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Abstract 

The distribution of channel deposits in fluvial reservoirs is commonly modeled with 

object-based techniques, constrained on quantities describing the geometries of 

channel bodies. To ensure plausible simulations, it is common to define inputs to 

these models by referring to geologic analogs. Given their ability to reproduce 

complex geometries and to draw upon the analog experience, object-based models 

are considered inherently realistic. Yet, this perceived realism has not hitherto been 

tested by assessing the outputs of these techniques against sedimentary 

architectures in the stratigraphic record. 

This work presents a synthesis of data on the geometry of channel bodies, derived 

from a sedimentologic database, with the following aims: (i) to provide tools for 

constraining stochastic models of fluvial reservoirs in data-poor situations; (ii) to test 

the intrinsic realism of object-based modeling algorithms by comparing 

characteristics of the modeled architectures against analogs. 

An empirical characterization of the geometry of fluvial channel bodies is undertaken 

that describes distributions in, and relationships between, channel-body thickness, 

cross-stream width, and planform wavelength and amplitude. Object-based models 

are then built running simulations conditioned on six alternative analog-informed 

parameter sets, using four algorithms according to nine different approaches. 

Closeness of match between analogs and models is then determined on a statistical 

basis. 

Results indicate which modeling approaches return architectures that more closely 

resemble the organization of fluvial depositional systems known from nature, and in 

what respect. None of the tested algorithms fully reproduce characteristics seen in 
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natural systems, demonstrating the need for subsurface-modeling methods to better 

incorporate geologic knowledge. 

Keywords: fluvial architecture; channel; alluvial aquifer; fluvial reservoir; reservoir 

model; aquifer model. 

 

1. Introduction 

Because the accumulated deposits of alluvial depositional systems are 

heterogeneous at multiple scales, geologic analogs comprising well-exposed outcrop 

successions are extensively used to understand and predict heterogeneity in the 

sedimentary architecture of alluvial aquifers (e.g., Biteman et al., 2004; Klise et al., 

2009; Höyng et al., 2014; Pirot et al., 2015) and hydrocarbon reservoirs (e.g., Bridge 

et al., 2000; Dalrymple, 2001; Pranter et al., 2007; Fabuel-Perez et al., 2010). 

Channelized fluvial deposits representing channel fills, the aggradation of channel 

belts, or part or all of the infill of valleys, form the main components of most fluvial 

reservoirs and aquifers, because they typically contain the majority of the potentially 

producible volumes. Therefore, the distribution of channel and overbank deposits is 

tentatively reconstructed in workflows of subsurface characterization, a process 

aided by insight from outcrop studies of geologic analogs. 

In subsurface studies, simulations of the distribution and geometry of channel 

deposits, and assessment of the related uncertainty, are commonly attempted by 

applying stochastic modeling techniques, which allow multiple equiprobable 

realizations of sedimentary architecture to be built. Object-based modeling 

algorithms constitute a category of such modeling methods. They operate by placing 

geologic bodies, treated as discrete objects, in the volume of interest, until a certain 

proportion or number of such objects is reached, while simultaneously ensuring that 

input parameters describing the geometry and topology of the objects and any 

conditioning data (e.g., well data) are honored, at least to certain tolerance 

thresholds (cf. Clemetsen et al., 1990; Gundesø and Egeland, 1990; Hirst et al., 

1993; Holden et al., 1998; Viseur et al., 1998; Deutsch and Tran, 2002). Object-

based algorithms can also be used to generate so-called training images, which are 

three- or two-dimensional geocellular grids employed as input to stochastic modeling 

methods based on multiple-point statistics (MPS). MPS methods use stochastic 



Colombera et al. ʹ AAPG Bulletin 

3 
 

pixel-based algorithms that derive conditional probabilities of occurrence of a 

category (e.g., sedimentary facies) in a certain position based on patterns borrowed 

from a training image and evaluated over multiple points (Guardiano and Srivastava, 

1993; Strebelle, 2002). As applied to modeling the architecture of fluvial reservoirs or 

aquifers, training images are digital representations of sedimentary heterogeneity 

that, when intended to represent large-scale architecture, commonly incorporate 

sinuous channelized bodies in a background of overbank sediment (e.g., Strebelle, 

2002; Feyen and Caers, 2006; Pyrcz et al., 2008; Eskandaridalvand and Srinivasan, 

2010; Gottschalk et al., 2017). 

When utilizing object-based algorithms to model fluvial reservoirs, channelized 

objects are commonly chosen that represent discrete channel sandbodies. Object-

based modeling methods require families of channel bodies to be parameterized by 

attributes describing their planform and cross-sectional geometries, in the form of 

distribution types and associated descriptive statistics. Thus, with these methods, 

data on the geometry of alluvial successions considered as appropriate analogs can 

be readily applied to subsurface predictions. However, a common problem is how to 

source suitable analog data that describe both the vertical and lateral extent, and the 

planform geometry of fluvial channel bodies. Additionally, even when this type of 

characterization can be undertaken, establishing analogy to a subsurface succession 

is not straightforward, and a base-case scenario grounded on geologic insight might 

therefore be desired. 

The significance of selecting suitable analogs for defining the input to object-based 

models is highlighted by recognition of the impact of channel-body characteristics on 

the static and dynamic connectivity of fluvial reservoirs and aquifers (cf. McKenna 

and Smith, 2004; Larue and Friedmann, 2005; Larue and Hovadik, 2006; Hovadik 

and Larue, 2007; Liu and Atan, 2008; de Jager et al., 2009; Burns et al., 2010; Jha et 

al., 2016; Peter et al., 2017). Realistic reproduction of sandbody connectivity in 

fluvial aquifers and reservoirs is crucial to several applications, for example when 

predictions need to be made relating to the efficiency of hydrocarbon production, the 

behavior of contaminant plumes, spatial variability in groundwater drawdown, the 

viability of programs of carbon capture and storage, or optimal geothermal 

exploitation of hot sedimentary aquifers (e.g., Keogh et al., 2007; Ronayne et al., 

2008; Giambastiani et al., 2012; Norden and Frykman, 2013; Issautier et al., 2014; 
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Jeong and Srinivasan, 2016; Nguyen et al., 2017; Willems et al., 2017; Marini et al., 

2018). In this regard it is significant that object-based models are considered 

inherently realistic, thanks to their ability to reproduce complex predefined 

geometries and to leverage on analog data. In reality, this is merely a qualitative 

perception of realism, as a systematic quantified assessment of the outputs of these 

techniques against geometric attributes known and recorded from the geologic 

record has not hitherto been undertaken. 

Thus, there are two outstanding problems associated with the construction of object-

based models of channelized fluvial successions in the subsurface, which are 

addressed in this work: the need for constraints that are geologically sensible and 

applicable in data-poor contexts, and the unresolved uncertainty on the degree to 

which the products of object-based modeling algorithms are comparable to the 

stratigraphic organization of fluvial depositional systems known from nature. To 

these ends, the aim of this work is to present a synthesis of data on channel bodies 

derived from a large database that describes the sedimentary architecture of many 

fluvial successions, and to test whether commonly employed object-based 

geomodeling algorithms are appropriate as tools for subsurface characterization. 

The following specific research objectives are identified: 

(i) to provide empirical relationships that can be used for constraining object-

based models of fluvial reservoirs and aquifers, particularly for cases 

where specific geologic analogs are not available; 

(ii) to test the intrinsic realism of four popular object-based modeling 

algorithms, by applying an analog dataset and comparing characteristics 

of the modeled architectures against fundamental patterns identified in the 

stratigraphic record. 

After introducing the analog database and the tested modeling algorithms (‘Materials 

and methods’), we present a synthesis of statistics on channel-body geometries from 

the studied analogs (‘Characterization of geologic analogs’). We then demonstrate 

how this information can be applied to constrain object-based models for fluvial 

reservoirs, while presenting the design of the test chosen for assessment of the 

algorithms (‘Object-based models: design of the test’). Subsequently, we compare 

the modeling outputs against the inputs, and more generally against the geologic 
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analogs (‘Comparison between analogs and models’). Finally, we discuss the 

significance of the results for geologists and geomodelers who build object-based 

models of the subsurface, and for geostatisticians who develop object-based 

modeling algorithms (‘Discussion’). 

 

2. Materials and methods 

2.1 Analog data 

Data on the architecture of fluvial channel bodies are obtained from the Fluvial 

Architecture Knowledge Transfer System (FAKTS), a database of sedimentologic 

datasets derived from the scientific literature and from original field studies 

(Colombera et al., 2012, 2013). FAKTS includes quantitative and qualitative data on 

sedimentary units belonging to three scales of observation: large-scale depositional 

elements; architectural elements (sensu Miall, 1985) and lithofacies. Depositional 

elements are large-scale sedimentary bodies classified as channel bodies (also 

termed ‘channel complexes’; Colombera et al., 2012) or floodplain elements on the 

basis of the interpreted origin of their deposits. The subdivision of stratigraphies in 

these units is partly based on geometric rules (cf. Colombera et al., 2012, 2013, 

2015, 2016a). 

As defined for FAKTS, a channel body represents a discrete sedimentary unit with 

channelized geometry and made of sediments deposited by one or more fluvial 

channels. Thus, a channel body does not possess a specific genetic or paleo-

geomorphic significance: a channel body could therefore equally correspond to the 

preserved product of a channel belt, to an isolated channel fill, to a portion of valley 

fill, or to a compound amalgamated multi-story body. This generic categorization of 

channel bodies makes sedimentary units of this type widely applicable as objects 

employed in object-based modeling efforts that focus on large-scale fluvial 

architecture (e.g., Pranter et al., 2014). 

The geometry of channel bodies stored in FAKTS is characterized in terms of 

morphometric parameters, four of which are used in this work (Figure 1): (i) the 

maximum thickness of the body; (ii) the maximum width of the body as measured 

orthogonally to its direction of elongation (i.e., along depositional strike); (iii) the 
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mean wavelength of any form of sinuosity that the body might display in plan-view, 

as averaged over the observed bends; (iv) the mean amplitude of sinuosity displayed 

in plan-view, as averaged over the observed bends. In this work, only true widths are 

reported: channel-body width data that relate to apparent measurements (i.e., as 

obtained along directions at an oblique angle with the axis of elongation of the 

channel body) and incomplete observations (e.g., because of outcrop termination) 

are excluded. Where channel bodies exhibit sinuous planforms that appear as 

having superimposed sinuosities, their planform is characterized in terms of mean 

amplitude and wavelength of the sinuosity that has the highest amplitude-to-

wavelength ratio. Channel bodies are preserved deposits: their planform sinuosity 

does not necessarily – or even usually – equal the sinuosity of their formative river, 

though these quantities are related in some cases (cf. Stølum, 1998; Fryirs et al., 

2016). 

 

Figure 1: Morphometric parameters of FAKTS channel bodies. Note that channel-body amplitude is 
defined as half of the maximum displacement shown by the channel-body centreline along a complete 
wavelength, i.e., as in physics, and as opposed to how amplitude is sometimes defined in river 
descriptions (e.g., Leopold and Wolman, 1960; Williams, 1986) and in Schlumberger Petrel. The 
attributes shown characterize the geometry of preserved channelized sedimentary bodies, not the 
geometry of their formative river channels. 

 

Data on channel-body geometries have been derived from studies that present 

datasets from outcrops (e.g., Kjemperud et al., 2008; Labourdette, 2011), three-
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dimensional (3D) seismic surveys (e.g., Maynard and Murray, 2003; Alqahtani et al., 

2015), and closely spaced cores in shallow deposits of Quaternary and modern 

systems (e.g., Jordan and Pryor, 1992; Berendsen and Stouthamer, 2001). Although 

the planform geometry of exhumed fluvial channel bodies can in some cases be 

seen in outcrop (e.g., McNally and Wilson, 1996; Williams et al., 2007), most of the 

data reported here on mean channel-body amplitude and wavelength are derived 

from subsurface datasets. The stratigraphies considered as analogs in this work are 

generally much larger than most channel bodies. However, any descriptive statistics 

of morphometric parameters suffer from volume support: larger samples provide 

more meaningful statistics, as they are more likely to capture the full extent of 

channel bodies and likely contain more units. For instance, smaller outcrops are less 

likely to display the entire width of the larger channel bodies, whose width would 

therefore be excluded from the analysis. 

In FAKTS, analog case studies are arranged into subsets, which represent portions 

of datasets that are classified on attributes describing the depositional systems, their 

geologic controls, and related metadata. Each subset is effectively an analog 

sample, usually a stratigraphic volume. The data presented in this work relate to 

6,476 channel bodies from 178 analog subsets. Data were taken from 59 literature 

sources, and complemented with data from two field studies whose results are now 

also published (Colombera et al., 2016b, 2017). The full list of literature sources is 

provided in the Supplementary material. 

Data on the morphometric parameters that describe the architecture of channel 

bodies are used for (i) characterizing their statistical distribution in analogs and 

relationships that might exist between each of them, and (ii) compiling empirical 

equations that can be employed to predict descriptive statistics in any of these 

parameters from knowledge of others. 

 

2.2 Modeling algorithms 

The resulting characterization of channel-body architectures is also applied to test 

object-based modeling algorithms in terms of their ability to replicate the organization 

seen in the analogs. 
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Four popular algorithms for object-based modeling have been used in this test, to 

cover the range of ways in which models of this type can be constrained: FLUVSIM 

(publicly available; Deutsch and Tran, 2002), TiGenerator (publicly available; 

Maharaja, 2008), Tetris (publicly available; Boucher et al., 2010), and the algorithm 

implemented in Petrel 2014 (commercial software by Schlumberger). These codes 

are also used to build training images applicable to MPS modeling of fluvial 

successions (e.g., Pyrcz et al., 2008; Bezrukov and Davletova, 2010; Gottschalk et 

al., 2017). 

Unconditional simulations (i.e., simulations that are not conditioned by hard or soft 

data, such as boreholes or seismic attributes) were run to generate 3D geocellular 

models of sedimentary architecture, consisting of channel bodies distributed in a 

background of non-channel deposits. The four algorithms can be constrained in 

different ways, with respect to the choice of distribution types used to parameterize 

the geometry of the modeled channel bodies (Table 1) and to how the cross-

sectional geometry of channel bodies is described (i.e., in terms of width and 

thickness, width and thickness-to-width aspect ratio, or thickness and width-to-

thickness aspect ratio). On this basis, nine different sets of simulations were run by 

constraining the algorithms with different input types based on the empirical 

characterization of the studied analogs. Results from these nine sets of simulations 

are used in the assessment of the modeling algorithms. 

 

Table 1: Distribution types that can be selected for conditioning object-based models, for the chosen 

algorithms. For each algorithm, the distribution types employed in this work are indicated and 

highlighted in bold. 

 

2.3 Analysis of model outputs 

The output realizations consist of three-dimensional geocellular grids. To quantify the 

morphometry of the modeled channel bodies, these grids have been analyzed using 

 
Constant Uniform Triangular Gaussian 

Truncated 
Gaussian 

Lognormal Exponential 

FLUVSIM Yes Yes Yes (used)     

TiGenerator Yes Yes Yes (used)     

Tetris Yes Yes Yes (used) Yes  Yes (used) Yes 

Petrel 2014 Yes Yes Yes (used) Yes Yes (used)   
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software for image analysis (ImageJ; Schneider et al., 2012), through quantification 

of the modeled architecture in cross sections and in plan-view, as done for the 

geologic analogs. In this analysis modeling outputs are compared against the same 

analog dataset on which the input to the models is based. Similarity of the model 

outputs to the analog data used to define their input is assessed in terms of mean 

and standard deviation in the morphometric parameters (e.g., thickness, width, 

planform sinuosity) of the channel bodies. The realizations are additionally compared 

against the chosen analogs in terms of relationships between pairs of channel-body 

morphometric parameters, quantified using Pearson’s correlation coefficients. 

 

3. Characterization of geologic analogs 

The information provided in this section represents a synthesis on frequency 

distributions, associated descriptive statistics, and relationships, relating to 

morphometric parameters of analog channel bodies. This information can be applied 

to constrain object-based models (empirical relationships), and is also used herein to 

test the modeling algorithms (descriptive statistics and correlations). Both 

applications are discussed in subsequent sections (‘Object-based models: design of 

the test’ and ‘Comparison between analogs and models’, respectively). 

3.1 A note on channel-body geometries and proportions 

For analog systems included in the FAKTS database (29 suitable analog subsets), 

the average size (thickness, width) of channel bodies in stratigraphic intervals 

commonly increases with increasing proportions of channel deposits (i.e., intervals 

with larger proportions of channel deposits tend to contain larger channel bodies; 

Colombera et al., 2016a). This observation might result in part from a genetic 

relationship between channel-body proportion and geometries (e.g., non-linearity 

between preservation of channel deposits and preservation of overbank deposits 

owing to larger and/or more mobile channel belts leading to increased proportion of 

channel bodies; cf. Bridge and Leeder, 1979). However, because of the way channel 

bodies are defined in FAKTS, this fact also partially reflects increased likelihood of 

amalgamation of channel deposits to form larger channelized units. 



Colombera et al. ʹ AAPG Bulletin 

10 
 

The results presented in this section are particularly useful for constraining object-

based models for fluvial reservoirs that are not characterized by very high 

proportions of channel deposits. Different approaches would be recommended for 

modeling high net-to-gross fluvial reservoirs (e.g., modeling non-net objects, such as 

mud-rich overbank deposits, distributed in channel-deposit background; pixel-based 

methods). 

3.2 Scaling relationships in morphometric parameters 

Overall positive relationships between channel-body thickness and width, of variable 

magnitude, have long been recognized in individual successions (e.g., Robinson and 

McCabe, 1997; Labourdette and Jones, 2007; Rittersbacher et al., 2014) and in 

composite datasets compiled from multiple depositional systems (cf. Fielding and 

Crane, 1987; Reynolds, 1999; Gibling, 2006; Rojas, 2013). It is therefore not 

surprising that a direct correlation between channel-body width and thickness, albeit 

weak, is seen across the range of scales of the entire analog data pool (Pearson’s R 

= 0.31, p-value = 0.00; Figure 2A). A progressive increase in the width-to-thickness 

ratio of channel bodies as a function of their scale is also apparent across the entire 

dataset (Figure 2A); on average, larger (i.e., thicker, wider) channel bodies tend to 

have larger width-to-thickness ratios than smaller bodies, as previously recognized 

(cf. Gibling, 2006). However, whereas a positive correlation exists between the width 

of the channel bodies and their width-to-thickness aspect ratio (R = 0.79, p-value = 

0.00), no significant correlation is seen between channel-body thickness and width-

to-thickness aspect ratio (R = 0.03, p-value = 0.38). This is not unexpected, given 

how these terms appear in the ratios themselves as numerators and denominators. 

However, it is important to note that this means that channel-body aspect ratios 

cannot be reliably predicted from thickness alone. 

Channel-body width, mean amplitude and mean wavelength also scale to each 

other. Positive correlation exists between amplitude and wavelength (R = 0.91, p-

value = 0.00; Figure 2B), amplitude and width (R = 0.80, p-value = 0.00; Figure 2C), 

and wavelength and width (R = 0.77, p-value = 0.00; Figure 2D). It is important to 

stress that the parameters treated here only relate to depositional bodies and not to 

modern fluvial forms. Scaling involving the wavelength and amplitude of sandbodies 

is not commonly quantified, due to the limited number of suitable analog studies. 
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Relationships between river-channel width and measures of wavelength and 

amplitude that describe the sinuosity of river channels are sometimes considered for 

purposes of subsurface modeling, as scaling between these quantities is recognized 

in rivers (Leopold and Wolman, 1960; Williams, 1986). However, these quantities are 

not necessarily all relevant in application to large-scale channelized sandbodies, as 

they commonly do not reflect the geometry of the preserved sedimentary products. 

 

 

Figure 2: Scatter-plots of morphometric parameters of FAKTS channel bodies from the studied 
analogs, relating: channel-body width vs thickness (A), mean amplitude vs mean wavelength (B), 
mean amplitude vs width (C), mean wavelength vs width (D). N = number of subsets; n = number of 
channel bodies. Axes in logarithmic scale. 

 

3.3 Distributions in morphometric parameters and empirical relationships 

Scaling relationships between channel-body thickness, width, mean amplitude and 

mean wavelength are also expressed in mean values of these parameters across 

different analog subsets (Figure 3). Empirical relationships have been compiled that 

can be used in combination to predict averages in channel-body width, mean 

planform amplitude and mean planform wavelength from average channel-body 

thickness (Table 2; Figure 3). To further characterize the distribution of these 

parameters and permit their prediction from partial knowledge of the subsurface, 
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their minimum and maximum values and their standard deviation have been 

determined in the studied analogs. Empirical equations have been derived that relate 

means and standard deviations in channel-body thickness, width, mean amplitude 

and mean wavelength; these are reported together with associated coefficients of 

determination in Table 2 and plotted in Figure 4. Additional relationships between 

means in these parameters and their minimum and maximum values have also been 

derived, as reported in Table 2; this was done solely because triangular distributions 

commonly employed to constrain object-based models require definition of minimum 

and maximum values (see section ‘Object-based models: experimental design of the 

test’, below). 

 

 

Figure 3: Scatter-plots of averages in morphometric parameters of FAKTS channel bodies from 
different analog subsets, relating: average channel-body width vs average thickness (A), average 
mean amplitude vs average mean wavelength (B), average mean amplitude vs average width (C), 
average mean wavelength vs average width (D). Measures of wavelength and amplitude characterize 
the plan-view of channel sandbodies as averages of multiple bends of the sinuous planform of each 
(hence the term ‘mean’); these values are then averaged across the number of sandbodies seen in a 
studied analog (‘average’). Each data point represents a single FAKTS subset. Best-fit curves 
correspond to empirical relationships reported in Table 2. The empirical relationships allow selecting 
input values to object-based modeling algorithms given knowledge of a parameter (e.g., mean 
thickness of channel bodies). N = number of subsets; n = number of channel bodies. Axes in 
logarithmic scale. 
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Table 2: Empirical relationships between descriptive statistics of the morphometric parameters of 

channel bodies, as based on analysis of the analogs reported in this study. These equations allow 

derivation of input values to object-based modeling algorithms based on knowledge of a parameter 

(e.g., mean thickness of channel bodies). Note that FAKTS channel-body amplitude is equal to half 

the ‘channel amplitude’ of Schlumberger Petrel. CB = channel body; avg = average (relative to the 

amplitude and wavelength of a single channel body); stdev = standard deviation; T = channel-body 

thickness; W = channel-body width, A = mean channel-body amplitude; L = mean channel-body 

wavelength; N = number of subsets; n = number of channel bodies; overscores indicate means; ı = 

standard deviation. See Figures 3 to 5 for graphical summaries of the data from which these 

relationships have been derived. 

Parameter Empirical relationship 
Coefficient of 
determination 

Data Nr 

CB thickness stdev (m) (1) ்ߪ ൌ ͲǤ͸͸ ή ܶ଴Ǥଽଷ 0.73 n = 4,784; N = 174 

Mean CB width (m) (2) ܹ ൌ ʹ͵ǤͶͳ ή ܶଵǤଵଷ 0.51 n = 956; N = 40 

CB width stdev (m) (3) ߪௐ ൌ ͲǤͷͻ ή ܹଵǤ଴ହ
 0.90 n = 1,750; N = 34 

Mean avg CB amplitude (m) 
ܣ (4) ൌ ʹǤ͵ͻ ή ܹ଴Ǥ଼ଷ

 0.77 
n = 467; N = 37 

ܣ (5) ൌ ͲǤͲ͹ͳ ή  ଵǤ଴ଷ 0.78ܮ

Avg CB amplitude  stdev (m) (6) ߪ஺ ൌ ͲǤͺͲ ή  ଵǤ଴ସ 0.94 n = 449; N = 10ܣ

Mean avg CB wavelength (m) 
ܮ (7) ൌ ͸͵Ǥ͵ͷ ή ܹ଴Ǥ଺଼

 0.71 
n = 467; N = 37 

ܮ (8) ൌ ͷͲǤͺ͵ ή  ଴Ǥ଻ହ 0.78ܣ

Avg CB wavelength stdev (m) (9) ߪ௅ ൌ ͲǤͺͶ ή ܮ െ ͻͺǤͷͺ 0.78 n = 403; N = 10 

Min CB thickness (m) (10) minሺܶሻ ൌ ͲǤ͵ͷ ή ܶ െ ͲǤͲ͹ 0.69 
n = 4,925; N = 109 

Max CB thickness (m) (11) maxሺܶሻ ൌ ͵ǤͲͶ ή ܶ଴Ǥଽ଴ 0.75 

Min CB width (m) (12) minሺܹሻ ൌ ͲǤͷͷ ή ܹ଴Ǥଽ଺
 0.55 

n = 1,730; N = 33 
Max CB width (m) (13) maxሺܹሻ ൌ ͸Ǥ͵ͷ ή ܹ଴Ǥ଼ଽ

 0.88 

Min avg CB amplitude (m) (14) minሺܣሻ ൌ 0 N/A 
n = 449; N = 10 

Max avg CB amplitude (m) (15) maxሺܣሻ ൌ ͷǤͺͶ ή  ଴Ǥଽହ 0.80ܣ

Min avg CB wavelength (m) (16) minሺܮሻ ൌ ͲǤͲ͵ ή  ଵǤଶଷ 0.69ܮ
n = 403; N = 10 

Max avg CB wavelength (m) (17) maxሺܮሻ ൌ ʹǤͻͺ ή ܮ ൅ ͷʹͳͶ 0.56 

Mean W/T ratio (18) ݎௐȀ் ൌ ͲǤͳͳ ή ܹ ൅ ͹Ǥͺʹ 0.94 

n = 872; N = 22 

W/T ratio stdev (19) ߪ௥ௐȀ் ൌ ͲǤʹͻ ή ܹ଴Ǥ଼଴
 0.60 

Min W/T ratio (20) min൫ݎௐȀ்൯ ൌ ʹǤͲͻ ή ܹ଴Ǥଶ଴
 0.13 

Max W/T ratio (21) max൫ݎௐȀ்൯ ൌ ͲǤͶͺ ή ܹ ൅ ͲǤͻʹ 0.91 

Mean T/W ratio (22) ்ݎ Ȁௐ ൌ ͲǤ͵ͳ ή ܹି଴Ǥଷଵ
 0.33 

T/W ratio stdev (23) ߪ௥்Ȁௐ ൌ ͲǤͳͲ ή ܹି଴Ǥଵ଼
 0.08 

Min T/W ratio (24) min൫்ݎ Ȁௐ൯ ൌ ͲǤ͸͵ ή ܹି଴Ǥ଻଺
 0.59 

Max T/W ratio (25) max൫்ݎ Ȁௐ൯ ൌ ͲǤͶͺ ή ܹି଴Ǥଶ଴
 0.13 
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Distributions in channel-body thickness, width, mean planform amplitude and mean 

planform wavelength almost all exhibit – apart from rare exceptions – positive 

skewness (overall, 96% of the times; Figure 4). In part, this fact is likely related to a 

sampling bias, particularly for distributions of channel-body widths. For outcrop 

analogs, positive skewness might arise because the width of bodies that are wider 

than the outcrops are not included. However, positively skewed widths are also 

observed in large outcrop datasets with few or no incomplete measurements. In 3D 

seismic datasets, positive skewness in morphometric parameters might be due to, or 

be accentuated by, limits in seismic resolution. Nevertheless, skewed distributions in 

channel-body geometric parameters appear as a significant characteristic of the 

studied analogs, which commonly display values of skewness larger than one: it can 

be argued that skewed distributions are a better choice to describe and model the 

geometry of channel bodies. 

When constraining subsurface models of alluvial architectures, it might be necessary 

or preferable to work with either width-to-thickness or thickness-to-width aspect 

ratios. This is necessary when imposed by the specific modeling tool (i.e., it is not 

possible to constrain distributions in both width and thickness), and preferable when 

requiring reproduction of scaling factors (i.e., to ensure that bodies that are thicker 

tend to be wider on average). The width-to-thickness ratio of channel bodies is 

typically seen to increase with scale (Figure 2A; cf. Fielding and Crane, 1987; 

Gibling, 2006), and it might therefore be useful to predict descriptive statics of aspect 

ratios from channel-deposit thickness statistics. However, poor correlation exists 

between mean channel-body thickness and both width-to-thickness (R = -0.07, p-

value = 0.74) and thickness-to-width aspect ratios (R = -0.23, p-value = 0.29). 

Because better correlation exists between channel-body width and width-to-

thickness ratios (R = 0.97, p-value = 0.00), empirical relationships for predicting how 

average aspect ratios change with the scale of the channel bodies being modeled 

are proposed based on knowledge or estimates of mean channel-body width (Table 

2; Figure 5A, C). Additional relationships between mean channel-body width and 

minimum, maximum and standard-deviation values for aspect ratios have also been 

derived, as reported in Table 2. Distributions in channel-body width-to-thickness and 

thickness-to-width aspect ratios usually display positive skewness (Figure 5B, D). 
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Figure 4: Scatter-plots of mean vs standard deviation (left-hand side), and histograms of skewness in 
distribution (right-hand side), for morphometric parameters of channel bodies recorded in the FAKTS 
database from different analog subsets. The morphometric parameters are: channel-body thickness 
(A, B), width (C, D), mean wavelength (E, F), mean amplitude (G, H). Each data point in the scatter-
plots represents a single FAKTS subset. Best-fit curves correspond to empirical relationships reported 
in Table 2. The empirical relationships allow selecting input values to object-based modeling 
algorithms given knowledge of a parameter (e.g., mean thickness of channel bodies). N = number of 
subsets; n = number of channel bodies. Scatter-plot axes in logarithmic scale in parts A and B. 
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The quantitative tools presented here (Figures 3-5, Table 2) can be applied by 

geomodelers to constrain object-based models for fluvial reservoirs in absence of 

other constraints or as alternative scenario. 

 

 

Figure 5: Scatter-plots of mean width vs mean aspect ratio (left-hand side), and histograms of 
skewness in distribution (right-hand side), for width-to-thickness aspect ratios (A, B) and thickness-to-
width aspect ratios (C, D) of channel bodies recorded in the FAKTS database from different analog 
subsets. Each data point in the scatter-plots represents a single FAKTS subset. Best-fit curves 
correspond to empirical relationships reported in Table 2. The empirical relationships allow selecting 
input values to object-based modeling algorithms given knowledge of a parameter (e.g., mean width 
of channel bodies). N = number of subsets; n = number of channel bodies. Scatter-plot axes in 
logarithmic scale. 

 

3.4 Variability in correlation between morphometric parameters 

Correlation between channel-body thickness, width, mean planform amplitude and 

mean planform wavelength has been assessed across different analog subsets. 

Pearson’s correlation coefficients indicate moderate or strong positive correlation 

between these parameters in most stratigraphic successions; their distribution is 

plotted in Figure 6. By considering several geologic analogs it is possible to quantify 
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the variability in the magnitude of correlation between the morphometric parameters, 

expressed by the spread of values in Figure 6. Therefore these quantities provide a 

benchmark for assessing how well object-based models are able to produce realistic 

architectures (in section ‘Comparison between analogs and models’). 

 

 

Figure 6: Plots of individual values of Pearson’s correlation coefficients for pairs of channel-body 
morphometric parameters, in FAKTS analog subsets. Each data point in each plot represents a single 
FAKTS subset. The distributions of correlation coefficients are used in this article to benchmark 
modeling outputs; they can also be used to inform creation of rules in modeling tools. T = channel-
body thickness; W = channel-body width, A = mean channel-body amplitude; L = mean channel-body 
wavelength; N = number of subsets (corresponding to the number of spots); n = number of channel 
bodies (total number contained in the N subsets); only subsets with at least 10 channel bodies are 
considered. 
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Figure 7: Perspective view of example realizations generated using the different object-based 
algorithms (as labelled), through input parameters associated with the same modeling scenario 
(scenario1; Tables 3 and 4). Although the input relates to the same scenario, specific input 
parameters might differ (e.g., by constraining channel-body widths and thicknesses in the form of 
distributions in width and thickness, thickness and width-to-thickness aspect ratio, or width and 
thickness-to-width aspect ratio; see text). Channel bodies appear in yellow; the rest of the volume is 
transparent. This figure highlights how input based on corresponding analog data can translate in 
strikingly different output. 
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4. Object-based models: design of the test 

To test the four modeling algorithms, nine modeling strategies were employed that 

consider their application by constraining the models using different distribution types 

(Table 1) and alternative ways to describe channel-body cross-sectional geometries 

(i.e., by distributions in channel-body width and thickness, or aspect ratios; Tables 3-

5). Thickness-to-width and width-to-thickness aspect ratios can be used as input to 

Petrel and FLUVSIM, respectively. So, the nine modeling approaches chosen to test 

the algorithms can be summarized as follows: 

- FLUVSIM (triangular distributions; thickness and width-to-thickness aspect 

ratio; overall aspect-ratio statistics based on Table 4) 

- FLUVSIM (triangular distributions; thickness and width-to-thickness aspect 

ratio; aspect-ratio statistics predicted empirically based on Table 5 – only 2D) 

- Petrel (triangular distributions; width and thickness-to-width aspect ratio; 

overall aspect-ratio statistics based on Table 4) 

- Petrel (triangular distributions; width and thickness-to-width aspect ratio; 

aspect-ratio statistics predicted empirically based on Table 5 – only 2D) 

- Petrel (triangular distributions; thickness and width) 

- Petrel (truncated Gaussian distributions; thickness and width – only 2D) 

- Tetris (triangular distributions; thickness and width) 

- Tetris (lognormal distributions; thickness and width) 

- TiGenerator (triangular distributions; thickness and width) 

Triangular, lognormal and truncated Gaussian distributions were adopted because 

they can replicate the positive skewness in channel-body morphometry seen in the 

analogs (Figure 4).  
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Table 3: Sets of channel-body parameter values for the six modeling scenarios, which reflect 

increasing scale in the size of the modeled channel bodies. Percentiles of channel-body mean 

thickness are based on subsets with at least 15 channel bodies. These values of thickness are taken 

as mean thickness for channel body populations, to which empirical relationships (Table 2) are 

applied to predict distributions of other parameters, in order to define the different scenarios. Modes in 

channel-body parameters for the six scenarios, used to define triangular distributions, are calculated 

based on mean and standard deviation, and assuming a lognormal distribution (mode(x)=e^(location-

scale^2 )) for the parameters in the studied analogs. Mean-thickness statistics based on: n = 5,018 

channel bodies; N = 112 subsets. Each percentile of all data is taken as a mean thickness for each 

scenario. CB = channel body; stdev = standard deviation; min = minimum; max = maximum. 

Scenario 1 2 3 4 5 6 

Thickness statistics 
Statistic 5th centile 25th centile Median Mean 75th centile 95th centile 
Value (m) 1.6 m [5.2 ft] 3.6 m [11.8 

ft] 
5.3 m [17.4 

ft] 
6 m [19.7 ft] 7.1 m [23.3 

ft] 
13.2 m [43.3 

ft] 

Predicted CB thickness stdev (m) 1 m [3.3 ft] 2.2 m [7.2 ft] 3.1 m [10.2 
ft] 

3.5 m [11.5 
ft] 

4.1 m [13.5 
ft] 

7.3 m [24 ft] 

Predicted mean CB width (m) 40 m [131.2 
ft] 

100 m [328.1 
ft] 

154 m [505.2 
ft] 

177 m [580.7 
ft] 

214 m [702.1 
ft] 

432 m 
[1417.3 ft] 

Predicted CB width stdev (m) 28 m [91.9 ft] 74 m [242.8 
ft] 

117 m [383.9 
ft] 

136 m [446.2 
ft] 

165 m [541.3 
ft] 

345 m 
[1131.9 ft] 

Predicted mean CB amplitude (m) 51 m [167.3 
ft] 

109 m [357.6 
ft] 

156 m [511.8 
ft] 

176 m [577.4 
ft] 

206 m [675.9 
ft] 

368 m 
[1207.3 ft] 

Predicted CB amplitude  stdev (m) 48 m [157.5 
ft] 

105 m [344.5 
ft] 

153 m [502 
ft] 

173 m [567.6 
ft] 

204 m [669.3 
ft] 

373 m 
[1223.8 ft] 

Predicted mean CB wavelength (m) 776 m 
[2545.9 ft] 

1447 m 
[4747.4 ft] 

1947 m 
[6387.8 ft] 

2142 m 
[7027.6 ft] 

2438 m 
[7998.7 ft] 

3926 m 
[12880.6 ft] 

Predicted CB wavelength stdev (m) 715 m 
[2345.8 ft] 

1340 m 
[4396.3 ft] 

1790 m 
[5872.7 ft] 

1962 m 
[6437 ft] 

2221 m 
[7286.7 ft] 

3490 m 
[11450.1 ft] 

Predicted CB thickness min (m) 0.5 m [1.6 ft] 1.2 m [3.9 ft] 1.8 m [5.9 ft] 2 m [6.6 ft] 2.4 m [7.9 ft] 4.6 m [15.1 
ft] 

Predicted CB thickness max (m) 4.6 m [15.1 
ft] 

9.6 m [31.5 
ft] 

13.6 m [44.6 
ft] 

15.2 m [49.9 
ft] 

17.7 m [58.1 
ft] 

31 m [101.7 
ft] 

Predicted CB width min (m) 19 m [62.3 ft] 46 m [150.9 
ft] 

69 m [226.4 
ft] 

79 m [259.2 
ft] 

95 m [311.7 
ft] 

186 m [610.2 
ft] 

Predicted CB width max (m) 169 m [554.5 
ft] 

381 m [1250 
ft] 

562 m 
[1843.8 ft] 

637 m 
[2089.9 ft] 

754 m 
[2473.8 ft] 

1408 m 
[4619.4 ft] 

CB amplitude min (m) 0 m [0 ft] 0 m [0 ft] 0 m [0 ft] 0 m [0 ft] 0 m [0 ft] 0 m [0 ft] 

Predicted CB amplitude max (m) 244 m [800.5 
ft] 

503 m 
[1650.3 ft] 

710 m 
[2329.4 ft] 

793 m 
[2601.7 ft] 

921 m 
[3021.7 ft] 

1600 m 
[5249.3 ft] 

Predicted CB wavelength min (m) 108 m [354.3 
ft] 

231 m [757.9 
ft] 

334 m 
[1095.8 ft] 

375 m 
[1230.3 ft] 

440 m 
[1443.6 ft] 

790 m 
[2591.9 ft] 

Predicted CB wavelength max (m) 7526 m 
[24691.6 ft] 

9525 m 
[31250 ft] 

11017 m 
[36145 ft] 

11598 m 
[38051.2 ft] 

12479 m 
[40941.6 ft] 

16915 m 
[55495.4 ft] 

Predicted CB thickness mode (m) 1 m [3.3 ft] 2.3 m [7.5 ft] 3.4 m [11.2 
ft] 

3.9 m [12.8 
ft] 

4.6 m [15.1 
ft] 

8.9 m [29.2 
ft] 

Predicted CB width mode (m) 22 m [72.2 ft] 52 m [170.6 
ft] 

78 m [255.9 
ft] 

89 m [292 ft] 106 m [347.8 
ft] 

206 m [675.9 
ft] 

Predicted CB amplitude mode (m) 20 m [65.6 ft] 41 m [134.5 
ft] 

57 m [187 ft] 64 m [210 ft] 74 m [242.8 
ft] 

128 m [419.9 
ft] 

Predicted CB wavelength mode (m) 309 m 
[1013.8 ft] 

571 m 
[1873.4 ft] 

777 m 
[2549.2 ft] 

859 m 
[2818.2 ft] 

985 m 
[3231.6 ft] 

1640 m 
[5380.6 ft] 
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Table 4: Values of minimum, maximum, mean, and standard deviation in thickness-to-width (T/W) and 

width-to-thickness (W/T) aspect ratios, used as input to Petrel and FLUVSIM models respectively, 

based on averages across the entire analog datasets. These aspect ratios have been applied 

constantly across the range of scales modeled in the six scenarios. Statistics based on: n = 924 

channel bodies; N = 30 subsets. Sc. Nr. = scenario number. Modes in aspect ratios have been 

computed for values of mean and standard deviation assuming the distributions to be lognormal. 

Scenario 
Min T/W 

ratio 

Max 
T/W 
ratio 

Mean 
T/W 
ratio 

T/W 
ratio 
stdev 

Mode 
T/W 
ratio 

Min 
W/T 
ratio 

Max 
W/T 
ratio 

Mean 
W/T 
ratio 

W/T 
ratio 
stdev 

Mode 
W/T 
ratio 

1 to 6 0.02 0.07 0.18 0.05 0.04 10.5 52.9 169.8 45.2 23 
 

Table 5: Values of minimum, maximum, mean, and standard deviation in thickness-to-width (T/W) and 

width-to-thickness (W/T) aspect ratios, used as input to simulations run with Petrel and FLUVSIM 

respectively, based on predictions using empirical relationships (equations 18-25 in Table 2) and 

mean channel-body widths for the six scenarios (Table 3). Modes in aspect ratios have been 

computed for values of mean and standard deviation assuming the distributions to be lognormal. 

Scenario 
Min T/W 

ratio 

Max 
T/W 
ratio 

Mean 
T/W 
ratio 

T/W 
ratio 
stdev 

Mode 
T/W 
ratio 

Min W/T 
ratio 

Max W/T 
ratio 

Mean 
W/T 
ratio 

W/T 
ratio 
stdev 

Mode 
W/T 
ratio 

1 0.04 0.23 0.10 0.05 0.07 4.37 20.12 12.2 5.6 9.2 
2 0.02 0.19 0.07 0.04 0.05 5.25 48.92 18.8 11.6 11.7 
3 0.01 0.18 0.07 0.04 0.04 5.72 74.84 24.8 16.3 14.4 
4 0.01 0.17 0.06 0.04 0.04 5.88 85.88 27.3 18.2 15.7 
5 0.01 0.16 0.06 0.04 0.03 6.11 103.64 31.4 21.2 17.8 
6 0.01 0.14 0.05 0.03 0.03 7.03 208.28 55.3 37.2 31.6 

 

 

The employed modeling approaches were chosen because they reflect different 

combinations of choices that modelers need to make when constraining object-

based models. Each of the nine modeling approaches were applied to six different 

sets of parameters (‘scenarios’ hereafter). Each parameter set is built using the 

empirical relations presented above (Table 2, Figures 3 and 4), applied to different 

values of mean channel-body thickness, themselves chosen to reflect the average, 

the median and significant percentiles (5, 25, 75, 95) of the entire data pool of 

channel bodies (FAKTS subsets containing at least 15 channel bodies). These six 

scenarios of increasing channel-body size were chosen to cover the broad range of 

scales of channelized alluvial architectures seen in the rock record. The type of input 

parameters (e.g., min., mode and max. vs mean and standard deviation) varies 
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depending on requirements of each algorithm and chosen modeling strategy. Since 

distributions in channel-body geometries tend to be positively skewed, modes were 

computed from values of mean and standard deviation assuming all distributions to 

be lognormal (the mode of a lognormal distribution is equal to e୪୭ୡୟ୲୧୭୬ିୱୡୟ୪ୣమ, where 

location and scale parameters are the mean and standard deviation of the natural 

logarithm of the variable at hand; location and scale can be derived from values of 

mean and standard deviation of the variable itself). All parameters for distributions in 

channel-body geometries (thickness, width, mean amplitude and mean wavelength) 

used to constrain the models for the six scenarios are reported in Table 3. Input 

parameters for width-to-thickness and thickness-to-width ratios were first chosen 

based on descriptive statistics from the whole channel-body data pool, as reported in 

Table 4. In this case, aspect ratios were applied constantly over the entire range of 

scales (i.e., the six scenarios), as no significant relationship was seen between mean 

channel-body thickness and mean width-to-thickness ratio, nor between mean 

thickness and mean thickness-to-width ratio, in the studied analogs. However, this 

will affect comparisons with simulations modeled using width distributions, given that 

the applied relationships return a 31% increase in the ratio between predicted mean 

width and mean thickness across the six scenarios (Table 3). Thus, two additional 

sets of simulations were constrained assuming aspect-ratio descriptive statistics to 

vary over the range of scales of the six scenarios, as seen in the analogs (Figure 

2A), again by applying empirical relations (Table 2, Figure 5), as reported in Table 5. 

Ten simulations were run for each scenario and modeling strategy, returning gridded 

realizations that appear in the form of the representative examples depicted in Figure 

7. On average, each realization contains 9.9 fully measurable channelized units. The 

simulation grids scale to the size of the units modeled therein, ranging in volume 

from 7.5ͼ107 m3 (scenario 1) to 7.8ͼ109 m3 (scenario 6). To increase the sample of 

channel bodies measurable in cross section, each simulation was run on larger 2D 

strike-oriented sections, which increase in area from 2ͼ104 m2 to 1.1ͼ106 m2. The 

adoption of large grids minimizes problems of volume support in the statistics of the 

measured channel-body morphometry. 
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5. Comparison between analogs and models 

Outputs from the nine sets of object-based models are here compared against the 

characteristics recognized in the analogs from FAKTS. Comparisons are made for (i) 

descriptive statistics of distributions in channel-body geometries and (ii) correlation 

coefficients relating to pairs of the same geometric parameters. 

5.1 Distributions in morphometric parameters 

Values of mean and standard deviation of morphometric parameters of the modeled 

channel bodies across each set of ten realizations (i.e., for the six scenarios) are 

compared with corresponding values derived from the analog-based empirical 

relationships (Table 2) used to define the model input (Table 3). Although it might 

seem intuitive that the output should match the corresponding values derived from 

the empirical relationships and on which the input to the models themselves is 

based, some discrepancy might exist for the following reasons: (i) the form in which 

the input is defined (e.g., as minimum, mode and maximum versus mean and 

standard deviation); (ii) the output error within a range that is considered an 

acceptable match by the algorithms; (iii) limited sample (i.e., realization) size; and 

(iv) measurement error in image analysis. 

With increasing scale (i.e., from scenario 1 to 6), the discrepancy between values of 

mean and standard deviation in the thickness of the modeled channel bodies and 

corresponding analog-based target values increases if the discrepancy is considered 

in terms of differences in absolute values, but displays modest change if expressed 

as ratio between the values (Figure 8A, B). The discrepancy between target values 

and model outputs is significantly larger for models conditioned on thickness-to-width 

aspect ratios using Petrel, in comparison to models constrained on channel-body 

thickness distributions reaching a discrepancy by factors up to 4.3 and 5.2 for mean 

and standard deviation (Figure 8A, B). Overall, a closer match between model 

outputs and analog values is seen for models constrained using thickness-to-width 

aspect-ratio statistics that are assumed to vary with scale (Figure 9A, B). 
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Figure 8: Cross-plots of descriptive statistics (mean, standard deviation) of channel-body thickness 
(A, B) and width (C, D) in different sets of object-based models vs those predicted by the empirical 
relationships and used to define the model inputs, for the six modeling scenarios (i.e., for increasing 
scale, from left to right in each plot). For models constrained using channel-body aspect-ratio 
statistics, the results shown here only relate to realizations for which input aspect-ratio statistics were 
kept constant in all scenarios (Table 4). Data on realizations constrained using channel-body aspect-
ratio statistics that are assumed to vary with scale are separately reported in Figure 9. Each value of 
mean or standard deviation relating to the model outputs incorporate statistics from all ten simulations 
run for each scenario. CB = channel body; W/T = width-to-thickness aspect ratio. In each case, a 
perfect match between analog-based targets and model output would follow the 1:1 line. 

 

Across the six scenarios of channel-body scale, the modeling outputs include bodies 

that are on average wider than what is predicted by the empirical relationships used 

to define the input; this is true for models built with any of the modeling strategies 

except those constructed using Tetris and conditioned on lognormally distributed 

widths (Figure 8C). This observation contrasts with what is expected if issues of 

sample size arose, in relation to the increased likelihood for the margins of the 

largest channel bodies to occur outside the modeled volume. The discrepancy 

between the mean and standard deviation in the width of modeled channel bodies 

and the corresponding values from the analog-based relationships increases with 

increasing channel-body scale (i.e., from scenario 1 to 6; Figure 8C, D) if considered 

in terms of differences of absolute values. However, this discrepancy tends to 
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decrease if treated as a ratio between the same values. The discrepancy between 

analog-based values and model outputs is significantly larger for models conditioned 

on width-to-thickness aspect ratios, i.e., using FLUVSIM, in comparison to models 

constrained on channel-body width distributions, by factors up to 3.9 and 5.9 for 

mean and standard deviation values, respectively, for the scenario 1 (Figure 8C, D). 

For scenarios 1 to 4, a closer match between model outputs and analog-based 

target values is seen for models constrained using width-to-thickness aspect-ratio 

statistics that are assumed to vary with scale (Figure 9A, B). Models run using Tetris 

by employing lognormal distributions of channel-body morphometric parameters, and 

so conditioned on values of mean and variance, return the best match between 

model output and analog-based targets for measures of channel-body width (Figure 

8C, D). 

 

 

Figure 9: Cross-plots of mean and standard deviation of channel-body thickness (A, B) and width (C, 
D) in sets of object-based models conditioned on aspect ratios vs values predicted by the empirical 
relationships and used to define the model inputs, for the six modeling scenarios (i.e., for increasing 
scale, from left to right in each plot). Simulations constrained assuming changes in descriptive 
statistics of the aspect ratios with scale (Table 5) are compared against simulations for which inputs 
describing aspect ratios were kept constant in all scenarios (Table 4). Each value of mean or standard 
deviation relating to the model outputs incorporate statistics from all ten simulations run for each 
scenario. CB = channel body; W/T = width-to-thickness aspect ratio. In each case, a perfect match 
between analog-based targets and model output would follow the 1:1 line. 
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FLUVSIM and Petrel reproduce channelized units with wavelength and amplitude 

that vary along the length of each body, which makes their output comparable to 

geometries observed in the studied fluvial systems. By contrast, Tetris and 

TiGenerator only create simple sinusoids, each having effectively constant 

wavelength and amplitude. 

Except for models generated with Tetris and using lognormal distributions, the mean 

wavelength of modeled channel bodies is consistently larger than what is predicted 

by the relationships used to define the input, on average 1.9 times (Figure 10A). 

Models run using distributions defined on mean and standard deviation (i.e., created 

with Petrel using truncated normal distributions, and Tetris using lognormal 

distributions) produce channel bodies with less variable wavelength than what is 

expected based on the empirical relationships, whereas other algorithms tend to 

return more variable wavelength (Figure 10B). 

The ‘mean amplitude’ of modeled channel bodies is, in most cases (26 out 36 sets of 

realizations), on average larger than target values based on the empirical 

relationships (on average 1.24 times, but up to 1.64 times; Figure 10C), but is 

usually less variable (Figure 10D). 

When all the parameters are considered simultaneously, the best overall match 

between the modeled and analog-based values of mean and standard deviation in 

channel-body morphometric parameters is returned by models created by Tetris 

(when conditioned on lognormal distributions; average overall discrepancy across all 

realizations and the six scenarios: 20%), followed by Petrel (when conditioned on 

truncated normal distributions; overall discrepancy: 36%), TiGenerator (overall 

discrepancy: 38%), and FLUVSIM (overall discrepancy of 45% if aspect-ratio 

statistics vary across the six scenarios, i.e., with scale; 69% otherwise). All the 

algorithms reproduce distributions of channel-body widths or amplitudes (or both) 

with mean values larger than those predicted on the basis of the relationships used 

to define the input. This is significant given the importance of these parameters in 

controlling the horizontal connectivity of channel deposits. 
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Figure 10: Cross-plots of descriptive statistics (mean, standard deviation) of channel-body mean 
wavelength (A, B) and amplitude (C, D) in the different sets of object-based models vs those 
predicted by the empirical relationships and used to define the model inputs, for the six modeling 
scenarios (i.e., for increasing scale, from left to right in each plot). Each value of mean or standard 
deviation relating to the model outputs incorporate statistics from all ten simulations run for each 
scenario. CB = channel body. In each case, a perfect match between analog-based targets and 
model output would follow the 1:1 line. 

 

5.2 Correlations between morphometric parameters 

Relationships between the channel-body morphometric parameters are assessed for 

each realization, and quantified by Pearson’s correlation coefficients. The 

distributions of Pearson’s R values across the 60 realizations run with each modeling 

strategy and across the six modeling scenarios are compared with those computed 

for the FAKTS analogs (Figure 11). 

Near-to-perfect positive linear relationships (i.e., Pearson’s Rs close to 1.0) between 

all the parameters (width vs thickness, width vs mean wavelength, width vs mean 

amplitude, mean amplitude vs mean wavelength) are seen in outputs from 

TiGenerator; these R values far exceed those observed in the studied analogs 

(Figure 11). On the contrary, based on mean and median R values, on average no 

relationship is seen between any of the parameters in outputs from Tetris (Figure 
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11), in which the relationships between the modeled parameters are negative in 46% 

of the cases. 

Realizations generated using FLUVSIM and Petrel, and constrained on aspect ratios 

demonstrate consistently positive relationships between channel-body width and 

thickness, in agreement with observations from the analogs (Figure 11A). For 

correlations between channel-body widths and thicknesses, the distribution of R 

values in FLUVSIM models has a mean (0.56) that is not statistically different from 

the mean (0.51) in the distribution in R seen in the analogs from FAKTS (2-sample t-

test: T = -0.69, p-value = 0.497, d.f. = 24); instead the mean R value in Petrel models 

constructed using thickness-to-width ratios (0.70) is larger than the mean R seen in 

the analogs to a statistically significantly level (2-sample t-test: T = -2.68, p-value = 

0.015, d.f. = 19). 

When relationships between channel-body width and mean wavelength, and 

between width and mean amplitude are investigated, with the exception of 

TiGenerator, all the algorithms return realizations with both positive and negative, 

usually weak, relationships, and with distributions in R values whose mean is close 

to zero. 

When relationships between mean wavelength and mean amplitude are considered, 

models built using Petrel tend to display positive relationships, as observed in the 

analogs, with distributions in R values that are on average significantly different from 

zero (1-sample t-test for models conditioned on triangular distributions: T = 5.40, p-

value = 0.000, d.f. = 59; 1-sample t-test for models conditioned on truncated normal 

distributions: T = 12.15, p-value = 0.000, d.f. = 59) but also significantly different from 

the corresponding distribution for the analogs (2-sample t-test for models conditioned 

on triangular distributions: T = 5.56, p-value = 0.000, d.f. = 12; 2-sample t-test for 

models conditioned on truncated normal distributions: T = 3.80, p-value = 0.003, d.f. 

= 10). 

Apart from those created with TiGenerator, all models show some variability in R 

values over the six scenarios (i.e., scales), when the ten realizations for each are 

considered jointly (Figure 11B, D, F, H). 

None of the modeling algorithms fully reproduces the correlations between channel-

body morphometric parameters seen in nature. 
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Figure 11: Left-hand side: box-plots that relate the distribution of Pearson’s correlation coefficients for 
pairs of channel-body morphometric parameters, in all realizations for each modeling approach. 
Boxes represent interquartile ranges, horizontal bars within them represent median values, ‘+’ signs 
represent mean values, and spots represent outliers. Right-hand side: plots of individual values of 
Pearson’s correlation coefficients for pairs of channel-body morphometric parameters, in all 
realizations for each modeling approach and scenario. Relationships are assessed between channel-
body width and thickness (A, B), width and mean wavelength (C, D), width and mean amplitude (E, 
F), and mean wavelength and mean amplitude (G, H). Model outputs (blue) are compared with 
analogs in FAKTS (red). The plots on the right-hand side illustrate variability in correlation across all 
60 realizations created with each modeling strategy, compared against the analog observations; the 
plots on the right-hand side illustrate variability across the six modeling scenarios for each modeling 
strategy, compared against the analog observations. Triang. = models constrained on triangular 
distributions; Gauss. = models constrained on truncated Gaussian distributions; lognorm. = models 
constrained on lognormal distributions; W = models constrained on channel-body widths; W/T = 
models constrained on channel-body width-to-thickness aspect ratios. 
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6. Discussion 

For object-based models of fluvial reservoirs or aquifers, geologic realism relies on 

suitable constraints of the cross sectional and planform geometries of large-scale 

channel bodies. Geologic analogs are commonly considered for this purpose, and 

this approach is sensible whenever analogs can be chosen with some confidence 

(e.g., Bridge et al., 2000; Norden and Frykman, 2013). However, selection of 

appropriate analogs is not trivial (Alexander, 1993; Howell et al., 2014; Ringrose and 

Bentley, 2015), and the capacity to source appropriate data is limited by available 

time and resources. Also, analog datasets based on single examples may not be 

representative of a most-likely scenario, given the variability in sedimentary 

architecture seen among depositional systems of the same type (cf. Colombera et 

al., 2013). Additionally, for fluvial channelized sandbodies in particular, the scarcity of 

suitable data on the planform geometry of the bodies has, in some cases, led 

modelers to misuse data on the geomorphology of modern river systems (e.g., 

sinuosity of active river channels), with no consideration of the extent to which 

modern forms differ from the geometry of bodies preserved in the stratigraphic 

record (Kerrou et al., 2008; Larriestra and Gomez, 2010; Zovi et al., 2017). In view of 

these problems, more comprehensive compilations of information from geologic 

analogs that can be used in subsurface modeling have long been advocated (Dagan, 

2002; de Marsily et al., 2005; Rubin et al., 2006; Ronayne et al., 2008). 

As a way to partly address these problems, the empirical characterization 

undertaken here provides relationships that can be used in subsurface modeling 

contexts when geologic-analog data are lacking, or when alternative analogs are 

sought to assess uncertainty in predictions. The equations in Table 2 represent a 

synthesis of information on the morphometric scaling of fluvial channel bodies as 

seen in 61 analog studies. They therefore form a set of constraints that can be 

applied in data-poor situations of subsurface characterization, possibly as a base-

case scenario. In principle, the empirical relationships can be used based on 

knowledge of channel-deposit thicknesses as observed in borehole data. 

Nonetheless, it must be borne in mind that the ability to compare subsurface and 

analog datasets is affected by lateral variability in the thickness of channel bodies 

and by channel-body amalgamation. Also, the underlying dataset (cf. Figure 2) 
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highlights the fact that establishing alternative scenarios based on ranges in 

morphometric parameters is advisable for handling uncertainty. 

The data and empirical relations presented here are based on a synthesis of 

sedimentologic studies on fluvial successions of any nature, without any effort to 

focus the scope of investigation on depositional systems developed under particular 

conditions (e.g., depositional environment, climate type, discharge regime, geologic 

age). A synthesis of this type is helpful in situations where subsurface data are 

scarce or of limited value for sedimentologic interpretations, and where therefore any 

interpretation of the type of fluvial system that deposited a succession is difficult to 

attempt; in such case, it is convenient to consider a base-case scenario. For 

situations in which, instead, geologic data allow interpretation of the depositional 

context of a fluvial succession, similar relationships for classified depositional 

systems are desirable, as these would have higher predictive power (cf. Colombera 

et al., 2014). However, a comprehensive compilation would require substantial 

additional data collection, which is beyond the scope of this study. 

All the above reflects the expectation that using suitable analog data will result in 

subsurface models that are more realistic, ignoring that this might not always be true 

because of limitations in the modeling tools. The comparative analysis conducted 

here provides insight into the degree to which different object-based modeling 

methods are able to reproduce characteristics that are expected in the channelized 

architecture of fluvial aquifers or reservoirs. An assessment was made of the 

following: (i) how faithfully descriptive statistics of channel-body morphometry in the 

model outputs match with the descriptive statistics that either constitute the input to 

the models or form the basis on which the input is defined; (ii) whether realistic 

scaling relationships between the different morphometric parameters are reproduced 

in the simulations. All the tested methods have shown problems in several of the 

aspects considered. For example, to achieve positive scaling between channel-body 

thickness and width, constraining models using aspect ratios is recommended when 

working with FLUVSIM and Petrel (Figure 11). However, doing so by employing 

analog-informed distributions of aspect ratios resulted in less realistic distributions of 

thickness and width (Figures 8 and 9), respectively, compared to models for which 

the input was defined by channel-body thickness and width distributions. 
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The existence of such a technical bias means that the application of realistic input 

parameters to stochastic modeling methods does not necessarily result in entirely 

realistic outputs. Therefore, it is not possible to provide universal guidelines on the 

use of object-based modeling algorithms and training-image generators. It is merely 

possible to warn against the types of misrepresentations that might arise by adopting 

a particular tool in a certain way, particularly if the proposed empirical relationships 

were applied. These issues are all expressed in quantitative form in the results of 

this work, and in particular in Figures 8 to 11, for the broad spectrum of scales at 

which fluvial channel deposits accumulate. These results can be used by 

geomodelers to predict and communicate the specific characteristics of object-based 

models of the subsurface that are not likely to be geologically realistic. Knowing the 

limitations of a particular method is useful because, depending on the type of 

subsurface problem under consideration, it might be preferable to use algorithms 

that appear to reproduce more accurate distributions and relationships for 

parameters that are known to exert a stronger control on sandbody connectivity 

along a direction of interest (i.e., width and amplitude in horizontal directions, and 

thickness in the vertical direction; cf. Hovadik and Larue, 2007; de Jager et al., 2009; 

Jha et al., 2016). In this perspective it is also significant that studies that describe the 

sensitivity of static and dynamic connectivity of channel deposits to channel-body 

characteristics fundamentally rely on object-based models (McKenna and Smith, 

2004; de Jager et al., 2009; Larue and Friedmann, 2005; Larue and Hovadik, 2006; 

Hovadik and Larue, 2007; Burns et al., 2010; Jha et al., 2016; Peter et al., 2017). 

Understanding of how these parameters tend to co-vary, which has been overlooked 

in previous studies, can be used to obtain quantitative descriptions of common 

trends in the connectivity of channelized units, and to reduce the associated 

uncertainty. 

Most object-based modeling algorithms have been developed for simulating any type 

of channelized architecture, be it that of aquifers hosted in subglacial channel 

deposits or of oil reservoirs composed of submarine-channel fills. Improvement in 

existing modeling tools might be realized by adapting them to specific geologic 

contexts. For channelized fluvial successions, more accurate reproduction of 

distributions and incorporation of observed scaling relationships in channel-body 

morphometry would likely result in a reduction in output variability and in more 
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realistic subsurface reconstructions. Although not discussed here, there are also 

other aspects of channelized fluvial architectures that are important and that object-

based modeling tools should attempt to reproduce, such as autogenic channel-body 

clustering (cf. Villamizar et al., 2015), and channel-body splitting of tributary, 

distributary or avulsive nature (cf. Pyrcz et al., 2009). 

Several other object-based modeling algorithms have been developed as 

proprietary, commercial or research-oriented software: results and considerations 

presented here cannot be generalized to these, as they have not been assessed. 

 

7. Conclusions 

Based on data from 61 analog studies, an empirical characterization of the geometry 

of fluvial channel bodies has been undertaken that describes distributions in, and 

relationships between, sandbody thickness, cross-stream width, and mean planform 

wavelength and amplitude. The data have been synthesized in empirical equations 

that can be used for constraining models of subsurface fluvial architecture, 

particularly when object-based models need to be built in data-poor situations. 

The analog data have also been used to test the intrinsic realism of four object-

based modeling algorithms, applied following nine different modeling approaches, by 

comparing characteristics of the modeled channelized architectures against 

fundamental patterns identified across the analogs. 

Results from this assessment indicate aspects of each modeling approach that are 

not a good reflection of the geologic organization seen in the studied analogs. 

Although this type of information is not necessarily sufficient for establishing a best 

practice in building fluvial reservoir or aquifer models with object-based techniques, it 

is useful for raising awareness of pitfalls and limitations in the application of each 

modeling method. In particular, the choice of modeling strategy can be guided by the 

results presented here, in consideration of the characteristics of sedimentary 

architecture that are believed to be important for the case study at hand and that 

hence need to be honored. 
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