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Ray-tracing techniques are applied to bolometry, a diagnostic where the finite collection volume is particularly
sensitive to the machine and detector configuration. A technique is presented that can handle arbitrarily
complex aperture and collimator geometries. Sightlines from the ASDEX Upgrade bolometer foils were ray-
traced with a path tracing algorithm, where the optical path is represented by a statistical bundle of ray
paths connecting the foil surface with the slit geometry. By using the full 3D machine CAD model for
the detector box and first wall, effects such as occlusion and vignetting were included in the calculation
of the bolometer’s étendue. Inversion matrices calculated with the ray-tracing technique were compared
with the more conventional single-ray approach and shown to be naturally more constrained, requiring less
regularisation. The two models were tested on a sample radiation scenario and the common single-ray
approximation is shown to be insufficient. These results are particularly relevant for the divertor where
strong emission gradients may be present. The technique developed generalises well to arbitrarily complex
viewing geometries and collimators, opening up a new design space for bolometer configurations that might
not normally have been considered.

I. INTRODUCTION

To protect the divertor components in machines on
the scale of ITER and DEMO, a large fraction of the
exhaust power entering the scrape off layer must be ra-
diated before it reaches the divertor targets1. Multi-
channel bolometry is a key diagnostic used in current
experiments to facilitate the development of highly radi-
ating divertor scenarios2. An accurate bolometric diag-
nostic is essential for both measuring the total radiated
power fraction and determining the spatial distribution
of the emissivity.
A bolometer is designed to effectively be a black sur-

face such that it will absorb all photons incident upon
it, yielding a measurement of the radiant flux at that
surface. Gold is usually used as the absorbing mate-
rial of choice because it exhibits strong absorption above
∼ 3eV, which corresponds well to the spectral region
where the bulk of the power is radiated in a typical toka-
mak plasma2.
The limited geometric accessibility around tokamak

plasmas means most bolometry diagnostics are installed
as fans of pinhole cameras at a low number of observation
points. The plasma’s local emissivity profile is then in-

a)matthew.carr@ukaea.uk
b)See the author list of Meyer, H., et al. “Overview of progress in
European medium sized tokamaks towards an integrated plasma-
edge/wall solution.” Nucl. Fusion (2017).
c)See the author list of Kallenbach, A., et al. “Overview of ASDEX
Upgrade results.” Nucl. Fusion (2017).

ferred from the line integrated measurements by means
of standard tomography techniques2,3. Figure 1 shows
the FLH bolometer camera in-situ at ASDEX Upgrade
(AUG).

The response of the collimated detectors is often ap-
proximated as infinitely thin straight lines, which will
hereafter be referred to as the single-ray model. However,
this approximation is known to be a poor representa-
tion of the detector when the beam width is significantly
larger than the length scale of the emission features4–8.

The most advanced analytical model was developed
by Ingestion et. al.4 and considers the geometrical re-
sponse of an ideal rectangular pinhole and detector. The
authors also developed a numerical treatment for cal-
culating the response of the as installed JET bolome-
ter detectors which consisted of a rectangular detector
with a cylindrical collimator. Occlusion of the detection
volume by first wall protection tiles was taken into ac-
count through secondary apertures4. In later work it
was shown how this model could be used to optimise the
design of apertures and collimators for two dimensional
tomography6. However this model was not able to take
into account the toroidal bending of the voxels due to the
nature of the numerical schemes used. Although negligi-
ble for JET, this effect has been shown to be significant
on other devices7. Another numerical scheme calculates
the sensitivity volume through a 3d integration grid con-
sisting of lattice planes aligned parallel to the detector
surface7,8. At each integration point the solid angle of
the detector is calculated including partial shadowing by
the pinhole.

The most complete numerical approach would be to
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FIG. 1. a) Example visualisation of the FLH bolometer cam-
era (red), which contains four bolometer foil sightlines, with
its pinhole viewing between a first wall tile gap (green). In
b) the same FLH camera is shown with its context viewing
into the AUG divertor (grey). Note that the model detail has
been reduced for visualisation.

use Monte Carlo techniques to launch an ensemble of rays
from the detector surface and trace them through to col-
lisions with the as-built engineering model for detector
aperture surfaces and the first wall. This process would
result in a complete model of the direct coupling between
the emission source and the detector including all 3D ef-
fects, such as occlusion and vignetting. Occlusion be-
ing when rays are obstructed by structures external to
the camera (e.g. wall tiles), and vignetting being rays
obstructed by the camera aperture. This Monte Carlo
approach will be referred to as the volume ray-tracing
technique.

The CHERAB code9,10 was developed at JET as a
platform for modelling spectroscopic diagnostics with the
Raysect ray-tracing package11. Raysect is a fully spectral
open-source scientific ray-tracing framework that is ca-
pable of handling detailed 3D engineering geometry and
physically accurate reflections. In this work CHERAB
has been extended for use with bolometry by exploit-
ing Raysect’s Monte Carlo ray-tracing capabilities. The
AUG bolometry system12 was used as a case study di-
agnostic system for testing the relative benefits of the
volume ray-tracing technique, although the conclusions
should be generally applicable to other fusion devices.

II. RAY TRACING BOLOMETER MODEL

The total power (radiant flux) measured by an observ-
ing surface is given by the integral of the incident emis-
sion over the collecting solid angle Ω and surface area
A.

Φ =

∫

A

∫

Ω

Li(x, ω)× cos(θ)dωdA (1)

Here, Li(x, ω) is the incident radiance arriving at a
given point x and incident angle ω on the observing sur-
face. The cos(θ) term is a geometry factor describing the
increase in effective observing area as the incident rays
become increasingly parallel to the surface.
Equation 1 is exact, but extremely difficult to evaluate

analytically for any realistic bolometer foil geometry and
radiation distribution. In practice, it is easier to evalu-
ate this integral with Monte Carlo integration and im-
portance sampling which approximates the integral with
a weighted average13,14. The Monte Carlo integral esti-
mator for a function f takes the form

I ≈
1

N

N
∑

j=1

f(xj)

p(xj)
. (2)

with f(x) evaluated at N sample points xj and p(xj),
given by

p(xj) =
q(xj)

∫

q(x)dx
, (3)

is the probability density function evaluated for the given
sample point. q(x) is the weight function for cases when
the sample points are drawn from a non-uniform sample
distribution.
The lighting integral in equation 1 can be naturally

discretised in terms of Nr rays, composed of 2D sample
points xj on detector area Ad and sample vectors ωj on
the hemisphere Ω. Therefore, the estimator for the power
arriving on a bolometer foil would take the form

Φ ≈
1

Nr

Nr
∑

j=1

Li(xj, ωj) cos(θj)

pA(xj)pΩ(ωj)
. (4)

If the sample points are drawn uniformly over the de-
tector area, then pA(xj) = 1/Ad. The natural choice
for sampling the vectors is a uniform hemisphere. How-
ever, for a bolometer detector the pinhole typically oc-
cupies a small solid angle leading to very computation-
ally inefficient sampling. It is more efficient to sample
the minimum cone of solid angle (with half angle θh)
that tightly wraps the pinhole. If the vectors are gener-
ated uniformly over solid angle, the weighting function is
still uniform, q(ω) = 1, and thus the probability density
function takes on the form of the fractional solid angle,
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FIG. 2. a) The Stanford Bunny mesh with a spherical light
source of 1 cm radius positioned in the head region. b) A log
scaled power map of the power collected on the mesh surface
elements.

pΩ(ωj) = 1/(2π(1− cos(θh))) = 1/Ωfrac. The estimator
becomes

Φ ≈
ΩfracAd

Nr

Nr
∑

j=1

Li(xj, ωj) cos(θj). (5)

III. BENCHMARKING

To benchmark the implementation of equation 5, Ray-
sect was configured to evaluate a set of test problems with
known analytic answers. All cases use a simple spheri-
cal volumetric source as the emitter but demonstrate the
technique scales well to arbitrarily complex geometries.
Consider a sphere with a radius of 50 cm centred at the

origin. If the sphere has a uniform radiance of Lsphere =
1W/m3/str then the total power radiated by the sphere’s
volume, Vsphere, is given by

Φtheory = Lsphere × Vsphere × 4π ≈ 6.580 W. (6)

The radiating sphere can now be surrounded by an
arbitrarily defined absorbing closed surface. As long as
the surface does not intersect with the sphere, the total
power collected by that surface through ray-tracing must
equal the total power radiated, Φray−tracing = Φtheory.
Changing the complexity of the confining surface pro-
vides a good benchmark since no matter how complex
that surface becomes, the answer must always be the
same.
Perhaps the simplest confining surface we can use is

a cube centred on the origin with sides larger than the
sphere’s diameter. Note that due to symmetry we don’t
need to observe each face of the cube, only a single face
multiplied by 6. Test case A consisted of a cube with a
side length of 2 m.

Case Nr Φtheory (W) Φray−tracing (W) t (s)

A 1× 106 6.580 6.551± 0.057 0.05

B 1× 106 1.028× 10−5 1.030± 0.003× 10−5 0.08

C 1× 107 5.264× 10−5 5.282± 0.037× 10−5 1.13

TABLE I. Benchmarking of the implementation of ray-tracing
equation 5 with: case A a cube with a side length of 2 m; case
B a pinhole camera like geometry with large detector-pinhole
separation; and case C the Stanford Bunny mesh surface15.
The ray count, Nr, and computation time, t, are indicated for
each case, along with the performance of the ray-tracing com-
putation, Φray−tracing, against the analytic result, Φtheory.

Case B considers a circular detector surface of radius
5 mm at a distance of 2 m from the spherical source used
in case A. The expected power measurement is given by
the total power radiated by the source multiplied by the
fractional solid angle of the detector as seen by the source.
This geometry approximates the scenario of a detector
looking at a pinhole in the limit of large detector-pinhole
separation.
Case C used one of the most commonly used test mod-

els in computer graphics, the Stanford Bunny15. The
Stanford Bunny is a mesh that was assembled from a
set of range scans of a clay bunny. The mesh contains
69,451 triangles, forming a closed triangular mesh sur-
face. The power load on each triangle in the mesh was
individually ray-traced with equation 5, with the sum
over the mesh triangles giving the total power absorbed
by the surrounding surface. For this test, the volumet-
ric source was 1 cm in radius and approximately centred
in the bunny’s head region, see Figure 2 for the source
geometry.
As can be seen from Table I, in all benchmark cases the

Raysect ray-tracer recovers the analytical value to within
the sampling uncertainty of the run. All computations
were performed on a 16 core Intel Xeon E5-2665 at 2.4
GHz.

IV. ÉTENDUE CALCULATION

The étendue of the detector including occlusion and
vignetting effects can be calculated by the weighted frac-
tion of rays that pass through the slit multiplied by the
full étendue that was sampled.

ǫdet =
ΩfracAd

Nr

Nr
∑

j=1

δj cos(θj), δj =

{

0, ray hits

1, ray passes

(7)
Here, ǫdet has units of [m2 str] and δj = 0 if the jth ray
hits any of the obstructing aperture surfaces, or δj = 1 if
the ray passes through unencumbered to the plasma.
With this calculation the étendue for an arbitrary

pinhole-foil geometry can be calculated to arbitrary pre-
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FIG. 3. The étendue of a simple pinhole camera composed
of a circular detector and aperture with radius 1 mm as a
function of detector-aperture separation. The ray-traced and
analytical étendues are plotted against each other, along with
the limiting detector étendue.
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FIG. 4. The fractional error of the approximate analytical
étendue relative to the ray-traced étendue for a number of
different basic axis aligned aperture/detector geometries. The
length scale is normalised to the smaller of the rectangular
dimensions.

cision with sufficient ray samples. By contrast, it is more
common in bolometry to use the approximate pinhole
formula2,4

ǫpin =
cos(γ) cos(α)AdAp

d2
. (8)

Where Ap is the rectangular pinhole area, Ad is the de-
tector area, d is the distance between the pinhole and
detector, and γ, α are compound angles describing the
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FIG. 5. The four foil detector étendues for the FLH cam-
era were calculated with the analytic pinhole approximation
(Eqn. 8) and these are compared with the ray-tracing étendue
values (Eqn. 7). The three cases shown are a) the analytic
pinhole approximation, b) the ray-tracing calculation with a
realistic first wall model and a simplified pinhole in a rectan-
gular plane, and c) as b) but also including the full as built
detector geometry.

orientation of the foil surface with respect to the pinhole
axis2,4.

The limiting behaviour of these two equations was
explored with a simple pinhole geometry configuration.
Consider a simple system where the detector and slit are
both circular with a radius of r = 1 mm. The detec-
tor and slit are on axis and separated by some variable
distance of separation, d, that scans from 0.1 mm up to
10 cm. The plot in Figure 3 compares the ray-tracing
results of equation 7 against the analytic approximation,
equation 8.

As the separation tends to infinity the ray-tracing and
analytic formula agree to within the numerical sampling
noise. In the opposite limit the slit and detector even-
tually touch when the separation between them goes to
zero. Since the detector and slit have the same geomet-
rical shape and area, it is as if the slit was not present
at all. And hence the étendue should tend towards the
étendue of the detector on its own, represented by the
dashed line in Figure 5. The ray-tracing result correctly
tends to this limit while the analytic equation grows in-
finitely towards d = 0.

Figure 4 shows the relative error between the two cal-
culation methods assuming the ray-tracing method is
more accurate. The figure shows the impact of changing
the axis aligned aperture/detector geometry from circu-
lar to square, and then increasingly elongated rectan-
gles. The last data set includes an axis aligned aper-
ture/detector combination with geometry similar to the
installed FLH bolometer camera on AUG. Note that it
is difficult to plot these curves on a normalised axis be-
cause of the subtle geometry differences between the dif-
ferent shapes. However, it demonstrates that the circular
aperture is the limiting case and elongating the geome-
try leads to more deviation. Detectors and apertures are
often elongated in the toroidal direction in fusion tomog-
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FIG. 6. A 3D voxel basis function composed of a toroidally
symmetric annulus with a uniform volume emissivity. The
full engineering model for the first wall is included in all ray-
tracing calculations. Reflection effects have been turned on
for visualisation purposes.

raphy systems to improve the signal to noise without sig-
nificantly effecting the feature resolution. Although not
shown, moving to a non-axis aligned system will further
increase the amount of deviation.
The difference between the two étendue calculation

methods was calculated for all AUG bolometer cameras.
An extreme example case is shown for the FLH camera
in Figure 5. The ray-tracing calculation was performed
with both a simplified (Fig. 5b) and full detail (Fig. 5c)
aperture to separate out the different contributions. The
simplified aperture used a rectangular plane with a rect-
angular pinhole cut out of the plane, whereas the full
detail case used the engineering model of the as built
detector.
There is a systematic offset between the analytic a) and

ray-traced simple pinhole b) cases of order ∼ 10%, which
is due to performing the calculation with a simplified
geometry. The extra drop in étendue between b) and c)
is due to vignetting effects at the edges of the camera
field of view when the full CAD geometry is included.
The detector étendue calculations for the FHC camera

had an average offset of 10.8% compared with the much
smaller 2.7% on the FLX camera. It was found that
each camera had a distinctly different mean offset, which
is likely due to differences in the camera geometry that
have more or less effect on the assumptions in equation
8. The presence of an étendue offset will act as an extra
systematic noise source in the inversion process.

V. SENSITIVITY MATRICES

Recovering the plasma emission with tomography is an
ill-posed problem. It is customary to describe the system
in terms of a sensitivity matrix W. The elements Wk,l

describe the coupling between the Ns plasma emission
sources xl and measured power Φk at Nd detectors. The

a) b)

FIG. 7. Comparison of sensitivity matrices W in the poloidal
plane for a bolometer foil modelled with a single-ray and a
volume sampled light cone.
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FIG. 8. Comparison of the sight line densities for foil bolome-
ters at AUG modelled with single-ray paths and volume sam-
pled light cones.

whole detector set is typically represented as the matrix
equation

Φ = Wx. (9)

The power for the kth detector can be expressed as

Φk =

Ns
∑

l=1

Wk,l xl, (10)

where k and l are the indices for the detectors and sources
respectively. There are a number of possible choices for
the prescription of the emitting source l basis functions16.
In this work we have used a 3d voxel composed of a
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toroidally symmetric annulus with uniform volume emis-
sivity xl, see Figure 6 for a visualisation of a single voxel
element. Equation 9 can then be inverted using estab-
lished tomography techniques2,3 to yield the spatial emis-
sivities from a measured set of power values.
The conventional analysis technique estimates the sin-

gle ray sensitivity matrix WSR by tracing a straight line
through the system, originating at the centre of the de-
tector surface and passing through the slit centre. Every
sensitivity element Wk,l is weighted by the length of the
ray segment, sk,l, that intersects with the lth emitting
source approximated as a 2d cell.

WSR : Wk,l = sk,l × ǫpin (11)

In contrast, the ray-tracing technique launches Nr ran-
domly generated rays from the detector and performs a
weighted sum of the ray lengths, sj,k,l, that intercept with
the 3d voxel using equation 5. Rays that collide with the
slit geometry or miss the cell have a zero weighting.

WVol : Wk,l =
ΩfracAd

Nr

Nr
∑

j=1

sj,k,l cos(θj) (12)

Fig. 7 compares the sensitivity matrices for a single de-
tector generated with the single ray and the volume ray-
tracing methods. The single ray method exhibits spatial
aliasing since neighbouring cells along the ray path can
be weighted by a corner intersection and then a longer
intersection, leading to an alternating over and under
representation of the coupling with the emission voxels.
The volume sampling method leads to a smoother spa-
tial response and the sensitivity region correctly expands
as you get further from the detector. Also, the toroidal
bending of the voxels is automatically included due to
the 3D nature of the calculation method.
A clear advantage of the volume sampling method is

that the weight matrices are less sensitive to design tol-
erances. Small changes in the position and direction of
a single sightline can produce quite a big difference in
the aliasing pattern of the weight matrix. The volume
ray-tracing matrix is much more stable to small pertur-
bations in the input parameters.
Fig. 8 compares the sight line density for the whole

AUG foil bolometer detector set calculated with the two
methods. The sightline density matrix is the normalised
sum over the k index in W, yielding a relative measure of
how well a source region l is observed relative to the other
cells. For the single ray technique there are a number of
cells in the plasma emission region that are effectively
dark, i.e. not seen at all by a detector in the model.
These cells can only be filled in by regularisation.
To study these effects further we have used an ex-

ample radiation scenario from AUG shot 33280 at 4.1s
inverted with the currently applied AUG tomography
code17, shown in Fig. 9 a). This tomography code uses
the conventional single ray model for its inversions. Fig.
9 b) shows each sightline colour coded by the percentage
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FIG. 9. Figure a) shows the BLB code inverted emission pro-
file for AUG shot 33280 at 4.1s. Figure b) shows the forward
calculated sightlines colour-coded by the percentage error be-
tween the two techniques. The bolometer camera positions
are labelled.
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FIG. 10. Plot of the forward modelled power with the single-
ray technique, ΦSR, against the power calculated with ray-
traced volumes, ΦV ol, for each detector observing the ra-
diation scenario in Figure 9. The deviations become more
pronounced at higher powers which tends to correlate with
sightlines that see the divertor.

error in the observed power when the single-ray approxi-
mation is used in comparison to volume ray-tracing. Sim-
ilarly, Fig. 10 shows a scatter plot of the forward mod-
elled power calculated with a single-ray, ΦSR, against
the power calculated with a ray-traced volume, ΦV ol, for
each detector.

For many detectors observing lower powers the single
sight line is a good approximation, these sightlines are
looking across the bulk plasma which is characterised by
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FIG. 11. Example case where the single-ray path terminates
too early on a tile surface resulting in a significant error in
the collected power calculation. When the volume ray-tracing
technique is used a large fraction of the collection volume
extends into the inner divertor.

smoother emission gradients. However the errors can be-
come more significant (> 10%) for sightlines that see the
divertor region with strong gradients, such as strike point
and x-point radiation. Single ray sightlines that tend to
see a locally bright source will over-estimate the power,
whereas sightlines that narrowly miss a bright source
(such as a strike point) will under-estimate the power.
It is also possible to under-estimate the power due to oc-
clusion effects where the single ray path terminates too
early compared to the full collection volume. An exam-
ple of a sightline with this characteristic is shown in Fig.
11.
The sensitivity matrices for all AUG bolometer cam-

eras were calculated with a 2206 cell inversion grid, tak-
ing between 1 - 4 hours per camera on a 16 core Intel
Xeon E5-2665 at 2.4 GHz.

VI. PERFORMANCE VS PHANTOMS

To explore the differences between reconstruction re-
sults obtained using the two sensitivity matrices, the
two methods were tested on a standard population of
94 phantom emission scenarios18 used to benchmark the
existing tomography code17. The 94 phantoms are con-
structed from combinations of six basic emission sources:
uniform backgrounds with gradients; point sources; x-
points; strike points; divertor legs; and radiation rings
on a flux surface18. The full population of phantoms are
designed to test the systems ability to resolve represen-
tative emission features that may be encountered in real
plasmas.
Virtual observations for each phantom are constructed

by multiplication of the volume sensitivity matrix with
the phantom’s emissivity vector, as per equation 9. In ad-
dition, 5% Gaussian distributed noise was added to the
virtual observations to simulate all uncertainties such as
systematic errors in the detector alignment and calibra-
tion, as well as instrument noise in the detector electron-
ics.
There are a wide range of inversion schemes used in fu-

sion tomography diagnostics2, perhaps the most widely
used is the Phillips-Tikhonov regularisation scheme com-
bined with an anisotropic diffusion model as the objec-
tive function17. In this work the population of phantoms
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FIG. 12. Bolometer foil measurements of the phantom emis-
sion scenario given in a) have been forward modelled with the
volume ray-tracing method. The synthetic measurements are
then inverted with the unregularised SART algorithm using
weight matrices constructed with the single-ray approxima-
tion b) and the volume ray-tracing method c). The differences
between b) and c) demonstrate the extra spatial constraints
imposed by volume ray-tracing. Additionally, both single-ray
and ray-tracing inversions were used with regularised SART
in d) and e) respectively. See Table II for a comparison of the
results.

Phantom SR VOL SR + Reg VOL + Reg

a) b) c) d) e)

Prad (MW) 13.82 13.37 13.76 13.45 13.7

ρc 0.68 0.85 0.79 0.89

TABLE II. The total radiated power, Prad, and Pearson cor-
relation coefficient, ρc, for each of the inversions in Figure 12.
The regularised inversions have βL = 0.0125.

was inverted using the Simultaneous Algebraic Recon-
struction Technique (SART)19 with a isotropic 2D dis-
crete Laplacian smoothness operator. The strength of
the smoothness hyper-parameter, βL, could be scanned
in order to quantify how far the results are independent
of prior information. In addition, iterative schemes pro-
vide an easy way to enforce positivity, since every itera-
tion the cells with negative emissivity can be clamped to
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FIG. 13. Performance on all 94 phantoms of the two weight
matrices, WSR and WVol for varying levels of regularisation.
The performance measure is the Pearson correlation coeffi-
cient, where ρc = 1 means the inverted emission profile is
identical to the phantom emission profile.

zero. For more details on the SART implementation and
regularisation parameters chosen see the appendix.
To measure the performance of the inversions we have

opted for the Pearson correlation coefficient, ρc, which
can measure the correlation between two vectors22. In
this context it is defined as the covariance of the two emis-
sion source vectors, inversion xinv and phantom solution
xsol, divided by the product of their standard deviations,

ρc =
Cov(xinv,xsol)

σ(xinv)σ(xsol)
. (13)

The SART inversions were performed on all 94 phan-
toms with sensitivity matrices computed with both the
single-ray (WSR) and volume ray-tracing (WVol) tech-
niques, both with and without the Laplacian gradient
regularisation. The resulting inversions for an example
phantom are shown in Figure 12, with an accompanying
comparison of the total radiated powers and correlation
coefficients to the phantom in Table II. The differences
between Fig. 12 b) and c) demonstrate the extra spatial
constraints imposed by the volume ray-tracing method.
Fig. 12 d) and e) show the WVol matrix continues to
outperform WSR for the same level of gradient regulari-
sation.
Figure 13 shows the performance on all phantoms for

varying levels of regularisation. It demonstrates that the
volume ray-tracing matrices are naturally more spatially
constrained and require lower levels of regularisation for
the same performance with single-rays. Furthermore, it
is clear from Fig. 13 that turning up the regularisation
is mainly affecting the single ray inversions. This is be-
cause the volume ray-tracing technique introduces fewer
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FIG. 14. The phantoms’ total radiated power, Φrad, plotted
against the inverted solution Φrad for all 94 phantoms using
the single ray and volume ray-tracing techniques. Inversion
performance decreases as the inversion points move away from
the dashed line. This data set used the middle regularisation
case (βL = 0.001) and demonstrates the volume ray-tracing
technique consistently out performs the single ray model.

systematic errors due to being a more physically accurate
model. At higher levels of regularisation, the two dis-
tributions converge as the regularisation starts to dom-
inate the solution. This occurs because regularisation
is a property of the solution matrix, not the sensitivity
matrix.
Figure 14 shows the distribution of total radiated

power for each inversion plotted against the phantom’s
real total radiated power. The distributions are plotted
for both the single-ray and volume ray-tracing techniques
using the middle regularisation case. The spread of
points for the WSR case is bigger than the WVol distri-
bution with mean deviations of 5.2±4.1% and 1.7±1.5%
respectively.

VII. DISCUSSION

The volume ray-tracing technique is expected to have
the most impact on fusion machines where the solid angle
of the detectors is sufficiently large that the beam width
of the detector sensitivity spans multiple plasma features
or gradients. Therefore this technique could have an im-
pact on highly radiating divertor scenarios where the bulk
of the radiation is local to the divertor and significant ra-
diation gradients may be present1. The impact will be
much less when the detector’s sensitivity is highly colli-
mated compared to the inversion grid.
The volume ray-tracing approach tends to produce

weight matrices where every grid cell is seen by multi-
ple detectors. This has a natural smoothing effect on the
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solution matrix. The AUG bolometry system has a very
high degree of spatial coverage and only ∼5% dark cells
in the inversion grid. But these effects can be more sig-
nificant on other machines with poorer spatial coverage.
Studies of the JET bolometry system came to similar
conclusions and found it was necessary to include the full
geometry effects rather than relying on the line-integral
approximation4.
Regularisation normally smooths over many sources of

error in an inversion process. Using volume ray-tracing to
calculate the étendue and sensitivity matrices allows us to
use a more physical model of the detector response, and
hence helps remove some of the systematic error sources.
Therefore it is not surprising that the volume ray-tracing
approach has better performance at a given level of reg-
ularisation.
However there are still other errors, such as detector

noise and design errors that are always present in the
data. There are also physical effects such as energy de-
position/reflection of neutral particles and the finite foil
reflectivity as a function of wavelength. The improve-
ment due to volume ray-tracing degrades with increasing
levels of noise, where higher levels of regularisation are
required. So it is important to have a system with a high
level of signal to noise to see the benefits from this tech-
nique. On the other hand, there does not appear to be
any disadvantages from including the extra calculation
detail in the inversions.
The initial sensitivity matrix calculations for volume

ray-tracing are more computationally intensive than for
a single ray, however they only need to be calculated
once. Re-calculation is only required when changing the
inversion grid or the detectors, which is typically between
experimental campaigns.
The volume ray-tracing method can be used with com-

bined pinhole camera and machine first wall geometry
to accurately model complicated compound apertures.
This technique opens up a new design space for bolome-
ter configurations that might not normally be considered,
potentially helping to expand the tomography coverage
in machines with poor accessibility.

VIII. CONCLUSIONS

A new technique for calculating the sensitivity of the
bolometry detectors that accounts for the full geometric
complexity has been presented. This technique was im-
plemented using the Raysect open source ray-tracer and
the CHERAB spectroscopy framework.
Volume ray-tracing techniques combined with full 3D

machine models have been used to calculate the étendue
and sensitivity matrices of the bolometry system at
ASDEX-Upgrade. The volume ray-traced sensitivity ma-
trices were benchmarked against sensitivity matrices cal-
culated with the more conventional single-ray technique.
The volume ray-tracing technique can include vignetting
and occlusion effects from installation features that are

not possible to include in simpler calculation methods.
Inversions using both matrices were carried out on a

population of emission phantoms with varying levels of
regularisation. The volume ray-tracing technique consis-
tently out-performed the single-ray technique in regards
to both the correlation coefficient distance measure and
the accuracy of the inverted total radiation power. The
volume ray-tracing technique was shown to be naturally
more spatially constrained.
The technique is a useful addition to the stan-

dard bolometry techniques currently in use and doesn’t
present any obvious disadvantages. However, the vol-
ume ray-tracing method requires detailed in-situ infor-
mation of the system and the improvements gained from
including the extra geometric detail degrade quickly with
increasing sources of error such as detector noise and de-
sign errors. It is important for a bolometry system to
have good signal to noise (≤ 5% detector noise) to gain
significant benefit from the extra calculation detail.
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Appendix: Tomographic inversion method

The population of phantoms were inverted with
the Simultaneous Algebraic Reconstruction Technique
(SART)19. The SART method is an iterative inversion
scheme where the emission cells are updated with the
formula

x
(i+1)
l = fsart(x

(i)
l ) = x

(i)
l +

ω

W⊕,l

Nd
∑

k=1

Wk,l

Wk,⊕
(Φk − Φ̂k),

(A.1)
where

Wk,⊕ =

Ns
∑

l=1

Wk,l, W⊕,l =

Nd
∑

k=1

Wk,l.
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FIG. 15. Examples of the 2D Laplacian operator for a) a
central cell (C = 8) and b) a cell near the inversion grid
corner (C = 5).

Here x
(i)
l is the previous estimate for the emission at

source l in iteration i. The relaxation hyperparameter
was set to ω = 1 for this study. The SART method ef-
fectively updates each cell by the weighted average error
between the forward modelled Φ̂k and observed Φk mea-
surements. The observed errors are weighted by both
their proportion of the total ray length (Wk,⊕) and the
sum of the effective ray paths crossing that cell (W⊕,l).
Because the inversion process is an ill-posed problem,

there are technically an infinite set of solutions to equa-
tion 9. The sensitivity matrix W can have a non-trivial
null space, meaning that any linear combination of null
space models can be added to a particular solution and
not change the fit to the data. Regularisation is a tech-
nique that applies additional constraints in the form of an
objective function to bias the inversion process towards
solutions that satisfy our prior knowledge2,21. The objec-
tive function is a regularisation operator that quantifies
some property of the emission profile such as Laplacian
smoothness, anisotropic smoothness or minimum cross-
entropy.
The current AUG code employs the Anisotropic Dif-

fusion Model Tomography17 (ADMT) scheme, which as-
sumes that radiation varies less along magnetic flux sur-
faces than perpendicular to them. This scheme uses
an anisotropic smoothness operator and is prescribed in
terms of two diffusion terms, perpendicular D⊥ and par-
allel D‖ to flux surfaces. In this work we have instead
opted for a isotropic 2D discrete Laplacian smoothness
operator20,

L̂iso(x
(i)
l ) = βL(Cx

(i)
l −

C
∑

c=1

x(i)
c ). (A.2)

Here, c is the index for the sum over the eight possi-
ble neighbouring cells. This regularisation operator was
chosen to reduce the amount of prior information. See
Figure 15 for an example of the operator in two different
grid positions. With the Laplacian smoothness objective
the update formula becomes

x
(i+1)
l = fsart(x

(i)
l )− L̂iso(x

(i)
l ). (A.3)

There are two regularisation hyperparameters in this
scheme. The first is βL which determines the amount of
local smoothness imposed. When βL = 0, the solution is
fully determined by the measurements, and as βL → 1,
the solution is dominated by the smoothness operator.
The criterion for choosing the value of βL can be de-
termined by a constraint such as the misfit between the

forward modelled Φ̂k and observed Φk measurements, or
the L-curve method21,23. In this work the βL parameter
was scanned in order to quantify how far the results are
independent of prior information.
The other regularisation parameter is the criterion for

terminating the SART iterations. In the implemented
scheme the iteration loop was broken when either the
difference between successive χ2 values fell below 10−4,
or a maximum of 250 iterations was reached.
After every iteration, all cells with negative emissivity

were clamped to zero to enforce positivity.
In future work the isotropic smoothness operator could

be exchanged for two 2D discrete gradient operators
aligned parallel and perpendicular to the local magnetic
field, L̂‖ and L̂⊥, with accompanying hyperparameters
β‖ and β⊥. These anisotropic operators would have an

effect similar to the established ADMT scheme17 and al-
low further assessment of the value of including the extra
geometric detail when known physics is present.
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