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We introduce a quench of the geometry of Landau level orbitals as a probe of non-equilibrium
dynamics of fractional quantum Hall (FQH) states. We show that such geometric quenches induce
coherent many-body dynamics of neutral degrees of freedom of FQH fluids. The simplest case of
mass anisotropy quench can be experimentally implemented as a sudden tilt of the magnetic field,
and the resulting dynamics reduces to the harmonic motion of the spin-2 “graviton” mode, i.e.,
the long wavelength limit of the Girvin-MacDonald-Platzman magnetoroton. We derive analytical
description of the graviton dynamics using the bimetric theory of FQH states, and find agreement
with exact numerical simulations at short times. We show that certain types of geometric quenches
excite higher-spin collective modes, thus establishing their existence in a microscopic model and
motivating an extension of geometric theories of FQH states.

PACS numbers: 73.43.Lp, 71.10.Pm

I. INTRODUCTION

Fractional quantum Hall (FQH) states are an epitome
of topological phases of matter, featuring exotic phenom-
ena such as fractionalization [1], topological order [2], and
protected edge excitations [3, 4]. These phenomena arise
as emergent properties of a two-dimensional (2D) elec-
tron system in a perpendicular magnetic field [5]. As a
consequence of Landau level quantization, electrons in
these systems have negligible kinetic energy, which paves
the way for Coulomb interaction to produce a variety of
exotic effects, whose experimental hallmark is the frac-
tional quantization of the Hall conductance [6].

Given the intricate, purely interacting nature of FQH
states, it comes as no surprise that the existing research
mainly focused on their equilibrium (static) properties at
zero temperature. These properties have often been de-
scribed using two closely related frameworks: trial wave
functions [1, 7-9] and topological quantum field theory
(TQFT) [10], which encode the linear response func-
tions [11, 12], exotic quasiparticles (“anyons”) [13, 14]
characterized by the fractional charge, spin and statis-
tics [15], robust edge modes [4] and the topological degen-
eracy on a torus [2, 16]. The predictions of microscopic
trial states and TQFT have been tested in numerical sim-
ulations of unprecedented accuracy, in particular in the
case of Laughlin [1, 17] and composite fermion states [18].

Besides the low-energy properties, the complete un-
derstanding of a quantum system requires the under-
standing of its dynamics, which is determined by the
system’s excited states (possibly at non-zero energy den-
sity). This dynamics can be physically probed using
the global quantum quench: prepare the system in its
ground state |t¢g); abruptly change the Hamiltonian,
H — H’; let the system evolve and perform measure-
ments on the time-evolved state. For systems which are
intrinsically decoupled from the environment, this quench

amounts to the innocuous-looking Schrodinger evolution,
[1(t)) = exp(—iH't)|1o), where |1)g), crucially, is not an
eigenstate of the quench Hamiltonian, H'. Even though
the Schrodinger evolution can be written in such a com-
pact way, it can nevertheless produce incredibly complex
outcomes as it might involve highly excited eigenstates of
H'. In one-dimensional integrable systems, where such
eigenstates can be computed using techniques like alge-
braic Bethe ansatz, a particularly deep theoretical under-
standing of quenches has been achieved (see the recent
review [19]) and verified in cold atom experiments [20].
Other notable examples include one-dimensional critical
systems where conformal invariance allows to analyti-
cally describe the post-quench dynamics of various ob-
servables (see Ref. [21] and references therein) and their
holographic duals [22], where quantum quench is inter-
preted as a process of black hole formation and decay.

In this work we introduce a new type of geometric
quench to study dynamics of FQH states out of equi-
librium. While in integrable systems the term “geomet-
ric quench” refers to a sudden change of the size of sys-
tem [23-26] (e.g., controlled by the trap potential in cold
atomic systems), our setup assumes that the size of the
system remains fixed, but the geometry of Landau level
orbitals undergoes an abrupt change. This way of prob-
ing the system is quite physical: changing the geometry
of Landau level orbitals can be achieved directly by tilt-
ing the magnetic field, i.e., by introducing a component
of magnetic field tangential to the plane occupied by the
particles. Tilted field technique is regularly employed in
FQH experiments to measure spin polarization of various
states [27], while more recently it has also been used to
map out the anisotropy of the composite fermion Fermi
surface [28].

Geometric quench is designed to excite the neutral de-
grees of freedom of FQH states, which have certain uni-
versal features that are geometric in nature. Two major



examples are the geometric response function known as
Hall viscosity [29-31] and the geometric degrees of free-
dom responsible for the nematic transition [32, 33]. The
former can be understood in terms of response to the vari-
ations of ambient geometry [12, 34-41], while the latter
can be formulated as fluctuating geometry [42, 43] (see
also Ref. [44] for a related perspective). We will show that
the real-time dynamics following the geometric quench is
accurately described by the excitations of geometric de-
grees of freedom that characterize the underlying FQH
states [42].

More specifically, in the case of Laughlin states, we will
show that a (weak) geometric quench driven by an abrupt
change of the effective mass tensor of particles excites a
single degree of freedom that carries angular momentum
(or spin) L = 2, which can be viewed as a fluctuating, “in-
trinsic metric” [45]. This spin-2 degree of freedom is de-
scribed by a symmetric matrix, which makes it formally
similar to the fluctuating space-time metric — a variable
that one would like to use in a theory of quantum gravity.
For the lack of a better term we will continue to refer to
this geometric degree of freedom as “graviton” [46, 47].
The geometric quench thus allows to excite the emergent
FQH graviton and to observe its non-trivial dynamics in
time. One has to bear in mind that the graviton dis-
cussed in this paper is non-relativistic and massive (i.e.,
gapped). The closest relativistic cousin of the geometric
aspects of the FQH problem is the zwei-dreibein theory
of 3D massive gravity [48] (see also Ref. [49]).

In order to model the geometric quench, we utilize two
recent advances in the theory of the FQH effect: the for-
mulation of the bimetric theory [43, 50], which describes
topological properties of FQH states on curved surfaces
whilst incorporating the mentioned spin-2 excitation, and
the generalization of the Haldane pseudopotentials [51] to
systems with broken rotational invariance. Bootstrap-
ping these methods, we derive analytical description of
the real-time dynamics of FQH states following a geomet-
ric quench, and confirm it against numerical simulations
for the case of Laughlin states.

Our main findings are: (i) we demonstrate that geo-
metric quench induces the dynamics of neutral degrees of
freedom in FQH states which have geometric character;
(ii) in the simplest type of quenches which are driven by a
mass tensor deformation in the Laughlin phase, we show
that the post-quench dynamics is determined by an expo-
nentially small fraction of excited states with quadrupo-
lar order (i.e., spin-2) in the continuum of the spectrum,
whose energy sets the oscillation frequency; (iii) we gen-
eralize the bimetric theory [43] to describe a quench, and
obtain an analytical description of the dynamics follow-
ing the quench [Egs. (15) and (16)]; (iv) we show that
this analytical description is in excellent agreement with
exact numerical simulations of geometric quench in (ii)
for finite systems at short times, and generally captures
well the oscillations in the dynamics at moderate times,
thus justifying the validity of bimetric theory; (v) we
design more complex types of geometric quenches which

excite the higher-spin excitations in the spectrum of FQH
states. We note that higher-spin symmetry has attracted
much interest in various areas of theoretical physics, in-
cluding phase space Fermi fluid [52], collective field the-
ory [53], generalization of gauge/gravity dualities [54],
dynamics of incompressible, inviscid fluids [55, 56], large
N gauge theory [57], etc. The presence of higher spin ex-
citations in FQH states, here unambiguously identified
via their distinct dynamical response, reveals a much
richer structure in FQH states, including the simplest
Laughlin states, and calls for an extension of their geo-
metric description [42].

The remainder of the paper is organized as follows.
In Sec. IT we motivate the geometric quench and pro-
vide details of its setup. In Sec. III we introduce our
method, and show that generalized pseudopotentials al-
low to identify states that contribute to the quench dy-
namics. Sec. IV contains the bulk of our numerical results
for the simplest type of quench driven by changing the
metric of Landau level orbitals. Analytical description
of such quenches is developed in Sec. V in the frame-
work of the bimetric theory. In Sec. VI we provide an
example of a more complex type of quench which ex-
cites higher-spin modes in the spectrum, which currently
lacks theoretical description. Our conclusions are pre-
sented in Sec. VII, while Appendices contain additional
data and extensions of our results to more realistic (non-
instantaneous) quenches and lattice models of fractional
Chern insulators.

II. GEOMETRIC QUENCH OF A FRACTIONAL
QUANTUM HALL STATE

The Hamiltonian describing a FQH system is given
by [5]

1 —
H= Ni(p zq:vqpqpfqv (1)

where the sum runs over the 2D Brillouin zone (threaded
SoY € s the den-
sity operator projected to a single Landau level (LL).
The projection to a LL imposes the non-commutative ge-
ometry of the “guiding center coordinates”, [R;‘, Ré’.] =

by Ne flux quanta) and pq =

—il%e%5; ;, where (g = /h/eB is the magnetic
length [5]. This non-trivial constraint, along with the

absence of kinetic energy in Eq. (1), gives rise to a wide
variety of ordered phases, depending on the filling factor,
v = N/Ng and the details of the (projected) interaction
potential, V. Note that because the guiding centers do
not commute, bosonic FQH states are also possible and
realize a similar variety of phases [58, 59]. In this paper,
we focus on the simplest Laughlin states, which occur at
filling v = 1/2 for bosons and v = 1/3 for fermions.
Beside the non-commutative constraint, geometry ap-
pears in a FQH problem in three distinct guises. First,



FIG. 1. (a) Geometric quench protocol: instantaneous tilt
of the magnetic field induces dynamics of the intrinsic met-
ric, which describes the shape of particle-flux composites that
form a FQH state. (b) The excitation spectrum of the v = 1/3
Laughlin state, obtained by exact diagonalization of its Vi
parent Hamiltonian, in systems with N = 7 — 10 electrons.
Blue line traces out the SMA collective mode [60], which
transforms into an emergent graviton excitation in the k — 0
limit (around energy F = 1.5). It will be shown in Sec. V that
geometric quench induces oscillatory dynamics of the k — 0
limit of the graviton mode. Note that this mode is formed by
excited states in the continuum of the energy spectrum.

the interaction potential Vg = Vg|F.(q)|? is a func-
tion of two independent tensors g, and g; [42], where
Fo(q) = exp(—g%q.qpl%/4) is the (lowest) LL form
factor and Vg in general depends on /g?°q.qy (for the

Coulomb interaction, Vyq = 27/1/9%q.q,). These two
tensors are imposed by eztrinsic experimental conditions,
such as the direction of the magnetic field and properties
of the underlying solid-state material. g¢,, has physical
origin in the band mass tensor and can be conveniently
parametrized by a 2 x 2 unimodular matrix (detg,, = 1)

[ cosh @ + cos ¢sinh @)
gm = sin ¢ sinh )

sin ¢ sinh @ 9
cosh (Q — cos ¢ sinh () (2)

where @ and ¢ are real numbers which parametrize a
stretch or rotation of the tensor. On the other hand, g;
is in general different from g,,. In the case of Coulomb
interaction, g; originates from the dielectric tensor of the
material that hosts the FQH system. Note that both
gm and g; define the shape of a circle: g, enters the
single-particle wave function thus defining the shape of
LL orbitals, while g; determines the shape of the interac-
tion equipotentials. They hence effectively measure the
distance from the “circle center”, and in this sense we
alternatively refer to them as extrinsic metrics [42].
Subject to these two extrinsic metrics, a FQH state de-
velops a third, intrinsic geometric degree of freedom. As
a many-body property of the system, this intrinsic degree
of freedom defines the shape of particle-flux composite
droplets in FQH ground states and can also be thought
of as a metric g parametrized by the same matrix as in
Eq. (2). If the extrinsic metrics are equal (g, = ¢i),
but not necessarily isotropic (# 1), the intrinsic metric
is equal to them (§ = g,, = ¢;) and the physical state is
isotropic in a transformed coordinate frame. More gen-
erally, when g¢,, # ¢;, § is determined from energetic

compromise between g,, and g;, and is in general differ-
ent from both of them [61, 62]. The intrinsic metric, as
an emergent many-body property of the system, will be
the main focus of the quench dynamics in this paper.

The dynamics of § can in principle be induced by
changing the mass tensor, g,,,. While this might be feasi-
ble in materials such as AlAs [63], a much more practical
way is to tilt the magnetic field [Fig. 1(a)]. Semiclas-
sically, the particles still prefer to make circular orbits
around the tilted direction, but because they are confined
to a narrow sample, their orbits deform into ellipses in
the plane of the FQH system, hence giving rise to an ef-
fective mass anisotropy. In fact, assuming parabolic con-
fining potential in the perpendicular direction, tilt can
be exactly represented as a 2 X 2 anisotropic mass ten-
sor [61, 64, 65]. Hence, to an excellent approximation
we can model the effect of a tilt by an anisotropic mass
tensor like in Eq. (2) [64].

Our quench protocol can now be defined as follows:
(i) prepare a Laughlin state [¢p) as the ground state
of H with mass tensor g,,; (ii) instantaneously change
gm — ¢o,; (iii) evolve in time assuming the system is
closed, i.e., |¢(t)) = exp(—iH't)|1)o), and measure the
intrinsic metric as a function of time, §(¢). This proto-
col is the minimal theoretical model for an experiment
where the magnetic field is suddenly tilted. At consid-
erable computational expense, the model can be made
more realistic by directly including parallel field (instead
of approximating it by mass anisotropy), relaxing the as-
sumption of a closed system, etc. In later sections of the
paper, we will consider some generalizations of the pro-
tocol where the quench cannot be described in terms of
2 x 2 metric (Sec. VI) or when it is not applied instanta-
neously (Appendix C).

The intuition behind geometric quench is the follow-
ing. In a purely perpendicular field, a FQH state is a
low-entangled state of composite objects — particles sur-
rounded by correlation holes of certain size. For exam-
ple, in the v = 1/3 Laughlin state we can view them
as electrons in an area corresponding to three magnetic
flux quanta [Fig. 1(a)]. These objects have a finite area
(fixed by the electron density and total flux through the
system), but their shape can vary and is determined by
the intrinsic metric § of the FQH state [66], or equiva-
lently by two real parameters, @ and ¢, as in Eq. (2). For
a weak quench that keeps the system within the Laughlin
phase, these droplets are expected to fluctuate and our
goal is to determine the equations of motion for @ and
¢. This is, however, a highly non-trivial problem because
the representation of a state in Fig. 1(a) is merely a car-
toon (e.g., the operators projected onto the droplets do
not commute with one another).

As emphasized earlier, the key to understanding dy-
namics are the excited eigenstates in the spectrum of H'.
Such a spectrum for the Laughlin v = 1/3 state, obtained
by diagonalization of its parent Hamiltonian — the V; Hal-
dane pseudopotential [67]- is shown in Fig. 1(b). The
low-energy spectrum is dominated by a collective mode



known as the Girvin-MacDonald-Platzman (GMP) mode
or “magnetoroton” [60, 68]. This mode is accurately de-
scribed by the single-mode approximation (SMA), and
intuitively represents a density modulation on top of the
ground state given by pkl|thg). Such SMA trial wave-
functions were shown to give excellent description of the
actual collective excitation for momenta smaller than the
magnetoroton minimum [69], both for the exact Laughlin
state and the Coulomb ground state. Generalizations of
the SMA, based on Jack polynomials, have been shown
to be microscopically accurate at all values of momenta
accessible in finite systems [70].

Since the SMA dominates the low-energy physics of a
FQH state, it could be expected that it also plays a cru-
cial role in the quench dynamics. However, this becomes
less clear if one notices that our quench protocol preserves
the translation symmetry of the initial state, hence all
dynamics takes place in k = 0 sector of the Hilbert space
that contains the uniform Laughlin state. The & — 0
limit of the SMA mode, i.e., the spin-2 graviton [70], lies
inside the 2 quasiparticle-2 quasihole continuum of states
[Fig. 1(b)], hence it is far from obvious that quench dy-
namics can be modelled by this single degree of freedom
(although in some cases the k& — 0 limit of the SMA
mode mode appears to be below the continuum of the en-
ergy spectrum [71]). In the following Section, we present
results of exact numerical simulations of the quench dy-
namics in finite-size systems. These results will show
that the simplest type of geometric quench described by
Eq. (2) indeed gives rise to coherent oscillations of the ge-
ometric spin-2 degree of freedom for the Laughlin state.
We note, however, that more general types of quenches
are also possible, which cannot be mapped to a simple
modification of the mass tensor. These quenches, which
will be considered in Sec. VI, excite the tower of higher
spin modes in the spectrum of a FQH state, giving rise to
non-trivial dynamics which is not captured by the simple
graviton oscillation.

III. METHOD

We model the quench by performing numerically exact
time evolution with the Hamiltonian in Eq. (1) defined
for N particles and Ng flux quanta on a square torus
[Fig. 2(a)]. Magnetic translation symmetry [72] is used
to reduce the complexity of the calculation and to classify
the many-body eigenstates. We focus on the Laughlin
states of bosons and fermions, corresponding to filling
factors v = 1/2 and v = 1/3, respectively.

We consider two types of interaction potentials. In the
first case, we assume model (short-range) interaction for
which the Laughlin state is the unique (and the densest)
zero-energy state [73]. This interaction is a simple con-
tact repulsion for bosons, V4 = 1, and for fermions it is
Vg = L1(9%qaqp), where Ly is the first Laguerre polyno-
mial. As customary in the literature [42], in the model
interaction we have assumed that the interaction metric

a ]
[::] B
qx Az

FIG. 2. (a) A FQH system on the surface of a torus threaded
by perpendicular magnetic field. The mass tensor g,, deter-
mines the metric of the Landau level orbitals and is used to
drive a quench, while the Coulomb potential is assumed to
be isotropic. (b) Contours in momentum space of the lead-
ing order anisotropic pseudopotentials for bosons [51] with
quadrupolar (Vo,2, Va,2) and octupolar (Vo 4, Va,4) structure.

g; coincides with the Landau orbit metric g,,,. In the sec-
ond case, we consider Coulomb interaction, for which g;
is kept isotropic, i.e., Vq = 27/4/q% + g2, but the mass
tensor g,, is allowed to be non-isotropic.

For both types of interaction, the quench is imple-
mented by switching g, to g/, at time ¢t = 0, where
both g, and g/, for simplicity, are taken to be diag-
onal, like in Eq. (11) below. For small system sizes,
the subsequent time evolution is performed by obtaining
all energy eigenvalues ¢,, and corresponding eigenvectors
|n) of the quench Hamiltonian H’, and then evaluating
[Y(t)) = >, exp(—ient)(nlho)|n). By restricting the sum
to a subset of eigenstates, one can conveniently project
the dynamics onto a desired energy shell. At larger sys-
tem sizes, we use time-dependent Lanczos methods to
iteratively compute [1)(t)).

We use the same parametrization for the intrinsic met-
ric g as in Eq. (2). Due to its invariance under QQ — —Q
and ¢ — ¢ + m, we focus on Q > 0. For a given
state |¢(t)), ¢ is determined by brute force search over
a large set of (precomputed) trial states |[ira), i.e.,
model Laughlin states parametrized by Q € [0, Qmax]
and ¢ € [—m,x], such that the overlap |[(Yiriall®(t))| is
maximized. For weak quenches, we found it sufficient to
restrict to Qmax = 1 and ¢ € [—n/2,7/2]. The confi-
dence in the result is quantified by the maximum over-
lap achieved: if this overlap is not close to 1 (like in
the case of strong quench), none of the trial states ap-
propriately describes the system and the intrinsic metric
should be determined via some other means, for exam-
ple via minimization of the total energy or momentum
polarization [74].

Finally, in order to identify states corresponding to
the spin-n excitation, we use the recently developed for-
malism of anisotropic pseudopotentials [51]. In Ref. [51]
it was shown that any two-particle interaction, includ-
ing cases where metrics g,, and g; are different, can be



expanded into an orthonormal basis of generalized pseu-
dopotentials. These operators maintain translation in-
variance, but break rotation symmetry to a discrete sub-
group. Up to normalization prefactors, the generalized
pseudopotentials are given by [51]

Vi (903 €or @y) = L1ty (92°qaq@) d™” + e, (3)

where m, n are even integers (for bosons). When n = 0,
these reduce to the usual (isotropic) Haldane pseudopo-
tentials [73]. Vi, explicitly depends on the metric g,
through the argument of the Laguerre polynomial, as
well as the vector q. For simplicity, we fix g, = 1 and
q= %(qw + igy) in our numerics.

Contours of leading-order V;;, ,, for bosons are depicted
in Fig. 2(b). In particular, we can observe that the dom-
inant pseudopotential Vj o has a clear quadrupolar struc-
ture in momentum space, indicating that VO’Q carries an-
gular momentum L, = 2. Based on this, we use \A/Om as
a spectroscopic probe to identify many-body eigenstates
which are part of the effective spin-n excitation. To that
end, we introduce the following “spectral function”:

I (w) = Zé(w - 6j)|<j|vm’n|0>‘2a (4)

J

where €; and |j) are the eigen-energy and eigenstate of
Eq. (1). This is a generalization of the spectral func-
tion that describes an acoustic wave absorption exper-
iment [75]. The peaks of I,,, can be used to obtain
the frequencies of different spin modes in the quench dy-
namics. In the following Section, we investigate in detail
Ip2 and show that it indeed yields the frequency of the
graviton mode.

IV. RESULTS

Here we present our numerical results for weak
quenches, where the mass tensor is instantaneously
changed from g¢,, = diag(e, e 4°) to ¢/ =
diag(e4t,e=41) with Ay and A; close to 0. By “weak”
quench we mean that the system remains in the Laugh-
lin phase. Note that this does not imply that we re-
strict to an infinitesimal variation of the parameters in
the Hamiltonian. Indeed, the parameters of our quenched
Hamiltonian differ by a finite amount from the original
Hamiltonian, which allows the dynamics to explore a fi-
nite density of excitations.

In the following, we focus on the dynamics of g for
v = 1/2 bosons in detail, while similar results for v = 1/3
fermions are given in Appendix D. In all numerical data
below, time is given in units of inverse energy [e?/(elp)
in the case of Coulomb interaction], with h = 1.

A. Isotropic-to-anisotropic quench

We start with the simple case of Ag = 0,4; > 0,
where the initial state is the isotropic Laughlin state.
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FIG. 3. Exact dynamics of (a) Q and (b) ¢ for N =9 — 11
bosons at ¥ = 1/2 with the contact interaction. The quench
is driven by choosing Ag = 0 and A; = In1.3. The red curves
are fits to Egs. (5) and (6), which coincide with the predictions
of the bimetric theory, discussed in Sec. V.

As representative examples, we choose A; = In1.3 and
A1 =1n2.0 for quenches driven by contact and Coulomb
interactions, respectively. The intrinsic metric § of the
post-quench state is determined by the maximum of the
overlap between the post-quench state and a trial set of
anisotropic Laughlin states. The regime of weak quench
corresponds to the maximum of this overlap being close
to unity. Exact dynamics of § up to moderate times
is shown in Figs. 3 and 4 for the two types of interac-
tions. We observe that both @ and ¢ oscillate with a
well-defined frequency (and in particular, ¢ appears to
be a linear function of time). This is rather surprising
because the induced change in the microscopic structure
of the FQH state is by no means small: for the above
choices of A; in Figs. 3 and 4, we find the maximum
anisotropy e® of the post-quench state to be larger than
the initial (isotropic) state by a factor 1.5 — 2.5.
Assuming a single harmonic, we might guess that the
oscillations in Figs. 3 and 4 are well described by

Q(t) = 24sin (?) Lo =2-"2 ()
Q(t) = —24sin <Ej> e =T Bt )

where @ obeys harmonic motion and ¢ has a simple linear
dependence on time. Note that only one of these two
solutions is independent because the system is invariant
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FIG. 4. Exact dynamics of (a) Q and (b) ¢ for N =9 — 11
bosons at v = 1/2 with the Coulomb interaction. The quench
is driven by choosing Ag = 0 and A; = In2.0. The red curves
are fits to Egs. (5) and (6), which coincide with the predictions
of the bimetric theory, discussed in Sec. V.

under @ — —@ and ¢ — ¢ + 7. Thus, we can focus on
the @ > 0 part and consider ¢ mod 27. By inspection of
Q(t), we see the solution will alternate between the two
branches, which doubles the frequency from E, /2 to E,.
The overall prefactor (written as 24) is expected to be
proportional to the intrinsic anisotropy of the state.
Fitting the first one or two oscillations in Figs. 3 and
4 against Eq. (5) yields remarkably accurate agreement
with full dynamics across the entire time interval. What
sets the frequency, E,, of the oscillations? From the fits,
we obtain £, ~ 1. 296 and 0.520 for the cases of contact
and Coulomb interactions, respectively. These values do
not match the spectral gap in the k = 0 momentum
sector, which can be much smaller (see Fig. 1). Instead,
as shown below, they agree with the graviton gap very
well, which we independently estimate to be ~ 1.3 for the
contact interaction and 0.52 for the Coulomb interaction.
In order to justify the identification of E., with the
graviton gap, we use I 2(w) spectral function defined in
Eq. (4) to detect the states that carry spin-2. We expect
peaks of Iy 2(w) at energies corresponding to the spin-2
excitations that comprise the graviton mode. In Fig. 5,
we show I 2(w) (normalized by [ Iy (w)dw) for contact
and Coulomb interactions in isotropic systems (similar
data are obtained for weakly anisotropic systems). In
the case of contact interaction, we observe sharply pro-
nounced peaks of I 2(w) around w = 1.3 for various sys-
tem sizes [Fig. 5(a)], which means that spin-2 eigenstates
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FIG 5. Normalized spectral function Ipa(w) =
To,o( / f Ip,2(w)dw for isotropic systems of N = 9—11 bosons

at v =1/2 Wlth (a) contact and (b) Coulomb interactions.
The insets show the discrete Fourier transform |F(w)| of Q in
Figs. 3 and 4. Markers in insets and curves in main figures
with the same color refer to the same system size.

concentrate in this narrow energy window, corresponding
to the graviton gap £, ~ 1.3. For Coulomb interacting
systems, a pronounced peak in Iy 2(w) also exists, but at
a lower energy w = 0.55 [Fig. 5(b)]. As an independent
estimate of the graviton gap, we use the discrete Fourier
transform of @ (see insets of Fig. 5). This Fourier trans-
form also shows a sharp peak around the same energy as
that in I 2(w), which further confirms that the dynamics
of the intrinsic metric is indeed caused by the graviton
oscillation.

B. States contributing to dynamics

The agreement between the oscillation frequency in the
exact dynamics of § and the graviton gap strongly implies
that the dynamics is dominated by spin-2 eigenstates of
H'. We now scrutinize this conjecture by quantifying how
well the full dynamics can be reproduced by an explicit
projection to the subset of eigenstates centered around
the the energy of the spin-2 mode.

The projected subspace is defined by the eigenstates
In) of H' with dominant matrix elements |(n|Vj2|0)|2.
The weight of this projection is measured by

<Z|n|V02|O ) <Z|n|V020 ) (7)



where |n) have been sorted in descending order accord-
ing to |(n|Vh.2|0)|2. Here M is the number of kept states
and D is the total number of eigenstates that we can
obtain from exact diagonalization of H’, i.e., D is equal
to the Hilbert space dimension in the k = 0 sector for
N <9, while for practical reasons we kept D = 200 for
larger systems (N = 10 — 12). Remarkably, the number
of states we need to saturate the total weight f is signif-
icantly smaller than the Hilbert space dimension. Fixing
f = 99%, the finite-size scaling of the required M clearly
indicates that only an exponentially small fraction of the
whole Hilbert space carries spin-2, as seen in Fig. 6.
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FIG. 6. Finite-size scaling of the number of spin-2 states
in the k = 0 Hilbert space for N = 5 — 12 bosons at v =
1/2. M represents the number of states which contain f =
99% of the total |(n|Vo2|0)|*>. We consider both contact and
Coulomb quench Hamiltonians, with A; = In1.3 and A1 =
In 2.0, respectively. The plots show (a) M and (b) M/dim,
where dim is the k = 0 Hilbert space dimension.

While the exponentially decaying ratio of M to the
Hilbert space dimension might not be entirely surprising
(since it still does not preclude M being exponentially
large in the system size), it can also be shown that, in ab-
solute terms, only a very small number of states M yields
a very accurate approximation to the exact dynamics.
In Appendix B, we perform the above projection, based
on the [(n|Vj2|0)|* matrix elements, for the dynamics
of N = 11 bosons driven by the isotropic-to-anisotropic
quench (Fig. 10). Remarkably, the main features of the
exact dynamics are already accurately reproduced for M
less than 10, even if there are as many as 533160 eigen-
states in the entire k = 0 Hilbert space. Such an excellent
approximation of the exact dynamics by an exponentially
small fraction of states in the Hilbert space is further ev-
idence for the picture of graviton oscillation.

V. WEAK GEOMETRIC QUENCH IN
BIMETRIC THEORY

In the previous Section, we have established that
quenching the mass tensor, Eq. (2), in the Laughlin phase
gives rise to dynamics which is supported over a vanish-
ingly small fraction of states that carry spin-2. Thus, we
expect that our results in Sec. IV can be used to test

the validity of the bimetric theory [43]. Here we gen-
eralize the bimetric theory to anisotropic quantum Hall
states, and derive an analytical description of the dynam-
ics of the intrinsic metric § after a quench exciting spin-
2 states. We find that this analytical prediction agrees
remarkably well with the exact numerics of geometric
quench in Sec. IV, which strongly supports the validity
of the bimetric theory. Despite of its agreement with the
bimetric theory in special quenches exciting spin-2 states,
we should emphasize that geometric quench is a logically
independent method and contains much new physics be-
yond the bimetric theory (see Sec. VI).

A. Lagrangian for the isotropic case

Bimetric theory describes gapped dynamics of a sin-
gle spin-2 degree of freedom in a FQH system, interact-
ing with an external electro-magnetic field and ambient
geometry. The dynamical degree of freedom is the viel-

bein é¥ [76] that “squares” to the dynamic, unimodu-

lar metric g;; = é?é?&a/g7 or simply § = é-éT. Here

g corresponds to the intrinsic metric of the FQH state
mentioned in Sec. II. The inverse metric is given by
GY = EgEé(SO"B7 where E!, is the inverse vielbein [76],

satisfying Ezaé;I = (5; The unimodular condition on §;;

takes form /g = /g, where /9 is the determinant of
the ambient metric g;; = (5,436{‘6;3 and e{l is the ambi-
ent vielbein. Thus, in flat ambient space (that is, when
9ij = 9ij), Vg = 1.

In the absence of an external electric field, and when
the magnetic field is homogeneous, the Lagrangian takes
form [43]

2
vs m |1,

=5 W — & |:gijg I — 7:| = L:top + Epot > (8)
2ml% 212

where &g is the temporal component of the (dynamic)
Levi-Civita spin connection, given by

1 s
@o = §eaﬁEgaoéf‘ . (9)

The phenomenological coefficient m sets the energy scale
which determines the gap of the spin-2 mode. Quantized
coefficient ¢ is determined by the “shift” S [43] and takes
the value [¢] = IS;H. The phenomenological parameter
v is used to tune the theory close to the nematic phase
transition, where the SMA is exact, in the gapped phase
v < 1. Futher details on the bimetric Rieman-Cartan
geometry can be found in Refs. [43, 74]. We will utilize
it to introduce anisotropy into the problem.

B. Anisotropy in bimetric theory

To introduce the quadrupolar anisotropy from a non-
trivial mass tensor or other sources, we take the inspi-
ration from Ref. [74], where quadrupolar anisotropy was



described in geometric terms. More concretely, we intro-
duce a unimodular matrix m4 g, and construct a rank-2
tensor from it according to

gl(;.n) = mABef‘ef, (10)
where ef! are the vielbeins that describe the ambient ge-
ometry. We now generalize Eq. (8) to the anisotropic

case. To do so we simply replace g;; by gi(jr-n) in Eq. (8).

To analyze the theory further we make the following
simplifying assumptions: (i) the ambient space is as-
sumed to be flat, e = §#, and (ii) we assume a particular
(m)

j
A
m € 0
gz(j)_<0 e—A)v (11)

where A is a real parameter that defines the effective
anisotropy in the FQH system, which is a compromise
between two extrinsic metrics g,, and g; as discussed in

J

parametrization of g;. ', given by

Sec. II. The abrupt change of the mass tensor g,, in our
quench protocol will lead to the change of A in Eq. (11).

In order to compute the dynamics of g;;, we
parametrize it in terms of @ and ¢ as in Eq. (2). Both @
and ¢ are functions of time, but not space, since the prob-
lem we will consider is homogeneous (i.e., the quench is
global). The two terms in the Lagrangian take the form

Liop = %’3 (1—coshQ)d, (12)

Loot = f% (v + sinh A sinh @Q cos ¢ — cosh A cosh Q)2 (13)

The equations of motion are found from
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where S = [d®z L is the action. The equation for ¢(t)
takes the form

dsinh Q = —2Q (sinh A cosh @ cos ¢ — cosh A sinh Q) (v + sinh A sinh @ cos ¢ — cosh Acosh @) (15)

and for Q(t) we find

@ sinh Q = —2Qsin ¢sinh Q@ sinh A (y 4 sinh A sinh Q cos ¢ — cosh A cosh Q) , (16)

where we have introduced the energy scale 2 = 2. Eqs. (15) and (16) are the central result of this Section.

C. Isotropic limit

In the isotropic case we must take A — 0. We find

Q=0, ¢ =20 (y—cosh@) . (17)

Choosing the solution Q = 0 of the first equation, the
second equation reads

¢=-201-7)=-E, = ¢t)=¢0)-E,t, (18)

from where we interpret E, = 2Q(1—v) = w as the
gap of the spin-2 part of the GMP mode at k = 0 [43].
When v — 1, the gap closes and the FQH state undergoes
a nematic phase transition [43]. The dynamical metric
evaluated on this solution takes the form

gij:((l)(l)), (19)

consequently the dynamics of ¢(t) is not visible in the
fluctuations of the dynamical metric. Formally speaking,
this happens because Q = 0. When @ is different from
0 the metric will be sensitive to the dynamics of ¢. This
is what happens in the case of weak anisotropy discussed
next.

(

D. Weak geometric quench in bimetric theory

In order to perform the quench, we have to phrase it
in terms of Eqgs. (15) and (16). Taking inspiration from
Ref. [77], we perform the quench in two steps. First, we
need to fix the initial condition Q(0),¢(0) for Egs. (15)
and (16), which should be determined by the intrinsic
metric of the initial Laughlin state |1g). Second, to ob-
tain the quench dynamics, we solve Egs. (15) and (16)
under such initial condition, with the value of A deter-
mined by the effective anisotropy of H' (or equivalently,
by the intrinsic metric of the ground state of H').

When anisotropy is weak, we can assume both A and @
are close to 0. Taylor expansion of Egs. (15) and (16) in
A and @ leads to the following system of linear equations

$Q = B, (Acos¢— Q) , (20)
Q=E,Asing, (21)

for which analytical solutions exist under suitable initial
conditions. In particular, for Q(0) = 0, it can be verified
by direct substitution that our earlier Egs. (5)-(6), which
were used to fit the numerical data in Sec. IV, are exact
solutions.

As long as the quench is weak, the linearized Egs. (20)
and (21) provide a very accurate approximation to the
full non-linear dynamics. Fig. 7 shows the comparison of



the numerical solutions of non-linear Eqs. (15) and (16)
satisfying Q(0) = 0 against their linearized counterparts,
Egs. (5) and (6), where we focus on the @ > 0 part and
consider ¢ mod 27. Red solid lines in Fig. 7 result from a
combination of Egs. (5) and (6), which gives us Q and ¢
as periodic functions with frequency F,. Mathematically,
it is rather surprising that Eqgs. (5)-(6) display such close
agreement with the solutions of Egs. (15) and (16), since
the latter appear to be strongly non-linear.
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FIG. 7. Predictions of the bimetric theory for (a) @ and (b) ¢
under the initial condition Q(0) = 0. Black dashed lines indi-
cate the numerical solution of the full equations, Egs. (15) and
(16). Red solid lines indicate the analytical solution Egs. (5)
and (6) of the linearized system, Egs. (20) and (21). Here
we focus on the Q > 0 solution. The parameters are fixed at
Q=15/4,y=-1, A=1nl3.

E. Agreement between bimetric theory and exact
dynamics

Since Eqgs. (20)-(21) are an accurate approximation of
Egs. (15)-(16) in the weak quench regime, we were justi-
fied in fitting our exact results in Sec. IV against simple
harmonic oscillation in Egs. (5)-(6). The fits allow us to
extract the values of A and E,, which we can now inter-
pret as the intrinsic anisotropy and graviton gap in the
bimetric theory.

By extracting E, from the fitting of quench data for
various initial parameters, we indeed find that the ob-
tained E. is insensitive to the precise values of Ay and A,
as long as we are in the weak quench regime. On the other
hand, A quantifies the intrinsic anisotropy in the ground

state of H’, which is a compromise between g/, and
gi. Since we do the same modification for g, and g; in
the quench driven by the contact interaction, we expect
A = A; in this case. Indeed, we get A = 0.255 from the
fit in Fig. 3, which is very close to A; = In1.3 ~ 0.262.
However, in the quench driven by the Coulomb interac-
tion, we keep isotropic g; and only change g,,, so the
intrinsic anisotropy in the ground state of H’ is expected
to be weaker than g/,,. The fit in Fig. 4 gives A = 0.454,
which is indeed between 0 and A; = 1n2.0 ~ 0.693.

In summary, we find that weak isotropic-anisotropic
mass anisotropy quenches in the Laughlin phase can be
described as harmonic motion of a single spin-2 degree
of freedom, in agreement with the bimetric theory. Mi-
nor deviations from harmonic motion can be observed in
Figs. 3 and 4 at longer times. These deviations generally
have two manifestations: as a decay in amplitude while
maintaining the overall oscillation structure, or as a total
departure from the oscillation. The former is mainly the
case for isotropic-to-anisotropic quenches considered in
Figs. 3 and 4, while the latter can be observed in a more
general case of anisotropic-to-anisotropic quench consid-
ered in Appendix A as well as in some fermionic data in
Appendix D.

There are several possible explanations for the discrep-
ancy with the bimetric theory. First, in finite systems a
“fragmentation” of the spin-2 graviton mode into several
states with large matrix element |(n|Vp2|0)|? (as seen in
Fig. 5) induces several close frequencies in the dynam-
ics. With the available data for system sizes up N = 12,
there is no clear indication that this fragmentation disap-
pears in the thermodynamic limit, even though a “sharp”
spin-2 mode is theoretically anticipated in large systems.
This suggests that finite size effects, to the zeroth order,
do not seem to be the explanation for the fragmentation.
Note that the fragmentation for the Coulomb interac-
tion is much weaker than that for the contact interaction
(Fig. 5), reflecting a more isolated graviton mode in the
Coulomb case. A more likely source of “finite-time” er-
rors in the dynamics could be due to an effective Lieb-
Robinson [78] “light cone” exceeding the finite size of the
system. Finally, the discrepancy could arise due to the
contribution of higher-spin modes to the dynamics. In
the following Section, we design more complex type of
quenches to probe such modes. These quenches lead to
non-trivial dynamics which is not accounted for in the
bimetric theory or its direct extensions in Egs. (5)-(6).

VI. HIGHER-SPIN MODES
A. W algebra in the lowest Landau level

It has been realized a long time ago that the low-
est Landau level admits an action of the (infinite-
dimentional) algebra of area-preserving diffeomorphisms
(APD), W [68, 79]. The action of this algebra can be in-
terpreted as area-preserving distortions of FQH droplets
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size.

illustrated in Fig. 1. These distortions, however, cost
finite energy since the interaction potential, Eq. (1), is
not invariant under these transformations [42, 68]. Con-
sequently, the gapped spin-2 mode discussed in the pre-
vious section can be viewed as a particular, quadrupo-
lar, APD of the droplet. This fact is reflected in the
bimetric theory, in the form of hidden sl(2,R) (which is
the largest finite-dimensional subalgebra of W) symme-
try [43]. Topological part of the action in Eq. (8) is invari-
ant under the action of sl(2,R), while the Hamiltonian
explicitly breaks it down to so(2) C sl(2,R). Thus, the
application of the (broken) shear generators of sl(2,R),
represented by the off-diagonal components of the emer-
gent metric g;;, leads to the creation of an excited spin-2
state.

Naturally, one may expect that higher angular momen-
tum distortion of the fluid will correspond to independent
collective modes, at least at long wavelengths [80, 81].
Construction of an effective theory describing the infinite
number of interacting higher spin-fields is not an easy
task, and has been an outstanding problem for a long
time. A significant advance in solving this problem in
(2+1)D was made in [82, 83|, where Chern-Simons-type
action for higher spin gravity was constructed. Presently,
it is not understood how these ideas can be applied to the
FQH problem.

The algebra of APDs made multiple appearances in
the FQH problem: non-commutative Chern-Simons the-
ory [84], matrix models [85, 86], bosonization of the LLL
problem [87], manifestly LLL-projected description of the
CFL-type state of bosons at ¥ = 1 [88]. Higher-spin
degrees of freedom naturally appear in the composite
fermion approach to the Jain series at filling v = T
at large values of n (i.e., close to half-filling) [50, 81].
Those theories describe free massive higher spin fields
with a quadratic action. Consequently, the (inherently
non-linear) W, structure is invisible. In what follows we
provide evidence, obtained directly from the microscopic
quench dynamics, that at long distances the electrons

forming a FQH fluid support collective modes of higher
spin. The evidence is obtained by designing a quench
protocol that selectively excites the higher-spin collective
modes.

B. Higher-spin quench

Tuning the anisotropy of the mass tensor is an experi-
mentally relevant mechanism for changing the metric in
the interaction. However, this also leads to the modifica-
tion of the entire set of coeflicients ¢, ,, of the generalized
Haldane pseudopotentials me [Eq. (3)], which uniquely
characterize the interaction:

Vq = Zcm,an’n(q). (22)

m,n

Modifying individual coefficients ¢, ,,, one at a time, is
a much more controlled way to drive a quench. While
this may not be easily achievable in experiment, this new
quench protocol allows for more control in probing differ-
ent types of dynamics. As we show below, reformulating
the quench protocol in this way not only includes the
former scenario of changing the mass tensor, but also re-
veals new types of dynamics, which lie beyond the single
mode approximation and the bimetric theory.

To perform the quench we prepare a state annihi-
lated by the Hamiltonian with ¢y, , = 0,00m,0. Then,
a nonzero cp o = 0.1 is introduced at ¢ = 0T. This corre-
sponds to the modification of the interaction Vo — Vo +
0.1Vp 2. Since Vp o carries angular momentum L, = 2, we
expect that its presence will drive a quench dominated
by the spin-2 mode. Indeed, we find that the consequent
exact dynamics of § behaves according to the descrip-
tion based on spin-2 graviton oscillation [Fig. 8(a)], and
is very similar to that obtained by changing the mass
tensor in Fig. 3.

Next we consider a quench driven by adding a small
amount of Vj4 component (cg4 = 0.1) such that the



interaction changes according to VO — Vo + 0.1170’4 at
t = 0%. This type of quench can be realized in systems
whose Fermi contours are not simple ellipses, e.g., where
the band dispersion has the form e(k) = k™ cos(INO)
[89, 90]. As shown in Ref. [90], when N = 4, the dom-
inant anisotropic pseudopotential is V4. Surprisingly,
we find Q(t) = 0 during the entire measured time inter-
val [see the black solid line in Fig. 8(a)], which suggests
that the spin-2 collective mode is not excited. However,
the system does respond to the perturbation by Vj 4, and
we conjecture that this happens by exciting the higher-
spin collective modes which cannot be described by the
bimetric theory. While we cannot describe the dynam-
ics of higher-spin modes analytically, we can measure the
dynamics of quantum fidelity, |(¢(¢)[1/(0))|?, shown in
Fig. 8(b). Clear oscillations in the fidelity are a signature
of the non-trivial microscopic dynamics taking place. We
note that in the case of Vp 2 quench, fidelity also oscil-
lates, with the same frequency as §. Moreover, we em-
phasize that our choice of measuring fidelity was merely
a convenience; indeed, observables like entanglement en-
tropy also display quantitatively similar oscillations.
The failure of the bimetric theory to capture the
quench dynamics driven by Vj 4 strongly suggests that

the ‘70,4 quench is dominated by a higher-spin collec-
tive mode rather than the spin-2 one. Indeed, unlike the
quadrupolar Vj 2, V4 4 has octupolar structure in momen-
tum space [Fig. 2(b)], which implies that it would couple
the ground state to higher-spin excitations. In our case,
this is a spin-4 excitation because the odd-spin ones van-
ish due to inversion symmetry, which is a generic sym-
metry of LLL-projected FQH Hamiltonians. The spin-4
character of the mode is explicitly confirmed by eval-
uating the spectral function I 4(w) in Fig. 8(c) (with
identical results obtained for the discrete Fourier trans-
form, shown in the inset of the same figure). The spectral
function shows two peaks, one of which corresponds to
the graviton energy and an additional one at higher en-
ergy, w ~ 1.7, which we identify with spin-4 mode. This
provides an unambiguous example in which the 2 x 2 uni-
modular metric in Eq. (2) is inadequate to capture the
dynamics of the Laughlin state, motivating the gener-
alization of the geometrical description of the fractional
quantum Hall states and the effective field theory.

VII. CONCLUSIONS AND OUTLOOK

In the present manuscript we have laid out the theo-
retical foundation for studying the non-equilibrium dy-
namics of FQH states. We have proposed and numeri-
cally simulated the geometric quench protocol which ex-
cites neutral collective degrees of freedom of FQH lig-
uids, such as the Laughlin states of bosons at v = 1/2
and of fermions at v = 1/3. In all the cases, for the sim-
plest types of quenches which are driven by modifying the
mass tensor, we have established that the short-time dy-
namics after the quench is dominated by the spin-2 gravi-
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ton mode and accurately agrees with the bimetric theory.
Furthermore, we have demonstrated that the geometric
quench protocol admits a generalization that allows one
to excite higher-spin collective degrees of freedom, whose
dynamics cannot be described by the currently available
geometric theories of the FQH effect. We believe that the
present work will motivate a more detailed study of the
geometric degrees of freedom in various strongly corre-
lated systems, and below we highlight several directions
that open up for future investigations.

The immediate question which arises is the experimen-
tal applicability of our results. Even though the quench
protocol can in principle be directly implemented with
the available technology, the main challenge is observing
coherent dynamics in solid-state materials that currently
support FQH states. Assuming typical magnetic fields
10T, we estimate the required time scales for observing
the graviton oscillation to be ~ 107'%s, which is pro-
hibitively small. The second challenge is how to measure
the intrinsic metric in gapped FQH states. Recent exper-
iments have successfully measured the anisotropy of the
composite fermion Fermi surface induced by tilting the
magnetic field [28, 91]. Similar measurements were also
performed for hole systems [92]. However, such experi-
ments still need to be generalized to gapped FQH states
(we note that acoustic wave absorption has been theo-
retically proposed as an alternative spectroscopic probe
of the graviton [75]). Given the smallness of time scales
in solid state FQH materials, a more versatile platform
to observe geometric quench could be their analogs in
lattice systems — the fractional Chern insulators (FCIs)
[93-96]. As we demonstrate in Appendix E, geometric
quench that excites a spin-2 mode can be straightfor-
wardly implemented in an FCI, resulting in the same
type of dynamics described by the bimetric theory in the
long-wavelength limit. Tunability of parameters in FCIs
allows to observe time scales on the order of ~ 1075s (as-
suming the interaction strength in cold-atom settings is
in the order of 27h x 10kHz), which is well within limits
of recent experiments [97].

New dynamical phenomena will likely arise in Abelian
FQH states with more complicated internal structure,
such as bi-layer states and Jain states. These states host
multiple collective modes which would all contribute to
the dynamics. Multi-layer systems feature rich phase di-
agrams that can be explored by tuning the interaction
strength between the layers [98, 99]. It would be inter-
esting to map out the dynamical counterparts of such
equilibrium phase diagrams by studying the geometric
quench in different interaction regimes.

Even in the simplest models of Laughlin states, our
study has focused on the linear regime of weak quench.
The non-linear regime should become relevant for strong
quenches or quenches in the vicinity of the nematic phase
transition. The present quench protocol could be used as
a complementary tool for probing the nematic transition,
which has recently been studied in Ref. [100].

When a “higher-spin” pseudopotential drives the



quench, the system undergoes non-trivial dynamics
which cannot be described within the bimetric theory
or by anisotropic trial states [101]. In these cases, a
richer set of trial states is needed to fully describe the
dynamics. This set of states should be parametrized by
higher-spin cousins of the intrinsic metric §. Similar con-
clusions were reached in Ref. [43] (see also Ref. [102])
where the bimetric theory was argued to be a low-energy
approximation to a putative higher-spin theory, and in
Ref. [50] where the linearized bimetric for the Jain series
at v =n/(2n + 1) was derived from the Dirac composite
Fermi liquid (CFL) theory at large n. In the latter ap-
proach the higher-spin modes naturally emerge as collec-
tive distortions of the composite Fermi surface. In fact,
when the CFL state forms, all of the higher-spin degrees
of freedom become gapless, and should be equally impor-
tant for the dynamics. In these systems, the geometric
quench described in the present manuscript, as well as its
“higher-spin” cousins, will provide an interesting probe
of the collective dynamics of the composite fermion Fermi
surface.

The geometric quench also presents an enticing pos-
sibility of probing the non-Abelian fractional quantum
Hall states, such as the Moore-Read state [8] — a candi-
date for the observed v = 5/2 plateau [103]. Numerical
works [104, 105] have shown that the Moore-Read state
hosts a neutral fermionic mode, in addition to the SMA
(bosonic) mode. The neutral fermion mode is expected
to have angular momentum 3/2 and is not present in the
bimetric theory. It would be very interesting to design
the effective theory and numerical probes of this mode
at long wavelengths.

Finally, FCIs exhibit much of the same phenomenol-
ogy as the continuum FQH states (see the recent reviews
Refs. [93-95] and references therein). For example, the
FCIs also feature the GMP algebra [106, 107], and they
naturally correspond to anisotropic FQH states [51, 108].
On the other hand, the FCI states in higher Chern num-
ber bands [109-111] do not have usual continuum FQH
states as counterparts [112]. Given that the quench
driven by anisotropy in hopping has been studied for in-
teger Chern insulators [113,; 114], it would be interesting
to investigate more systematically the quenches for FCls,
starting from the basic method which we have presented
in Appendix E.
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Appendix A: Anisotropic-to-anisotropic quench

As an immediate generalization of the isotropic-to-
anisotropic quench studied in Sec. IV A, we now discuss
the more general case of a quench with A; > Ag > 0,
for which the initial state is already anisotropic. In this
case, simple analytical solution does not exist under the
general initial conditions Q(0) > 0, ¢(0) = 0 even for the
linearized systems Egs. (20) and (21). However, by nu-
merically solving the coupled differential equations, we
find that the bimetric theory still accurately describes
the short-time dynamics of @ and ¢, and also captures
the oscillatory dynamics very well up to moderate times.

0.9
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=06
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FIG. 9. Exact dynamics of (a) Q and (b) ¢ for N =9 —11
bosons at ¥ = 1/2 with the contact interaction. The weak
geometric quench is driven by choosing A9 = In1.3 and
A1 = Inl.7. The red solid curve is the solution of lin-
earized equations Egs. (20) and (21) under the initial con-
dition Q(0) = Ap, ¢(0) = 0, with A ~ 0.523 and E, ~ 1.283.
These two parameters are obtained by fitting the first oscilla-
tion of @ of N = 11 against the solution.

In Fig. 9, we choose Ag = In1.3 and A; =1n 1.7, and
show the exact dynamics for the quench driven by the
contact interaction. Since the initial state is a Laugh-
lin model state with §(0) = g, the bimetric theory



predicts the post-quench dynamics of § is governed by
the solution of Egs. (20) and (21) with initial condition
Q(0) = Ap, ¢(0) = 0. Indeed, the numerical data in the
first two periods again lie on top of such a solution with
fitting parameters A ~ 0.523 and E, ~ 1.283. The value
of A is close to A; = In1.7 ~ 0.531, as expected, and
E., ~ 1.283 is consistent with the graviton gap estimated
from both the Iy 2(w) spectral function and the previous
fit in Fig. 3.

As discussed in Sec. IV A, apart from generally good
agreement, we can also observe some discrepancy be-
tween the exact dynamics and the equations of the bimet-
ric theory in Fig. 9. This discrepancy is likely caused by
the mentioned finite-size effect (the splitting of the spin-
2 mode into several states and the Lieb-Robinson light
cone) and the possible contribution of higher-spin modes.
Compared to isotropic-to-anisotropic quench, stronger
finite-size effects in the present case are not surprising
because anisotropy effectively reduces the length of the
system along one of the spatial directions.

Appendix B: Projected dynamics

In the main text, we have shown that the number of
spin-2 eigenstates of H' is exponentially smaller than the
full Hilbert space dimension. The number of spin-2 eigen-
states was determined by the matrix element of 1 5 gen-
eralized pseudopotential. Here we investigate how accu-
rately the quench dynamics in Sec. IV A can be repro-
duced by projecting to this set of states.

We perform the projection explicitly, ie., we
calculate the post-quench state as [|[¢(t)) =
& Yones exp(—ient)(nltho)|n), where S contains the

first M eigenstates with the largest |(n|V2|0)[?> matrix
elements and A is the normalization factor. The
dynamics of the intrinsic metric of |¢(t)) after an
isotropic-anisotropic quench is shown in Fig. 10 for
N = 11 bosons, together with exact dynamics without
the projection. As expected, the projected dynamics
approaches the exact dynamics with increasing M.
However, for both contact and Coulomb interactions,
the main feature in exact dynamics has been accurately
reproduced by M less than 10, even if the whole Hilbert
space in this case is more than four orders of magnitude
larger. Such an excellent approximation of the exact
dynamics by a tiny spin-2 fraction of the whole Hilbert
space is a compelling evidence for the picture of graviton
oscillation and the bimetric theory.

Appendix C: Non-instantaneous quench

Instantaneous quench is the minimal theoretical model
that describes sudden tilt of the magnetic field. How-
ever, since any experimental manipulation takes finite
time, we now generalize our discussions to more re-
alistic, non-instantaneous quenches. To be specific,
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FIG. 10. Dynamics of @ projected to M eigenstates of H’
with dominant |(n|Vp2|0)|?. We consider N = 11 bosons at
v =1/2 with (a) contact and (b) Coulomb interactions. The
quench parameters Ap and A; are the same as those in Figs. 3
and 4, respectively.

we consider isotropic-anisotropic quenches driven by a

time-dependent ramp of the mass tensor, ie., g, =
diag(eA®, e=A®) with

A(t) = Ay exp(—to/t), (C1)

such that A(0) = 0 and A(4o00) = A;. The slope of the
ramp depends on some characteristic time, tg. When
to = 0, we recover the instantaneous quench studied
in Sec. IVA. We thus expect that differences between
the non-instantaneous quench and the instantaneous one
are negligible when ¢y is small, while some qualitative
changes may happen for large enough tg.

As a representative example, we choose A; = In1.3
(weak quench) and show the predicted behavior of @
and ¢ in the bimetric theory, i.e., the solutions of the
full equations [Egs. (15) and (16)], for different ¢y in
Fig. 11. We indeed find that the solutions in the non-
instantaneous case agree with their instantaneous limit
up to ty < 1072, The effect of the ramp starts to appear
when ¢ty ~ 107!, which leads to gradual deviations of
both the amplitude and frequency in the dynamics from
the instantaneous case. Finally, for very large tg 2 1, we
observe strongly distorted oscillation patterns in ) and
¢, revealing very different dynamics between the fast-
quench and slow-quench regimes.

It would be interesting to compare exact dynamics
of finite systems with the predictions of the bimetric
theory also for non-instantaneous quenches, as we have
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FIG. 11. Solutions of the full equations [Egs. (15) and (16)]
for the non-instantaneous quench with A(t) = A; exp (—to/t),
under the initial condition @(0) = 0. Here we focus on the
Q@ > 0 solution. We choose Q = 1.5/4,v = —1,A4; = In1.3,
and consider several different to = 0.01, 0.1, 1 and 5. For com-
parison, we also give solutions for the instantaneous quench
as black dashed lines.

done for the instantaneous case in Sec. IV. Due to the
time-dependent nature of the non-instantaneous quench,
the many-body numerical simulation in this case is more
complicated and will be presented in future work. How-
ever, because the instantaneous quench corresponds to
a stronger perturbation of the system, we expect similar
or better agreement between theory and numerics for the
case of non-instantaneous quenches.

Appendix D: Weak geometric quench for v =1/3
fermions

Here we show the numerical results of the exact dy-
namics of § after a mass anisotropy quench for v = 1/3
fermions. As representative examples, we focus on weak
isotropic-anisotropic quenches with Ay = 0 and A; > 0,
where we choose A; = In 1.3 and A; = In 2.0 for quenches
driven by V7 and Coulomb interactions, respectively. Ex-
act dynamics of § up to moderate times is shown in
Figs. 12 and 13 for these two types of interactions.

Similar to v = 1/2 bosons, the short-time dynamics of
weak quenches for v = 1/3 fermions fully agrees with the
bimetric theory. We can thus extract parameters A and
E., by fitting the numerical data against Eqgs. (5) and (6),
whose values are given in the captions of Figs. 12 and 13.

14

0.6 ————————————
05 °

04k [
- ;

=03+ 4
<&

02} J 1
01 |

00 L L L L L L L L L
0

0.8
0.6
0.4
£ 02
§ 0.0
0.2
0.4

FIG. 12. Exact dynamics of (a) Q and (b) ¢ for N = 9 —
11 fermions at v = 1/3 with the Vi interaction. The weak
geometric quench is driven by choosing Ag = 0 and A; =
In1.3. The red solid curve is the Q > 0 part of Egs. (5) and
(6), with A ~ 0.248 and E., = 1.457. These two parameters
are obtained by fitting the first oscillation of @ of N = 11
against the solution.

The value of A, which quantifies the anisotropy in the
interaction, is again close to A; (between 0 and A;) for
the V4 (Coulomb) interaction as expected. The value of
LI, estimates the graviton gap as 1.46 and 0.14 for V;
and Coulomb interactions, respectively. Note that the
graviton gap of the Coulomb interaction that we extract
from the quench dynamics precisely matches the value
given by other methods in the context of single-mode
approximation [60, 68].

Like in the bosonic case, we also observe deviations
from the bimetric theory at longer times for v = 1/3
fermions. However, these deviations are more serious
and appear earlier than those for v = 1/2 bosons. For
quenches driven by the Vi interaction, while the overall
oscillation structure is maintained up to moderate times,
the oscillating amplitude already visibly decays after the
first oscillation (Fig. 12). The situation is even worse for
quenches driven by the Coulomb interaction, as expected.
In that case, the behavior of @ and ¢ totally departs from
simple oscillations after the first period and the curves of
different system sizes are no longer on top of each other
(Fig. 13). Compared with v = 1/2 bosons, our numerical
results clearly demonstrate that the dynamics of v = 1/3
fermions suffers more from finite-size effects in the exci-
tations and the participation of higher-spin modes.
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FIG. 13. Exact dynamics of (a) @ and (b) ¢ for N =9 —11
fermions at v = 1/3 with the Coulomb interaction. The weak
geometric quench is driven by choosing Ag = 0 and A; =
In2.0. The red solid curve is the Q > 0 part of Egs. (5) and
(6), with A ~ 0.279 and E, ~ 0.141. These two parameters
are obtained by fitting the first oscillation of @Q of N = 11
against the solution.

Appendix E: Fractional Chern insulators

Here we generalize the geometric quench from contin-
uum FQH states to their lattice analogs — the fractional
Chern insulators (FCIs) [93-95]. Contrary to conven-
tional FQH states, FCIs do not require an external mag-
netic field [115, 116] and may potentially persist at higher
temperatures [117]. Considering the recent experimental
progress on quantum many-body dynamics in optical lat-
tices [118], FCIs realized by cold atoms in optical lattices
could be a promising platform to observe the dynam-
ics after a geometric quench on much longer time scales
than possible in semiconductor FQH systems. In the
following, we will describe a quench protocol for FCIs
and demonstrate that our main results directly apply to
this type of system. As FCIs are inherently anisotropic,
the quenches in FCI belong to the anisotropic-anisotropic
case discussed in Appendix A.

For concreteness, we consider N bosons in a two-
dimensional Ruby lattice [119] of N1 x Ny unit cells. The
system is in xy plane with periodic boundary conditions.
We adopt the same tight-binding parameters and lattice
configurations as in Ref. [120], for which the lowest Bloch
band is flat and has Chern number C' = 1. We assume
that bosons interact via onsite and dipolar potentials.
If all dipoles are polarized in xz plane with an angle «
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to the +z direction, the interaction Hamiltonian can be
written as

Hint - an(

3:1c sin? o
n; — 1)+ E nimny,

1<J

(E1)

where n; is the occupation on lattice site 7, and r;; =
(xij,vij) is the distance between lattice site ¢ and j. We
project the interaction to the lowest band and verify that
the ground state at band filling v = N/(NyNo) = 1/2 is
the v = 1/2 bosonic Laughlin FCI for a finite range of
«a, characterized by a robust two-fold topological degener-
acy. In order to keep the lattice aspect ratio close to 1 and
for the two degenerate FCI states to be located in differ-
ent momentum sectors, we focus on two system sizes be-

low: N =6,N; =3,No =4and N = 10, N; = 4, N, = 5.

0.025 S () —
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FIG. 14. (a) Dynamics of fidelity, |(x()[x(0))|?, and (b)
its discrete Fourier transform for v = 1/2 bosonic Laugh-
lin FCIs. The weak quench is driven by o’ = 15°. The in-
set of ( ) shows the normalized spectral function I (w) =

I85( ) [ Ilat )dw for the isotropic case with @ = 0. Mark-
ers in 1nsets and curves in main figures with the same color
refer to the same system size.

While the interaction is isotropic for @ = 0, tuning «
away from 0 adds anisotropy, which can be experimen-
tally achieved by changing the direction of the polarizing
magnetic field [121]. We prepare the initial state as the
ground state with momentum K = 0, then drive the
quench by suddenly changing « from 0 to a small but
finite o/ (weak quench). Tuning « is not a direct lattice
analogue of changing the geometry of continuum Landau



level orbitals, but it is also expected to excite a geomet-
ric degree of freedom in FCIs because it adds quadrupo-
lar anistropy in the system. In order to confirm this, we
track the dynamics of fidelity |(1(¢)|(0))|?, and compare
its dominant frequency with the energy of FCI graviton
mode which can be probed by a suitable lattice analogue
of the Vp o pseudopotential. A detailed study of intrinsic
metric is also feasible for FCIs by the FCI-FQH mapping
[112] and will be presented in a future work.

In Fig. 14, we show the fidelity and its discrete Fourier
transform for o’ = 15°. One can see that the dynamics
of fidelity is dominated by a single frequency, character-
ized by the pronounced peak at w ~ 0.47 in the discrete
Fourier transform [Fig. 14(b)]. In order to estimate the
graviton energy on the lattice, we define the operator

0% = (cosqr — cos g2) pet 7, (E2)
qa

where ¢; = q - b; with b;’s the two basic lattice direc-

tion vectors, q is in the first Brillouin zone, and ﬁgt is

the density operator @™ projected to the lowest Bloch
band (see Refs. [69, 112, 122, 123] for the explicit form of
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pat). Similar to the continuum Vo.2 pseudopotential, AOI’"‘;

effectively carries angular momentum L, = 2 to probe
spin-2 states on the lattice, because the g-dependence
term cos q; — cos g2 takes a d-wave form ¢? — ¢3 at small
|q|. Indeed, its spectral function

L5 (w) =Z(5(w—ej)l<j\‘7&?§\0>l2 (E3)

shows sharply pronounced peaks [inset of Fig. 14(b)],
where €; and [j) are the eigen-energy and eigenstate of
the projected interaction Eq. (E1). Since these peaks
appear around the same energy as that in the discrete
Fourier transform of fidelity, our quench protocol indeed
excites the geometric degree of freedom of FCI that corre-
sponds to the spin-2 graviton mode on a lattice. The sim-
ilarity of the FCI results to the continuum FQH is rather
surprising, in light of the fact that there are no quantita-
tive arguments that support the relation between the bi-
metric theory and FCIs (beyond the intuition mentioned
in Ref. [43]).
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