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Abstract

Vehicular traffic congestion is a serious problem arising in many cities around

the world, due to the increasing number of vehicles utilizing roads of a limited

capacity. Often the congestion has a considerable influence on the travel time,

travel distance, fuel consumption and air pollution. This paper proposes a novel

dynamic centralized simulated annealing based approach for finding optimal

vehicle routes using a VIKOR type of cost function. Five attributes: the average

travel speed of the traffic, vehicles density, roads width, road traffic signals and

the roads’ length are utilized by the proposed approach to

find the optimal paths. The average travel speed and vehicles density values

can be obtained from the sensors deployed in smart cities and communicated to

vehicles and roadside communication units via vehicular ad hoc networks. The

performance of the proposed algorithm is compared with four other algorithms,

over two test scenarios: Birmingham and Turin city centres. These show the

proposed method improves traffic efficiency in the presence of congestion by an

overall average of 24.05%, 48.88% and 36.89% in terms of travel time, fuel con-
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sumption and CO2 emission, respectively, for a test scenario from Birmingham

city in the UK. Additionally, similar performance patterns are achieved for the

a test with data from Turin, Italy.

Keywords: Traffic congestion control, Simulated annealing, IoV applications,

Multi-attribute decision making.

1. Introduction

1.1. Related Works

The increasing number of vehicles on city road networks has resulted in seri-

ous road traffic congestion problems which have an effect on the journey travel

time, travel cost, fuel consumption and air pollution. The Victoria Transport5

Policy Institute has reported that the first most common cause of time delay,

fuel consumption and wasted money in the United States is vehicle traffic con-

gestion [1]. This has resulted in significant economic and productivity losses.

It is predicted that this cost could rise to $121 billion in 2020 [1], [2]. There-

fore, traffic congestion detection and avoidance mechanisms are two of the most10

pressing issues in Intelligent Transportation Systems (ITSs) [3].

The Internet of Things (IoT) [4], as a promising communication technology,

enables various devices such as Wireless Sensor Nodes (WSNs), cell towers,

mobile phones, Radio Frequency Identification (RFID) tags and Near Field

Communication (NFC) devices to interact and cooperate with each other to15

attain a common goal [5]. The authors in [6] have suggested a model based

on IoT in order to utilize the information and communications technologies

which improve the smart city mobility. The framework includes a comprehensive

system of the urban information that supports smart cities from sensor-based

information collection level to data processing and management, Cloud-based20

integration of respective systems and services.

The authors in [7] have investigated the utilization of IoT technologies in

order to approach particular city infrastructure problems and provide support to

traffic operators such as the utilization of traffic sensing tools that includes wifi
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scanners and magnetic sensors technologies. This would enhance the collection25

of the traffic information and improve the entire mobility of the smart cities.

The Internet of Vehicles (IoV) is a part of the IoT, that predicts future vehi-

cles as being connected, allowing the sharing of data to enhance traffic comfort

and safety. IoV is a promising technology that can offer solutions for providing

traffic control systems to monitor road conditions and travel journeys. The au-30

thors in [8] have suggested a framework based on IoV in order to support the

collection of the local traffic information. This system utilizes a central station

selection approach for the data penetration and the optimal traffic information

transmission model in order to enhance the efficiency of the data communica-

tion in the network. Moreover, the weighted and undirected graph paradigm35

for IoV networks has been studied. The characteristic of GPS dataset has been

analyzed and the network time-invariant has been verified.

The main part of the IoV is the Vehicular Ad hoc NETworks (VANETs) that

include two main components. Firstly, Vehicle to Vehicle (V2V) communication

systems that is On-Board Units (OBUs) installed in the vehicles themselves [9].40

Secondly, RoadSide Units (RSUs) or Vehicle to Infrastructure (V2I) systems,

consisting of magnetic and induction loop sensors, magnetometers, infrared sen-

sors etc. The authors in [10] have discussed the operation of Vehicular Sensing

Networks (VSNs) in a smart city. They have investigated the use of a trust

evaluation technique in order to guarantee a reliable and safe communication45

among drivers in the VANETs environment. This helps to broadcast and com-

bine reliable and valuable traffic data related to smart cities. Moreover, in [10]

the significance of an accurate topological construction has been highlighted and

they propose a secure selection model of the traffic information to enhance the

available network capacity.50

The enhancement of data communication of VANETs has been investigated

in [11] where the complex network theory has utilized for the analysis and im-

provement of the data dissemination in VANETs. The complex characteristics

of the vehicular network have been analyzed based on some communication pa-

rameters for VAENTs environment. Furthermore, the authors have proposed a55
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clustering approach in order to station selection, a traffic allocation optimization

model and an information source selection model.

1.2. Main contributions

In this work, a new centralized dynamic multi-objective optimization algo-

rithm based on VANETs is presented. It integrates the simulated annealing60

(SA) algorithm with the VIKOR method [12], [13] as a cost function to for-

mulate an approach called: centralized SA-VIKOR (CSA-VIKOR). The main

goal of CSA-VIKOR is to provide the drivers with the optimal paths according

to multiple criteria in order to meet the diverse navigation requirements of the

drivers. This is achieved via optimization based on a multi-objective cost func-65

tion. The result of which is that journeys that achieve the minimum Travel Time

(TT), minimum Travel Distance (TD), minimum fuel consumption, minimum

amount of emissions or a combination of the four.

In a previous work [14], an Improved Simulated Annealing TOPSIS (ISA-

TOPSIS) algorithm is proposed to enhance the mobility in smart cities. ISATOP-70

SIS is a decentralized method that can only reduce the local traffic congestion,

by considering only two attributes (vehicles average speed and road length) in its

optimization to provide optimal paths. This work differs in that five attributes

have been utilized to form a VIKOR based cost function for use by a CSA algo-

rithm. In addition, the advantage of the centralized algorithm structure is that75

information about the wider road network can be embedded into the system,

unlike the ISATOPSIS method where only local traffic data is available. This

means vehicles are re-routed sooner, meaning they are less likely to reach the

congestion in the first place.

According to [13], a comparative analysis has revealed that VIKOR and80

TOPSIS methods use different normalizations and aggregating functions for

ranking. The VIKOR method presents ranking preferences based on the their

“closeness” to the ideal solution and introduces a compromise solution with an

advantage rate. In comparison, the main idea of the TOPSIS method is that

the selected preference should have the farthest Euclidean distance from the85
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negative ideal solution and the shortest Euclidean distance from the positive

ideal solution. The TOPSIS method proposes two source solutions but it does

not regard the relative importance of the distances from these solutions [13].

In addition, the CSA-VIKOR utilizes data relating to the entire road network,

unlike the ISATOPSIS method where only local traffic data is available.90

The main contributions of this paper are:

1. A new centralized traffic congestion alleviation approach called CSA-

VIKOR is proposed. This algorithm provides optimal routes that reduce

the traffic congestion problem in smart cities, reducing global travel times,

fuel consumptions and CO2 emissions. CSA-VIKOR has the ability to es-95

cape from local minima or maxima and move toward a solution that is

close from the global optima. This is because it allows transition to a

worse solutions under certain conditions.

2. CSA-VIKOR is a centralized approach and can react to dynamic route

optimization problem by aggregating real-time data from VANETs and100

effectively estimate alternative routes for the drivers. The advantage of

the centralized algorithm structure in this case is that information about

the wider road network can be embedded into the system. This differs

to the work in [14], where only the local traffic information is used to

optimize the route of each vehicle, reducing the potential improvement in105

travel time etc.

3. CSA-VIKOR can optimize vehicle paths based on multiple criteria by in-

troducing a multi-attribute decision making (MADM) methodology called

VIKOR method, allowing numerous criteria to be considered when opti-

mizing routes for the vehicles.110

The remainder of the paper is organized as follows: in Section 2 a literature

review of related works is presented. in Section 3, details of the CSA-VIKOR

algorithm are given. In Section 4, a performance evaluation is provided. Finally,

conclusions are drawn in Section 5.
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2. Related Works115

The area of ITSs is considered as one of the most important applications

for the VANETs [15]. Recently, researchers have shown an increased interest in

developing efficient solutions for improving mobility in ITS [16]. One challenging

task encountered in this area is finding the optimal navigation route within a

reasonable period of time.120

The vehicle path planning problem has been investigated by numerous stud-

ies using a variety of algorithms. For example, the Dijkstra and A∗ algorithms

have been used in [17–21]. The ant colony, genetic algorithm, hybrid heuristic

and dynamic traffic assignment (DTA) methods have been used in [22–25]. Un-

fortunately, most of these studies did not consider the use of real time data to125

decrease the likelihood of congestion forming or they have no knowledge about

the traffic state for use in re-routing vehicles to avoid the congestion.

In [26], a Multiple Attribute Decision Making (MADM) method called Tech-

nique for Order Preference by Similarity to Ideal Solution (TOPSIS) is pre-

sented. This mechanism assumes that both vehicles and RSUs are equipped130

with the VANETs to get the real-time traffic information and estimate the opti-

mal route by using the TOPSIS method. However, the algorithm’s performance

is similar in some extent to the Dijkstra’s algorithm [17] and it can only provide

partially optimal results, which leads to the transfer of the congestion to other

roads.135

Route planning methods that consider real-time traffic information from

VANETs have also been considered [27–30]. In [27] an Ant-based Vehicle Con-

gestion Avoidance System (AVCAS) has been proposed. This system combines

the predicted average travel speed with the segmentation of a city map to iden-

tify and alleviate the congestion. Then it uses the dynamic Dijkstra’s algorithm140

to find different shortest paths to re-route the vehicles. In [28] and [29], two

approaches have proposed to reduce the vehicular traffic congestion in smart

cities. The first one is a centralized and the second one is a decentralized frame-

work. Both solutions rely on re-routing based on the Dijkstra’s algorithm or on
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the A∗ algorithm to prevent congestion and improve traffic conditions. In [30]145

A Distributed Vehicular Traffic Re-Routing System for Congestion Avoidance

(DIVERT) has been proposed. The K shortest path method have been utilized

by the DIVERT to re-route the vehicles and avoid the congestion. However,

congestions in these methods are transferred to the new routes as the algorithm

only selects the shortest travel distance when re-routing vehicles.150

In [31], the authors have proposed a centralized real-time path planning

based on hybrid VANET where the real-time data have been collected using

V2V, V2I and cellular systems. Then these data have been sent to the vehicular

traffic server to be processed and evaluated. Once an accident or a congestion

has happened the vehicular traffic server is responsible of finding an optimal155

alternative route by using the stochastic Lyapunov optimization method. How-

ever, this approach suffer from high delay time because it collects the real-time

data from different communication systems and processes it at one place to

find the optimal alternative path of the drivers. Additionally, the vehicular

congestion in this approach is only considered when an accident has occurred.160

An optimization solution has been proposed in [32] with the aim of determin-

ing a system-optimal traffic scattering that improves the traffic flow and ensures

that the shortest path for the drivers is not increased past a given threshold.

In this paper, a road network is provided with an Origin-Destination (OD) ma-

trix. Additionally, the edge travel time is provided and the resulting models are165

linear. However, this work has not considered the real-time data and dynamic

re-routing of vehicles when unpredicted traffic congestion has happened.

In recent works [33], [34], optimization models have been proposed in order

to minimize the effects of vehicular emissions, i.e. the pollution routing problem

(PRP). In the first work [33], the main goal is to calculate a set of paths with170

speeds over each edge of the paths at the same time in order to reduce the

total amount of emissions, fuel consumption and environmental cost. The PRP

has been formulated as a mixed-integer convex programming problem based

on disjunctive convex programming and solved by using the branch-and-cut

algorithm.175
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In the second work [34], the eco-system optimal dynamic traffic assignment

(ESODTA) system has been proposed in order to determine optimal eco-routing

or green paths to reduce the total vehicular emission. The ESODTA system has

been formulated by using the simplified queuing model (SQM). An expanded

space-time network is constructed and a bottleneck discharge rate is introduced180

as an additional variable. The problem is solved by a Lagrangian relaxation-

based algorithm.

However, these works have not utilized any real-time data obtained from

the VANETs via wireless access for vehicular environment (WAVE) protocols.

Hence, when an unpredicted congestion happens due to an accident the methods185

from [33] and [34] can not be applied to re-route the vehicles in order to avoid the

congestion. Additionally, in [33] and [34] a dynamic multi-objective optimization

method is not considered and hence the method cannot find a trade off between

different attributes to determine the optimal routes.

3. Framework description190

V2V and V2I communication systems are the two main components in the

VANETs. Both V2V and V2I communication systems can efficiently support the

ITS applications by collecting the real-time traffic information such as position,

speed, direction and an accident information [35]. As a result, these data can

be utilized for traffic management, path planning and vehicle localization.195

Here, it is assumed that both systems utilize Central Access Messages (CAMs)

or beacon messages [36]. CAMs are broadcast packets sent periodically between

V2V or V2I communication systems that focus on monitoring traffic and conges-

tion alleviation [37]. Figure 1 illustrates the V2V and V2I systems. Individual

RSUs monitor their assigned segment of the road network and have an overview200

of the average speeds and the density of vehicles on the roads. This information

can then be communicated between RSUs, allowing them to have an overview of

the state of the road network as a whole. As a result this allows them to select

the optimal path to route vehicles to their destinations. The remainder of this
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Figure 1: IoV road network infrastructure

section describes the proposed framework by specifying the real-time data col-205

lecting methodology, the road network model and the CSA-VIKOR algorithm.

3.1. Real-Time Data Collecting Methodology:

The proposed protocol relies on periodic messages for data dissemination.

Each periodic message that is sent by a vehicle to the RSU monitoring its

current location contains {roadID, averagespeed, position, denstiy, route, Vf}.210

Here, the roadID gives the ID of the road where the vehicle is, avergaespeed

gives the vehicle’s speed on the road, position indicates the current location of

the vehicle, denstiy is the number of vehicle per unit distance on a road, route

represents the route along which the vehicle is travelling and Vf gives the speed

limit of the road.215

The RSU also sends periodic messages to other RSUs within its transmission

range. Each RSU holds a road matrix A, which contains the average speeds,

vehicle densities, road lengths, road widths and the number of traffic signals.

The current average speeds are found from the speed measurements over the

previous 5 seconds (one measurement a second). The density of the vehicles on220

a given segment of road is found using (5), which is given below. Reset param-

eters (roads length, roads width and number of traffic signals) are uploaded to
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the RSU during the off-line phase. Once new data is received by a RSU, the

avoidance mechanism is triggered, in which congested roads are specified based

on the Greenshield’s traffic flow theory [38].225

The speed ratio is defined to numerically represent the traffic state of a road

as follows:

Vr =
Vi

Vf

. (1)

Here, Vr is the speed ratio, Vi is the current average speed on the road and Vf

is the speed limit of the road.

According to Greenshield’s model [38], a linear relationship exists between

speed and density, which has the following form:

Vr = 1−Dr, (2)

where Dr represents the density ratio and can be calculated as follows:

Dr =
di
dj

. (3)

In (3) di is the current density of vehicles on the road and dj is the maximum

jam density, which is computed as follows:

dj = K
Li

AvgL
. (4)

Note, K is the number of lanes on the road, Li is the road length and AvgL is

the average vehicle length plus the minimum gap between two vehicles. This

work assumes AvgL is 6.2m, as is done in [39] and [40].230

From (2) and (3) di can be calculated as:

di = dj(1− Vr) (5)

and the following can be deduced (see Figure 2) [41]:

1. The road is under severe traffic congestion and the traffic density ap-

proaches dj when the speed ratio Vr approaches zero.

2. The road is under free flow speed and the traffic density is low when Vr235

approaches 1.
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Figure 2: Traffic density-speed relationship [41]

As a result, the speed ratio can be used rather than the density ratio to

numerically represent the traffic state. According to Figure 2, when the Vr is

very low the traffic density will be very high and the road will be under severe

traffic congestion. The proposed algorithm aims to improve traffic efficiency240

by detecting and avoiding congestion. Traffic congestion is detected when the

speed ratio Vr ≤ 0.5. This value has been chosen in order to avoid the severe

congestion which is highlighted in Figure 2 when the speed ratio Vr become less

than 0.5 that means the traffic density increased on the road segments and the

congestion will be severe.245

3.2. Road Network Model:

Suppose the network map consists of a set of intersections (Nodes) N and

a set of edges E = {e1, e2, . . . , ei} connected between the nodes. Then the

road network can be modeled as a directed graph G = (N,E). Suppose each

intersection on the map contains n roads or alternatives, each of them having

j routing metrics or attribute values and a weight vector which represents the

importance (weight) of the attributes. The road network matrix A can be
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formulated as follows:

A =

















r1(a1) r2(a1) r3(a1) . . . rm(a1)
...

...
...

. . .
...

r1(an) r2(an) r3(an) . . . rm(an)

w1 w2 w3 . . . wm

















(6)

where rj(ai) represents the value of jth routing metric (rj attribute) for the ith

road (ai alternative) for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. In this work m=5

attributes are used, which are CL, CS , CD, CW , CTS . Each of these attributes

(or performance measures) are defined in the list given below. The weights250

w = {wj | j = 1, 2, . . . ,m} represents the relative importance of the attributes

being considered, which can be found as detailed in Section 3.5.

The five attributes (or performance measures) that are considered in the

proposed optimization strategy are:

1. Road Length, CL = {fj(ai)| i = 1, 2, . . . , n; j = 1}, which is given as a255

normalized length in a directed graph G for each alternative in the matrix

Â.

2. Average Speed, CS = {fj(ai)| i = 1, 2, . . . , n; j = 2}, which gives the

normalized average velocities. The average velocities are found by aggre-

gating the velocities of the vehicles (for the previous 5 seconds) entering260

the roads in Â at a given time.

3. Density of vehicles on the road, CD = {fj(ai)| i = 1, 2, . . . , n; j = 3},

which is given as a normalized density in Â and calculated using (5).

4. The road width, CW = {fj(ai)| i = 1, 2, . . . , n; j = 4}, which represents

the number of lanes on the road in Â.265

5. The set CTS = {fj(ai)| i = 1, 2, . . . , n; j = 5}, which represents the

normalized number of crossing or signals on each of the roads in Â.

Here, as the units of each attribute are different (e.g. CL is measured in

meters, while CS is measured in meters/second), processing all values for every

routing metric into a comparability sequence is necessary. This is achieved as
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follows:

fj(ai) =
rj(ai)

√

√

√

√

n
∑

i=1

(rj(ai))
2

where i = 1, 2, . . . , n; j = 1, 2, . . . ,m, (7)

where fj(ai) ∈ [0, 1] is the normalized value of jth routing metric for the ith

road for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. The normalized road matrix Â can

be constructed as follow:

Â =

















f1(a1) f2(a1) f3(a1) . . . fm(a1)
...

...
...

. . .
...

f1(an) f2(an) f3(an) . . . fm(an)

w1 w2 w3 . . . wm

















. (8)

3.3. A Centralized Simulated Annealing VIKOR (CSA-VIKOR) Algorithm:

SA is a probabilistic method proposed by [42] that was originally inspired

by the operation of annealing in metallurgy. The main idea of SA is to accept270

worse solutions under certain conditions in order to escape from local minima

or maxima and move toward the global optima. The algorithm starts with an

initial solution that is randomly generated. Each iteration then produces a new

random solution based on the previous solution. A new solution which has a

better cost (this is a measure of how suitable a solution is, see Section 3.4 for275

further details) is accepted. However, a solution with a worse cost than the

previous solution is only accepted with a set transition probability.

This section presents a dynamic path planning method based on SA with a

VIKOR cost function. The proposed approach is as follows:

• Off-line phase of route calculation: The SA algorithm starts with an off-280

line path computation, in which C = {c1, c2, c3, . . . , cl} represents a set of

vehicles. Every cl in C has a set of routes, that can take it from it’s origin

to its destination, that is generated from the normalized matrix Â. Every

road ai in the normalized road matrix Â has a cost function constructed

using the VIKOR method [12], [13]. Each route for vehicle cl consists of a285
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varying number of roads between the vehicles origin and destination. The

cost function of each route is then given as sum of the costs associated with

the individual road segments making up the route. The SA algorithm is

outlined in Algorithm 1, where Uc means the current solution or an initial

possible route. This initial path is generated randomly from the road290

matrix Â as shown in Figure 3.

The temperature T is a random variable, which is fairly decreased with

time and controlled by α which is a cooling rate factor. When the tem-

perature parameter has a very high value, a new path Un is calculated

randomly from each intersection road matrix Â. The cost of the new295

path, C(Un), is then compared to the cost of the previous path, C(Uc).

When it is resolved to be a good solution by the superiority test (step 7

in Algorithm 1) the new solution or route is accepted. When the new cost

is greater than or equal to the previous cost, the new route can still be

accepted with a given transition probability (Pt in Algorithm 1). This ex-300

pands the search space and helps to avoid local optimal solutions. When

T approaches Tm, the path with the minimum cost value has a high prob-

ability of being accepted.

The path Un in step number 7 of Algorithm 1 is constructed based on

previous path Uc as follows:305
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Initial path 𝑼𝒄 = { 𝒂𝒔, .……, 𝒂𝒅 } 
Randomly select a neighboring road  𝒂𝒊 from road matrix A and add it to 𝑼𝒄 

Is the 

destination 

reached? 

Is the path 𝑼𝒄 feasible? 

Delete 𝒂𝒊 from A 

Return 𝑼𝒄 as first alternative and 

repeat the procedure to create 

the required number of paths. 

Yes 

Yes 

No 

No 

Figure 3: The procedure for generating a random initial path [14]
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Algorithm 1 Simulated Annealing Algorithm

1: Uc = Uc0 current solution

2: T = T0 an initial temperature

3: α = cooling rate

4: Tm is the minimum temperature

5: Bs = the best solution

6: Bs ← Uc

7: While T > Tm:

Generate a random neighboring solution Un from Â

If C(Un) < C(Uc) then

Move to Un

Accept change Bs ← Un

Else If C(Un) ≥ C(Uc) then

Calculate ∆E = C(Uc)− C(Un)

Move to Un with transition probability

Pt = 1/(1 + exp(−∆E/T ))

End

T = αT

End

8: Return Bs

1. Consider a current route Uc = {as, a1, . . . , ai, ai+1, . . . , al−1, al, ad}

where as is the road segment the vehicle starts on, ad is the destina-

tion segment and ai means the i-th road segment.

2. The procedure for generating a random neighboring solution or ran-

domly perturbed route (see Figure 4) consists of the following three310

steps.

(a) Two roads ai and al are chosen randomly in the route Uc as a

source and destination, respectively.

(b) Generate a random route between ai and al.

(c) The route Uc = {as, a1, . . . , ai, ai+1, . . . , al−1, al,315
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  𝒂𝒔 𝒂𝟏 𝒂𝒊 𝒂𝒊+𝟏 𝒂𝒍−𝟏 𝒂𝒍 𝒂𝒅 

…….. ….…….. …….. 

𝒂𝒊 𝒂𝒊+𝟏′ 𝒂𝒍−𝟏′ 𝒂𝒍 ….…….. 

Figure 4: How to construct a new path Un based on an initial path Uc [14]

ad} is substitute by (ai, ´ai+1, . . . , ´al−1, al) to generate a new

route Un = {as, a1, . . . , ai, ´ai+1, . . . , ´al−1, al, ad}.

3. Test the continuity of the new route.

4. Repeat steps 2-3 if the route is not feasible. Otherwise, continue with

SA as in Algorithm 1 and compare the cost of the new route to the320

previous route.

• On-line phase of route calculation: In this phase, the vehicles start driving

through the city with the route created by the off-line path calculation.

Once the congestion is detected, the on-line phase is triggered automati-

cally to determine an alternative route as follows: Once new data becomes325

available, the RSU updates the road costs RCk = {roadId, averagespeed,

position, density, Vf}. Based on this data the road matrix Â for the RSU

is updated. Then the RSU will identify congested roads in Â and gener-

ates a set of congested roads contained in the matrix CR. Hereafter, once

vehicle vk approaches an intersection it will send a query message that330

contains msgQk = {roadId, position, route} to the RSU. This RSU will

then evaluate the route for vehicle cl. If the evaluation shows that the

route will bypass a congested road, then cl will keep traveling using the

current path. Otherwise, the CSA-VIKOR at the RSU will be activated

and reloaded with an updated search space. The alternative route will335

then be computed and transmitted to the vehicle. This allows the vehicle

to then continue towards its destination, avoiding the congestion that has

formed. Algorithm 2 shows the procedure of the congestion avoidance us-
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Algorithm 2 Congestion avoidance using CSA-VIKOR approach

1: Input :

C set of vehicles in the network, G Network graph, Beacon messages between

RSUs and vehicles, A road matrix with different attributes

2: Output :

A new optimal route that avoids the congested roads

3: At each RSU :

For road ∈ G do

Calculate the average vehicle speeds

Calculate the average vehicle density

Update matrix A (roadID, averagespeed, density)

Calculate normalized road matrix Â

End

4: Detect congested roads:

For road ∈ Â do

Calculate the velocity ratio Vr

If Vr ≤ 0.5 then

Add the congested road into matrix CR

End

End

5: Find new route :

For cl ∈ C do

Extract the vehicle route from beacon messages

For road ∈ vehicle route do

If road ∈ Congested Road Matrix then

Exclude the congested road from matrix Â

Get the current coordinate of the vehicles

Update road costs RCK

Update matrix Â for each RSU by using VIKOR method

Calculate new optimal route by using CSA-VIKOR

Send the new route to the vehicles;

End

End

End
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ing CSA-VIKOR. This procedure is repeated every time vehicles approach

an intersection and enter the transmission range of a RSU.340

3.4. VIKOR Cost Function of CSA-VIKOR Algorithm:

In this paper the cost function is implemented using the VIKOR method

[12]. VIKOR is an approach for solving multi-criteria optimization problems. It

works by ranking solutions and picking the best alternative, by comparing each

to the ideal (optimal solution based on conflicting criteria) and worst solution.

This ranking is based on Lp-metric given in (9) [13]. This metric is termed the

level of regret and is given by:

Lp,i =

{

m
∑

j=1

[

wj

(

f∗

j − fj(ai)
)

(

f∗

j − f−

j

)

]p
}

1

p

, 1 ≤ p ≤ ∞ , (9)

where i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Here, L1,i is defined as the maximum

group utility (Si), and L∞,i is defined as the minimum individual regret of

the opponent (Ri), f
∗

j and f−

j represent the best and the worst values of all

attributes, respectively.345

The VIKOR method then ranks the alternative solutions as follows:

1. Find that best f∗

j and the worst f−

j values, for each criteria being consid-

ered in the optimization.

2. Calculate Si and Ri using:

Si = L1,i =
m
∑

j=1

wj

(

f∗

j − fj(ai)
)

(

f∗

j − f−

j

) , (10)

Ri = L∞,i = max
j

[

wj

| f∗

j − fj(ai) |

| f∗

j − f−

j |

]

, (11)

where wj is the weight of the jth criterion, expressing the relative impor-

tance of criteria.350

3. Find Qi, i = 1, 2, . . . , n, using:

Qi = α

(

Si − S∗

)

(

S− − S∗

) +
(

1− α
)

(

Ri −R∗

)

(

R− −R∗

) . (12)

19



Here S∗ = min
i

Si, S− = max
i

Si, R∗ = min
i

Ri, R− = max
i

Ri, and α

is a weighting term. A value of α = 0.5 is selected to ensure that the

compromise solution is stable within a decision making process.

4. The alternative solution can be ranked in descending order based on the

values for S, R and Q. The interested reader can find further details about355

the VIKOR standard ranking procedure in [12] and [13].

However, in this paper the ranking procedure of VIKOR method has been

avoided by using the SA optimization algorithm. The cost function of CSA-

VIKOR method has been calculated by adding Q, S and R of each potential

route as in (13) below. The best route is then chosen using the SA procedure360

in Algorithm 1. Here, µi, ϕi and βi are the weight parameters of functions Qi,

Si and Ri, respectively. They are chosen so that µi + ϕi + βi = 1 and µi, ϕi,

βi > 0, ∀i ∈ n. The values of µi, ϕi and βi are selected by trial and error to

satisfy the system objective and requirement given by:

Y ∗

i = µiQi + ϕiSi + βiRi Y ∗

i ∈ [0, 1] ∀i = 1, . . . , n. (13)

3.5. Calculation of Attribute Importance Weights:365

The selection of the weights that control the relative importance of each

attribute under consideration has an impact on the final solution that is reached.

Various methods for making this selection have been previously suggested [43].

In this paper, the Maximizing Deviation (MD) method is used to determine the

weight vector w = [w1, w2, . . . , wm] and to ensure the weight stability intervals370

of the multiple attributes.

First, the initial values of the weight vector are specified w∗ = [w∗

1 , w
∗

2 , . . . , w
∗

m].

According to [44], the weight vector w∗ should be selected to maximize all de-

viation values (the differences between values of the same attribute) for all the

attributes. The weight vector can then be formulated using a non-linear pro-
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gramming model:

max
w∗

j

F (w∗) =

m
∑

j=1

n
∑

i=1

n
∑

z=1

w∗

j d(fj(ai), fj(az)),

subject to

m
∑

j=1

w∗2
j = 1, 0 ≤ w∗

j ≤ 1,

(14)

where the distance d(fj(ai), fj(az)) between different values belonging to the

same attribute is given by:

d(fj(ai), fj(az)) = (fj(ai)− fj(az))
2. (15)

To solve (14), let

L(w∗

j , λ) =

m
∑

j=1

n
∑

i=1

n
∑

z=1

w∗

j d(fj(ai), fj(az)) +
1

2
λ

(

m
∑

j=1

w∗2
j − 1

)

(16)

represent the Lagrangian function of the constrained optimization model, where

λ is a Lagrange multiplier. The partial derivatives of L are estimated as

∂L(w∗

j )

∂w∗

j

=

n∑

i=1

n∑

z=1

d(fj(ai), fj(az)) + λw
∗

j = 0, for 1 ≤ j ≤ m (17)

and
∂L(w∗

j )

∂λ
=

1

2

(

m
∑

j=1

w∗2
j − 1

)

= 0. (18)

From (17), it can be derived that

w∗

j = −

n
∑

i=1

n
∑

z=1

d(fj(ai), fj(az))

λ
for 1 ≤ j ≤ m. (19)

After substituting (19) into (18), it gives

λ = −

√

√

√

√

m
∑

j=1

(

n
∑

i=1

n
∑

z=1

d(fj(ai), fj(az)

)2

. (20)

Replacing (20) into (19), it gives

w∗

j =

n
∑

i=1

n
∑

z=1

d(fj(ai), fj(az))

√

√

√

√

m
∑

j=1

(

n
∑

i=1

n
∑

z=1

d(fj(ai), fj(az)

)2
for 1 ≤ j ≤ m. (21)
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The final wj is derived from the normalization of w∗

j as

wj =
w∗

j

m
∑

j=1

w∗

j

=

n
∑

i=1

n
∑

z=1

d(fj(ai), fj(az))

m
∑

j=1

n
∑

i=1

n
∑

z=1

d(fj(ai), fj(az))

for 1 ≤ j ≤ m. (22)

4. Performance Evaluation

The proposed framework has been tested and evaluated through a vehicular

network simulator Veins [45] which integrates the traffic simulator Simulator

for Urban Mobility (SUMO) [46] with the network simulator OMNeT++ [47]375

to manage the mobility of vehicles and the communication between V2V or

V2I communication systems. Two realistic maps have been imported from the

Open Streets Map (OSM) tool [48] to evaluate and test the proposed method

(the scenarios of Birmingham city in U.K. and Turin city in Italy) as shown in

Figure 5 and 13.380

The proposed algorithm has been implemented for different vehicular envi-

ronments to optimize the traffic scenario. The CSA-VIKOR has been compared

with the Original Dijkstra’s Algorithm (ODA), Dynamic Dijkstra’s Algorithm

(D-DA), Dynamic A∗ (D-A∗) algorithm, which were implemented as in [19] and

the ISA-TOPSIS method which was implemented as in [14]. The simulation385

of all algorithms has been executed for ten independent Monte Carlo runs and

then the average values of the obtained results were recorded. Five different

performance measures have been considered in this performance evaluation:

• Average Travel Time (ATT): average travel time of all vehicles.

• Average Fuel Consumption (AFC): average fuel consumption taken390

by vehicles

• Average CO2 emission: average CO2 emission of all vehicles.

• Average Travel Distance (ATD): average travel distance taken by

vehicles.

22



0

0.2

0.4

0.6

0.8

1

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

B
e

st
 c

o
st

Iterations

CSA-VIKOR algorithm

Figure 5: CSA-VIKOR convergence

• Average Travel Speed (ATS): average travel speed of all vehicles.395

The EMIssions from Traffic (EMIT) model [49], is used to calculate fuel

consumption and vehicle emissions. This is done using a statistical model and

vehicle speeds and accelerations from the SUMO simulator.

Figure 5 shows the convergence of the CSA-VIKOR approach to the optimal

cost. It is clear that the CSA-VIKOR continues to search for the solution until400

reaching convergence, which in this example is after 81 time steps. This algo-

rithm shows a good search ability and finds the solution lading to the optimal

route.

Figures 6 a and b show the convergence of the algorithm in terms of the

travel distance and travel time, respectively. It is obvious that the CSA-VIKOR405

finds the travel distance and travel time at the same speed from 0 to 81 times.

Therefore, we can deduce from Figures 6 a and b that the search speed of the

algorithm is good enough to find the solution.
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Figure 6: Convergence curves of CSA-VIKOR. (a) Travel distance convergence line; (b)

Travel time convergence line.

4.1. Birmingham City Scenario

In this Scenario, a realistic map scenario for Birmingham city centre has been410

imported from OSM tool into SUMO simulator. The area under consideration

is shown in Figure 7. Figure 8a then shows a selected region where congestion

forms if no dynamic re-routing is used when congestion is detected. When the

proposed method is used this congestion is then avoided as shown in Figure 8b.
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Birmingham New Street Train Station 

Figure 7: Birmingham city centre Map that is imported into SUMO

 

(a)

 

(b)

Figure 8: The traffic flow of vehicles with ODA and CSA-VIKOR. (a) The traffic flow with

ODA appraoch; (b) Traffic flow using CSA-VIKOR approach.
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Table 1: Simulation parameters as configured in the SUMO implementation of Birmingham

scenario

Simulation parameters Value

Map dimension 3.5 km×2.5 km

Maximum allowed speed 32 m/s

Simulation time 1000 s

MAC/PHY IEEE 802.11p

Max. transmission range 600 m

Number of vehicles 100-1000

T off-line 100 ◦C

α off-line 0.998

T on-line 35 ◦C

α on-line 0.992

µi 0.55

ϕi 0.225

βi 0.225

Number of simulation runs 10 times

Confidence Level 95%

Table 1 shows the parameters that have been used in the simulation, where415

the vehicles speed have been chosen by the designer using U.K. road laws as

a guide. The SA parameters (T and α) have been selected to give a suitable

trade-off between computation time and amount of optimization. The other

parameters have been chosen based on the OSM and Veins specification.
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Figure 9: Average travel time

4.1.1. Average Travel Time420

Figure 9 depicts the average travel time obtained by the five methods. It

is clear that the average travel time has a direct relationship with the number

of vehicles. As is expected, the average travel time increases as the number of

vehicles increases. This is because the more vehicles there are on the roads, the

greater the probability of traffic jams forming (as well as them being longer due425

to the increased number of vehicles), resulting in larger average travel times.

This is illustrated by the results shown for ODA in Figure 9.

The D-DA and D-A∗ algorithm obtain travel times that are more constant

and lower than those of the ODA. This is due to the re-routing mechanism

when the congestion is detected. The ATT of D-DA is slightly better than430

the D-A∗ algorithm for low numbers of vehicles. However, when the number

of vehicles starts increasing, the ATT of the D-A∗ algorithm becomes much

better compared with the D-DA. This is due to the fact that the D-DA selects

the shortest route for all vehicles and due to the low number of vehicles in the

sparse vehicle example, it does not move the congestion to another area. In435

contrast, in a dense vehicle scenario re-routing, many vehicles to the route with

the shortest path will move the congestion from one area to another one.
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Figure 10: Average fuel consumption

It is clear that the CSA-VIKOR algorithm has significantly improved the

average travel time as compared to the ODA, D-DA, D-A∗ and ISA-TOPSIS,

respectively. The reason is that the CSA-VIKOR algorithm routes the vehicles440

through the less congested path by using the MADMVIKORmethod to consider

more attributes (density of cars on the road, the traffic light at the roads and

width of the roads) in its cost function. Additionally, the centralized approach

CSA-VIKOR helps the RSUs to update most of the roads in the road matrix,

giving an overview of almost all the roads on the map. The ISA-TOPSIS is seen445

to have better ATT as compared with the ODA, D-DA nad D-A∗ algorithms.

This is because the ISA-TOPSIS utilizes the real-time information in it is cost

function. However, its performance is still relatively lower than the CSA-VIKOR

algorithm. The reason is that the ISA-TOPSIS only has a local overview of roads

on the map.450

4.1.2. Average Fuel Consumption

Figure 10 illustrates the AFC obtained from all algorithms. It can be seen

that the impact of taking the longest and shortest route on the traffic efficiency

and the fuel consumption. The D-A∗ algorithm selects the longest free flow

route that helps to distribute the vehicle and decrease the congestion. However,455
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Figure 11: Average CO2 emission

that leads to driving for long distances which in turn leads to the consumption

of more fuel by the engine. On the other hand, in dense scenarios choosing

the shortest path by ODA and D-DA leads to the generation of severe traffic

congestion which in turn leads to the consumption of more fuel due to the higher

numbers of vehicles waiting in the queues.460

Despite the D-DA, D-A∗ and ISA-TOPSIS algorithms having lower fuel con-

sumption than ODA, their traffic efficiency is lower compared with the efficiency

of the CSA-VIKOR algorithms. This is due to the shorter waiting time, better

average speeds and an optimal path that is selected based on different nav-

igation criteria by this algorithm. Additionally, both the ISA-TOPSIS and465

CSA-VIKOR pay attention to the congestion by using the real-time data from

VANETs that helps to re-route the vehicles by selecting the optimal paths and

avoiding the traffic jams. However, CSA-VIKOR shows better performance as

compared to the ISA-TOPSIS. This is due to the fact that the ISA-TOPSIS

can only avoid the local traffic congestion because it only updates a few roads470

in the vehicle transmission range.
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Figure 12: Average travel distance

4.1.3. Average CO2 Emissions

Figure 11 shows the CO2 emissions result obtained by the five algorithms.

The results of CO2 emissions are directly related to the results of fuel consump-

tion. The longer the travel distance, the larger the waiting time, the more fuel475

that is consumed by the engine, the more CO2 emissions there are. For large

vehicle numbers and when there is congestion, there are longer waiting times

on the roads, increasing the fuel consumption and CO2 emissions.

It is clear from Figure 11 that CSA-VIKOR has the lowest average CO2

emissions compared with the other algorithms. This is due to it gives the best480

average travel speeds by finding the optimal paths. The ISA-TOPSIS comes

in the second place in terms of CO2 emissions. Both D-DA and ODA have

the worst CO2 emissions due to a large amount of fuel being consumed by the

vehicle on the routes being optimized by these methods.

4.1.4. Average Travel Distance485

Figure 12 depicts the average travel length result for all of the algorithms.

The D-A∗ has a larger average travel distance than ODA, D-DA, ISA-TOPSIS

and CSA-VIKOR. This is due to the fact that D-A∗ chooses the routes with the

longest travel distance (with the maximum average speed limit) but it has the
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Figure 13: Average travel speed.

minimum travel time and distributes the vehicles on them to avoid generating490

further congestion.

It can also be seen that both ISA-TOPSIS and CSA-VIKOR can find a

compromise by minimizing effectively the travel time, fuel consumption and CO2

emissions due to their ability to consider multiple pieces of traffic information.

However, this reduction leads to a slight increase in the travel distance compared495

to ODA and D-DA. This is a knock on effect of ISA-TOPSIS and CSA-VIKOR

using real-time traffic information to re-route vehicles to avoid congestion that

forms on the shorter routes.

The D-DA has slightly increased the travel distance as compared to ODA.

This is because the vehicles are already on the shortest paths (as are the ones500

routed using ODA) and are then given an alternative route when congestion is

detected. However, this has not aided the drivers in avoiding the congestion be-

cause it re-routes the vehicles with the shortest path and that leads to transfer

the congestion from one area to another. The ODA has a constant travel dis-

tance as compared to the other algorithms, as there is no re-routing in this case.505

Note, this distance is fixed and is not affected by whether congestion occurs or

not.
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4.1.5. Average Travel Speed

Figure 13 speeds the average travel speed obtained by all of the algorithms.

CSA-VIKOR has recorded the best average travel speed compared to the other510

methods for all vehicle numbers considered. This is due to the congestion avoid-

ance method and providing the vehicles with the best alternative paths. Addi-

tionally, it is a centralized approach that gives drivers a comprehensive overview

for almost all of roads on the map.

The CSA-VIKOR has recorded the best performance in terms of average515

travel speeds. This is because this optimization method can avoid the traffic

congestion by using the traffic information for the wider region and considering

five attributes in its optimization that it is not possible for the ODA, D-DA

and D-A∗ algorithms. The ISA-TOPSIS has better performance in terms of

ATS as compared with the ODA, D-DA and D-A* algorithms. However, this520

method can only improve the local traffic congestion by utilizing the local traffic

information.

Despite the D-DA and D-A∗ having better performance compared to ODA,

they have a relatively poor performance when compared to the proposed solu-

tion. This is because they avoid the congested roads by re-routing all vehicles525

along an alternative route based on a single attribute. Therefore, the congestion

is transferred to the new routes. The ODA has the worst average travel speed.

This due to a large number of vehicles being stuck in traffic congestion, due to

there not being a re-routing mechanism. We can see the impact of travel speed

on the traffic efficiency especially the fuel consumption and CO2 as in Figures530

10 and 11, respectively.

4.1.6. Average CPU Time

Figure 14 illustrates the average CPU time that has been estimated by com-

bining the transmission time of real-time data with the elapsed time to find

a new path and re-route vehicles to avoid congested roads. It is clear from535

Figure 14 that the ODA, D-DA and D-A∗ require less CPU time as compared

to ISA-TOPSIS and CSA-VIOKR algorithms. However, that has not really
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Figure 14: Average CPU time

helped the driver to avoid the congestion because they re-route drivers with the

shortest path or longest free flow path to escape from the congestion and that

leads to moving the congestion from one street to another one. ISA-TOPSIS540

has better CPU time as compared to CSA-VIKOR. This is due to the search

of an alternative route has been done independently in each vehicle rather than

waiting for all traffic states to be communicated by the RSUs. However, this

only helps the driver to escape from the local traffic congestion. CSA-VIKOR

has the largest CPU time because the optimization has been done centrally in545

each RSU to find the optimal path for all drivers. This helps to decrease the

global travel time, fuel consumption as well as CO2 emissions of all drivers.
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Figure 15: Average travel time of the accident scenario

4.1.7. Average Travel Time of Accident Scenario

Figure 15 represents an accident scenario, which is similar to a scenario

considered in [27] in order to evaluate the performance of all of the algorithms550

in the presence of accidents. In this scenario, 1000 vehicles were involved and 500

vehicles are assigned to the five algorithms, with each algorithm being used to

select the route of 100 vehicles. The remaining 500 vehicles are guided randomly

to generate accidents and congestion on the some of the main roads in the

map of Birmingham being considered. The accident starts after 200 seconds of555

simulation time and it is cleared after 600 seconds.

As can be seen from Figure 15, all vehicles that are routed through the

shortest paths via ODA have a worse travel time as compared to the other

algorithms. This is due to the lack of utilizing of real-time data and the lack of

a mechanism to avoid the congested roads. The D-DA gives the second worst560

travel times. This is due to the dynamic re-routing of all of the vehicles to the

shortest paths, which leads to the transfer of congestion to other roads. The D-

A∗ algorithm has a better reaction to the congestion as compared to ODA and

D-DA because it routes the vehicles along the roads with the minimum travel

times. However, its’ performance is still less efficient than compared to ISA-565
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Figure 16: Turin city centre Map that is imported into SUMO

TOPSIS and CSA-VIKOR. This is due to the efficient reaction and utilization

of real-time traffic information and congested roads by ISA-TOPSIS and CSA-

VIKOR.

The CSA-VIKOR algorithm has the best performance in the presence of

congestion as it utilizes the real-time data of almost all of the roads on the570

map while the ISA-TOPSIS can only utilize the local traffic information. This

sometimes does not give the driver enough time to avoid the congested area. In

addition, the CSA-VIKOR algorithm selected the optimal paths based on two

real-time navigation criteria (average speeds and vehicle densities) and three

static criteria (roads length, roads width and a number of traffic signals on575

the roads). This helps the driver to select the path with the fewer number of

vehicles, higher average speeds, larger number of lanes and fewer traffic signals.

4.2. Turin City Scenario

Another realistic map scenario for Turin city centre in Italy has been im-

ported from the OSM tool as shown in Figure 16.580

In this Scenario, The parameters for the CSA-VIKOR algorithm are the

same as the Birmingham city scenario and are summarized in Table 1 except
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Figure 17: Average travel time

the map size that is 3.8 km×3.2 km and the maximum allowed speed that has

been set up to 30 m/s.

Figures 17, 18 and 19 show the obtained results of average travel time,585

average fuel consumption and average travel speed of all of the algorithms being

evaluated. They show a similar performance pattern as that has been obtained

for the Birmingham city scenario. Moreover, they show that the CSA-VIKOR

algorithm still has the best performance as compared to the other algorithms.

In conclusion, the relative results of the algorithms have not been changed by590

changing the city under consideration. However, the absolute values of the

average travel times, fuel consumption and travel speed levels have changed

due to the difference in the size of roads and ring roads of Turin map used as

compared to Birmingham map. The improved performance over the comparison

algorithms is due to the fact that real-time traffic information has been used595

to continuously optimize travel time, travel speed, fuel consumption and CO2

emissions.
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Figure 18: Average fuel consumption
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Figure 19: Average travel speed

5. Conclusion

As the number of vehicles on road networks increases so does the problem

of congestion, making the development of congestion avoidance algorithms an600

important problem. In this paper, a new congestion alleviation method called

a centralized simulated annealing VIKOR (CSA-VIKOR) algorithm has been

proposed. The novelty of this work consists of the developed optimization al-
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gorithm based on a multi-objective cost function and dynamic route planning.

The proposed method can lead to a reduction in global travel time, fuel con-605

sumption and CO2 emissions. Simulation results from the Birmingham scenario

show that the proposed approach has a better performance as compared to the

original Dijkstra’s algorithm, dynamic Dijkstra’s algorithm, A∗ algorithm and

an improved simulated annealing TOPSIS algorithm. As reported from the

Birmingham scenario, it is shown that the proposed approach improves traf-610

fic efficiency in the presence of congestion by an overall average of 24.05%,

48.88% and 36.89% in terms of travel time, fuel consumption and CO2 emis-

sions, respectively. Moreover, similar performance patterns were obtained for

the Turin-based simulation.
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