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Application of Constrained Optimization Methods:  
Report 2 of the ISPOR Optimization Methods Emerging Good Practices Task Force 

 

Abstract 

Constrained optimization methods are already widely used in healthcare to solve problems that 

represent traditional applications of operations research methods such as choosing the optimal 

location for new facilities or making the most efficient use of operating room capacity.  In this 

paper we illustrate the potential utility of these methods for finding optimal solutions to problems 

in healthcare delivery and policy.  To do so, we selected three award-winning papers in 

healthcare delivery or policy development reflecting a range of optimization algorithms.  

 

Two of the three papers are reviewed using the ISPOR Constrained Optimization Good Practice 

Checklist adapted from the framework presented in the initial Optimization Task Force Report. 

The first case study illustrates application of linear programming to determine the optimal mix of 

screening and vaccination strategies for the prevention of cervical cancer.  The second case 

illustrates application of the Markov Decision Process to find the optimal strategy for treating 

Type-2 diabetes patients for hypercholesterolemia using statins. 

 

The third paper is used as an education tool. The goal is to describe the characteristics of a 

radiation therapy optimization problem and then invite the reader to formulate the mathematical 

model for solving it.  This example is particularly interesting because it lends itself to a range of 

possible models, including linear, non-linear, and mixed-integer programming formulations.  

From the case studies presented, we hope the reader will develop an appreciation for the wide 

range of problem types that can be addressed with constrained optimization methods, as well as 

the variety of methods available. 
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Highlights 

- Constrained optimization methods are informative to decision makers in providing 

insights about optimal target solutions and the magnitude of the loss of benefit or 

increased costs associated with the ultimate clinical decision or policy choice.  Failing to 

identify a mathematically superior or optimal solution represents a missed opportunity to 

improve economic efficiency in the delivery of care and clinical outcomes for patients. 

  

- The ISPOR Optimization Methods Emerging Good Practices Task Force’s first report 

provided an introduction to constrained optimization methods to solve important clinical 

and health policy problems.  This report also outlined the relationship of constrained 

optimization methods relative to traditional health economic modeling, graphically 

illustrated a simple formulation and identified some of the major variants of constrained 

optimization models, such as linear programming, dynamic programming, integer 

programming, and stochastic programming. 

  

- This second report illustrates the application of constrained optimization methods in 

healthcare decision making using three case studies.  The studies focus on determining 

optimal screening and vaccination strategies for cervical cancer, optimal statin start times 

for diabetes and an educational case to invite the reader to formulate radiation therapy 

optimization problems.  These illustrate a wide range of problem types that can be 

addressed with constrained optimization methods. 
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Background to the Task Force - Box 

The proposal to initiate an ISPOR Good Practices for Outcomes Research task force was 
evaluated by the ISPOR Health Science Policy Council then recommended to the ISPOR Board 
of Directors for approval. 

 

The task force was comprised of international subject matter experts representing a diverse range 
of stakeholder perspectives (academia, research organizations, government, regulatory agencies 
and commercial entities).  The task force met approximately every five weeks by teleconference 
and in person at ISPOR conferences. All task force members reviewed many drafts of the report 
and provided frequent feedback in both oral and written comments. 

 

To ensure that ISPOR Good Practices Task Force Reports are consensus reports, findings and 
recommendations are presented and discussed at ISPOR conferences.  In addition, the first and 
final draft reports are circulated to the task force’s review group.  All reviewer comments are 
considered.   Comments are addressed as appropriate in subsequent versions of the report.  Most 
are substantive and constructive improving the report. 
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1. Introduction 

 

There are often many different options for improving healthcare policy or improving current 

practice in healthcare organizations.  The optimal solution among those options, i.e., the 

solution that best achieves a defined goal, such as maximizing patient quality-of-life or 

minimizing patient waiting time for services, may not be readily apparent.  Constrained 

optimization methods use mathematical techniques to help efficiently and systematically 

identify the best (optimal) of all possible solutions to a problem while considering the relevant 

constraints, such as budget limits or staffing capacity.  

 

Of course, mathematically optimal solutions to all problems are not always feasible; other non-

quantifiable criteria such as political barriers that cannot be accounted for by defined constraints 

have to be considered.  However, optimization techniques can still be highly informative to 

decision makers in providing insights about optimal target solutions and the magnitude of the 

loss of benefit or increased costs associated with the ultimate policy choice.  In healthcare, 

failing to identify a mathematically superior or optimal solution represents a missed opportunity 

to improve economic efficiency in the delivery of care and clinical outcomes for patients.   

 

The ISPOR Optimization Methods Emerging Good Practices Task Force provided an 

introduction to constrained optimization methods to solve important health policy and clinical 

problems in its first report [1].  The previous report outlined the relationship of constrained 

optimization methods relative to traditional health economic modeling and simulation models 

and identified some of the major variants of constrained optimization models, such as linear 

programming, dynamic programming, integer programming, and stochastic programming.  
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In addition, the report graphically illustrated the formulation and solution of a straightforward 

integer program to maximize health benefit subject to a budget constraint.  Further, it explained 

the steps in an optimization process:  1) structuring the problem, 2) formulating the mathematical 

model, 3) developing the model, 4) validating the model, 5) selecting the optimization method, 

6) performing the optimization and conducting sensitivity analysis, 7) reporting results, and 8) 

using the results for decision-making.   

 

The principal objective of this second Optimization Task Force Report is to illustrate the 

application of constrained optimization methods in healthcare decision making.  To identify 

relevant examples, we began by searching for award-winning health care papers from the 

Institute for Operations Research and Management Sciences (INFORMS) and the Association 

for European Operations Research Societies (EURO). From these papers, we then selected 

examples with models relevant for health economic policy or clinical decision making. Finally, 

we endeavored to select papers that collectively illustrated a variety of different constrained 

optimization methods. The three papers that received the most votes from the task force 

members were selected.   

In this report, two of these three papers are compared with the steps in formulating, solving, 

validating, reporting, and using optimization models originally published as Table 3 in the first 

Optimization Emerging Good Practices Task Force Report. A slightly modified version of this 

previous table is presented as the ISPOR Constrained Optimization Good Practice Checklist 

(Table 1) in the current report.  The first case study illustrates the application of linear 

programming to determine the optimal mix of screening and vaccination strategies for the 

prevention of cervical cancer [2].   
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The second case illustrates application of the Markov Decision Process to find the optimal 

strategy for treating Type-2 diabetes patients for hypercholesterolemia using statins [3]. Finally, 

the third paper is used as an education tool. The goal is to describe the characteristics of a 

radiation therapy optimization problem and then invite the reader to formulate the mathematical 

model for solving it.  This example is interesting because it lends itself to a range of possible 

models, including linear, non-linear, and mixed-integer programming formulations.  (Detailed 

formulations for each model are provided in Appendix 1.)   

Although we are clearly limited in the number of permutations that we can present with these 

three cases we hope the reader will develop a sense of the wide range of problem types that can 

be addressed with constrained optimization methods, as well as the variety of methods available.   

 

2. Overview of applications of constrained optimization in health care 

Constrained optimization methods are already widely used in healthcare areas such as choosing 

the optimal location for new facilities, making the most efficient use of operating room capacity, 

workforce planning, etc.  They can also be instrumental in guiding clinical decision making in 

actual clinical practice where health professionals and patients face constraints, such as 

proximity to treatment centers, health insurance benefit designs, and the limited availability of 

health resources.  

 

Optimization is also beneficial for planning healthcare expenditure.  An obvious example is the 

resource allocation problem faced by a planner with a number of investment opportunities, but a 

fixed budget inadequate to fund all available opportunities [4].  Perhaps the simplest case of this 

is where the investment opportunities are incremental to current care, and fall into distinct 

categories (e.g., children’s services, cardiovascular disease, cancer, respiratory disease and 
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mental health) with separate budgets [5].  In this situation, decisions about investments in 

different clinical areas can be made independently of one another.  

 

However, more commonly the healthcare budget needs to be allocated across different 

conditions. The problem of choosing the best set of investment opportunities to fund under a 

fixed budget constraint in order to meet an objective, such as maximizing total QALYs can be 

addressed as an optimization problem [6]. Given a number of eligible interventions and a fixed 

budget, optimization can be used to solve resource allocation problems.  

 

In fact, the task central to health economic analysis, of evaluating whether the incremental cost-

effectiveness ratio (ICER) of an intervention is below a critical threshold, can be shown to be 

related to budget constrained optimization. According to the theoretical definition, under a strict 

set of assumptions, the threshold represents the inverse of the shadow price of the budget 

constraint – the shadow price is defined as how much the objective (QALYs) would increase for 

a one-unit increase in the constraint (budget) [7].    

 

Other resource allocation problems may be even more complicated.  There may be significant 

and complex interactions between different investments; and there may be additional constraints 

to be considered such as limits on the number of staff or bed capacity [8].   For example, 

consider the case of allocating resources for the prevention and cure of an infectious disease such 

as HIV, Hepatitis C, tuberculosis, malaria, or polio [9, 10].  If the planner invests in vaccination, 

there may be fewer cases to treat in the future (and so investment in highly capital-intensive 

treatment facilities may be wasted).  On the other hand, vaccination is itself costly, and if the 

disease has a low prevalence, it may be more cost-effective to target the treatment [11].  For 
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more details on these complexities, see the Economic Analysis of Vaccination Programs: An 

ISPOR Good Practices Task Force Report [12].   

 

Optimizing investment in such infectious disease programs is more complicated because they 

may involve making multiple runs of a state-of-the-art simulation [13, 14] of the infectious 

disease dynamics, to plot out how the particular patterns of resource allocation perform against 

the objective (of minimizing the total number of cases or maximizing the probability of 

achieving disease eradication). For a review of mathematical approaches to infectious disease 

prediction and control, see [15]. 

 

In other settings, the critical resource(s) might not be money; for example, when allocating 

donated organs such as kidneys not every kidney will be compatible with every donor.  In 

addition, the medical condition of the eligible recipients will be different, some will be more 

urgent than others.  In this case, the underlying problem can be categorized as a matching 

problem [16].  In matching problems, not everyone will get the best match.  However, the 

objective with kidney allocation is generally to ensure that as few as possible people and kidneys 

are left unmatched (patients without kidneys; kidneys without patients) [17] present a discussion 

about how to incorporate fairness in such problems.  Some measures of deservingness, e.g., time 

on waiting list, may be incorporated in the objective function.  Nevertheless, some fairness 

considerations may also be included as constraints, e.g., at least x % of transplants should go to 

patients of a certain blood type. The 2012 Nobel Prize in Economics was awarded to Shapley 

and Roth, in part for their work in stable matchings applied to organ donation.   
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Other clinical problems where optimization can be applied relate to problems of disease 

management, e.g., timing of the initiation of treatment, or the sequence of treatments.  The 

promise of health gain from treatment must be balanced against reasons for holding off 

treatment, which may include cost, undesirable side-effects, and emergent drug resistance.  It 

may be the case that there is an optimal stage in the disease prognosis or point in the patient’s 

life cycle where the balance shifts from favoring non-intervention to favoring treatment.  The 

MDP approach provides an ideal framework [18] to study such problems for identifying critical 

initiation points.  This framework has been used to analyze timing decisions in diseases as 

diverse as HIV, diabetes, and breast cancer [3, 19, 20]. Optimization methods can be applied to 

identify the optimal treatment sequences when a large number of treatments are available--for 

example, in rheumatoid arthritis [21]. 

 

Finally, constrained optimization methods have also been applied to disease diagnosis [22, 23], 

the development of optimal treatment algorithms [24, 25], and the optimal design of clinical 

trials [26]. Health technology assessment using tools from constrained optimization methods is 

also gaining popularity [27]. We also encourage the readers to refer to the initial ISPOR 

Optimization Emerging Good Practices Task Force Report, which presented a more 

comprehensive overview of the different applications for which optimization techniques can be 

used [1]. 

 

3. Steps in an Optimization Process 

Table 1 reproduces the steps of the optimization process previously presented in the initial 

Optimization Task Force Report. It is reproduced here as the ISPOR Constrained Optimization 

Good Practice Checklist to reduce reader burden as the two case studies and the educational 
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example will all be discussed in light of this framework. The primary purpose of Table 1 is to 

support the design of optimization studies by prompting the user to report and justify the choices 

made at each step of the process. It should be noted that the steps outlined in Table 1 do not need 

to be conducted sequentially. In fact, most of the optimization studies involve performing these 

steps in an iterative manner to solve the problem. Along with guiding the design of optimization 

studies, Table 1 can also be used to support the critique and quality assessment of published 

optimization studies. The steps in Table 1 are described in detail in the text below. 

 

Problem structuring 

The first step is to determine if constrained optimization is an appropriate methodology to 

address the problem at hand. It involves identifying if there are any quantifiable constraints and 

whether a specific goal can be achieved by changing some (decision) variables. This problem 

structuring phase should be done in consultation with the key stakeholders and decision makers 

to ensure that the optimization problem is appropriately specified. This will ensure that the 

objective functions and constraints are appropriate and get their ‘buy-in’ to change the decision 

variables in order to achieve an optimal solution. A clear textual description of the decision 

problem should be reported and validated with the key stakeholders and decision makers. 

 

Mathematical formulation  

This involves converting the textual description into a mathematical representation of the 

optimization problem. Objective function(s) and constraints need to be defined in analytical form 

as a function of decision variables and parameters. Note that decision variables are changed 

during optimization iterations in order to identify the optimal solution, while parameters remain 

fixed. The number and type of decision variables (continuous or discrete) as well as the 
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parameters need to be justified. The type of objective function (single objective or multi-

objective, linear or non-linear, stochastic or deterministic) and the type of estimation (analytical 

estimation or via simulation modelling for complex problems) need to be specified. Similarly, 

for constraints, the number of constraints and the type of estimation used for the constrained 

quantity need to be reported and justified. The sources and the values of the parameters used to 

estimate the objective function(s) and constraints also need to be justified. The mathematical 

representation of the optimization problem should be reported after validation with the key 

stakeholders and decision makers. 

 

Model development 

This involves programming the model in software to estimate the objective function(s) and 

constraints, using decision variables and parameters as inputs. It should be noted that in some 

instances, the analytical form of the mathematical formulation can be programmed directly 

because the mathematical formulation sufficiently defines the relationships between objective 

function(s)/constraints and decision variables/parameters. However, in other instances, a 

simulation model needs to be developed to estimate the objective function(s)/constraints. Models 

should be designed so that the objective function can be evaluated based upon the full range of 

possible decision variables (the feasible region or search space). The model structure and 

assumptions should be reported and validated with the key stakeholders and decision makers.  

The initial mathematical formulation and model development steps affect the specification of the 

particular optimization method to be applied. These steps are closely related and interdependent.  

This is one important reason why the steps in optimization do not always have to follow the 

order described in Table 1. 
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Model validation 

Before the optimization is undertaken, the underlying model needs to be verified and validated, 

to ensure the robustness of the results for different analyses performed.  This means that the 

model should be consistent with reality within specified tolerances. Once the model has been 

developed to the point where it is producing estimates, the model code also needs to be checked 

to ensure the model results are valid. In the case of models that represent an analytical 

formulation directly, this is relatively straightforward as this involves checking the specific 

model results used as parameters for estimating the objective function and constraints.  

 

However, when a simulation model is used to evaluate the objective function, this would 

necessitate a combined approach of simulation-optimization [28, 29].  This is a bit more difficult 

because it involves checking the model results for all combinations of decision variables.  Meta-

modeling techniques [30], i.e., modeling the simulation model outputs as functions of simulation 

inputs, can circumvent getting the simulation results for all variables in the parameter space. 

These topics are beyond the scope of this report; we suggest reviewing Sargent (2009) and Law 

(2006).   

 

Modelers are encouraged to validate the model results in different parts of the decision variable 

space to have enough confidence that the model used is appropriate for optimization [31, 32]. 

This should also involve asking the key stakeholders and decision makers to check the model 

results for face validity. 

 

Select optimization method 

The choice of optimization method needs to be justified on the basis of the type of decision 
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variables (continuous or discrete), and the type of objective function (single objective or multi-

objective, linear or non-linear, stochastic or deterministic), and the type of constraints (single vs 

multiple constraints). The optimization algorithm/tool used also needs to be justified on the basis 

of the optimization method, as well as the estimation type (analytical formulation vs simulation 

optimization) and other relevant characteristics of the model (number of decision variables or 

transferability of the problem to other well-known problem types). The methods and tools chosen 

for optimization need to be reported and justified. 

 

Perform optimization/sensitivity analysis 

This involves running the optimization model, identifying the optimal solution, and 

understanding the impact of alternative parameters on the optimal solution using sensitivity 

analyses.  Settings used for the optimization, such as the convergence level required or the 

maximum number of iterations, need to be justified. In some problems, searching for the optimal 

solution might be computationally feasible, whereas in others, solving time increases to such an 

extent that the use of heuristics is justified. 

 

As with decision modelling, optimization can have stochastic uncertainty in parameters and 

model structure. Stochastic optimization [33], robust optimization techniques [34] and sensitivity 

analyses can be used to deal with parameter uncertainty.  However, structural uncertainty needs 

to be dealt with by thinking about the choices throughout the optimization process. For example, 

is a linear program really appropriate?  Are the simplifications and assumptions appropriate and 

to what extent is there a risk of a wrong/sub-optimal decision being reached? The choice of 

decision variables, parameters, constraints, and model assumptions also need to be structurally 

evaluated.    
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The optimal solution needs to be checked to identify if it is feasible and, if so, sensitivity 

analyses should be conducted. The optimization settings and the sensitivity analyses need to be 

explained to the key stakeholders/decision makers and reported in detail.  

 

Report results 

This involves specifying the values of the decision variables, objective function and constraints 

at the optimal solution, for the base case analyses, as well as the sensitivity analyses. The 

optimization results (i.e. optimal solution for the base case and sensitivity analyses) need to be 

reported and validated with the key stakeholders/decision makers. Also, the performance of the 

optimization tool/method needs to be reported, such as the time taken to identify the optimal 

solution, number of iterations required, and the convergence level (if applicable). These results 

should be reported in a manner that is understandable and interpretable by relevant stakeholders 

and decision makers. 

 

Decision making 

The meaning of the optimal solution should be explained to the decision makers.  This involves 

converting the mathematical optimal solution into clear, concise plans for implementation.  At 

this stage, the choices made at all the stages of modelling and optimization--type of model, data, 

assumptions, the design, settings and others--need to be validated to ensure the results of 

optimization problem are plausible and consistent with decision maker objectives.  Also, the 

possibility of amending the decision variables to the values specified by the optimization process 

need to be checked with the stakeholders to ensure that the implementation is feasible.  
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To reiterate, the results of the optimization should not be used mechanistically: it is the decision 

makers that implement the findings, hence they should be comfortable with the methodology, 

data, and assumptions involved in the whole optimization process. 

 

4. Optimization Case Studies 

In this section, we consider two constrained optimization studies and compare their structure to 

the steps outlined in Table 1.  The first case study focuses on resource allocation for the 

prevention/cure of infectious diseases while the second illustrates the use of constrained 

optimization to guide optimal treatment initiation. These cases illustrate different modeling 

techniques, as well as extensions of the application of constrained optimization methods beyond 

the typical realm of scheduling, shipping cost minimization, maximization of facility capacity, 

etc.    Please note that the educational case study and the model formulations appear in Appendix 

I and II, respectively.  

 

Case Study 1. Selecting a Mix of Prevention Strategies Against Cervical Cancer [2] 

Problem Structuring  

Cervical cancer is the second most common cancer in women under 35 years old in the UK. The 

objective of this study was to identify the optimal mix of primary and secondary prevention 

strategies for cervical cancer that achieves maximum reduction in cancer cases under budget and 

logistic constraints.  The authors applied the optimization model in two countries with different 

healthcare organizations, epidemiology, screening practices, resource settings and treatment 

costs: one in the UK, and one in Brazil. They considered two cervical cancer prevention 

strategies against human papillomavirus (HPV): 
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 Primary prevention – Because an HPV infection is the most common cause of cervical 

cancer, HPV vaccination is a primary prevention strategy. Two HPV vaccines are 

currently available.  Both vaccines have an efficacy of approximately 98% against the 

cervical cancer vaccine HPV types (HPV 16 and 18), but with a different cross-protection 

profile against oncogenic non-vaccine HPV-types. The implementation of vaccination 

varies widely among countries with regard to the strategy selection (national 

immunization program or individual based); the logistics (via a separately established 

vaccination setting or via primary healthcare); the age group targeted; and the gender 

selection (female only or all patients). 

 

 Secondary prevention - Cytology-based screening programs have contributed to a 

decrease of up to 80% in the incidence and mortality of cervical cancer in countries with 

a well-established, organized screening program. However, despite their potential, 

cytology-based screening programs sometimes have a limited impact due to factors such 

as sensitivity of the screening method (ability of the test to correctly identify those 

patients with the disease), treatment failure and the level of resources required for an 

adequate follow-up of patients. 

 

Four prevention strategies were evaluated: screening; vaccination; screening plus vaccination; 

and no prevention because these were the options available for cervical cancer prevention in the 

UK and Brazil at the time of the study. Only cytology-based screening was included in the 

model, with sensitivity estimates based on published literature. Different screening interval 

scenarios were explored, from every year to every 25 year.  Women are screened only twice over 

their lifetime with a 1-year increment between each scenario.   
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It was assumed that vaccination is administered at age 12 and induces lifelong protection against 

HPV. In total, 52 different strategies were tested for each country. These 52 strategies defined 

the full range of possible combinations of vaccination (not available or available) and screening 

interventions (not available or available with intervals between screenings estimated from 1 year 

to 25 years in 1-year increments).  The final scenarios can be listed as follows: (scenario 1: no 

screening & no vaccine; scenario 2: 1-year screening interval & no vaccine; scenario 3: 2-year 

screening & no vaccine; … , scenario 26: 25 year screening & no vaccine’ scenario 27: no 

screening & vaccine; scenario 28: 1 year screening & vaccine; scenario 29: 2 year screening & 

vaccine ; … , scenario 52: 25-year screening & vaccine). 

 

Mathematical Formulation  

The optimization model used a linear programming formulation consisting of a single linear 

objective function and multiple linear constraints.  The model was continuous, allowing 

fractional values for the decision variables.  It was static, meaning that the problem was solved 

once at steady state.  Finally, the model was deterministic which assumed that all the outputs 

were known and there was no stochastic variation.  

Fifty-two decision variables, ݔ௜, each representing the proportion of the population addressed by 

each strategy considered, ݅ ൌ ͳǡ ʹǡ ǥ ǡ ͷʹ, were used with separate identifiers for strategies 

involving screening and strategies involving vaccination in order to deal with screening and 

vaccination coverage constraints. Given the aim was to minimize the number of cervical cancer 

cases, the objective function was represented as the sum of the cervical cancer cases (at steady 

state for 100 000 women) for each strategy, ܥܥ௜, multiplied by the proportion of population 

receiving each strategy, ݔ௜.  
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The linear programming formulation for the cervical cancer prevention strategy optimization is 

given as 

min  ෍ ௜ହଶݔ௜ܥܥ
௜ୀଵ  

(1) 

subject to ෍ ܾ௜ݔ௜ ൑ ହଶܤ
௜ୀଵ  

(budget constraint) 

(2) 

 Ͳ ൑ ௜ݔ ൑ ͳǡ ݅ ݎ݋݂ ൌ ͳǡʹǡ ǥ ǡ ͷʹ 

(strategy coverage bounds) 

(3) 

 ෍ ௜ݔ ൌ ͳହଶ
௜ୀଵ  

(complete population distribution) 

(4) 

 ෍ ௜ଶ଺ݔ
௜ୀଶ ൅  ෍ ௜ହଶݔ

௜ୀଶ଼ ൑  ଵݒ݋ܥ

(screening coverage upper bound) 

(5) 

  ෍ ௜ହଶݔ
௜ୀଶ଻ ൑  ଶݒ݋ܥ

(vaccination coverage upper bound) 

(6) 

ଵݔ  ൑ min ሺͳ െ ଵǡݒ݋ܥ ͳ െ  ଶሻݒ݋ܥ

(upper bound on population with no coverage) 

(7) 

 

௜ݔ  א ܴǡ ݅ ݎ݋݂ ൌ ͳǡʹǡ ǥ ǡ ͷʹ 

 

(8) 
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The model has five constraints: budget, strategy coverage, total population, screening and 

vaccination coverage limits. The first constraint is to ensure that the sum of the cost for each 

strategy (at steady state for 100000 women), ܾ௜,  multiplied by the proportion of the population 

receiving each strategy, ݔ௜, is less than the overall budget constraint, ܤ.  The strategy coverage 

constraint ensures that the proportion of each strategy is between 0 and 1.  The complete 

population distribution constraint guarantees that all the 52 variables add to 1.  That is, the sum 

of the proportion of the population receiving each strategy should reflect the entire population.  

Also, the sum of the proportion of the population receiving strategies including screening should 

be less than the government-imposed screening coverage limit, ݒ݋ܥଵ. Similarly, the sum of 

proportion of population receiving strategies including vaccination should be less than the 

externally (e.g., government) imposed vaccination coverage limit, ݒ݋ܥଶ. Note that the 

parameters ܥܥ௜ and ܾ ௜ are derived from the Markov cohort model (see details below) for each 

strategy ݅.  

Model Development 

The mathematical formulation described above used the outputs of a health economic Markov 

cohort model (number of cervical cancer cases CCi and total costs bi for each strategy i) as input 

parameters. The Markov cohort model describes the population level’s natural history of cervical 

cancer for the evaluation of the clinical and economic consequences of different prevention 

strategies. The model considers a population of 100,000 women under a given prevention 

strategy at steady state level. The Markov model consists of following states: no HPV infection, 

HPV infection, cervical intraepithelial neoplasia (CIN) stages, cancer, and death (both cancer 

and non-cancer related).  
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Once patients are infected with HPV, individuals can progress and regress from HPV infection 

and CIN stages. Vaccination is assumed to reduce the HPV infection rates, and detection through 

screening provides the possibility of the treatment of CIN. Overall vaccine efficacy in the UK 

and Brazil was calculated from the country-specific proportions of each HPV type in cervical 

cancer. Other clinical and cost inputs were specified of each of these two countries. 

The time horizon of the optimization problem was one year, and the health/cost outcomes across 

the whole population were derived from the lifetime cohort results from the Markov model.  

The model was run with a cohort of women over their lifetime for each one of the 52 scenarios 

described above separately for both countries. The results of each scenario were used to estimate 

the number of cervical cancer cases and total costs expected over one year at steady state for 100 

000 women. The estimated number of cervical cancer cases (ܥܥ௜) and total costs (ܾ௜) of each of 

the 52 prevention strategies were then used as input parameters for the optimization model. 

Model validation 

No validation effort was reported, neither for the health economic model nor for the optimization 

model. 

Select optimization method 

Due to the relatively small size of the linear programming formulation described above--a total 

of 52 decision variables and 57 constraints--a standard primal simplex method was chosen to 

solve the problem.   

Perform optimization/sensitivity analysis 

This optimization problem was programmed in Microsoft Excel as a linear program and solved 

using the Solver Add-on. This tool uses the simplex method to identify the optimal mix of the 52 
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cervical cancer prevention strategies that minimize the expected cervical cancer cases under a 

fixed budget, as well as screening and vaccination coverage constraints. The optimization model 

was solved twice using separate parameter sets reflecting the settings in UK and Brazil.  

The base-case analysis assumed that the maximum screening coverage is the pre-vaccination 

coverage rate (65% in the UK and 50% in Brazil), maximum vaccination coverage was set to 

80%, and the overall budget was the pre-vaccination budget allotted to screening and treatment 

of cervical lesions. No explanation was given as to why these maximum coverage rates were 

chosen in the base-case.  

Sensitivity analyses were performed to understand the effect of altering the budget or the 

achievable screening or vaccination coverages (the constraints in the model) as well as the 

duration of vaccine protection which was one of the parameters in the economic modeling.  The 

budget constraint was varied from a 20% reduction to a 150% increase over the pre-vaccination 

levels, while the screening and the vaccination coverage levels were varied from 0% to 100%. 

 

Report results  

The optimal mix of strategies in the UK was 65% vaccination plus screening with a screening 

interval of 6 years, and 15% vaccination alone. In Brazil, the optimal mix was 50% vaccination 

plus screening with a screening interval of 5 years, and 30% vaccination alone. These optimal 

mixes of strategies would result in a reduction of cervical cancer by 41% in the UK and 54% in 

Brazil from pre-vaccination levels with no budget increase. It can be easily observed that in both 

countries, the optimal coverage rates for both preventive interventions are at the maximum levels 

permitted in the model. 
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In the sensitivity analyses, increasing the budget permits a shortening of the screening interval, 

but the effect on the reduction in cervical cancer cases is modest and tends to reach an early 

plateau. Vaccination alone (screening coverage set to 0%) could provide a reduction in cervical 

cancer cases compared with the pre-vaccination situation of screening alone with a lower budget.  

In both countries, the effect of reduced vaccine efficacy duration (25 years compared with 

lifetime) still results in a reduction in cervical cancer compared with the pre-vaccination strategy, 

but not as much as the base-case analysis. In both countries, a sharp reduction in the expected 

number of cervical cancers is seen when the vaccine coverage rate exceeds the maximum 

screening coverage rate or when screening coverage rate exceeds the maximum vaccine coverage 

rate while maintaining the budget (treatment and prevention) constraint. 

 

Decision Making  

In this case study, within the same budget, results of the optimization program show that it would 

be possible to substantially reduce the number of cervical cancer cases by implementing an 

optimal combination of HPV vaccination (80% coverage) and screening at pre-vaccination 

coverage (65% UK, 50% Brazil) while extending the screening interval to every 6 years in the 

UK and 5 years in Brazil. 

 

Optimization models can be used to determine the optimal mix of primary and secondary 

prevention strategies minimizing cervical cancer burden under budget and logistic/infrastructure 

constraints. The key strength of optimization modeling is its ability to evaluate multiple 

combinations of different interventions and identify the mix that provides the maximum expected 

health benefit (reduction in cervical cancer cases) at the expected costs within the available 
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budget. In addition, it allows the decision maker to set constraints reflecting local conditions, 

such as a limited available budget or limited achievable coverage rates.  

 

In this paper, the optimization model uses the health economic model outcomes as its input 

parameters. Therefore, the validity of the optimization results is based on the validity of the 

health economic model. Furthermore, the implementation issues, such as how it will be decided 

who will receive vaccination, screening or both, were not discussed. In its current form, the 

optimization model is used more to demonstrate the potential value of adding vaccination 

strategy and to coordinate this addition with the existing screening practices in the UK and 

Brazilian health systems.  

 

For implementation purposes, a more advanced optimization model, as well as a more detailed 

health economic model that takes into additional considerations and interactions, (e.g. herd 

protection, resistance dynamics of the virus, transmission to the others, decreased secondary 

infections, infertility avoidance, logistic/infrastructure, socio-economic and equity concerns, 

etc.), are needed. Lack of these essential considerations in the economic and optimization models 

limits the usefulness of the results provided in the paper. 

 

Case Study 2: Optimizing statin treatment initiation using MDP [3] 

Problem Structuring  

Type-2 diabetes (T2D) leads to many chronic outcomes, including stroke, coronary heart disease 

(CHD), kidney failure, etc.  This study focuses on the selection of T2D patients for statin therapy 

of hypercholesterolemia. The market for statins is significant and remains burdensome to health 

system costs despite the availability of generics. Furthermore, there are a number of studies that 
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report overprescribing (prescribing statins to those patients who only achieve marginal benefit) 

and under-prescribing (not prescribing statins to those patients most likely to benefit). Given this 

debate, Denton and colleagues’ aim was to identify the optimal time to initiate statin treatment 

for hypercholesterolemia in T2D patients. 

 

The problem is set up using an MDP framework.  Traditional health services research methods 

focus on efficacy and/or cost-effectiveness at a snapshot in time to inform decisions, while MDP 

provides an in-depth modeling and understanding for optimal decisions at multiple time points 

over a patient’s disease history.  Due to the nature of the modeling, it provides the ability to 

personalize decisions, as opposed to one-size-fits-all policies and guidelines established for 

medical decisions.  However, similar to other approaches, MDPs have assumptions based on data 

and/or the structure of the model. 

 

Mathematical Formulation   

The model optimizes a cost-reward function over time using a MDP.  We recognize that MDPs 

are not commonly associated with constrained optimization because they typically do not have 

“constraints” in the same sense that the term is used in the mathematical programming literature 

(for example, in the previous case study).  However, the ability of dynamic programming models 

to identify the optimal solution to the MDP--the optimal pattern of statin therapy initiation over 

time--provides an excellent example of a clinical use case for constrained optimization as long as 

one recognizes that constraints in a MDP are implicitly defined based upon allowable transitions 

between states and/or available decisions within each state.  
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The structure of the model reflects shared decision-making by providers and patients over time 

as a function of patient age, patient clinical history, and several health states. History is 

dependent on CHD or stroke, as well as nine cholesterol levels pertaining to low, medium or 

high HDL and LDL levels. Patient information aligning with the data across three major heart 

studies provides much higher sensitivity to the proper time to initiate and maintain a statin 

regimen. The MDP model determines the optimal decision at each epoch, to maximize the 

overall rewards ݒሺݏ௧ሻ while accounting for costs of all future states.  

 

Reward function: ݒ ݔܽܯሺݏ௧ሻ ൌ ܧ ೞ՜ሾσ ൫ߣேವ௧൯ݎሺݏ௧ǡ ܽሺݏ௧ሻሻሿ௧்ୀଵ ௧ݏ׊ א Ԧܵ where t is a time index for 

discrete decision epochs, ݏ௧ is an index for states at time period ݐ ൌ ͳǡ ǥ ǡ Tǡ  ܽ ሺݏ௧ሻ is the statin 

treatment decision at time ݐ ൌ ͳǡ ǥ T,  ߳ߣሾͲǡͳሿ discounts the objective function depicting reduced 

value of rewards in future years, and ܰ஽ is the number of years in a decision epoch. 

 

Reward function for each time period: ݎ൫ݏ௧ǡ ܽሺݏ௧ሻ൯ ൌ ܰ஽ൣܴሺݏ௧ሻ െ ൫ܨܥௌሺݏ௧ሻ ൅ ௧ሻ൯ݏ஼ு஽ሺܨܥ െܽሺݏ௧ሻܥௌ்൧ െ ௧ǡݏௌ൫ܥൣ ܽሺݏ௧ሻ൯ ൅ ௧ǡݏ஼ு஽൫ܥ ܽሺݏ௧ሻ൯൧ where ND reflects the number of years in a 

decision epoch, ܴሺݏ௧ሻ is the monetary value of quality adjusted life yearsǡ ܥሺܵtሻ is the annual cost of statin treatment in period ݐǡ  ܨܥௌሺݏ௧ሻ is the annual follow up care cost of stroke in period ݐǡ ܨܥ஼ு஽ሺݏ௧ሻ is the annual follow up care cost of  CHD event in period ݐǡ CS(sT) is the one time cost of stroke occurring in period t. 

 

Reward function for final time period: ݎ൫்ݏ ǡ ܽሺ்ݏሻ൯ ൌ ܰ஽ൣܴሺ்ݏሻ െ ൫ܨܥௌሺ்ݏሻ ൅ ሻ൯்ݏ஼ு஽ሺܨܥ െܽሺ்ݏሻܥௌ்൧ െ ்ݏௌ൫ܥൣ ǡ ܽሺ்ݏሻ൯ ൅ ்ݏ஼ு஽൫ܥ ǡ ܽሺ்ݏሻ൯൧ ൅ ்ݏȁܴܪܦሾܲܧ ǡ ܽሺ்ݏሻሿ, where ܧሾܴܲܪܦȁ்ݏ ǡ ܽሺ்ݏሻሿ is the post-decision horizon expected reward. The authors separate the time 

horizon into a decision horizon and a post-decision horizon. While the decisions are only made 
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during the decision horizon, the rewards from the post-decision horizon still need to be included. 

For instance, while the decision to initiate statin therapy is only until age 80, the rewards of 

treatment after age 80, need to be included in the model. 

 

Model Development 

The starting age of the patients in the model was 40, and it was assumed that the patients could 

start statin treatment at any point between 40 and 80 in 2-year increments. If all these treatment 

options were modeled as separate scenarios, as is common in both clinical trials and economic 

evaluations, the problem would soon become quite complicated, especially if these treatment 

options were compared incrementally.  

 

However, using optimization techniques, one can identify a “single” optimal age for initiating 

statin treatment that maximizes the ‘reward’ function. The authors interpreted reward in terms of 

expected net monetary benefit E(NMB) as a function of quality-adjusted life years (QALYs), 

Cost and willingness-to-pay threshold (Ȝ), that is: 

 

E(NMB) = ǻQALYs*Ȝ – ǻCost    (9) 

 

Model Validation 

The authors do not describe the model validation process, although it is clear from the 

manuscript’s acknowledgements section that the authors interacted extensively with experts 

within the clinical system where the research was conducted, as well as with external reviewers. 

 

Select Optimization Method   

The problem is set up using a MDP.  The MDP framework is intended for dynamic streams of 

decisions (i.e. decisions made over time).  The time horizon and the time steps are identified as 
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indices for decision epochs.  Each decision in the stream guides the evolution of the system 

being modeled (typically the patient’s health in medical applications) and may enable or 

foreclose further decisions.  The patient’s health at each time point is typically the state, and the 

decisions or actions are identified.  MDPs can be considered as a hybrid between a Markov 

model and a decision tree.   

 

Just as in Markov models, in an MDP, a patient’s health state changes over time, transitioning 

from one discrete state to another according to a specified matrix of probabilities.  However, 

typically in a Markov model, the decision maker has a choice between two or more treatment 

regimens to start the patient on initially.  By contrast, in an MDP, the decision maker can make a 

choice about treatment in every time period.  Thus, it is possible to model at a more granular 

level.  At each time point, one may decide to start, stop or switch treatments, for as long as the 

patient survives.  The constraints may involve the changes in states and/or the decisions.  The 

transition from one state to another is characterized probabilistically. 

 

In this study, the critical decision is when to start statins. Starting statins is taken to be a one-time 

irreversible decision.  Thus, in each time period from age 40 to death - or age 80 - there is a 

binary “start” or “delay” decision.  Much of the complexity of the model is in the modeling of 

the health states.  There are 324 health states describing various combinations of cholesterol and 

high-density lipoprotein levels (3 each), as well as stroke and CHD states (6 each).   

 

Transition probabilities are parameterized based on a proprietary clinical database.  The 

objective function is a combination of health sector costs—such as the cost of treatment 

transacted between the provider, patient, and payer--and net monetary benefit, appropriately 
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discounted over time.  The risk of adverse events is modeled, for comparison through three third-

party risk models. 

 

Different risk-prediction models have estimated probabilities of T2D complications in patients 

based on sociodemographic and environmental risk factors. These predictive models can specify 

the type of treatment to reduce the risk of comorbidity. The most common validated risk models 

from several large studies are the United Kingdom Prospective Diabetes Study (UKPDS), the 

Framingham Heart Study (U.S.) and Archimedes, based on data trial results from the Heart 

Protection Study of 2002.   

 

In particular, the article Optimizing the start time of statin therapy for patients with diabetes[3] 

aimed to identify the optimal decisions for individual patients based on their attributes including 

age, gender, total cholesterol and high-density lipoprotein (HDL).  The authors also performed 

the analyses using the predictions from each of the three risk models above.  Because the choice 

of the risk model may impact the treatment decision, they noted that the predictions from the 

models could be different. 

 

Performing optimization 

The solution method is based on a backward induction approach starting with the last epoch ܶ. 

Knowing the optimal future actions, the optimal decision at the current epoch can be established 

using recursive optimality in the following equation. 

Recursive optimality: ݒሺݏ௧ሻ ൌ ேವߣ maxൣݎሺݏ௧ǡ ܽሺݏ௧ሻ൯ ൅ σ ௧ǡݏ௧ାଵȁݏሺ݌ ܽሺݏ௧ሻሻݒሺݏ௧ାଵሻሿ׊௦೟శభ  

Where ݌ሺݏ௧ାଵȁݏ௧ǡ ܽሺݏ௧ሻሻ is the state transition probability at time ݐ given state ݏ௧and action ܽሺݏ௧ሻ  
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Decision variable: ܽሺݏ௧ሻ ൌ ൜ͳ ݂݅ ݀݁ݐܽ݅ݐ݅݊݅ ݏ݅ ݐ݊݁݉ݐܽ݁ݎݐ ݊݅ݐܽݐݏͲ ݂݅ ݀݁ݕ݈ܽ݁݀ ݏ݅ ݐ݊݁݉ݐܽ݁ݎݐ ݊݅ݐܽݐݏ  

௧ᇲܽ ݂݅ ݁ݎ݄݁ݓ ൌ ͳǡ ௧ሻݏሺܽ ݄݊݁ݐ ൌ ͳǡ ݐ׊ ൐  Ԣݐ
 

Sensitivity Analysis 

Where uncertainty in the model existed based on recommended statin starting therapy, the results 

of the optimization approach were tested for the low, medium and high cost of statins across 

willingness-to-pay threshold ranging from $25,000/QALY to $100,000/QALY in $25,000 

increments. This additional analysis provides insight into the value of the model 

recommendations, and whether the recommendation results from using a low- or high-value 

proposition as a starting point. The model was also calibrated to best-available data from that 

time when statins did not have as much information on long-term effectiveness. Given that post-

market knowledge of statin effectiveness is greater now than in 2009, these results express 

uncertainty where greater knowledge now exists. 

 

 

 

Report Results  

The MDP model also unifies results across the three risk models, where there is noticeable 

variability in recommended treatment between studies. The Framingham model determines never 

to initiate statins for three of the nine metabolic states. The Archimedes risk model does not offer 

statin start points for all metabolic states, and predicts statin starting points based on statistical 

inference rather than by generalizable samples of patients, making the model prone to statistical 

error.  
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In contrast, the UKPDS and Framingham risk models fit smoothed Weibull distributions across a 

well-defined population sample. The UKPDS and the Framingham model, give numerically 

different, but qualitatively similar optimal statin start time results. However, using the 

Archimedes risk model in the optimization did not produce a smooth pattern for initiating statin 

therapy as observed with the UKPDS and Framingham models.  The authors attribute this to 

“statistical error” associated with the Archimedes estimates. 

 

The study demonstrates the value of the MDP framework, providing insight into when to start 

statin treatment.  As one would expect, the model generally shows that statins should be started 

earlier for more severely ill patients.  Exactly how early depends on the severity of the patient’s 

condition, but also on model parameters and which risk model is used.  Interestingly, for less 

severe and elderly patients, from the results of Figure 2 in the article, it seems that it may not be 

worthwhile starting statin therapy at all. Women are in general recommended to start statin 

treatment later than men.  

 

 

Decision Making 

The study is an example of how the MDP modeling approach can provide personalized and 

clinically relevant recommendations (for patients of type x, start statins at age y) and integrate 

and compare different data sources and risk models.  As there are many questions about the right 

time to start, stop and switch treatment in medical care, this seems an underused and highly 

promising framework for economic evaluation.  
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Traditional health services research methods focus on efficacy and/or cost-effectiveness at a 

snapshot in time to inform decisions, MDP provides an in-depth modeling and understanding for 

optimal decisions at multiple time points over the patient’s disease history.  Due to the nature of 

the modeling, it provides the ability to personalize decisions, as opposed to one-size-fits-all 

policies and guidelines established for medical decisions.  However, similar to other approaches, 

MDPs have assumptions based on data and/or the structure of the model.  Once the results are 

obtained, sensitivity analyses can be performed (e.g., for some range of variation in the transition 

probabilities).  Once satisfied with the solution, translation is in the form of guidelines and/or 

decision tools.  Owing to the modeling and computational nature of the MDPs, they can easily be 

translated into decision support systems to use in practice. 

 

This example showed the use of MDP for optimizing the start time of statin therapy.  MDPs can 

be used for other similar decision-making problems for breast or prostate cancer screening, the 

decision for biopsy, initiating HIV therapy treatment policies, etc.  The underlying theme is 

focusing on decisions over time, with decisions at one point affecting future states and decisions 

operating under constrained resources. The results of the optimization models can help establish 

optimal clinical guidelines [35]. 

 

5.  Conclusion 

In this second report, the task force’s primary objective is to provide an overview of areas where 

optimization methods can be applied and describe three case studies illustrating the application 

of constrained optimization methods to critical clinical and health policy questions. The cases 

illustrate several major variants of these methods and demonstrate their potential in 

complementing classical economic evaluation decision-making framework.  
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In the first case study, linear programming methods were used to identify the optimal mix of 

HPV vaccination and screening to minimize the number of cervical cancer cases subject to a 

budget constraint. Similarly, in the second case study, MDP and dynamic programming were 

used to identify the optimal time to initiate statin therapy in type-2 diabetes patients.  The first 

two case studies describe the translation of the original problem into its mathematical 

formulation, its estimation, interpretation, and use.  In contrast, the third is an educational case 

that allows the reader to work through the formulation of a constrained optimization problem 

using the ISPOR Constrained Optimization Good Practice Checklist. 

The healthcare sector faces major challenges with regards to appropriate diagnosis and treatment, 

allocation of scarce resources, designing policies, etc.  These methods provide an approach for 

finding optimal solutions to complex problems in the face of constraints.  As such, they are 

complementary to and build on the health economic models and simulation methods that are 

widely used to guide clinical and policy decision making. 

Constrained optimization methods can improve the current reimbursement decision-making 

processes, which take the budget constraints partially into account. In the constrained 

optimization framework, budget constraints can be incorporated explicitly, together with other 

types of constraints, like human resource or geographical equity constraints. In addition, when 

there are numerous treatment options available for treating patients with a specific condition, 

constrained optimization might prove to be an efficient method for developing treatment 

protocols or guidelines compared to the classical economic evaluation framework. 

In the current healthcare landscape, health economic modeling is widely used to make 

reimbursement decisions for new technologies, particularly outside the United States.  

Constrained optimization methods can help decision-makers incorporate related considerations 
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beyond the reimbursement decision itself including the best way to integrate the new technology 

with the health-care delivery system, as well as in technology disinvestment decisions. These are 

becoming crucial as personalized medicine and performance-based payment concepts become 

more common. 

It is important to recognize that application of constrained optimization methods in healthcare is 

still an emerging area and that there are some challenges that must be addressed.  Constrained 

optimization methods can be limited by data availability and quality, and validating an 

optimization model can be challenging. Choosing and applying the appropriate method can be 

difficult and require specific expertise.  Interpreting results and knowing which solution 

algorithm is likely to be best requires a level of methodological understanding and 

sophistication.    

However, despite these obstacles, the application of constrained optimization methods to health 

care decision making offers substantial potential benefits which make them a valuable addition 

to the arsenal of analytic methods at the disposal of the researcher.  Approaching a problem in 

the context of mathematical optimization forces modelers to identify and quantify the endpoint 

that they are trying to accomplish. But most importantly, constrained optimization takes into 

account the limits placed on the solution by real-world factors such as budgets, availability of 

treatments, staffing capacity, and patient characteristics.  As a result, the identified optimal 

solution is much more likely to be feasible to implement.  

In a disease management problem, by treating patients optimally, we have the potential to 

improve population health and enhance the value associated with health care expenditure. For 

individual patients, this means providing treatment with the proper therapy faster. For 

physicians, this can help provide optimal health outcomes for their patients, enhance the 
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performance of their medical practice, and offer more efficient health care delivery. The task 

force hopes that these two reports will encourage modelers to explore the use of optimization 

methods and looks forward to seeing more published optimization applications and the 

development of further guidelines and resources as the use of these methods becomes more 

widespread. 

APPENDICES 1 & 2  – See separate document.  

Appendix 1 – Educational Case 

Appendix 2 – Model Formulations for the Educational Case  
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Table 1. ISPOR Constrained Optimization Task Force Good Practice Checklist 

Stage Step Description 

Modeling Problem structuring Specify the objective(s) and constraints, 

identify decision variables and parameters, and 

list and appraise model assumptions 

Mathematical formulation Present the objective function(s) and 

constraints in mathematical notation using 

decision variables and parameters 

Model development Program the model in software to estimate the 

objective function(s) and constraints, using 

decision variables and parameters as inputs 

Model validation Ensure the model is appropriate for evaluating 

different combinations of decision variables 

and parameters 

Optimization Select optimization 

method 

 

Choose an appropriate optimization method 

and algorithm on the basis of characteristics of 

the problem. 

Perform 

optimization/sensitivity 

analysis 

Use the optimization algorithm to search for 

the optimal solution and examine the 

performance of the optimal solution for 

reasonable sets of parameters 

 Report results Report the results of the optimal solution and 

sensitivity analyses 

Decision making 

 

Interpret the optimal solution and use it for 

decision making 

Source: Crown et al. 2017, Table 3, p. 315. 
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Discrete representation of patient anatomy 

 

Figure 1: Patient anatomy is discretized into voxels, and treatment beams are discretized into 
beamlets. 

  



 
 

41 

 

APPENDICES 

APPENDIX 1 Educational Case Study: Optimizing the Delivery of Radiation Therapy to 

Cancer Patients (Shepard et al., 1999) 

We now challenge the reader to try their hand at formulating alternative models designed to 

optimize radiation therapy using the steps outlined in Table 1. The discussion and modeling 

approach closely follow the seminal work by Shepard, Ferris [1].  A simplified version of the 

originally published mathematical notation and formulations are provided in the appendix for the 

readers to check their formulations. Model formulation is often the most challenging part of 

applying constrained optimization methods, and successful applications typically result from 

multidisciplinary collaboration, involving domain experts on the subject matter as well as the 

modeler. Therefore, one should not feel disappointed if the model specifications do not exactly 

match those provided in the appendix.   

 

There are two main reasons for the selection of radiation treatment planning as the educational 

case study. First, the problem statement is relatively simple to express, and so it is a helpful 

example to showcase several different constrained optimization models (e.g., linear, nonlinear, 

mixed integer). Second, while the problems presented in this educational case study are typically 

studied by operations researchers and medical physicists, the parameters defining treatment goals 

and constraints heavily rely on the health outcomes research findings comparing the 

effectiveness of various cancer treatment protocols and modalities in different patient 

populations. Therefore, we believe that awareness of these treatment planning models can lead to 

new research directions in health outcomes and observational cohort studies.  One such initiative 

is the Oncospace [2], the main goal of which is to create a learning health system that 
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systematically collects relevant clinical data and predicts potential outcomes for specific patient 

characteristics and treatment plan parameters [3, 4].   

 

Shepard, Ferris [1] presented several constrained optimization models for the intensity-

modulated radiation therapy (IMRT) treatment planning problem.  In this setting, a cancerous 

tumor within a patient’s body is targeted with several beams of radiation passing through the 

tumor from different directions since a single beam of radiation strong enough to control the 

growth of the tumor would do unacceptable damage to healthy tissue in its path.  A typical 

objective function in this setting might be to maximize the portion of the tumor region receiving 

a dose of radiation sufficient to prevent further tumor growth while a constraint might be 

ensuring that healthy tissue does not receive damaging levels of radiation dose.  The decision 

variables might be the angles at which the beams are positioned [5] or the intensity of the 

subcomponents of beams, referred to as beamlets [6]. Although the fundamental problem sounds 

straightforward in principle, accurately solving it presents substantial conceptual and 

computational challenges [7-9]. 

 

Background  

IMRT involves radiation sources (photons or protons) outside the body [10]. Several modeling 

techniques have been proposed to optimize IMRT considering the complicating factors such as 

1) the underlying physics and biology; 2) conflicting treatment goals; 3) uncertainties caused by 

daily setup procedures; 4) organ motion and 5) ensuring that the results and facts garnered in the 

course of treatment are efficiently integrated into the treatment plan.   

In clinical practice, radiation therapy is delivered over a period of time as a series of small 

dosages called “fractions.” Dose delivery in each of these treatment sessions is optimized in 
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order to both increase tumor control probability (TCP) and decrease damage to the healthy tissue 

surrounding the tumor by giving it time to recover [11].   

Developing a treatment protocol is complicated - taking multiple considerations into account.  

Randomized control trials and retrospective studies are effective ways of determining the 

efficacy of various treatment protocols. Furthermore, while treatment protocols are designed for 

specific cancer types and patient populations, each patient has unique characteristics, 

comorbidities, tumor location and size, and proximity of tumor region to organs-at-risk (e.g., 

rectum in the case of prostate cancer) and normal tissue. Therefore, radiation therapy treatment 

plans must be optimized to ensure that the treatment protocol requirements are satisfied for each 

patient. The remainder of this section will focus on IMRT treatment planning.  Similar models 

can be used for other radiation therapy modalities as well.  

The steps in the optimization checklist will be followed below. In each step, we will provide 

necessary background information first and then ask the reader questions related to important 

aspects of that step. We will provide sample answers to some questions to assist the reader with 

the modeling exercise.  

 

Problem structuring  

Decisions in radiation treatment planning involve determining the intensity of modulated beams 

and the amount of dose delivered to various points in and around the tumor region. The treatment 

protocol, prescribed by a radiation oncologist, specifies treatment objectives and constraints. For 

example, according to a prostate cancer randomized control trial (RCT) conducted by Pollack et 

al. (2002), delivering 78 Grays of radiation dose to a prostate tumor results in substantial 

improvement in tumor control.  However, the higher doses also increase complications in the 
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rectum, which is an organ-at-risk that needs to be protected from high doses. Using these 

findings as part of a treatment protocol, consider how you would design the objective function to 

ensure that most of the tumor region receives 78 Grays of radiation dose.   

Think about these two possibilities: 

1. For every point in the tumor region, you can calculate the difference between the actual 

dose and the prescribed target dose, i.e., 78 Grays. You can describe an objective 

function that minimizes the largest difference as follows: Minimize the maximum 

difference between the actual and prescribed target doses across all points in the tumor 

region. 

2. Suppose that the radiation oncologist is OK with a small difference (e.g., 2 or 3 grays) 

but wants to avoid large differences (e.g., 10 Grays) from the target dose in the tumor 

region. Similar to the definition above, describe an objective function in such a way that 

the more the dose difference at a certain point in the tumor region from the target dose; 

the more penalty is accrued. Hint: a square of the dose differences can create the desired 

effect. 

Further, how would you impose constraints on dose delivered to the rectum region to avoid 

complications? Again, consider two possibilities: 

1. The radiation oncologist wants to provide overall protection by keeping the dose 

anywhere in the rectum region below 30 Grays. You can define a constraint to this effect 

as follows: The dose at any point in the rectum must be less than 30 Grays. 

2. According to the results from the randomized control trial by Pollack et al. (2002), dose 

escalation results in better outcomes for prostate cancer patients if the portion of the 
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rectal volume receiving 70 Grays or more dose can be kept below 25%. How do you 

define a constraint that ensures this?  

 

Mathematical formulation 

For IMRT optimization, voxels, which are volume elements on a rectilinear grid in a three-

dimensional space (this is analogous to a pixel in three-dimensional space), are identified in the 

anatomy of a patient undergoing radiotherapy as shown in Figure 1. The radiation fields are 

modulated using a multi-leaf collimator (MLC) [12]. Therefore, the radiation beams are regarded 

as being comprised of many “beamlets”, see Figure 1. Once voxels and beamlets are determined, 

a dosimetrist calculates how much dose a beamlet of unit intensity can deliver to a voxel.  

Parameters:  

Given these descriptions, think about what parameters are needed to formulate an optimization 

model for IMRT. For example, it may be convenient to introduce notation ௧ܸ, ܸ ௢, and ܸ ௛ to 

denote the set of the tumor, organs-at-risk (OAR), and healthy tissue voxels, respectively. One 

parameter is the prescribed target doses of the tumor voxels: 

߬௜ is the target dose for tumor voxel ݅ א ௧ܸ. 
Now, try to define notation for the following parameters: 

 An upper limit on dose delivered to an organ-at-risk voxel. 

 The dose delivered to a specific voxel by a specific beamlet with unit intensity. 

What other parameters are needed? Compare your parameter definitions with those provided in 

the appendix. 

Decision Variables: 
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There are two sets of decision variables: 1) the intensity of each beamlet; 2) the dose delivered to 

each voxel.  

Introduce notation to define these variables. Compare your variable definitions to those in the 

appendix. 

Objective function and constraints: 

How can you combine these parameters and decisions variables to define an objective function 

and constraints? (Refer to your definitions from the problem structuring step.)  

The specific choice of objective functions and constraints described above will ultimately 

determine the type of constrained optimization model. For example, think about whether a 

simple linear function can be used to model the first objective of minimizing the largest 

difference from a target dose. What type of mathematical function (see the hint provided above) 

can be used to model an objective function that penalizes larger differences from the target dose 

more? Linear or non-linear? 

After attempting to formulate the IMRT optimization problem, compare your formulation with 

the ones in the appendix. 

Advanced considerations: 

If a radiation oncologist is only concerned with limiting the amount of dose delivered to a certain 

region, you can simply use a continuous decision variable representing dose delivered to that 

region and constrain it to be below the desired threshold. If, however, the radiation oncologist is 

interested in sparing only a portion of an organ (i.e., the second constraint possibility described 

in the problem structuring step), then think about what additional (possibly binary) variables you 

need to model this constraint. 
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Compare your new variable and constraint definitions to the alternative formulations provided in 

the appendix. 

Model development  

In this step, the treatment planner implements the model formulation using treatment planning 

software and specialized optimization solvers. The treatment planner makes various decisions 

regarding model parameters and structure. For example, the treatment planner chooses the 

density and location of the voxels to provide a good approximation of the regions of interest 

specified in the treatment protocol. The number and positions of the beams that will deliver 

radiation to the patient are also chosen based on the geometry of the patient’s anatomy and 

treatment strategy specified in the protocol. Depending on the location of the tumor, an 

appropriate radiation physics software needs to be used to calculate the dose delivered to a voxel 

from a unit-intensity beamlet. Once all parameters are specified, the model formulation is 

populated with actual parameter values and translated into computer code to communicate with 

an optimization solver. 

Model validation  

The treatment planner goes through several steps to ensure that the model accurately represents 

the patient’s anatomy and radiation physics.  Robustness of the optimization parameters 

determined in the model development step must be verified in the presence of various 

uncertainties caused by organ motion, setup uncertainty, and potential structural changes to the 

patient’s anatomy during the treatment course. For example, multiple dose deposition matrices 

may need to be calculated for different scenarios involving setup errors.  

Select optimization method  
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Selection of the optimization method depends on the model structure and various computational 

considerations depending on the tumor site. The treatment planner must make a trade-off 

between the treatment plan quality and computational time required to obtain it. For example, the 

mathematical formulation of a complex case requiring protection of certain portions of several 

critical organs in the neighborhood of the tumor region might result in a complex mixed-integer 

programming model. Solving such a model to optimality might take multiple hours, making it 

clinically intractable. In this case, the treatment planner may be forced to either change the 

model structure by making certain simplifying assumptions or keep the original mixed-integer 

programming model but use a heuristic method (instead of an exact solution algorithm such a 

branch-and-bound) to obtain a good (but not necessarily optimal) solution in a reasonable 

amount of time. 

Perform optimization/sensitivity analysis 

Optimization of radiation therapy is an iterative process. After solving the mathematical 

formulation, the treatment planner reports the results to the radiation oncologist, who then 

considers several trade-offs between conflicting goals of controlling tumor vs. sparing healthy 

tissue and critical organs. In each iteration, the treatment planner makes changes to the model 

parameters and sometimes to the structure of the model. For example, if the radiation oncologist 

wants to “cool down” the rectum in order to avoid complications, the treatment planner might 

lower the limit on the dose delivered to the rectum. The changes made to the model structure 

may require switching to a different optimization method (compare different optimization 

models and their underlying requirements described in the appendix). 
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The authors of the case study systematically changed various essential parameters, including 

bounds on dose delivered to different regions, objective weights associated with different 

regions, number of beam angles, and relative size of the protected portion of an organ-at-risk. 

Report results  

Following the optimization process, the treatment planner presents the solutions to the radiation 

oncologists. Typically, multiple solutions, obtained through the iterative optimization process, 

are reviewed. The comparisons between these solutions are made using various dose-volume 

histograms, iso-dose curves, and dose distribution heat maps [13]. The authors of the case study 

also used these visualization methods to compare the quality of various treatment plans obtained 

by different optimization models.  

 

Decision making   

After reviewing multiple solutions and considering various trade-offs between conflicting 

treatment goals specified by the protocol, the radiation oncologist chooses a treatment plan, 

which is then delivered in multiple treatment sessions.  

 

Discussion 

A substantial portion of cancer patients undergoes radiation therapy at some point during the 

course of their disease [14]. Optimization models help to make tradeoffs between conflicting 

criteria specified by the treatment protocol and achieve best outcomes for an individual patient.  

This last case described various steps in the optimization checklist to formulate and solve an 

optimization model for the radiation therapy treatment planning problem. The case also 
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illustrated how a given problem could be formulated as a linear program, non-linear program, or 

mixed integer program.  Further details including the advantages and disadvantages of each 

approach are explained in the appendix to provide a learning opportunity for the reader.  

Appendix 2: Model formulations for Educational Case Study (Appendix 1)  

In this section, we guide the reader through the formulation process for the optimization of 

IMRT. 

Parameters:  

 ௧ܸ, ܸ ௢, and ܸ ௛ are the set of tumor, organs-at-risk (OAR), and healthy tissue voxels and ܸ 

is the set of all voxels. ݊௧, ݊ ௢, and ݊ ௛ are the number of voxels in corresponding regions 

and ݊  is the number of all voxels. 

 ܤ is the set of beamlets and by ݓ௝  the intensity of beamlet ݆ א  Ǥ ݉ is the number of allܤ

beamlets. 

 ܦ is the ݊ ൈ ݉ dose deposition matrix, generated by simulating how an X-ray particle 

deposits energy as it travels through the body of the patient. ܦ௜௝ is an element of ܦ 

representing the dose delivered to voxel ݅ by beamlet ݆ when its intensity is set to unit 

intensity.  

 ߬௜ is the target dose for tumor voxel ݅ א ௧ܸ. 
 ݈௧ and ݑ௧ are the lower and upper bounds on dose delivered to tumor voxels, respectively. 

 ݑ௢ and ݑ௛ are the upper bounds on dose delivered to OAR and healthy tissue voxels, 

respectively. 

Decision Variables: 

 ݓ௝ is the intensity of beamlet ݆ א  .ܤ
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 ݀௜ is the dose delivered to voxel ݅ א ܸ. 

Objective function: 

 ݂ሺ݀Ǣ  ߬ሻ is the treatment objective function where ݀ is the vector of doses delivered to 

each voxel and ߬ is the vector of ``target'' doses for each voxel, as specified by the 

treatment protocol. Several forms of treatment objective functions have been proposed in 

the literature. As described above, one possibility is minimizing the maximum deviation 

from the tumor target dose specified by the treatment protocol: ݂ሺ݀Ǣ ߬ሻ ൌ min௪ max௜א௏೟ ȁ݀௜ െ ߬௜ȁ 
Linear Programming Formulation: 

The IMRT optimization problem can be formulated as a linear program (LP) with the above 

objective function: 

Min max௜א௏೟ ȁ݀௜ െ ߬௜ȁ (1) 

subject to ݀௜ ൌ  ෍ ஻א௜௝௝ܦ௝ݓ ǡ   ݅׊ א ܸ (2) 

 ݈௧ ൑ ݀௜ ൑ ௧ݑ ǡ   ݅׊ א ௧ܸ (3) 

 ݀௜ ൑ ௢ݑ ǡ   ݅׊ א ௢ܸ (4) 

 ݀௜ ൑ ݅׊   ௛ǡݑ א ௛ܸ (5) 

 ෍ ݀௜௜א௏೚ ൑ ݊௢(6) ߚ 

௝ݓ  ൑ ߙ݉ ෍ ஻א௞௞ݓ ǡ   ݆׊ א  (7) ܤ

௝ݓ  ൒ Ͳǡ    ݆׊ א  (8) ܤ
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Even though the objective function (1) is nonlinear, it can easily be converted to equivalent 

linear function by simple variable transformations. Constraint set (2) defines the relationship 

between dose delivered to each voxel and beamlet intensities. Constraint sets (3)-(5) restrict 

maximum and minimum dose received at various treatment regions. Constraint (6) limits mean 

dose delivered to OAR to be lower than a predetermined constant ߚǤ Constraint set (7) ensures 

that the ratio between maximum and average beamlet intensity does not exceed a predetermined 

constant ߙ in order to avoid extremely high dose regions in patient anatomy. Finally, constraint 

set (8) ensures beamlet intensities in the optimal solution are positive. 

Nonlinear Programming Formulation: 

Instead of penalizing the maximum deviation from the target dose, the radiation oncologist may 

want to avoid any significant deviations from the target dose. In this case, we can construct an 

objective function with a quadratic penalty for deviating from the target dose.   

 ݂ሺ݀Ǣ ߬ሻ ൌ min௪ ௧ݎ ෍ሺ݀௜ െ ߬௜ሻଶ௜א௏೟ ൅ ௢ݎ ෍ሺ݀௜ െ ߬௜ሻଶ௜א௏೚ ൅ ௛ݎ ෍ ሺ݀௜ െ ߬௜ሻଶ௜א௏೓ ǡ (9) 

where ݎ௧, ݎ௢, and ݎ௛ are weights associated with corresponding regions representing their relative 

importance. The target dose for OAR and healthy tissue is typically zero, meaning that any dose 

delivered is penalized. These weights are determined through an iterative process between the 

treatment planner and radiation oncologist in quest for finding the right trade-off between 

multiple conflicting treatment criteria specified by the treatment protocol. A nonlinear 

programming model can be obtained by replacing objective function (1) with (9).  

Mixed-integer Programming Formulation: 

As mentioned above, according to the results from the randomized control trial by [15], dose 

escalation results in better outcomes for prostate cancer patients if the portion of the rectal 
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volume receiving 70 Grays or more dose can be kept below 25%. These types of requirements in 

treatment protocols are referred to as dose-volume constraints representing the willingness of 

radiation oncologist to sacrifice a portion of an organ-at-risk to improve tumor control. Dose-

volume constraints can be introduced by defining binary variables that indicate whether the dose 

to each voxel in the region of interest is above a certain value (e.g., ߣ). For example, we can 

define the binary variable for a dose-volume constraint on an OAR, which constrains number of 

voxels in the OAR receiving a dose higher than a specified value, as follows:  

௜ݔ  ൌ ൜ͳǡ    if ݀௜ ൒ Ͳǡ     otherwise    ߣ ǡ   ݅׊ א ௢ܸ (10) 

The dose-volume constraint can then be formulated as follows 

 ݀௜ ൑ ௢ݑ ൅ ௜ݔܯ ǡ   ݅׊ א ௢ܸǡ (11) 

 σ ௏೚א௜௜ݔ ൑ ௢݊ߜ ǡ   ݅׊ א ௢ܸ, (12) 

where ߜ is the specified percentage and ܯ is an appropriately large number. 

The variables defined in (10) are required to be binary, which substantially increases 

computation time to find the optimal solution compared to the LP formulation in (1)-(8). 
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