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Abstract—Missing samples and randomly sampled non-
stationary signals give rise to artifacts that spread over both the
time-frequency and the ambiguity domains. These two domains
are related by a two-dimensional Fourier transform. As these
artifacts resemble noise, the traditional reduced interference
signal-independent kernels, which belong to Cohen’s class, cannot
mitigate them efficiently. In this paper, a novel signal-independent
kernel in the ambiguity domain is proposed. The proposed
method is based on three important facts. Firstly, any windowed
non-stationary signal can be approximated as a sum of chirps.
Secondly, in the ambiguity domain, any chirp resides inside
certain regions, which just occupy half of the ambiguity plane.
Thirdly, the missing data artifacts always appear along the
Doppler axis where the chirps auto-terms do not appear. There-
fore, we propose using a chirp-based fixed kernel on windowed
non-stationary signals in order to remove half of the noise-like
artifacts in the ambiguity domain and compensate for the missing
data effect located along the Doppler axis. It is shown that our
method outperforms other reduced interference time-frequency
distributions.

Index Terms—Reduced interference distribution, missing sam-
ples, non-stationary signal, time-frequency diforstribution, Co-
hen’s class, chirp-based kernel.

I. INTRODUCTION

Non-stationary signals are ubiquitous in practice, and man-

ifest themselves in speech, radar/sonar returns and biomed-

ical signals, to name but a few. To analyze these signals,

time-frequency distributions (TFDs) are widely used [1]–[7].

However, because non-stationary signals arise in many dif-

ferent applications, no single time-frequency (TF) estimation

approach can be ideal in all cases. Therefore, this paper

introduces a novel TFD, which can be classified into the

reduced interference distribution (RID). It uses a kernel to

attenuate the cross-terms between different components as well

as those between the same components appearing in Wigner-

Ville distribution (WVD). However, in contrast with traditional

RIDs, which belong to the Cohen’s class, the new kernel is

applied for a windowed signal, not the whole signal, and it

can partially combat missing samples. The kernel design is

based on three facts. Firstly, chirp’s auto-terms always reside

in only a half of the ambiguity domain, which does not

cover the Doppler axis. Thus, we can remove half of the

ambiguity domain if the input signals are chirps. Additionally,

according to [8] and [9], any non-stationary windowed signal

can be approximated as a sum of chirps. So, for any non-

stationary signal segment, we can cut half of the ambiguity

plane. Moreover, the analysis of artifact distribution caused

by missing samples shows that the artifact always appears

along the Doppler axis. Thus, by filtering out the region along

the Doppler axis, our chirp-based kernel gives improved time-

frequency representation (TFR) in the case of incomplete data.

So this paper is organized as follows. Section II presents the

unsuitability of the traditional RIDs in the presence of missing

data. Section III introduces the windowed chirp-based kernel.

Section IV gives simulation results. Finally, conclusions are

given in section V.

II. THE TRADITIONAL RIDS AND THEIR

UNSUITABILITY FOR INCOMPLETE DATA

For a complex-valued signal (s̃(t)) sampled with a period

T , i.e., s(n) = s(nT ), the RID D(n, k) is obtained by the two-

dimensional Fourier transform of the product of the ambiguity

function A(p, b) and the kernel function C(p, b) as follows:

D(n, k) =

N/2−1
X

p=−N/2

N−1
X

b=−N

C(p, b)A(p, b)ej(−bk−pn)2π/N , (1)

with

A(p, b) =

N−1
X

n=0

s(n+
b

2
)s⇤(n−

b

2
)e−j2πpn/N , (2)

where k is the discrete frequency variable k = 0, 1, ..., N − 1.

In the ambiguity domain, most of the desired auto-terms are

located at and around the origin, whereas the cross-terms

reside at distant positions. The traditional kernel function acts

as a low-pass filter in the ambiguity domain to preserve the



Fig. 1. The difference in the mask IAF with 5 random missing samples in
the time domain.

auto-terms while suppressing the cross-terms. To maintain

most of the desirable properties of the WVD, these kernels

are required to satisfy some properties. The marginal property

is one of them. It requires the kernel to be unity along lag

and Doppler axis (p = 0 and b = 0). Some popular Cohen’s

class kernels are the Choi-Williams kernel [10], the Margenau-

Hill kernel [11], the Rihaczek kernel [12] and the Born-Jordan

kernel [13], etc. The kernel functions in the ambiguity domain

of the afore-mentioned kernels are given in Table. I. According

TABLE I
SOME SIGNAL-DEPENDENT DISTRIBUTION AND THEIR

KERNELS

Distribution Kernel C(p, b)C(p, b)C(p, b)
Choi-Williams exp(−p2b2/σ)
Margenau-Hill cos(pb/2)
Rihaczek exp(jpb/2)

Born-Jordan sinc( 1
2
pb)

to [14], the missing data artifacts always appear along the

Doppler axis. For illustration, the difference in the mask IAF

due to five random missing data samples in the time domain

is plotted in Fig. 1 [15]. It is obvious from Fig. 1 that missing

sample artifacts always locate along the Doppler axis. And so

the traditional kernels, which satisfy the marginal property, do

not mitigate the missing data artifacts along the Doppler axis.

Moreover, since the missing samples noise-like effect spreads

all over the ambiguity plane, the conventional RIDs with

the low-pass filters allow the artifact near the origin to pass

through. Thus, traditional RIDs are unsuitable for incomplete

data.

III. CHIRP-BASED KERNEL

A. Properties of Chirps in The TF Domain and in The

Ambiguity Domain

Consider a certain chirp with a chirp-rate α and an initial

frequency β as follows:

s(n) = exp



j2π

✓

α
n2

2F 2
s

+ β
n

Fs

◆]

, (3)

where Fs is the sampling frequency, n is the discrete time

index, n = 0, 1, ..., bT/Tsc, T is the total observation time

and Ts = 1/Fs is the sampling period. Let N be the length

of the signal N = bT/Tsc. The corresponding instantaneous

autocorrelation function is expressed as:

Rss(n, b) = s(n+
b

2
)s⇤(n−

b

2
)

= exp



j2π

✓

α
nb

F 2
s

+ β
b

Fs

◆]

.
(4)

The WVD of s(n) is expressed as:

D(n, ω) =
X

b

Rss(n, b)e
−jωb

= δ



ω

2π
− (β + α

b

Fs
)

]

.

(5)

Thus, the instantaneous frequency of the chirp signal s(n) is:

F (n) = α
n

Fs
+ β. (6)

Assume that the signal is sampled at the Nyquist rate, i.e.

the sampling frequency is double the maximum frequency

of the signal, Fs = 2Fmax. Because Fmax is the maximum

frequency of the signal, so F (n)  Fmax. The maximum

frequency change in (N/Fs) is thus Fmax. As the chirp-rate is

the frequency change of a chirp in one second, the maximum

chirp-rate is as follows:

|αmax| = Fmax
Fs

N
. (7)

The chirp signal s(n) is expressed in the ambiguity domain

as follows:

A(ω0, b) =
X

n

Rss(n, b)e
−jnω0

= exp(j2πβ
b

Fs
)δ(

ω0

2π
− α

b

Fs
),

(8)

where ω0 is the Doppler angular frequency. Now (8) shows that

the AF of all chirps has a linear support that passes through

the origin of the ambiguity plane. The chirp auto-term lies at a

certain angle to the horizontal line which is determined by the

chirp-rate. Furthermore, since the chirp-rate is inside the range

of [−FmaxFs/N, FmaxFs/N ], the angle (φ) between the slope

of the chirp and the horizontal line in the ambiguity domain is

also restricted. The chirp signal s(n) in the ambiguity domain

is plotted in Fig. 2. Based on Fig. 2, the slope between the

chirp line and the horizontal line in the ambiguity domain is

as follows:

φ = arctan
α/δf
1/δb

= arctan
2αN

F 2
s

, (9)

where δf = Fs/N is the frequency resolution and δb = 2/Fs

is the lag resolution. From (7) and (9), on the possitive plane,

φ is bounded as:

−
π

4
 φ 

π

4
. (10)

Similarly, on the negative lag plane:

3π

4
 φ 

5π

4
. (11)



Fig. 2. A chirp signal in the ambiguity domain.

B. Kernel Design for Chirp Signals

As discussed in section III-A, the auto-terms of chirps

always locate inside |φ|  π/4 and 3π/4  φ  5π/4. Thus

we can filter out the rest, which corresponds to half of the

ambiguity domain, to mitigate the effect of the cross-terms.

And by removing half of the ambiguity domain, part of the

noise-like effect caused by missing data is also attenuated.

So based on this interpretation, we now design the chirp-

based kernel. It is basically the Gaussian mask modified

such that all components outside the region |φ|  π/4 and

3π/4  φ  5π/4 are zero. A two-dimensional radially

Gaussian kernel with a spread parameter σ is given as [16]:

C(p, b) = e−
p2+b2

2σ2 . (12)

The kernel is easily expressed in polar coordinates by using

r2 = p2 + b2 as the radius variable:

C(r, φ) = e
−r2

2σ2 . (13)

So the proposed kernel is expressed as follows:

C(r, φ) =

(

e−
r2

2σ2 , |φ|  π/4 or 3π/4  φ  5π/4

0, otherwise.
(14)

The proposed kernel is illustrated in Fig. 3.

C. Windowed Chirp-Based Kernel

According to [8], [9] and [17], the frequency law of any non-

stationary windowed signal can be approximated as a sum of

chirps. In another words, we can consider any windowed non-

stationary signal as built from chirps and so we can apply the

chirp-based kernel on the windowed non-stationary segments.

The TFDs of non-stationary signals using a chirp-based

kernel proceeds as follows. The chirp-based kernel is first

computed with the predefined window length Nw. At each

(a)

(b)

Fig. 3. The proposed kernel in the AF domain: (a) σ = ∞; (b) σ = 50.

time n, we compute the short-time ambiguity function (STAF)

centered at time n, AF (n; p, b). AF (n; p, b) is given by [16]:

AF (n; p, b)

=
X

u

s⇤(u− b/2)w⇤(u− n− b/2)

s(u+ b/2)w(u− n+ b/2)ej2πup/Nw

=
X

u

IAF (n;u, b)w⇤(u− n− b/2)

w(u− n+ b/2)ej2πup/Nw ,

(15)

where w(u) is a symmetrical window function which is zero

for |u| > Nw/2 and u is the running time. The current-time

slice of the TFR is computed as one slice (at time n only)

of the two-dimensional Fourier transform of the STAF-kernel

product, expressed as follows:

TFR(n, k) =
X

p

X

b

A(n; p, b)C(n; p, b)e−j2πnp/Nwe−j2πbk/Nw . (16)

IV. SIMULATION RESULTS

This section evaluates the performance of the proposed

RIDs, the windowed chirp-based kernel, when we have full

and limited data. The proposed method is compared with two

traditional RIDs, which are the Choi-Williams distribution and

the Gaussian distribution. The WVD is also simulated here to

see the TFRs without a kernel. Notice that all methods will be

applied on sliding windowed signals. The resulting images are



(a) (b)

(c) (d)

Fig. 4. (a) WVD; (b) Choi-Williams distribution; (c) Gaussian distribution;
(d) TFD obtained by the chirp-based kernel of the full signal in (17).

normalized and transferred to the energy version to display. It

is shown that the TFDs using the chirp-based kernel provide

improved TF estimations when compared to conventional

RIDs. In all plots, the frequency axis is normalized with

respect to the sampling frequency Fs. The signal is sampled at

the Nyquist rate, and then randomly shortened to 50% to create

the incomplete data to be processed. The sampling frequency is

Fs=256 Hz. The signals length is one second, or N = Fs and

n = 0, ..., N − 1. The signal is corrupted by white Gaussian

noise v(n) and the signal-to-noise ratio (SNR) set to 30 dB.

The example considers a multi-component signal as follows:

s(n) = exp

⇢

j(0.15Fs) cos(2π
n

Fs
) + j2π(0.25Fs)

n

Fs

}

+ exp

⇢

j2π



(0.1Fs)
n

Fs
+ (0.2Fs)

n2

2F 2
s

]}

+ v(n).

(17)

Fig. 4 and Fig. 5 show the TF signatures of the full and the

incomplete signals obtained by the proposed approach as well

as other methods for comparison.

Fig. 4(a) and Fig. 5(a) show the windowed WVD. This

method calculates the STAF, and the TFR is obtained by the

two-dimensional Fourier transform. It can be seen that with no

kernel, all cross-terms and noise-like artifacts in the ambiguity

domain show themselves in the TF domain, then seriously

obscuring the true TF signature. Fig. 4(b, c) and Fig. 5(b,

c) present the windowed Choi-Williams distribution and the

windowed Gaussian distribution, respectively. These methods

first calculate the STAF, and then build the Choi-Williams

kernel and the Gaussian kernel with a predefined window

length. The TFDs are obtained by the two-dimensional Fourier

transform of the kernel and the STAF product. It is evident that

the windowed Choi-Williams distribution and the windowed

Gaussian distribution are still influenced by the cross-terms

(a) (b)

(c) (d)

Fig. 5. (a) WVD; (b) Choi-Williams distribution; (c) Gaussian distribution;
(d) TFD obtained by the chirp-based kernel of the signal in (17) when 50%
of data is missing.

and the noise-like effects caused by the missing samples. The

chirp-based kernel gives the best results (see Fig. 4(d) and Fig.

5(d)). By keeping only half of the ambiguity domain where the

auto-terms reside, the chirp-based kernel not only efficiently

reduces the cross-terms but also mitigates the artifacts caused

by missing samples. In particular, the removed area contains

the Doppler axis, where the noise-like artifacts always appear.

Thus, the noise-like effect of the missing data in the TF domain

is largely reduced and the TF signatures are more clearly

revealed.

V. CONCLUSION

This paper has introduced a novel method of designing

signal-independent kernels in the ambiguity domain. They

operate on windowed signals. The frequency slice at the mid-

dle point of the window is obtained by the two-dimensional

Fourier transform of the STAF and the kernel product. The

proposed methods also give superior results when compared

with the traditional kernels both in the case of complete data

and in the case of incomplete data. This is because the kernels

remove half of the ambiguity plane where the signals auto-

terms do not reside. In particular, the removed half includes

the Doppler axis, where the noise-like artifacts always appear.
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