next largest, and the growth

rate getting smaller as p increases.

MNRAS 482, 1143–1153 (2019)
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1150 A. Hillier et al.

In the region of the figure above the dashed green line, the asymp-

totic limits predict that this is unstable everywhere, and this is

generally correct. However, it is important to note that even in this

regime, where a, as defined in equation (27), is negative, the regions

of parametric instability appear. Even with a < 0 these parametric

unstable regions still represent the exponential growth of an os-

cillation around zero and not a purely growing mode (as shown

in Fig. 2e). Compared to the non-oscillatory case, the key change

in stability of the system comes when a is positive, i.e. below the

dashed green line, and resonances can drive perturbations to the

system to grow.

4 A P P LIC ATION TO THE SOLAR

ATM O SPH ER E

Now let us take the model back to its application to coronal flux

tubes. When considering the instability on an oscillating flux tube in

the solar atmosphere, first the different scales of the problem need

to be considered. For a prominence thread, the diameter (D) is often

of the order of 2 × 102 km (e.g. Arregui, Oliver & Ballester 2018)

but can be up to 103 km (e.g. Okamoto et al. 2015). The length (L,

taken as the distance of the field lines leaving the photosphere to

their return) can be two or more orders of magnitude greater than D.

The length of the flux tube filled with dense material is often found

to be between ∼3 × 103 and 3 × 104 km (Arregui et al. 2018).

If the wavenumber associated with the instability on the flux tube

surface is considered, then it must necessarily have a larger aspect

ratio with the flux tube length than the diameter. Roughly speaking

these numbers hold for coronal loops (flux tubes that are filled with

hot material) as well.

To use this aspect ratio to constrain our calculations, we need to

determine a lower limit for the normalized wavenumber K given

by the length of the flux tube in normalized form. If a flux tube is

oscillating in the solar corona, the characteristic frequency of the

oscillation is the kink frequency and the characteristic speed is the

kink speed. As the non-dimensional kink speed of a flux tube is√
2α+, the frequency of the surface Alfvén wave will, because it

is driven by resonance with the kink wave, equal the frequency of

a global linear kink wave of the flux tube and have a normalized

value of unity. Therefore, the Kx value (for Ky = 0) that gives this is

Kx,KINK = 1/
√

2α+, which is the Kx value associated with the first

resonance for Ky = 0. By taking Kx ≥ Kx, KINK, then we can look at

wavenumbers that are appropriate for comparing to instabilities in

coronal flux tubes. For an aspect ratio of the flux tube of 1 : 100,

then instability modes must have Ky ≥ Ky,D = 1/D = 200/
√

2α+,

where D is the diameter of the flux tube.

Fig. 4 shows calculations with density ratios of 1 : 10 (panel

a) and 2: 3 (panel b), and MA = 0.02, calculated using a coronal

Alfvén speed of 1000 km s−1 and a velocity difference of 20 km s−1.

Generally the structure of the bands of instability is very similar to

that shown in Fig. 3. Both Kx, KINK and Ky, D are marked with dashed

blue lines, and we expect that instabilities on a flux tube will have to

be in the quadrant that is to the right of the dashed blue line marked

Kx, KINK and above the dashed blue line marked Ky, D.

If we only look at modes that use Kx, KINK, then for all Ky there

is no parametric instability only KH instability. This instability

provides the largest growth rate for a given Ky, but for all Ky the

growth rate is reduced compared to equation (38) as a result of the

presence of the resonance, i.e. for all achievable growth rates of

the KH instability on a flux tube, the oscillatory nature of the shear

and the impinging parametric resonance band reduces the growth

of the KH instability. These large-scale modes are strictly outside

the domain of applicability of the local model we have developed.

To fully understand the dynamics of this global mode, then the

boundary conditions and variations along the flux tube would have

to be included.

If we look at smaller scales along the flux tube, which is more

consistent with the local model we employ, this would mean that we

should use nKx, KINK as the wavenumber along the magnetic field,

where n is a integer greater than 1. This puts the system into a

regime where parametric instabilities dominate at the smallest un-

stable K values (which, due to the larger spatial scales involved, can

extract more energy from the shear flow). Because these instabilities

exist for different wavevectors, it can be expected that both of the

instabilities could be growing in a system at the same time.

For an instability, either KH or parametric, with 2Ky, D ≤ Ky ≤
4Ky, D, from Fig. 4 the growth rate is in the range σ = |iω| ∼ 1–

10ω0. Taking a characteristic oscillation period of a kink wave in the

corona to be 300 s, then the time-scale for the instability is approx-

imately 30–300 s. Note that these parametric modes are associated

with positions in K-space above the dashed green lines in Fig. 4. For

perturbations below that line (i.e. regions that would be stable for

a non-oscillatory shear flow), the growth rate will be σ ≤ ω0, and

so these perturbations can grow (with high wavenumber along the

magnetic field) at time-scales longer than 300 s and as such can still

occur on dynamically important time-scales. Prominence threads

may have a density up to 100 times greater than the solar corona

(e.g. Parenti 2014; Arregui et al. 2018), for this case the structure of

the instability bands would not change significantly and we would

expect instability to grow on a time-scale of approximately 30 s,

as estimated using Fig. 3. As this time-scale will connect to the

rotation time of a vortex at that scale (i.e. the eddy turnover time),

this time-scale can also be used as a lower estimate of the turbu-

lence time-scale (and with it the heating time-scale) of the flux tube,

though non-linear analysis is necessary to accurately estimate this

value.

It is important to note here that for instability in a prominence

thread, we have imagined a loop in the solar corona composed of a

flux tube that is completely filled by dense material, and used this

to connect the length scales of the first resonance in the model to

the loop length (or thread length as they are treated as being the

same). However, the reality is that only a section of the loop will

contain this material (e.g. Arregui et al. 2018). Soler et al. (2010b)

investigated the change in period of a kink wave as a result of the

prominence thread only filling part of the flux tube, finding that the

frequency of the wave changes. The reduction in the period of a

fundamental kink mode by a factor of 2 if the dense thread only

fills 10 per cent of the flux tube instead of the whole tube (Arregui

et al. 2011). This change in frequency from the local kink frequency

will mean that the position of the resonance relative to Kx.KINK will

change, but as this is not a large change it would not be expected to

greatly influence our estimates.

5 SUMMARY AND DI SCUSSI ON

This paper demonstrates that an oscillating MHD shear flow is

unstable to not only the KH instability, but also to parametric insta-

bilities involving surface Alfvén waves. In general the growth rate

of the KH instability is larger than that of the parametric instability,

but as ε (which quantifies the magnitude of the shear flow) becomes

large the resonances can impinge on the KH instability, pushing

the critical wavenumber for direct instability to higher wavenumber

K. This is of importance for understanding the growth of the KH

instability at the surface of prominence threads or coronal loops

MNRAS 482, 1143–1153 (2019)
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MHD instabilities of oscillating flows 1151

Figure 4. Numerically computed logarithm of the growth rate in K-space for (a) α+ = 1/11 and MA = 0.02 and (b) α+ = 2/5 and MA = 0.02. In each panel

the green dashed line marks the critical wavenumber for the growth of the KH instability in the asymptotic limit. The solid red line gives the fastest growing

parametric mode in the asymptotic limit, with the dashed red lines marking the band of approximate resonance. The vertical dashed blue lines show the position

of Kx, KINK, and the horizontal dashed blue lines show the position of Ky, D. The top right-hand quadrant, which is most relevant for instability in a solar setting,

is dominated by parametric modes.

because the oscillatory nature of the shear changes the onset of the

KH instability.

The general characteristics of the instabilities found in the model

are the following.

(i) The frequency of a surface Alfvén wave in the limit ε ≪ 1 is

modified by the oscillating flow, which is given in equation (38).

(ii) There exist surface Alfvén waves that become resonant with

the oscillatory driver as a result of the Doppler shifting of their

frequencies by the flow. These waves undergo an exponential growth

in amplitude. In the asymptotic limit of weak shear, the exponential

growth associated with the strongest resonance can be calculated

and is given in equation (43).

(iii) Beyond this limit, the region in K-space where the parametric

instability can grow approaches the KH unstable band, suppressing

the KH instability in this region.

(iv) We expect that both these instabilities could exist in the solar

atmosphere with characteristic time-scales of ∼100 s, for wave-

lengths of 200 km around the flux tube.

Returning to our initial motivation, though we use a highly sim-

plified model when applied to the disruption of oscillating structures

in the solar atmosphere, there are a number of conclusions we can

draw. For an oscillating magnetic field in the solar atmosphere, the

boundary conditions require modes to have wavenumbers along the

magnetic field of Kx > 0. In fact, we calculate the minimum Kx

to be the point at which the surface Alfvén wave, unmodified by

the shear, would resonate with the driving frequency. Because of

the strengths of the magnetic field, most of the modes of interest

would have to have the ratio of wavenumbers across and along the

magnetic field of Ky/Kx ≪ 1. One clear result of this study is that

the instabilities that can develop from an oscillating flow are more

complex than the KH instability of a non-oscillatory shear flow. We

can expect that resonances would play a role, and when the KH

does grow, any vortices that are created will reverse the sign of their

vorticity line with the change in sign of the vorticity of the forcing

(in the solar case this is the large-scale MHD wave).

The key point of this paper is that if we account for the oscillatory

nature of a wave in a flux tube, then we find that there are two types

of instabilities, and that they can be excited for a wider range of

wavenumbers (especially along the magnetic field) compared with

the case of a constant shear. As such there are a richer array of

disturbances on shorter scales along the magnetic field, and hence

of ways to break down the original Alfvénic wave, and possibly

to disturb the underlying flux tube. An interesting extension to this

work would be to perform a similar analysis on the surface of a flux

tube similar to the model of Soler et al. (2010a) but considering an

oscillating flow. Because the modes around the surface of a flux tube

are quantized, as are the modes along a flux tube of finite length,

this will make it harder to satisfy exact resonance, which could have

an impact on the nature of the instability.

The existence of these two instabilities may have interesting con-

sequences for the potential development of turbulence in the system

under study. The non-linear development of the hydrodynamic KH

instability can produce turbulence without a magnetic field. In the

MHD limit, there are extra complexities, but as shown in Antolin

et al. (2015) chaotic turbulent-like flows can develop. The existence

of parametric instabilities also has a connection to MHD turbulence,

since the instability involves wave interactions, which are also cru-

cial for Alfvénic turbulence (e.g. Goldreich & Sridhar 1995). It

has been shown that the saturation of the parametric instability

can have quite rich dynamics, giving rise to non-linear oscillations,

chaotic wave–wave interactions, and disordered wave turbulence

(Wersinger, Finn & Ott 1980). Therefore, the two MHD instabil-

ities that can be expected to develop as a result of the oscillating

shear flow, we have studied potentially connect to the development

of two different regimes of turbulence in an MHD system.

The parametric instability can grow at larger scales across the

magnetic field when the Alfvénic Mach number MA of the oscil-

lating flow is increased or the density contrast between the two

flow regions is decreased. Dynamically this would be distinguished

from a direct instability by the progressive increase in amplitude of

a wave instead of the linear growth of a perturbation. In the solar

atmosphere, this density contrast is smaller in coronal loops than in

MNRAS 482, 1143–1153 (2019)
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1152 A. Hillier et al.

prominence threads, making the parametric instability more likely

to occur for coronal loop oscillations. It is necessary to perform a

range of MHD simulations to see if resonant enhancement of surface

waves can happen at dynamically important scales under solar con-

ditions. As the importance and the growth of the instability scales

as M2
A, this could result in changes to the rate at which oscillations

damp for increasing non-linearity of the oscillation. Goddard &

Nakariakov (2016) observed such a trend in coronal loops and it

would be interesting to develop this connection.
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APPENDI X A : FULL LI NEAR STA BI LI TY

ANALYSI S

Linearizing about the basic state of an oscillatory shear flow, we

expand each variable in the form G = G0 + g, where G0 is a basic

state variable and g is its linear perturbation, we obtain the following

set of equations:

∂ρ

∂t
+ Vy,0

∂ρ

∂y
+ vz

∂ρ0

∂z
= 0, (A1)

ρ0

∂v

∂t
+ ρ0Vy,0

∂v

∂y
+ ρ0vz

∂Vy,0

∂z
ĵ = −∇p + j × B0, (A2)

∂b

∂t
+ Vy,0

∂b

∂y
= −bz

∂Vy,0

∂z
ĵ + B ∂v

∂x
, (A3)

∇ · v = 0, (A4)

∇ · b = 0, (A5)

where ĵ is the unit vector in the y-direction. We assume normal

modes of the form f (x, y, z, t) = f̃ (z, t)exp(ikxx + ikyy), and ob-

tain the following system of linear equations:

Dρ + ṽz

∂ρ0

∂z
= 0, (A6)

ρ0Dṽx = −ikx p̃, (A7)

ρ0Dṽy + ρ0ṽz

∂Vy,0

∂z
= −iky p̃ + B

4π
(ikx b̃y − iky b̃x), (A8)
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ρ0Dṽz = −
∂p̃

∂z
−

B

4π

(

∂b̃x

∂z
− ikx b̃z

)

, (A9)

Db̃x = ikxBṽx, (A10)

Db̃y + bz

∂Vy,0

∂z
= ikxBṽy, (A11)

Db̃z = ikxBṽz, (A12)

ikx ṽx + iky ṽy = −
∂ṽz

∂z
, (A13)

ikx b̃x + iky b̃y = −
∂b̃z

∂z
, (A14)

where D = ∂/∂t + ikyVy,0, i.e. the advective derivative.

The first step is to take the x-derivative of equation (A7) and add

this to the y-derivative of equation (A8) and in conjunction with

equations (A13) and (A14) gives

− ρ0D
∂ṽz

∂z
+ ρ0ṽz

∂Vy,0

∂z
= k2p̃ −

ikxB

4π

∂b̃z

∂z
+

k2B

4π
b̃x . (A15)

From here we can introduce the Lagrangian displacement η̃ defined

by

ṽx = Dη̃x, (A16)

ṽz = Dη̃z, (A17)

which implies that

b̃x = ikxBη̃x, (A18)

b̃z = ikxBη̃z. (A19)

Substituting these into equations (A9) and (A15) leads to

− ρ0D
2 ∂η̃z

∂z
= k2p̃ +

k2
xB

4π

∂η̃z

∂z
+ ikx

k2B2

4π
η̃x, (A20)

ρ0D
2η̃z = −

∂p̃

∂z
− ikx

B2

4π

(

∂η̃x

∂z
− ikx η̃z

)

. (A21)

It is simple to show that

−
∂p̃

∂z
=

1

k2

∂

∂z

(

k2
xB

4π

∂η̃z

∂z
+ ikx

k2B2

4π
η̃x + ρ0D

2 ∂η̃z

∂z

)

, (A22)

which substituted into equation (A21) gives

∂

∂z

((

ρ0D
2 +

k2
xB

4π

)

∂η̃z

∂z

)

− k2

(

ρ0D
2 +

k2
xB

2

4π

)

η̃z = 0.

(A23)

Looking at equation (A23) at z �= 0 gives

(

ρ0D
2 +

k2
xB

4π

)

(

∂
2

∂z2
− k2

)

η̃z = 0. (A24)

We know that at the z-dependence of the solution is of the form

exp (− k|z|), which is the same as in the MHD KH instability with

constant shear (Chandrasekhar 1961). Using the continuity of η̃z at

the boundary, we have that

η̃z(z, t) = η(t) exp(−k|z|). (A25)

Equation (A23) can be integrated over the discontinuity to give

(

ρ0D
2
+ +

k2
xB

4π

)

η +
(

ρ0D
2
− +

k2
xB

4π

)

η = 0, (A26)

or, in full,

d2η

dt2
+ 2iky(α+V+ + α−V−)

dη

dt
+

[

iky

(

α+
dV+

dt
+ α−

dV−

dt

)

− k2
y(α+V 2

+ + α−V 2
−) +

k2
xB

2

2π(ρ+ + ρ−)

]

η = 0, (A27)

where α± = ρ±/(ρ+ + ρ−).

If we define η = η̂ exp(−iky

∫

α+V+ + α−V−dt), we can remove

the term with the first time derivative to obtain

d2η̂

dt2
+

[

k2
xB

2

2π(ρ+ + ρ−)
− k2

yα+α−(V+ − V−)2

]

η̂ = 0. (A28)

By definition, V+ − V− = �V0cos ω0t, therefore (V+ − V−)2 =
�V 2

0 (cos(2ω0t) + 1)/2, so we have

d2η̂

dt2
+

[

k2
xB

2

2π(ρ+ + ρ−)
−

1

2
k2

yα+α−�V 2
0 (1 + cos(2ω0t))

]

η̂ = 0.

(A29)

This is in the form of a Mathieu equation, and as such its properties

(both the instability and wave solutions) can be easily understood.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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