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Modelling individual patient hospital expenditure for general practice budgets i

Abstract

The English NHS has introduced a system of budgets for general practices covering hospital expenditure
for the patients on their lists. We model individual expenditure using diagnostic information from previous
hospital spells, plus a large set of attributed variables measuring population, general practice, and local
hospital characteristics. We show that, despite the large proportion of zero expenditures and the heavy
right tail of expenditures, estimating models of untransformed expenditure via OLS yields better
predictions at practice level than one or two part models using OLS with transformed expenditure or
Generalised Linear Models. We describe a procedure for setting budgets for general practices which
reduces the problem of the lags in the available data. We examine the distinction between need and non-
need variables and the incentive implications of allowing past numbers of hospital encounters to
determine practice budgets.
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1. Introduction

The English National Health Service is funded almost entirely from general taxation and patients face no
Patients register with a general practice which acts as a

charges when consuming health care.’

gatekeeper for access to elective hospital care. The average practice has a patient list of 6500 and 3.5
general practitioners (GPs), operating as a partnership, not as state employees. The practice receives
revenue from a mixture of capitation fees for the patients on the list, lump sums (related, for example, to
experience and location), and quality incentives. The practice meets the cost of providing primary care
(practice nurses, premises etc.) and shares the practice profit amongst the GP partners.

Hospital care for NHS patients is provided mainly by publicly owned but independent hospitals with a
small proportion of NHS elective patients treated in privately owned hospitals. Prospective pricing was
introduced from 2003/4 and now covers most hospital care. Until recently all hospitals providing care to
NHS patients were paid by local health authorities (Primary Care Trusts) which received a formula
determined grant from the Department of Health (see Figure 1). In 2005/6, under a new policy known as
Practice Based Commissioning (PBC) practices could choose to hold indicative budgets carved out from
the PCT hospital care budget. The practice budget was intended to cover most elective and emergency
hospital care. The Conservative Liberal coalition government elected in May 2010 decided to extend
PBC and to abolish Primary Care Trusts (DH, 2010) replacing them with consortia of general practices
known as Clinical Commissioning Groups (CCGs). The CCGs will, like PCTs, hold hard budgets for
hospital care and PBC will be extended to all practices (Dixon et al, 2011).

Budget allocation by —
Deparmentof
Health > g laroup
y
: Payment
Treasury i (block contracts
/ and prospective
Y udget for ," per case)
hospital care !
General General '
taxation enera '
practices '
v
Payment Hospitals
Patients (prospective per case)

Figure 1. Financial flows in English NHS before and after introduction of Practice Based Commissioning

with practice budgets for hospital care.

PBC is an enlarged version of the fundholding system which operated between 1990/1 and 1998/9.
Under fundholding, practices could opt to hold a budget for a subset of elective treatments and about
50% of them did so. Fundholding reduced practice admissions by 3%-5% (Dusheiko et al, 2006) and

'Thereis a charge for drugs prescribed by general practitioners but because of wide set of exemptions around 90% of prescriptions

are dispensed without charge to patients.



2 CHE Research Paper 73

induced hospitals to compete for fundholder business by reducing the waiting times of patients in
fundholding practices (Propper et al, 2002; Dusheiko et al, 2004).

Fundholding budgets were set by reference to practice expenditure in the year before the practice opted
to become a fundholder and some practices responded by increasing expenditure before becoming a
fundholder (Croxson et al, 2001). The Department of Health decided that PBC budgets should be related
to the healthcare needs of the practice population.

Need is a normative concept: it is the set of factors that it is believed ought to determine access. It is
assumed that an individual’s need depends on their current health status which, together with the state of
medical technology, determines their capacity to benefit from health care. Need may also depend on
socio-economic circumstances. For example, one may wish to deal differently with patients with a given
health state depending on their age, gender, home circumstances, or health affecting behaviour. Need or
capacity to benefit from care does not depend on supply factors (bed capacity, distances, waiting times
etc) which affect the availability of care.

The basic assumption underlying the NHS formulae for allocating funds to PCTs is that the lower level
decision makers and front line staff in NHS have better information about the needs of individual patients
and take, on average, appropriate decisions about their utilisation of services. But utilisation is not a direct
measure of need because in deciding on appropriate use, account is also taken of supply conditions
since these also affect the net social benefit from use of the NHS by the individual patient. Thus by
examining the relationship between utilisation in different small areas and the health and socio economic
characteristics of the area populations it is possible to determine which area population characteristics
are good measures of the need for health care and hence to derive a resource allocation formula which is
related to those characteristics and thus reflects need. Because supply factors can affect use it is
necessary to include these in the empirical modelling and then to sterilize their effects when calculating
the allocations.

This paper describes an analogous procedure to calculating a needs-based target allocation for practices.
However, our approach is different from previous utilisation based modelling approaches. First, we model
the expenditure of individuals, not the mean expenditure of individuals in small areas as in previous
modelling for NHS resource allocation (Morris et al, 2007; Sutton et al, 2002; Carr-Hill et al, 1994).
Second, we link individuals to practices. Third, we use diagnostic information from past hospital utilisation
of individuals to construct individual level morbidity measures. Previous modelling has had to use fairly
crude morbidity measures (self assessed health or limiting long term iliness) averaged at small area level.

Our approach is therefore similar to that adopted in US and European literature on risk adjustment (Van
de Ven and Ellis, 2000). Setting target allocations for general practices using the characteristics of their
patients, particularly their past morbidity, has some similarities to developing an insurance premium
based on patient risk characteristics. Indeed one could regard general practices as insurers in that they
are allocated a risk adjusted capitated sum for the patients on their list with which to commission
(purchase) hospital care for the patients’ registered with them.? The actual budget allocated to practices is
somewhere between a needs based target allocation (generated through a resource allocation formula
described in this paper) and the historic expenditure on the practice’s patients. PCTs will decide,
according to local circumstances, on the speed at which actual budget will move toward the needs based
target allocation for the practice. At present the budgets set by PCTs for practices are likely to be soft
(“notional”) with practices intended to break even over several years.

There are three key issues in all types of risk adjustment modelling: the choice of estimation method for
modelling expenditure, the set of explanatory variables used, and the distinction between explanatories
which should affect premia or allocations and those which should not.

% Practices are very small when viewed as insurance pools and PCTs/CCGs will adopt various risk sharing strategies
and will encourage practices to pool budgets and commission care jointly with other practices.
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Hospital cost data for individuals are non-negative, typically exhibiting a non-normal distribution with a
heavy right-hand tail, and a mass point at zero. They also tend to be heteroskedastic. See Figures 2 and
3. These characteristics pose challenges for estimation and ordinary least squares (OLS) may be
inappropriate. Alternatives to OLS include generalized linear models (GLM) and transformed ordinary
least squares where the dependent variable is transformed by, for example, taking its square-root to help
deal with skewness. Two-part estimation separately models the probability of positive cost and the level
of cost for individuals with positive cost. This latter stage can be modelled using all the estimators
available for one part expenditure models, including OLS, GLM, and transformations of the cost variable.
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Figure 2 Cost £ per spell 2007/08 for spells costing less than £10,000

proportion of Practice list with some spend 2007/08
for inpatients and outpatients

© T T T T

4
proportion of Practice list

Figure 3. Proportion of Practice list incurring some inpatient or outpatient cost in 2007/08

Our objective is to model individual hospital expenditure within general practices in PCTs to provide
predictions of expenditures at per capita practice level to inform the setting of budgets for practices for
CCGs. Accordingly, we focus on the predictive ability of alternative estimators when comparing
performance.

Given the number of possible sets of explanatory variables (see section 2) it is not feasible to re-examine
the choice of estimation method every time the set of explanatories is changed. We therefore first
compare estimation procedures using a fixed intuitively plausible set of variables. We then use the
preferred estimation method to compare alternative sets of regressors.
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Having selected models with good predictive powers we then consider how the explanatories should
affect practice budgets. Some variables may make meaningful contribution to explaining the variation in
expenditure across individuals but should not affect budgets. Such “non-solidarity” variables (Van de Ven
and Ellis, 2000) may be characteristics of individuals, such as ethnicity, which it is felt should not affect
allocations, or they may be supply side factors, or they generate perverse incentives.

Section 2 describes the data sets. Section 3 discusses and compares alternative estimators. Section 4
explains how we use the chosen estimation method to select preferred sets of explanatory variables and
compares results from two of them. Section 5 describes a procedure for setting practice budgets which
minimises the impact of the data lags, discusses potential incentive effects, and the implications for the
set of explanatories which should determine practice budgets.
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2. Data

2.1 Linking of data sets

We had information from Hospital Episode Statistics on inpatient and outpatient hospital use at individual
level for all NHS hospitals in England from 2002/3 to 2007/8. We also had information on general
practice patient lists for all patients in England for the same period. We linked the two data sets at
individual level using an encrypted NHS identifier. Around 5% of HES records could not be linked at
individual level to patients in practices, and the probability of link failure was higher for younger patients
and for emergency admissions. We were able to link about half the records with missing NHS numbers to
practices when calculating practice-age-gender means of the explanatories (see section 5). Around 0.6%
of patients were registered in more than one practice at the start of the financial year. We assigned
patients with duplicate registrations to practice they had joined most recently.

2.2 Dependent variable

The dependent variable is an individual’s NHS hospital expenditure in financial year t for hospital spell
finishing in year t® We include expenditure on both inpatient care and outpatient attendances. We had
data on several years but costed all components of care using the same (2008/9) unit cost for all years.

We exclude expenditure on both mental health and maternity spells. The data on the former is poor and
budgets for both were constructed by other means. Since the aim is to allocate budgets to cover the cost
of NHS care we excluded the costs of care provided to private patients in NHS hospitals. Since practices
will be charged for care when it is completed we excluded the costs of spells which started in the financial
year but which were unfinished at the end of the year. We include spells which finish in the year even if
they started in the previous year

2.3 Attributed needs

In addition to 38 age/gender categories we had available a large set of potential determinants of hospital
expenditure which we could attribute to individuals via their lower super output area (LSOA)4 of residence.
These included 77 variables derived from the 2001 Census, the Indices of Multiple Deprivation, and
modelled estimates of air quality, obesity etc. We also had a 53 category classification of LSOAs in
socio-economic types eg “Multicultural suburbia”, “Urban terracing” based on a cluster analysis of the
2001 Census by the Office of National Statistics. We also had the prevalence rate for 11 diseases as

reported by each general practice.

2.4 Individual morbidity measures

HES records ICD10 diagnoses for inpatients in up to 14 fields. We used the HES records for each
individual covering the two years before the start of the expenditure year (2006/7) to construct 6 sets of
morbidity indicators:

e 221CD10 chapters

e 152 ICD10 categories — as used by NHS Information Centre to group HES admissions for
reporting purposes

e 281 1CD10 groups. Our project colleagues (Health Dialog) grouped diagnosis codes into clinically
meaningful categories and selected an aggregation level based on the relationship of the codes
to cost. Of the 281 categories, 10 categories are at chapter level, 131 categories are at grouping
level 2 as defined by WHO, and 140 categories are at grouping level 3 as defined by three-digit
ICD 10 codes.

e 70 Hierarchical Conditions Classification groups. The HCC grouper was developed as part of a
model to explain expenditure of patients in the US Medicare scheme which is primarily for
patients age 65 and over. The HCC researchers developed a hierarchy of diagnoses, so that for

® Financial years run from 1 April to 31 March.
* There are 34,378 LSOAs each containing an average of 1500 people, with a minimum of 1000.
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related diagnoses a patient was assigned to only the most serious category (so avoiding double
counting). On the basis of previous research, the researchers first collapsed over 15,000 health
care intervention codes into 804 diagnostic groups. These were then further aggregated into 70
HCCs that reflected clinically meaningful categories of diagnosis (Pope et al, 2004; Smith, 2007).

e 185 Augmented HCC groups. Not all diagnosis codes map to a HCC70 group. To map these
other diagnosis codes to a group, our project colleagues Health Dialog identified a further set of
185 ICD10 groups. These 185 groups are based primarily on the first three digits of the diagnosis
code

e 260 Clinical Classification Software groups. This grouper was developed by the Agency for
Healthcare Research and Quality.

We also used four encounter variables derived from the HES records for the previous two years:

number of inpatient episodes

number of outpatient episodes

whether any outpatient attendance was coded urgent
whether treatment was received at any outpatient attendance

2.5 Supply

We constructed 70 supply variables which were attributed to individuals by their LSOA or their practice.
They included median waiting times for outpatient and inpatient care for patients in the LSOA, distances
to providers, and measures of local provided capacity (beds, staffing, equipment) weighted by distance
and competing populations.

For practices we had 36 measures of quality derived from the Quality and Outcomes Framework (for
example the practice’s achievement in controlling Hba1c levels for their diabetic patients) and 30 practice
characteristics such as the total list size, the number GPs, and the type of practice contract.

We also used PCT dummies and the shares of practice admissions at each hospital to capture
unobserved factors (for example, PCT clinical governance, past levels of PCT resourcing, hospital
admission threshold, hospital data recording conventions).
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3. Alternative estimation procedures

3.1 Explanatories for the estimation procedure comparison

We compare alternative estimators using the same set of explanatory variables. Assuming expenditure
model is linear we specify:

’ ’ ’ ’ ’ ’
Cipt = B+ xijptﬂx + mijpt—l,Zﬂm + nijpt—lﬂn V12 B, + Siipt B, + PCsz Brer + Eijpt » (1)

where ¢

1S €xpenditure in year ton patient / who is in practice jlocated in PCT p on the first day (1

April) of the financial year t xl.’jpt is a vector of age and gender dummies, m, is a vector of 152

ijpt—1,2
morbidity characteristic indicators based on ICD10 diagnoses in HES finished consultant episodes in the
previous two years.

!
n..

ijpt—1
Allowance claimants aged 60 and over, proportion non-white, proportion of lone parent households with
dependents, standardized limiting long-term illness, proportion of individuals living alone aged 75 and

over, and proportion of all pension credit claimants. V,;ptflz is a vector of encounter variables derived

from HES records for the previous two years: number of inpatient episodes, number of outpatient
attendances, whether any outpatient attendance was an urgent referral, whether there was treatment at
any outpatient attendance.

is a vector of six attributed needs variables: proportion of LSOA population who are Disability Living

'
S ijpt

inpatients waiting less than 3 months, average distance to five nearest acute providers, average
outpatient wait for first attendance, average distance to outpatients used, and road distance to nearest

GP main surgery. PCTI; is a vector of 151 PCT dummy variables. ¢, is an idiosyncratic error term
assumed to be independently and identically distributed.

is a vector of six supply characteristics: accessibility score for acute provider capacity, proportion of

t

We estimated (1), or non-linear versions of it, using the routines outlined below and assess the predictive
ability of the various estimators using both within-sample and out-of-sample tests. We supplement the
tests by considering the predictive ability of the models across the full distribution of cost. Note that since
the models are intended to be used to set prospective practice allocations we are primarily interested in
their predictive ability and are less concerned about the individual coefficients beyond their relevance for
assessing model plausibility.

3.2 One step estimation

3.2.1 Ordinary least squares

OLS is attractive due to its simplicity and ease of computation. Estimation operates directly on the cost
scale (levels of cost) and marginal effects (the impact of a change in the value of a regressor on cost) are
readily estimated. Heteroskedasticity renders OLS regression inefficient. OLS estimation of (1) assumes
linearity between the set of regressors and cost which can lead to out-of-range (negative) predictions. It
may also fail to predict well over the full range of the distribution of costs.

3.2.2 Transformed cost

An alternative to modelling cost on its natural scale is to apply a concave transform to produce a
dependent variable which has less right hand skewness. Popular choices include the logarithmic (log)
and the square-root transformation (Ettner et al, 1998). Cost data with zeros render the use of the log
transformation problematic. Adding a small positive constant to the data prior to transformation is
unsatisfactory because the results from a log transformed regression can be sensitive to changes in the
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left-hand tail of the distribution of cost (Buntin and Zaslavsky, 2004). It also fails to deal with the large
mass point in the distribution.

There is a difficulty with predictions from models which use non-linear transformations of the cost
dependent variable. As Manning (1998) points out “Congress does not appropriate log dollars”.
Similarly, PCTs seek to allocate budget pounds to practices, not the log or square-root of pounds.
Accordingly, where models are estimated on a transformed outcome, predictions must be retransformed
back to the original scale. But we cannot simply take the inverse of the transformation: the conditional
mean of a non-linearly transformed variable is not the inverse transform of the conditional mean, for
example, for the log model E[y|x]# exp{E[ln(y)| x]} . Instead, for a log transformation, assuming

normally distributed errors, the expected value of cost is given by:

Ely|x]= exp(x'ﬁ + O.SGf)z exp(x'ﬂ)exp(O.Saf) )
where x is a vector of model regressors, [3 is a vector of parameter estimates and 082 is the variance of
the distribution of residuals.’

Where the distribution of the error is not normally distributed, but is homoskedastic, Duan’s (Duan, 1983)
smearing estimator can be applied for log transformations, where

E[y| x]= pexp(x'p) @)
where ¢ is the smearing factor, estimatedas ¢ =N"'>_ exp(&,), with &, =In y, - x/.

In practical applications the homoskedastic errors assumption is unlikely to be tenable for individual cost
data. If the errors are heteroskedastic then Duan’s smearing estimator will be biased. If the form of
heteroskedasticity, as a function p(x) of regressors x, is known then unbiased predictions of cost are
given as:

E[y| x]= p(x)exp(x'B) (4)

Where the variance is a function of multiple regressors, and where regressors are continuous rather than
discrete, specifying the form of heteroskedasticity is problematic (as the exact from is often unknown). In
such cases, it can be useful to compute a smearing estimator for percentiles of the range of fitted values
from the estimated model.® In the following we split the distribution of fitted values into five-percentile
ranges and compute the resulting 20 smearing factors.

Similar retransformation corrections can be applied to square-root transformed OLS models of
expenditures. In this case, however, the correction term is additive rather than multiplicative, so that for
the homoskedastic case

E[y|x]=(x'B) +¢, (5)

where the smearing factor, ¢ is estimated asqs =N" zi él.z :

% If the errors are heteroskedastic it is also the case that OLS estimation produces biased estimates of the coefficients (Santos Silva
and Tenreyo, 2006)

®Based on percentiles of exp(x'ﬁ) .
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3.2.3 Generalised linear models

Generalised linear models (GLMs) offer a flexible way to estimate expenditure models on the original
scale (£s) (Blough et al, 1999; Buntin and Zaslavsky, 2004; Mullahy, 1998; Manning and Mullahy, 2001).
GLM models can be applied directly to the entire distribution of costs including zero expenditures. Both
the mean and variance function of expenditures are specified by the analyst. The mean function specifies

how the linear index (x’ﬂ) relates to the expected outcome, g(E[y | x]): x'B, where g(.) is the link
function, or E[y | x] = u(x’ﬂ) where wu is the inverse of the link function. For expenditure data, a log

link function is often chosen such that, g(E[y|x]) = In(E[y | x])= x'B. Altematively, the identity link,

where the conditional expectation of yis linearly related to the vector of explanatory variables, can be
used. Whichever link function is chosen, the results from a GLM regression can be interpreted directly on

the original cost scale without retransformation. Thus in the case of the log link g(E[y|x])=
In(E[y | x])= x'8 and E[y| x]=exp(x'B).

Specification of the relationship between the conditional variance and the conditional mean of y is also
required in the GLM framework. Typically the variance is modelled as being proportional to a power

function of the mean: var[y | x] o /l(x’ﬂ)l which belong to linear exponential family of distributions.

When A =0, the variance is constant and the conditional distribution of y; is normal. With A =1, the
variance is proportional to the mean and the conditional distribution is of the Poisson type . With 4 = 2,
the distribution is a gamma type and with 2 = 3 the distribution is an inverse-normal type (Blough et al,
1999). The choice of distributional family allows heteroskedasticity to be modelled directly as a functions
of the conditional mean. The distribution and link functions can be combined freely, although there are
canonical links for each distribution. Perhaps the most commonly specified GLM for health care costs has
combined the log link with a gamma type error.

If the mean function’ of a GLM model is correctly specified, misspecification of the variance function will
lead to inefficient parameter estimates and, in the extreme, might cause the estimation routine to fail to
converge. If the mean function is misspecified, then the model will fail to fit the observed data well across
its full range. In such circumstances the choice of variance function will affect both the efficiency of the
estimator and model fit (predictions versus observed data) (Buntin and Zaslavsky, 2004).

Other estimation approaches to expenditure data are available including exponential conditional mean
models (for example the Poisson model), hazard type models and finite mixture models and a useful
summary of these is provided by Jones (2011). We restrict attention to estimators commonly encountered
in the applied literature modelling health care costs.

3.3 Two-part models

The estimators described above may fail to accommodate the large mass point at zero expenditure and
as Figure 3 shows most patients on a practice list do not generate any hospital expenditure during a year.
Accordingly two-part models seem potentially suitable. The first part of a two-part model estimates the
probability of zero versus positive expenditure. For example using a probit model:

Pr(y, >0)=®(x'B) (6)

where @(-) is the standard normal cumulative distribution function.

"Both the link function and the specification of the linear predictors.
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The second part of the model estimates expenditure for individuals who incur hospital costs:
E[y| y>0, x]. All of the estimators considered above can be used to model costs conditional on use.

Transformations can include logs since we are considering positive expenditures only. Transformed
outcomes again require retransformation to obtain predictions on the original cost scale.

Total predicted expenditure can be obtained from a two-part model by multiplying the predicted probability
of experiencing positive health care costs with the expected level of cost derived from the second part of
the model:

E[yi|xi]=Pr(yi>0|xi)E[yi|yi>0’xi] (7)

3.4 Assessing model performance and model validation

3.4.1 Estimation and validation samples

It is well known that within-sample tests of model fit produce overly optimistic results caused by overfitting
of, for example, rare but costly procedures (Copas, 1987). To avoid this we estimate the model on one
sample and assess its predictive accuracy on two other samples.

(i) Estimation sample. A 10% random sample of individuals registered within each general practice
at 1 April 2006. Practices with populations less than 1,000 were removed from the data prior to
sampling. The estimation sample has over 5M individuals registered across all practices within 152
PCTs. This large sample is computationally burdensome, particularly for certain estimation routines
such as GLM.

(i) Individual level validation sample. A second 10% random sample of individuals registered in
general practices at April 2006. Practices with populations less than 1,000 were removed from the
data prior to sampling.

(iii) Practice level validation sample. The second validation sample is all patients registered with a
random sample of 10% of all practices, stratified by PCT. The sample has 812 practices, with over
5M patients. The sample is used to provide an assessment of the ability of the estimation routines to
predict both total practice expenditure and per patient practice expenditure.

3.4.2 Model evaluation criteria

We assess and compare the various approaches to model estimation by their predictive performance,
measured by R?, root-mean-squared error (RMSE), and mean absolute prediction error (MAPE).

The R?is less straightforward to compute for non-linear models, GLM models and for models requiring a
retransformation of the predicted outcome. To compute an R? value comparable across all estimators,

we first compute predicted expenditure, y,, on the original cost scale following OLS, GLM or transformed

OLS regression. Predictions were then regressed against actual expenditure, y,. The R? from these
auxiliary regressions are then compared across the different estimation routines.

We also report the root-mean squared error calculated as the square-root of the mean of the square of
the difference between predicted and actual expenditures

RMSE = |3 (y,~5,)'N"" ®)

and the mean absolute prediction error
MAPE=N"'Y abs(y, - 3,) 9)

Better model performance is associated with higher R and lower RMSE and MAPE.?

® Note that R® =1— (RMSE)2 /Var(y) so that the statistics are negatively monotonically related.
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3.4.3 GLM models

To assess the choice of variance function for a GLM specification, deviance residuals® from a GLM model
can be assessed using normal plots, which plot actual residuals against the values they would take if they
were normally distributed. If the variance function is chosen correctly then deviance residuals should be
approximately normally distributed and follow the 45° line on a normal plot (McCullagh and Nelder, 1989;
Davison and Gigli, 1989).

A further test for the adequacy of the variance function, suggested by Manning and Mullahy (2001), is the
Park test (Park, 1966). Since the variance function is assumed to be a power function of the conditional

mean: Var[y | x]: K(E[y | x])i, the test suggests regressing ln(yl. -3, )2 on ln(ﬁi) and a constant,
where y, is obtained from a preliminary GLM regression'’. The estimated value of the parameter A

attached to ln(ﬁi) provides an indication of the appropriate power of the variance function.

We also report the Akaike information criterion (AIC): AIC =2k —21n(L), where ln(L) is the model

likelihood and kthe number of model parameters (constant across the set of GLM models estimated
here) to further aid comparison across model. A smaller AIC indicates better model fit.

3.4.4 Model validation

The predictive or forecast accuracy of the alternative estimation techniques are assessed on the
validation samples using R?, RMSE and MAPE. The first validation sample is a random sample of 10% of
practice patients from all practlces This replicates the estimation sample and provides a direct measure
of the predictive accuracy of the model at the individual level.

The second validation dataset is a 10% sample of practices which is used to assess predictive ability at
practice level. Actual and predicted expenditures are aggregated to practice level before computing the
R? from a regression of aggregated actual costs on aggregated predicted costs We also compute for
each practice the per patient actual and predicted expenditure and report the R? RMSE, and MAPE from
the regression of actual per capita expenditure on predicted per capita expendlture

Given the skewness of the cost data and the spike at zero cost, we might expect predictions to be less
accurate at the extremes of the distribution. Hence we further assess the prediction properties of the
alternative estimation routines across the full range of cost by plotting the mean of actual and mean of
predicted costs by percentiles of the distribution of predicted costs. This allows the assessment of the
extent of the range of costs for which the estimation approach performs well. Plots are generated for
predictions from both the individual and practice level validation samples.

3.5 Results from estimation procedures

Tables 1 and 2 present statistics for the alternative estimation routines used to predict expenditure in
2006/7 for individuals on practice lists at 1 April 2006 using morbidity measures calculated from HES data
for 2004/5 and 2005/6."

% The deviance residual for an observation is [sgn(y; — f; )]\/E where (1, = u (x,fﬁ) is the estimated conditional mean, and
1
d = [Z{In L(ﬁ,xi) —In L(ﬂ*,)cl.)ﬂE is the square root of twice the difference between the logs of the maximised likelihood and
the likelihood from a saturated model with as many explanatories as observations.
" For a log link function, In (var[y | x]) =In (k) +2A1n [exp(x'ﬂ)] which can be approximated via the regression:

ln(y—&) =a+2In(y)+e.

" Results for models to explain 2006/7 expenditure for individuals on practice lists at 1 April 2005 using the same set of
explanatories but with morbidity data from HES records for 2003/4 and 2004/5 yielded identical conclusions about the relative
performance of the different estimators, though, because of the longer lags, overall performance was worse.
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3.5.1 One-part results

OLS. Table 1 shows that OLS has better R? (and hence RMSE) than any of the other one part models on
the estimation and the two validation samples. For the practice validation sample OLS is best on all
criteria. Figure 4 plots, using the individual and practice validation samples, the mean actual expenditure
against mean predicted expenditure, for individuals and per capita for practices, within each percentile.
The plots show that, for both individual and total per caPita practice cost, predicted and actual
expenditures are closely aligned across the distribution of cost."?

Transformed OLS. While the square-root transformation without smearing records the lowest value for the
MAPE for both the estimation sample and the individual level validation sample, its performance is
otherwise poor compared to the other transformed OLS models with smearing (Figure 5). This is
particularly the case for the practice level validation sample. An inspection of the plots of actual versus
predicted expenditure shows that retransformation with smearing improves performance and that
heteroskedastic retransformation (Figure 6) does best. These improvements are particularly evident using
the practice level validation sample. Across the three square-root models, the heteroskedastic
retransformed model has the best performance on all samples except the MAPE on estimation and
individual validation samples. This is unsurprising, given that separate retransformations are applied to
each of the centiles of the distribution of predicted cost.

Actual and Predicted cost by decile of Predicted cost
OLS - validation sample: individual
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Figure 4: One-part OLS. Validation — predicted vs actual
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Figure 5. One part OLS square root. Validation — prediction versus actual.

Square-root without retransformation:

'2 Since the sam ples contain over 5M individuals, centile means are based on approximately 50,000 individual observations.
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Figure 6. One part OLS square root models with heteroscedastic smearing transformation. Validation —
prediction versus actual.
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Figure 8 One part GLM, log link, variance proportional to mean: validation — prediction versus actual.

Generalised linear models. In comparison to OLS, GLM models have disappointing R*, RMSE and MAPE
statistics. GLM with linear link functions failed to estimate except for the model with constant variance
which is equivalent to OLS. All models with log link functions, except where the variance function was
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proportional to the mean cubed, were estimable. Results of the Park test suggests that a model with a
variance function somewhere between the Poisson family (variance proportional to the mean) and a
gamma family (variance proportional to the mean squared) is optimal (1 = 1.67). The AIC favours the
gamma family, as do normal plots of deviance residuals (Figure 7). However, the prediction tests at
practice level suggest that the model with variance proportional to the mean is the best of the GLM log
link models (Figure 8).

The contrast between prediction tests and the Park test and AIC suggest that these latter diagnostic tests
might not always be helpful in choosing between different GLM variance functions, in large samples
where predictive performance is of primary interest. Similar findings have been reported elsewhere
(Buntin and Zaslavsky, 2004).

3.5.2 Two-part model results

The two-part models reported in Table 2 were estimated using the same explanatories for both the probit
model of the probability of incurring positive expenditures and for models of the level of expenditure,
conditional on incurring positive expenditures. As with one-part models, OLS does best on the prediction
criteria. For the practice validation sample, probit plus OLS retumns the highest R? and lowest forecast
prediction errors (RMSE and MAPE) compared to all other model specifications. With the exception of
MAPE, this is also true for the validation at an individual level and for the estimation sample. Plots show
good performance across the entire cost range.

Probit plus transformed OLS. For models with a square-root transformation for the second-part of the two-
part model, improvement in predictive performance is achieved through the use of smearing and, in
particular, heteroskedastic smearing. This is the case across both estimation and validation samples,
with the exception of the MAPE which favours an estimator without a smeared retransformation. Plots of
predicted versus actual expenditure show good predictive properties across the range of expenditures.

Smearing estimators appear to improve the predicted performance of log models when applied to the
practice level validation sample, but fails to improve performance when applied to the individual level
validation sample. An inspection of plots of average predicted expenditure against average actual
expenditure reveals that for the latter, predictions using smearing estimators (homoskedastic and
heteroskedastic) at the upper end of the cost distribution hugely over predict expenditures. While,
performance across the majority of the range of predicted values appears reasonable, differences at the
end of the distribution account for the poor R®.

Probit plus generalised linear models. The Park test undertaken on GLM models with a log link function
suggest a gamma family of variance functions (A = 1.87) This is supported bg/ the AIC and normal plots of
residual deviance However, on the basis of predictive performance (R, RMSE and MAPE), the
estimation sample and individual validation sample favour a constant variance model while at practice
level a variance function proportional to the mean (Poisson family) does best.

Plots of predicted expenditure versus actual expenditures are similar to those from the one-step GLM
models. When the variance function is assumed to be proportional to the mean squared (gamma type
family) and mean cubed (inverse normal type family), predictions at the upper end of the distribution of
predicted costs far exceed actual costs. This would appear to explain the poor performance of these
models, even though they appear to predict expenditures well over the majority of the range of cost.

3.6 Conclusions

Our results suggest that one stage OLS out-performs alternative estimators when the aim is to predict
health care expenditures in order to set practice budgets. OLS is the simplest to implement, is widely
used and understood, and avoids the problem of having to make adjustments for heteroskedasticity which
are inherent in models using a transformed dependent variable. The approach also avoids the necessity
to estimate separate models for the probability of incurring expenditure and the level of conditional
expenditure. A potential disadvantage of applying OLS is that it can produce negative predictions of cost
for some individuals, a problem avoided with, for example, GLM with a log mean link function. However,
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when individual predictions are aggregated to practice level negative predictions are not a problem — no
practices had negative predicted expenditure. While the two part probit plus OLS model marginally
outperforms one step OLS for the estimation sample and on the individual level validation sample, one
step OLS is marginally better at predicting expenditure at practice level. We find that for our purposes the
one part OLS model is a robust estimator of hospital expenditure at the general practice level.
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4. Modelling expenditure with OLS

4.1 Morbidity markers

Having decided on the one part OLS estimator, we next chose a set of explanatories for predicting
hospital expenditure for individuals on practice lists. We first compared models with age/gender
categories and PCT dummies and alternative sets of morbidity indicators and then alternative sets of
attributed need and supply variables. Table 3 reports results from models using variants of the 6 sets of
morbidity indicators listed in section 2." Morbidity sets with more categories predict better on the
estimation and individual validation sample. However, the best models in terms of per caplta predictions
on the practice sample use the 22 and 152 ICD10 category sets which have larger R® and a larger
proportion of practices with actual per capita expenditure within 10% of predicted. The simple 22
category set performed as well as the 152 category set but the larger set was preferred on grounds of
greater appeal to GPs.

Basing the morbidity markers on two rather than one year of data improved led to a small improvement in
explanatory power and predictive power.

4.2 Attributed need and supply variables

Having decided to use the 152 category set of morbldlty indicators we next selected from amongst the
large set of attributed need and supply variables.'* We started with the full model (152 morbidity markers,
4 encounter variables, 2 variables measuring past use of NHS hospitals as a private patient, 151 PCT
dummies, 37 age/gender dummies and 169 attributed needs and 106 attributed supply variables.' We
then generated a parsimonious model in stages:

(i) re-estimate the full model retaining only those attributed need and supply variables whose absolute
t-ratio was greater than 0.20

(i) re-estimate the model estimated in (i) retaining only those attributed need and supply variables
whose absolute t-ratio was greater than 0.40

(ii) re-estimate the model estimated in (ii) retaining only those attributed need and supply variables
whose absolute t-ratio was greater than 0.60

(iv) continue this process until only those variables with an absolute t-ratio greater than 2.00 remain

(v) inspect the coefficients on the remaining need and supply variables and drop those variables with
'incorrect/unexpected’ signs

(vi) re-estimate the model with the remaining attributed need and supply variables

(vii) re-estimate the model estimated in (vi) retaining only those attributed need and supply variables
whose absolute t-ratio is greater than 2.20

(viii) continue the process outlined in steps (v) - (vii) until only those variables with an absolute t-ratio
of greater than 2.58 remain.

We then repeated the process starting from a full model excluding the four encounter variables and
derived a restricted parsimonious model.

'3 The models also contained age/gender cateogories and PCT dummies. The models estimated expenditure in 2006/7 for
individuals on practice lists at 1 April 2005.
“The project timetable and data availability meant that the morbidity variable sets were chosen on the basis of models to explain
2006/7 expenditure for individuals on practice lists at 1 April 2005 with morbidity data from 2003/4 and 2004/5, whereas the
modelling of the non-morbidity explanatories used models to explain 2007/8 expenditure for individuals on lists at 1 April 2007 with
morbidity explanatories from 2005/6 and 2006/7. The reduction in the data lag boosts model performance considerably. The
performance of the latter models was also boosted because a change in coding of intensive care cases produced a distribution of
costs with fewer extreme outliers, though the median cost per spell was unaffected.

We also investigated including the proportions of practice expenditure accounted for by each of 165 hospitals but found that they
had no effect on model performance.
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4.3 Preferred parsimonious models compared

Table 4 has summary statistics on alternative models. Using only 38 age and gender produces low
individual R* of 0.037 and the per capita practice performance is also not impressive with 58% of
practices having a discrepancy between actual and predicted per caplta expenditure of over 10%. Figure
9 has the age/gender cost curves. Adding the 152 morbidity markers increases performance dramatlcally
with an R® on the individual valldatlon sample of 0.261. PCT dummies have little effect on individual R®

but do improve practice per caplta R®. This is probably because variations in the total budget allocated to
PCTs do not lead to variations in expenditure across patients in the same practice in the same PCT but
do lead to variations in average levels of practice expenditure across PCTs. Finally, adding the full set of
attributed needs and supply variables and two dummies for private outpatient and inpatient use of NHS
hospitals, leads to a further small improvement. Dropping insignificant attributed need supply variables to
produce the parsimonious model has a negligible effect on overall model performance.

Mean cost in 2007/08 per patient on list by age and gender
for all patients on list 1 April 2007 but excluding maternity costs
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Figure 9. Mean cost per patient excluding maternity by age and gender for 2007/08.

We next compare, in Tables 5 and 6 and Figures 10 and 11 the preferred parsimonious model with
encounter variables and the re-estimated preferred restricted parsimonious model with the encounter
variables excluded. The age and gender patterns (Figures 10, 11) are very similar for the two models,
with slightly higher coefficients for older people in the restricted model with no encounters compared with
the unrestricted model. This is probably because the propensity to have more encounters is increasing in
age. The age pattern is very similar for males and females. The effect of age on costs increases for
adults, despite the rich morbidity information in the models, presumably because older individuals have
more severe instances of any given diagnosis. However, comparison with the unconditional age/gender
cost means in Figure 9, shows that the effect of age is smaller in the models with morbidity variables.
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Figure 11. Estimated female age effects relative to male 35-39 for alternative models

The two count variables (number of outpatient attendances and number of inpatient episodes) have
remarkably high t-stats and a considerable effect on the individual level R?, though a much smaller one on
the practice per capita R® between predicted and actual expenditure.”® These variables can be
interpreted as capturing severity (since additional episodes with the same ICD10 code after the first will
not affect the ICD10 morbidity markers). They may also reflect the non-additive effects of having several
episodes with different ICD10 codes. Models with hospital effects which allow for differences in
admission threshold or inter-consultant referral thresholds produce very similar results, suggesting that if
the encounter variables are reflecting supply side factors they arise from unobserved differences in
practice characteristics (idiosyncratic practice or GP style).

Because of the large number of past HES based morbidity markers (152 ICD10 groupings) included in
the models only a few of the large number of attributed need variables are significant in the two models.
These attributed needs variables make relatively difference to model fit.

Persons in social rented housing, disability allowance claimants, and lack of qualifications have plausible
positive coefficients in both models. The ONS area classification Mature City Professionals has a
negative coefficient in both models. We interpret this as picking up the greater likelihood that people in
these areas are more likely to use private health care and so incur less NHS expenditure. Similarly we

'8 In the models to explain 2006/7 expenditure for individuals on practice lists at 1 April 2005 with explanatories from 2003/4 and
2004/5 we found that dropping the encounter variables also had a marked effect on R? at individual level but less of an effect at
practice per capital level (see Table 3).
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suggest that the student population variable has a negative sign in both models because it is picking up
private health care use.

The coefficient on the dummy for having any private episodes is negative in both models. Having a
private inpatient episode in an NHS hospital in the previous two years reduces NHS expenditure in
2007/8 by £491 or £556 depending on the model. This is also plausible since individuals who have been
private patients in the past are more likely to go private in the future if il and thus to generate less NHS
expenditure. Since the aim of the resource allocation process is to allocate resources for NHS care we
treat the private care variable as measure of need. Practices with more patients who go private in NHS
providers will receive, ceteris paribus, a smaller budget.

When the four encounter variables are forced out of the model, asthma prevalence (calculated from QOF
data) become positive and significant. This is probably because asthma patients are more likely to have
repeated attendances at outpatients.

There few significant attributed supply variables, possibly because of the inclusion of PCT dummies.
Practice stroke care quality (as measured by QOF stroke achievement) has a negative effect on
expenditure in both models. Since we treat stroke care quality as a supply variable in the allocation
calculations (see section 5) there is no disincentive effect for QOF quality via the practice budget. The
supply of MRI scanners also has a positive effect of expenditure in both models. Access to residential
beds reduces costs in the model with encounters because easier access will reduce length of stay in NHS
hospitals.

Table 5 reports the coefficients on the 152 ICD10 category dummies for HES admission during 2005/5 or
2006/7. Consider the unrestricted model coefficients. It might at first sight seem surprising that 80 of the
150 non null coefficients are negative. The coefficient on a morbidity category is the effect on costs of an
admission in that category, given the value of the other explanatories. The unrestricted model also
contains a count of admissions and outpatient attendances in 2005/6 and 2006/7. Anyone with a
diagnostic code from 2005/6 or 2006/7 must have had a past admission in 2005/6 or 2006/7 and a high
proportion of them will also have had an outpatient attendance. Thus the coefficient on the code dummy
is the additional expected cost of having that type of diagnosis. Thus the full effect of an admission in
2005/6 or 2006/7 on costs in 2007/8 is the sum of the coefficient on the diagnostic category of that past
admission, the coefficient on the number of past admissions, and (a proportion of) the coefficient on the
number of past outpatient attendances. The coefficient on the number of past admission is £299 and on
outpatient attendances is £46. When the coefficient on the number of past admissions is added to the
diagnostic coefficients the sum the number of negative codes falls to 16 and if the coefficient on
outpatient attendances is added as well the number falls to 11.

The restricted model omits the count variables. Hence the cost effect of a past diagnosis will now pick up
the cost element attributed to past attendance and episode number in the unrestricted model. Forcing out
the encounter variables increases 143 of the coefficients in the restricted model and the average
proportionate increase' in coefficients is 1.75 compared to the unrestricted model. In the restricted
model only 22 of the coefficients on past diagnostic categories are negative.

None of the negative coefficients in the restricted model are large except A90-A99: Arthropod-borne viral
fevers & viral haemorrhagic fevers which is extremely rare. Some negative coefficients are because past
successful treatment reduced the likelihood of future admission. For example, with K35-K38 (Diseases of
the appendix), if the patient survives the operation they can never get appendicitis again. Alternatively, a
past inpatient episode with dementia (FOO - FO3) diagnosis may reduce 2007/8 cost because this was an
initial occurrence and the patient was then transferred to a care home.

"7 Calculated as (restricted coefficient — unrestricted)/(absolute value of unrestricted coefficient).
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5. Setting needs based practice budgets

The target allocation to a practice in a CCG/PCT is the practice’s share of the total need in the CCG/PCT
multiplied by the total budget the CCG/PCT decides to give to its practices for commissioning. Practice
need is calculated by applying a set of regression coefficients from a model to explain individual
expenditure to a corresponding set of explanatory variables for the practice. In this section we first
describe a procedure for calculating practice needs which makes use of the latest data which is available
for the estimation of regression coefficients and the calculation of practice explanatories. We then
discuss two reasons why variables which explain expenditure should not influence practice target
allocations: (a) they do not reflect need for NHS resources' or (b) they will create perverse incentives if
they are allowed to affect the practice budget. In the light of these considerations we then compare three
candidate calculations of practice need and suggest that the choice amongst them will depend on the
relative importance of a better estimate of practice need versus the wish to avoid perverse incentives.

5.1 Calculating practice allocations

Budgets for say 2010/11 are set in the autumn of 2009 and because of lags in the availability of data on
hospital use and expenditure, they have to be based on models to explain 2007/8 expenditure using data
from 2005/6 and 2006/7. The following procedure makes use of the most recently available data at each
step:

(i) estimate a model for 2007/8 expenditure for individuals in a practice at 1 April 2007 using
explanatories from 2005/6 and 2006/7.

(i) calculate the means of the explanatory variables for 2006/7, 2007/8 for each age/gender group in
each practice where the means are based on the patients registered in the practice at 1 April 2008.
(For supply variables use the national age/gender means for all practices.) This uses the most up to
date information on explanatories.

(iii) apply the coefficients from the step 1 model to the practice age/gender explanatory means from
step (ii) to calculate per capita need in £s in each practice/age/gender group.

(iv) multiply the practice age/gender per capita needs by the number of patients in each practice
age/gender group at budget setting date in autumn 2009 and sum over all age/gender groups within a
practice. This makes use of the most recent information on practice lists and produces a total
practice need measured in £s.

(v) share out the total CCG/PCT budget in proportion to the practices shares of total need as
calculated at step (iv).

This approach does not require individual level predictions for those moving practices, and therefore
removes the necessity to track specific individuals at the time they move. It also reduces the impact on
model performance of data lags because the age-gender group average needs index are more stable
over time than individual level needs variables (and therefore expenditures).

The procedure for calculating allocations rests on the assumption that applying coefficients from the
regression model which uses 2005/6 and 2006/7 data to explain 2007/8 expenditure to the
age/gender/practice means calculated from data for 2006/7 and 2007/8 gives a reasonably accurate
estimate of average need per person in the age/gender/practice group in 2010/11. We are thus not
attempting to predict need in 2010/11 at individual level for individuals on the practice list at budget
setting date in autumn 2009. Individual level explanatories are likely to vary over time and accordingly the
relationship between explanatories and expenditure on the individual will therefore depend on the chosen
lag length. We are using age/gender/group means, not individuals.

'8 In the terminology of Van de Ven and Ellis (2000) need variables are solidarity variables.
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The procedure assumes that the relationship between explanatories (at 1, £2) and expenditure at t is
reasonably stable over time (ie we would get similar coefficients using t+s-1, t+s-2 explanatories to
explain t+s expenditure. It also requires that practice/age/gender mean explanatories are reasonably
stable over time (unlike individual explanatories) so that the calculation of practice need is not affected by
the lag between the date at which the practice/age/gender means of explanatories are calculated and the
budget year.

We investigated the robustness of the procedure in two ways. First, we applied the coefficients from a
regression model which uses 2004/5 and 2005/6 data to explain 2006/7 expenditure to the
age/gender/practice means calculated from data for 2006/7 and 2007/8. We then calculated practice
shares of total PCT need from this procedure which used lagged coefficients with the practice shares of
total PCT need when the coefficients were from the most up to date model. The correlation of practice
shares was 0.999

Second, we tested for stability with respect to lags in the data used to calculate the age/gender/practice
means of the explanatories. We applied coefficients from the regression model which uses 2005/6 and
2006/7 data to explain 2007/8 expenditure to the age/gender/practice means calculated from data for
2005/6 and 2006/7. We calculated practice shares of total PCT need with this lagged explanatory data
and compared the allocations with those using the most recent data for 2006/7 and 2007/8. The
correlation of practice shares of total PCT need was 0.995.

Whilst the most recent data should be used to estimate the underlying models and to calculate the
age/gender/practice means of the explanatories, the calculation of practice allocations seems robust to
lags in timing. The reasons are that shares of allocations are driven by practices shares of the PCT
population and the procedure uses age/gender/practice means rather than individual data which would be
much more volatile.

5.2 Do encounter variables measure need or supply?

There are three types of variables which should not affect allocations: (a) measures of supply; (b) socio-
economic variables which have inappropriate or counter intuitively signed coefficients, for example
negative coefficients on ethnicity or unemployment measures; (c) variables which would generate
perverse incentives. In the current study, because of the richness of our individual level morbidity
measures, there were no inappropriately signed socio-economic variables. Both the count of inpatient
episodes and the count of outpatient attendances have large, highly significant, positive coefficients in our
preferred parsimonious model. It is clear that these explanatory variables reflect something which makes
a substantial contribution to the variation in costs. The question is whether they reflect need or supply;
and, even if they have reflected need in the past, whether letting them influence future allocations will
create seriously perverse incentive.

The rationale for their interpretation as need variables is that the number of times an individual has been
admitted or attended in the past conveys something about their morbidity over and above the ICD10
dummy morbidity category variables. The morbidity category dummies, whilst very powerful as
explanatories, do not reflect repeated admissions falling in the same ICD10 category. The count variables
will therefore partially reflect severity. The use of morbidity categories also means that different
morbidities have an additive effect: they do not reflect the possible effects of comorbidity. The count data
measures will also pick up some part of the non-additive effects of comorbidity.

But it can also be argued that the count variables are also picking up supply factors. For example, better
resourced areas may have providers with shorter waiting times or different providers may have different
admission thresholds or provide better quality of care which leads to increased referrals from GPs, or
secondary care may be a substitute or complement to GP services. Our models have included a large
number of supply variables, PCT dummies, and QOF practice quality scores. We have also estimated
models with additional provider effects which should pick up differences in provider outpatient and
admission policies. Including these variables has little effect on the coefficients on the encounter
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variables. It is however possible that the count variables reflect purely idiosyncratic GP behaviour
(“practice style” or practice quality not correlated with QOF quality).

5.3 Perverse incentives?

5.3.1 GP incentives

Under PBC practices have a nominal budget with the intention, inter alia, of making them consider the
costs of their decisions affecting hospital use, as well as their benefit to patients. Budget surpluses are not
intended to be treated as personal income: they are meant to be spent on patients, for example by
commissioning non-hospital care. Thus, unless GPs find illicit means of appropriating budget surpluses,
their incentives as regards costs falling on their hospital budget depends on the marginal value they place
on using surpluses to fund other types of care. The more altruistic the GP the greater the incentive to
reduce hospital costs.

Admissions and referrals. If the outpatient and inpatient count variables are allowed to affect the budget,
additional referrals or admissions will increase the budget two and three years later. The coefficient on
the outpatient count is £46. Thus an additional outpatient referral would increase the practice budget two
and three years later by £46 in each year (multiplied by the ratio of PCT total practice budget to total
need). An adult first referral has a price of (2008/9) £160. The implication of treating the outpatient count
as a need variable is that the net impact of a GP outpatient referral on the practice budget is greatly
reduced.

GPs can clearly influence patient decisions to seek elective inpatient treatment. They can also affect
emergency admissions via the quality of care they provide for Ambulatory Care Sensitive Conditions
which can be managed in primary care (Bindman et al, 1995; Dusheiko et al, 2011a; Dusheiko, et al.,
2011b). A practice budget will impose the costs of admissions for ACSCs on the practice and therefore
incentivise prevention. But this incentive will be reduced because the additional admission will increase
the future practice budget. However, to the extent that the effects of preventive care on admissions do
not arise immediately but may be delayed, the future effects of changes in prevention will also be
delayed. Moreover, around 8% of patients move between practices in a year, and the future financial
effect of current preventive care provided to them will not be borne by the practice making the prevention
decisions. There are also direct and immediate financial incentives for practice prevention from the
Quality and Outcomes Framework (Campbell et al, 2009). Thus the dilution of incentives for prevention if
the count variables affect budgets may not be great.

Cream-skimming. It is possible that budget holding practices will also consider patient hospital costs
when deciding whether to accept or retain patients on their lists. If practices have information about
patients’ characteristics, and therefore their expected future costs, in addition to that used in setting
practice budgets, then they may cream-skim potential patients or dump existing patients.

The budget formula is based primarily on hospital records. Practices will have better information on
existing patients. In principle this would give them the ability to identify patients whose expected costs
greatly exceed their contribution to the practice budget and attempt to remove them from practice lists.
However, it is more difficult for practices to remove existing patients from their list than to refuse to accept
new patients, and it would be easier to regulate by monitoring patient lists. Cream skimming of new
patients is less easy to monitor but GPs’ ability to predict patient costs may be no better than the budget
model and possibly worse since they do not have access to potential patients past hospital records.

5.3.2 Incentives for hospitals

Hospitals can affect practice budgets by admitting a patient with new ICD10 diagnosis, and if the
outpatient appointment and inpatient episode variables affect budgets, by additional admissions and
outpatient appointments. The resulting increased practice budget may lead to increased demand for
hospital care. However, the perverse incentive effects for providers are weak. First, because of lags in
data availability, an increase in the admissions or outpatient referrals in year t will not affect the practice
budget until years t+2 and t+3. Second, the practice need not spend its increased budget at the provider:
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it will use a mix of providers (Dusheiko et al, 2008) and it may not spend its budget entirely on hospital
care.

5.4 Comparison of practice allocations

Since there are arguments for and against letting practice budgets be affected by their encounter
variables we compare three sets of allocations. The first treats encounter variables as predominantly
measuring need and places a low weight on any consequent perverse incentives and so permits
variations in encounters across practices that affect their allocations.

The second and third calculations of allocations do not let variations in encounters affect practice
allocations, either because they reflect supply or because of their incentive effects. They differ in the way
in which the encounter variables are sterilised. The second method (frozen parsimonious model) uses
the coefficients from the parsimonious model but sterilises encounters by calculating budgets using the
national age/gender means values of the encounters, rather than practice/age/gender specific values.
The third method (restricted parsimonious model) uses the coefficients from the restricted parsimonious
model which does not use encounters to explain expenditure. As we show in the Appendix, the choice
between these two methods of sterilising non need variables rests on untestable assumptions about the
underlying structural model determining expenditure (Gravelle et al, 2003; Smith, Rice and Carr-Hill,
2001). The earliest English utilisation based allocation formulae used the third method to sterilise supply
variables (Carr-Hill et al, 1994). Later English formulae used the second method of leaving the non-
needs variables in the model but applying their coefficients to their mean values (Sutton et al, 2002;
Morris et al, 2007).

The frozen parsimonious model produces allocations which vary less across practices than the other two
methods. The reason is that by retaining the positive coefficients on the encounter variables but
multiplying by the national means of the variables, a large positive constant is added to the calculated
need (£s) of all practices and thus there is less variation across practices in their shares of total calculated
need.

Table 7 shows the correlations in the practice budgets amongst the three calculations. We have also
calculated the practice allocation which would result from applying to practices the previous resource
allocation formula (CARAN) based on small area data which was used to allocate funds to PCTs. The
four allocations are reasonably highly correlated. Table 8 shows the correlations of the difference
between each individual based allocation and the CARAN allocation with the mean of the individual based
and CARAN allocations. If we interpret the mean of the individual and CARAN based allocations as an
estimate of the true need based allocation a positive correlation implies that the individual based
allocation is more responsive to need than the CARAN allocation. Table 8 suggests that parsimonious
model, with no freezing of encounters, produces allocations which are more responsive to need than the
new parsimonious model. The frozen parsimonious model based allocations are less responsive to need
than CARAN based allocations.

Table 9 shows how far the practice budget shares calculated by the three methods are from practice
shares of total expenditure in 2007/8. The budgets from the parsimonious model would be closest to
actual expenditure shares and those from the frozen parsimonious model the furthest away. From Table
10 we see that distances between practice budget shares and expenditure shares are only very weakly
correlated with practice need
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6. Conclusions

Despite the problematic distribution of individuals’ hospital expenditure (a high proportion of zero
expenditures, a long right tail) we found that, because of the large (5M) sample sizes we were able to use
a simple one part OLS which did better in predicting expenditure than the more elaborate one and two
part OLS models with transformed expenditure or GLM. This is in line with other work in health care
systems with different institutional and financial arrangements (Van de Ven and Ellis, 2000). The R® on
our models were also in line with studies in other countries.

Our dependent variable was total expenditure with mental health and maternity excluded. In future work it
will be worth investigating whether disaggregating expenditure into more homogenous types of hospital
care improves model fit. One obvious disaggregation would be into expenditure on elective and
emergency care since different factors are likely to influence the need for these groups of care. Another
possibility is to decompose expenditure into functional programme budget categories.

The key explanatory variables were the morbidity variables derived from ICD10 diagnoses reported for
hospital use in the two previous years. We found that a relatively straightforward partition with 152
categories, used by the Information Centre to report volume of activity, did as well in terms of per capita
practice predictions as systems with more categories. Further refinements (for example age/gender
interactions with some of the diagnostic categories, adding more years of history, allowing for the time
since diagnosis) are likely to boost predictive performance.

Encounter variables, especially the number of outpatient appointments and the number of inpatient
episodes in the previous two years, were very powerful explanatory variables, yielding considerable
increases in predictive power at individual level and worthwhile, though smaller increases in R? at per
capita practice level. However, the interpretation of these variables as reflecting past morbidity or supply
factors and the possibility that using them to set allocations could generate perverse incentives for
practices, makes it highly debatable whether they should be allowed to influence target allocations.

The choice between the three methods for determining target allocations for practices depends on factual
judgements about the underlying unobservable structural model determining expenditure and the
magnitude of perverse incentives. It also depends on value judgements about the importance of
differences in need across practice populations. It is clear, irrespective of one’s preferred procedure, that
actual allocations differ considerably from those based on measures of need derived from the expenditure
models.
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Appendix: Structural model

Consider a simple model of need, utilisation (encounters) and expenditure:

N, =o, +ax,; +a,x, +&" (10)
U,=6,+08,z,+6,2,, +O,N, + & (11)
C, =B+ Bz + Bz + BN, + BU, +gic (12)

where N is need, U is utilisation, C is expenditure. The x are need variables, z are supply variables.
We observe x; but not x,, and z; but not z.. We do not observe N. Figure A1 illustrates. The three
errors in the model are conditionally mean independent of the explanatories and mutually
uncorrelated. The need and supply variables may be correlated with each other but the errors in
three equations are uncorrelated, conditional on the need and supply variables.

Suppose we estimate two models of expenditure by OLS in an attempt to calculate unobserved need.
The first model (corresponding to our parsimonious model) includes observed need variables,
observed supply variables and utilisation. The second estimated model (corresponding to our
restricted parsimonious model) drops utilisation.

C =a,+ax;+a,z,+aU, +8l.1 (13)

C =cy+ox; +6,7, +gi2 (14)

—a T

Xz/ T

’ &
Figure A1. Model of need, utilisation, and cost

From (8) the true cost model corresponding to estimation model (9) which includes the utilisation
variable is

C, =By + B0, + Bz + Brzy + By xy; + Byay x, + U, + gic + ﬂsg;N (15)

and so the coefficients on the variables included in (9) pick up their effects plus the effects of the
omitted need and supply variables (x», z) with which they are correlated:
plim a, = B, + B;6, + bx:O.xlle Ba, + bzz().xlle B,
plima, = Bia,+b, . B, +b, . P, (16)
plima, = j + bx:zl .xlUﬂ3a2 + bzzzl.leﬂZ (17)
plima, = B, + bsz.xlzl Ba, + bzzU.xlzl B, (18)
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where, for example, b,

0.5 2U
and U, and b b are the coefficients on x; and z;.

Xx.9U 7 T xyz.4U

is the constant term from the linear multiple regression of x, on xi, z

Similarly the true cost model corresponding to estimation model (10) which drops the utilisation
variable is

C.=p,+ (ﬁs + ﬁ453)a0 + B,6, + (ﬁl + ﬁ451)zli +(ﬁ2 + ﬁ451)Z2i +(ﬁ3 + B,6; )alxli
+(ﬁ3 + ﬁ453)a2x2i +5ic +(ﬁ3 + ﬁ453)5;N + ﬁ455U (19)

and the estimated coefficients for (10) have probability limits

plim ¢, = 3, + (ﬁs +0,0, )ao + B,6, +bx20.xlzl (ﬁ3 + 53ﬁ4)a2 +bz:0.x1z1 (ﬁz + ﬁ451) (20)

th 61 = (ﬁS + 53ﬁ4)051 +bx2x1.zl (ﬁ3 + 53ﬁ4)052 +bZzX1-Zl (ﬁz + ﬁ451) (21)

plim¢, = (ﬁl + 53ﬁ4) +b, . . (ﬁ3 +0,0, )a2 +b_, . (ﬁz + B9, ) (22)

where, for example, b,_, . is the constant term from the linear multiple regression of X on x;, z; and
oz D, @re the coefficients on x; and z;.

We can calculate three measures of need using the results and then use them to calculate practice
allocations according to the procedure outlined in section 5.1. The first assumes that utilisation is a
need variable which should affect the allocation, but freezes supply at its mean

N!=a,+ax, +a,z,+aU, (23)
The second assumes that utilisation is not a need variable and freezes it and supply at the national
means:

N2 =é,+a,x, +4,7, +a,0 (24)
The first two approaches use the estimated cost model (18) which includes the utilisation variable.

The third approach, like the second approach (24), also assumes that utilisation should not affect
allocations but achieves this by dropping utilisation when estimating the expenditure model (15) and
basing the allocation on the estimated coefficient on the need variable:

. L
N; =¢,+¢x, +6,7, (25)

First we compare ]\Afl.1 and ]\Afl.2 . The difference between these measures of need is that there is less
variation across practices for N Zthan for N ! because more the encounter variable U does not vary

across practices for N f. The effect of the variation in U across practices in N l.l depends on the
estimated coefficient on U (a,). This coefficient will pick a direct effect of U on costs via Bs. Since
this does not reflect need this part of @, should not influence the practice allocation. Similarly neither
should the part of a, which reflects supply variation (bzzU‘xlzlﬂz. But a, also picks up an indirect

effect of the unobserved variable x, which determines need (b, ;, , . B, ) and we would want to have

this affect the allocation. Unfortunately there is no means of decomposing 4, into its constituent

parts and just using the part related to need. The choice between ]\Afl.1 and ]\Afl.2 as a measure of need



Modelling individual patient hospital expenditure for general practice budgets 29

depends on a judgement on whether including the need component of @, improves the measure of
need more than the other two components worsen it.

Comparing Z\Afl.3 and Niz, there will again be less variation in ]\Afl.2 because U is frozen at its mean.
And, as a result of dropping the utilisation variable U in estimating the expenditure model, the
coefficient on the observed need variable is changed from @, to ¢,. The difference in the probability
limits is

plim (¢, —a,) =6,B,0, + |:(bx2xl.zl —b, .\ v )ﬂ3 +b, . . 53@&0‘2
(b, by ) o+ i (26)

The first term &, B, reflects the observed need variable x; via its effect on utilisation which is frozen

out of ]\Afl.2 . The second term is the change in the extent to which the unobserved need variable x; is

picked up by the observed need variable because it is now also picking the effects of x, via the
correlation of U and x;. The third term is the change in the extent to which the coefficient on x; is
contaminated by the unobserved supply variable z,. The last term is an additional contamination of
the coefficient on x; via the effect of the unobserved supply variable on utilisation. Again a judgement

about the relative importance of including more of the effect of need in ]\Afl.3 against picking more of

the supply effects is required to choose between Z\Afl.3 and N l.z .

The comparison of ]\Afl.1 and ]\Afl.3 is even more complicated since in addition to the comparison of 4, to

¢, we have to take account of the fact N ! allows for U to affect the allocation.

If one believes that incentive effects should carry less weight than having a good measure of need
and that encounter variables reflect need more than supply, then the best measure of need is N l.l. If

one believes that the encounter variables are either reflecting supply more than need or one places
more weight on perverse incentives than on a better measure of need, then the choice is between

Z\Afl.3 and N > which removed the effects of encounter variables in different ways.

The above procedure freezes supply (or other non-need variables which should not affect allocations)
its national mean. This convention is essentially arbitrary but has been used in previous allocation
formulae. One obvious alternative would be to set all non-need variables to zero. This would have
the effect of making calculated practice need more variable across practices. As a consequence the

second method of sterilising the effect of encounter variables by freezing them (1\7?) would then lead

to greater variation in calculated need than the dropping them from the estimated model (]\Afl.3 ).
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Table 1. Comparison of one part models of 2006/7 patient expenditure

Estimation Sample Validation Validation
One-Part Models N = 5,208,225 Sample 1 Sample 2
N = 5,207,347 Practices: N = 812
R? RMSE MAPE AIC R? RMSE MAPE R? RMSE MAPE R?
total practice practice practice
practice per per per
capita capita capita

OLS 1672 2462.6 599.5 96,122,909 | .1685 2475.1 601.0 .9632 60.5 41.2 7441
Square-root models
SQRT(cost) — No smearing .1303 2533.5 456.8 44,254,235 | .1306 2548.7 458.5 .9184 301.1 288.4 5724
SQRT(cost) — Smearing .1303 2517.2 633.5 44,254,235 | .1306 2532.5 635.2 .9088 87.2 62.8 5724
SQRT(cost) — Heteroskedastic (by decile) | .1437 2500.8 598.6 44,254,235 | .1444 2516.0 600.2 .9446 71.8 49.3 .6395
GLM models with identity link functiont
GLM: Constant variance 1672 2462.6 599.5 96,122,909 | .1685 2475.1 601.0 .9632 60.5 41.2 7441
GLM: Variance = Mean * * * * * * * * * * *
GLM: Variance = Mean”2 * * * * * * * * * * *
GLM: Variance = Mean”3 * * * * * * * * * * *
GLM models with Log link function
GLM: Constant variance .1367 2509.1 704.8 96,317,753 | .0962 2609.0 708.2 .8432 157.3 122.5 .3059
GLM: Variance = Mean .0609 2878.0 629.3 8.164e+9 .0439 3292.5 633.3 .9442 73.5 49.4 .6297
GLM: Variance = Mean"2 .00000005 | 3.0e+15 | 2.5e+25 | 68,062,912 | 2.2e-8 9.8e+14 | 4.2e+24 .0003 1.2e+14 1.2e+24 .0010
GLM: Variance = Mean”3 * * * * * * * * * * *

* Model failed to estimate. t A Park test yields A = 1.67 , suggesting that the GLM variance function most closely resembles the gamma (variance proportional
to the mean squared) family. The AIC for the log models also favours the gamma family.
Models are for 2006/7 expenditure of patients on practice list at 1 April 2006 using 38 age/sex categories, 152 ICD10 morbidity categories, 4 encounter
variables, 6 attributed need, 6 attributed supply variables, 152 PCT effects, with morbidity and encounters measured for 2004/5, 2005/6.
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Table 2. Comparison of two part models of 2006/7 patient expenditure

Estimation Sample Validation Validation
N = 5,208,225 Sample 1 Sample 2
N = 5,207,347 Practices: N = 812
R® RMSE MAPE AIC R® RMSE MAPE R® RMSE MAPE R*
total practice practice | practice
practice | per capita | per capita per
capita

Probit + OLS .1680 2461.5 591.7 32,176,474 | 1697 | 2473.6 593.1 .9631 61.0 41.5 .7434
Square-root models
Probit + SQRT(cost) — No smearing 1514 2493.2 508.9 15005327 1513 | 2507.1 510.3 .9516 189.7 173.9 .6811
Probit + SQRT(cost) — Smearing .1557 2480.0 603.5 15005327 1560 | 2493.8 604.9 .9422 71.2 48.1 .6660
Probit + SQRT(cost) — Heteroskedastic (by decile) .1585 2475.5 593.6 15005327 1594 | 2489.3 595.0 .9520 67.6 45.5 .6832
Log models
Probit + Log(cost) — No smearing .00045 46707 521.4 5395689.9 | .0003 | 63082 532.4 .0584 598.2 280.1 .0024
Probit + Log(cost) — Smearing .00045 111812 713.6 5395689.9 | .0003 | 151063 739.1 .0584 1309.1 152.9 .0024
Probit + Log(cost) — Heteroskedastic (by decile) .00045 129441 743.0 5395689.9 | .0003 | 174883 772.3 .0496 1517.1 180.6 .0024
GLM models with identity link functiont
Probit + GLM: Constant variance .1680 2461.5 591.7 32,176,474 | 1697 | 2473.6 593.1 .9631 61.0 41.5 .7434
Probit + GLM: Variance = Mean * * * * * * * * * * *
Probit + GLM: Variance = Mean”2 .1535 2490.5 592.0 26,647,127 | .1558 | 2502.1 593.4 .9523 70.1 46.3 .6813
Probit + GLM: Variance = Mean”3 1441 2506.3 590.7 33,867,407 | .1464 | 2158.5 592.2 .9483 74.3 49.1 .6588
GLM models with Log link function
Probit + GLM: Constant variance .1526 24841 618.4 32,206,841 | .1302 | 2539.6 620.9 9174 88.9 65.6 .5552
Probit + GLM: Variance = Mean .1183 2572.7 602.4 4.5e+9 .1048 | 2651.1 604.9 .9594 63.7 43.5 .7168
Probit + GLM: Variance = Mean”2 .0290 173363 1463.9 26,655,960 | .0115 | 336518.8 | 1691.2 .0815 3353.9 966.7 .0283
Probit + GLM: Variance = Mean”3 .0012 9.0e+13 8.2e+10 33,867,405 | .0002 | 4.2e+14 2.2e+11 .0002 21e+12 1.0e+11 .0002

* Model failed to estimate. £ AIC applies to the second stage of the two-part model. T A Park test gives A=1.87, suggesting that the GLM variance function most closely resembles the gamma
(variance proportional to the mean squared) family. The AIC for the log models also favours the gamma family.

Models are for 2006/7 expenditure of patients on practice list at 1 April 2006 using 38 age/sex categories, 152 ICD10 morbidity categories, 4 encounter variables, 6 attributed need, 6 attributed
supply variables, 152 PCT effects, with morbidity and encounters measured for 2004/5, 2005/6.
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Table 3. Comparison of morbidity marker sets

Sample
Estimation Individual Practice validation
validation
Morbidity marker set R> R Per capita R° Per capita
actual/predicted <
+/-10%
152 ICD10 markers, 4 encounter variables, 2003/4, 2004/5 0.0897 0.0917 0.6968 64
152 ICD10 markers, 4 encounter variables, 2004/5 0.0875 0.0909 0.6843 62
22 ICD10 markers, 4 encounter variables, 2003/4. 2004/5 0.0865 0.0884 0.6968 64
22 ICD10 markers, 4 encounter variables, 2004/5 0.0843 0.0878 0.6801 61
281 ICD10 markers, 4 encounter variables, 2003/4. 2004/5 0.0937 0.0963 0.6946 63
281 ICD10 markers, 4 encounter variables,2004/5 0.0920 0.0959 0.6821 61
70 HCCs, 185 ICD10 markers, 4 encounter variables, 2004/5 0.0919 0.0958 0.6818 61
70 HCCs, 152 ICD10 markers, 4 encounter variables, 2004/5 0.0916 0.0958 0.6819 60
260 CCS markers, 4 encounter variables, 2004/5 0.0913 0.0945 0.6841 61
152 ICD10 markers, 2003/4, 2004/5 0.0501 0.0502 0.6462 58

All models contain 36 age/gender groups, 152 PCT groups. Dependent variable: expenditure in 2006/7 on individuals on the practice list at 1 April 2005.
! o difference between per capita actual and per capita predicted expenditure in practice is less than 10% in absolute value.
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Table 4. Comparison of models for 2007/8 expenditure

Est Individ Pract per | % Practices with less
indiv validation | capita R? | than 10% diff between
Rz2 Rz per capita predicted &
actual

Model 1: age and gender 0.0373 0.0366 0.3444 42

Model 2: age and gender, morbidity markers set 1 | 0.2656 0.2610 0.7394 62

Baseline model: age and gender, morbidity | 0.2659 0.2612 0.8046 71

markers set 1, PCT dummies

Full model: age and gender, morbidity markers | 0. 2662 0.2615 0.8254 77

set 1, PCT dummies, 2 private use variables, 135

attributed needs, 63 supply

Parsimonious model: age and gender, morbidity | 0.2662 0.2615 0.8224 76

markers set 1, PCT dummies, 2 private use

variables. 5 attributed needs & 3 supply

Restricted parsimonious model: age and | 0.1272 0.1229 0.7735 68

gender, PCT dummies, 1 private use variable, 6

attributed needs & 3 supply, 152 IC ICD10

categories

Models to explain 2007/8 expenditure for individuals on practice lists at 1 April 2007 with morbidity variables from 2005/6,
2006/7. Morbidity markers set 1: 152 ICD10 categories used by Information Centre, 4 encounter variables.

Table 5. Comparison of parsimonious and restricted parsimonious models

Parsimonious model Restricted
Parsimonious model
coef t coef t
number of episodes, 2005/06 & 2006/07 299.07 945.99
number of attendances, 2005/06 & 2006/07 45.69 232.31
any priority referral to outpatients, 2005/06 & 2006/07 70.99 25.38
any treatment received at outpatients, 2005/06 & 2006/07 55.68 14.05
Persons in social rented housing 0.28 3.77 0.35 4.38
All disability living allowance claimants 337.04 5.42 422.42 6.25
Persons 16-74 with no qualifications - age standardised 23.97 5.68 23.97 5.20
Asthma prevalence rate, 2006 3.17 3.94
ONS area: Mature City Professionals -23.82 -2.83 -28.25 -3.08
Proportion of students in population -1319.46 -9.34 -1571.83 -10.28
Whether had a private episode in 2005/06 or 2006/07 -490.59 -29.45 -555.74 -31.11
Whether had a private attendance in 2005/06 or 2006/07 -167.14 -10.16
MRI machine accessibility score 5436.26 3.76 7781.37 5.26
Residential home beds accessibility score -7.85 -4.39
Stroke QOF population achievement 2005 -0.44 -3.11 -0.74 -4.72
Practice list size, 2006 -0.00004 -3.63
Age/gender categories Yes Yes
147 1CD10 morbidity categories Yes Yes
PCT dummies Yes Yes
Model R2: individual level 0.2662 0.1272
Model R2: practice level 0.8224 0.7735
% practices actual cost per capita within +/- 10% of predicted 75% 68%
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Table 6 Alternative models for resource allocation: morbidity coefficients

Parsimonious Restricted Diagnoses
model parsimonious model as % of
total
diagnoses

(2004/5,

2005/6)

Coef t Coef t %
A00-A09 | Intestinal infectious diseases -84.21 -4.97 90.06 4.88 0.3717
A15-A19 | Tuberculosis -90.48 -1.39 856.50 12.04 0.0224
A20-A49 | Certain bacterial diseases 255.36 11.86 606.18 25.82 0.3705
A50-A64 | Infections with predominantly sexual mode of transmission 92.16 1.58 288.83 4.53 0.0260
A65-A79 | Other infectious and parasitic disorders -412.69 -2.89 -187.79 -1.21 0.0037
A80-A89 | Viral infections of the central nervous system -116.33 -1.46 253.94 2.92 0.0125
A90-A99 | Arthropod-borne viral fevers & viral haemorrhagic fevers -1189.98 -1.90 -1146.79 -1.68 0.0003
B00-B09 | Viral infections characterized by skin & mucous mem. | -109.80 -3.36 331.28 9.30 0.0870
lesns.

B15-B19 | Viral hepatitis 488.00 11.42 934.23 20.06 0.0537
B20-B24 | Human imrnunodeficiency virus [HIV] disease 152.47 2.04 465.51 5.72 0.0166
B25-B34 | Other viral diseases -228.78 -12.97 91.65 4.77 0.2676
B35-B49 | Mycoses 104.29 3.47 354.94 10.82 0.1163
B50-B64 | Protozoal diseases -651.65 -6.29 -262.67 -2.32 0.0085
B65-B83 | Helminthiases -172.24 -1.40 -70.71 -0.53 0.0055
B85-B99 | Other infectious and parasitic diseases 231.06 18.90 288.75 21.66 0.8036
C00-C14 | Malignant neoplasm of liporal cavity and pharynx 478.76 7.96 1239.01 18.89 0.0321
C15-C26 | Malignant neoplasm of digestive organs 168.45 7.53 1179.78 48.41 0.3424
C30-C39 | Malignant neoplasms of respiratory & intrathoracic organs 273.44 7.68 978.99 25.24 0.1974
C40-C41 | Malignant neoplasm of bone and articular cartilage 1192.52 8.77 2349.29 15.84 0.0070
C43-C44 | Malignant neoplasms of skin -253.75 -14.77 243.84 13.05 0.2888
C45-C49 | Malignant neoplasms of mesothelial and soft tissue 536.67 7.26 1493.27 18.52 0.0289
C50 Malignant neoplasm of breast -494.04 -23.19 561.58 24.28 0.2430
C51-C58 | Malignant neoplasms of female genital organs 369.50 10.26 1043.23 26.57 0.0959
C60-C63 | Malignant neoplasms of male genital organs 64.74 2.84 380.92 15.31 0.2146
C64-C68 | Malignant neoplasms of urinary tract 347.95 14.03 1022.19 37.82 0.1862
C69-C72 | Malignant neoplasms of eye, brain & other parts of CNS 1255.31 18.30 2372.25 31.72 0.0347

C73-C80, C97 Malignant neoplsm. of thyroid and oth. endo. Glands | -10.99 -0.50 1001.88 42.14 0.5386
etc.

C81-C96 | Malignant neoplasms of lymphoid, haematopoietic & rel. 973.31 37.78 3217.12 | 115.14 0.1919

tiss.
D00-D48 | In situ & benign neoplasms and others of uncertainty -187.39 -21.88 153.26 16.45 1.2906
D50-D64 | Anaemias 291.44 27.85 598.87 52.50 1.0715
D65-D89 | Diseases of the blood and blood-forming organs 256.23 13.35 1396.20 66.88 0.2859
E00-EQ7 | Disorders of thyroid gland 0.27 0.02 42.42 3.30 0.6698
E10-E14 | Diabetes Mellitus 371.41 45.33 540.63 60.62 1.6892
E15-E90 | Endocrine nutritional and metabolic diseases 37.78 4.87 239.50 28.35 1.9132
FO0-FO3 | Dementia -289.96 -14.48 -435.67 -19.96 0.4390
F04-F09 | Other organic including symptomatic mental disorders 20.62 0.47 -15.79 -0.33 0.0622
F10-F19 | Mental and behavioural disorders due to psychoactive 74.60 5.82 226.30 16.19 0.6117

subst.
F20-F29 | Schizophrenia, schizotypal and delusional disorders -577.99 -24.17 -48.75 -1.87 0.1738
F30-F39 | Mood [affective] disorders -140.28 -9.92 92.62 6.01 0.5105
F40-F69 | Neurotic, bahavioural & personality disorders -203.89 -10.63 189.43 9.06 0.2463
F70-F79 | Mental retardation -1201.03 | -19.19 131.43 1.93 0.0250
F80-F99 | Other mental and behavioural disorders 37.73 1.54 382.93 14.35 0.1384
G00-GO09 | Inflammatory diseases of the central nervous system 598.74 10.95 731.83 12.27 0.0303

G10-G13, G30-G32 Other degenerative diseases (incl. Alzheimer). 18.27 0.70 99.68 3.52 0.2087
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G20-G26 | Extrapyramidal & movement disorders (incl. Parkinsonism). 816.90 31.34 916.53 32.24 0.1714
G35-G37 | Demyelinating diseases (incl Multiple Sclerosis) of the | 479.51 14.66 904.52 25.37 0.0837
CNS.
G40-G59 | Epilepsymigraine & other episodic disorders 13.13 1.41 360.56 35.47 1.0738
G50-G73, G90-G99 Other diseases & disorders of the nervous syst. 767.86 36.79 1229.11 54.02 0.2343
G80-G83 | Cerebral palsy & other paralytic syndromes 414.97 19.19 436.59 18.51 0.2601
HO00-H06,H15-H22, H30-H36, H43-H59 Other disorders of the eye etc. -112.49 -11.18 297.99 27.23 0.9350
H10-H13 | Disorders of conjunctiva (including conjunctivitis) -136.46 -3.40 108.22 2.48 0.0554
H25-H28 | Disorders of lens (including cataracts) -329.22 -35.39 92.20 9.11 1.1944
H40-H42 | Glaucoma -249.97 -10.93 -7.51 -0.30 0.1803
H60-H95 | Diseases of the ear and mastoid process -160.57 -12.49 178.33 12.74 0.5438
100-109 Rheumatic heart disease 307.24 8.71 624.97 16.24 0.0841
110-115 Hypertensive diseases 59.31 10.00 121.24 18.75 4.0337
120-125 Ischaemic heart diseases 87.47 11.59 247.18 30.04 2.5176
126-128 Pulmonary heart disease & diseases of pulmonary | -23.25 -0.91 294.00 10.58 0.1773
circulation
130-152 Other forms of heart disease 180.63 22.44 312.42 35.61 2.3034
160-169 Cerebrovascular diseases -28.08 -1.93 26.84 1.69 0.7501
170-179 Diseases of arteries, arterioles & capillaries 575.66 38.37 908.43 55.55 0.5096
180-189 Diseases of veins & lymphatic system nec. -159.71 -15.29 162.38 14.27 0.8687
195-199 Other & unspecified disorders of the circulatory system 102.09 4.88 176.01 7.71 0.2546
J00-J06 | Acute upper respiratory infections -215.68 -17.49 105.31 7.83 0.5226
J10-J18 | Influenza & pneumonia -1.02 -0.07 133.51 8.64 0.8090
J20-J22 | Other acute lower respiratory infections 100.96 8.39 359.66 27.43 0.8291
J30-J39 Other diseases of upper respiratory tract -254.89 -21.15 69.70 5.31 0.6698
J40-J47 | Chronic lower respiratory diseases 138.94 21.01 289.93 40.22 2.3834
J60-J70 | Lung diseases due to external agents 385.84 8.70 263.30 5.44 0.1125
J80-J99 Other diseases of the respiratory system 395.11 26.65 564.52 34.92 0.6597
K00-K14 | Diseases of oral cavity, salivary glands & jaws -299.20 -30.99 121.33 11.55 0.9008
K20-K31 | Diseases of oesophagusstomach & duodenum -74.19 -9.19 182.78 20.78 1.6714
K35-K38 | Diseases of appendix -326.29 -15.17 -93.49 -3.99 0.1884
K40-K46 | Hernia -166.77 -19.20 10.23 1.08 1.3122
K50-K52 | Noninfective enteritis & colitis 7.86 0.79 355.00 32.77 0.9693
K55-K63 | Other diseases of intestines -41.29 -5.68 185.93 23.48 1.8992
K65-K67 | Diseases of peritoneum 462.27 15.14 720.93 21.65 0.1114
K70-K77 | Diseases of liver 846.51 37.53 1050.54 42.71 0.2321
K80-K87 | Disorders of gall bladder, biliary tract & pancreas -134.94 -10.57 193.07 13.87 0.5887
K90-K93 | Other diseases of the digestive system 29.49 1.86 326.26 18.86 0.4486
L0O0-L14, L55-L99 Other infections and disorders of the skin -63.03 -7.65 221.39 24.69 1.5199
L20-L30 | Dermatitis and eczema -207.62 -8.95 60.20 2.38 0.1530
L40-L45 | Papulosquamous disorders (including Psoriasis) 12.40 0.37 653.99 17.86 0.0736
L50-L54 | Urticaria and erythems -233.82 -5.29 176.99 3.67 0.0434
MO00-M25  Arthropathies 148.62 23.38 438.69 63.58 2.4448
M30-M36 Systemic connective tissue disorders 383.01 14.96 924.55 33.13 0.1422
M40-M54 Dorsopathies 71.95 7.55 406.44 39.12 0.9845
M60-M79 Soft tissue disorders -137.75 -14.39 223.71 21.47 0.9597
M80-M94 Osteopathies and chondropathies 232.89 16.94 456.05 30.43 0.5298
M95-M99 Other disorders of the musculoskeletal system & conn. tiss. -123.87 -2.38 133.57 2.35 0.0316
NO0O0-N08, N10-N16 Diseases of the kidney 830.44 42.10 2145.18 99.94 0.2580
N17-N19 | Renal failure 1835.29 | 114.35 | 4112.19 | 237.45 0.6264
N20-N23 | Urolithiasis -295.39 -14.87 5.25 0.24 0.2138
N25-N29 | Other disorders of kidney & ureter 953.76 29.40 1555.41 43.98 0.0928
N30-N39 | Other diseases of the urinary system -44.05 -4.87 51.83 5.25 1.4596
N40-N51 | Diseases of male genital organs -279.83 -24.50 -93.26 -7.49 0.7275
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N60-N64 | Disorders of breast -284.72 -11.25 80.22 2.91 0.1372
N70-N77 | Inflammatory diseases of female pelvic organs -191.35 -9.56 -35.46 -1.62 0.2340
N80-N98 | Noninflammatory disorders of female genital tract -279.83 -33.60 43.93 4.85 1.3536
N99 Other disorders of the genitourinary system -290.81 -5.08 -349.03 -5.59 0.0300
0O00-008 | Pregnancy with abortive outcome -364.46 -29.73 45.84 3.44 0.5753
010-075, 085-092, 095-099 Complications of labour and delivery -536.41 -63.55 -34.34 -3.74 2.8151
080-084 | Delivery -205.01 -15.29 13.11 0.90 0.5584
P00-P04 | Complications of fetus/neonate affected by maternal -6.31 -0.18 36.30 0.93 0.0772
P05-P96 | Other conditions originating in the perinatal period -7.52 -0.61 107.39 7.99 0.7717
QO00-Q89 | Congenital malformations 284.11 22.81 722.35 53.27 0.5771
Q90-Q99 | Chromosomal abnormalities nec. 676.43 12.96 1080.78 18.99 0.0347
R00-R09 | Symptoms & signs inv. the circulatory/respiratory system -98.59 -14.55 208.10 28.19 2.2415
R10-R19 | Symptoms & signs inv. the digestive system & abdomen -144.01 -23.00 166.50 24.42 2.6585
R20-R23 | Symptoms & signs inv. the skin & subcutaneous tissue -145.45 -8.99 72.82 4.13 0.3381
R25-R29 | Symptoms & signs inv. the nervous & musculoskeletal sys. 118.09 5.73 99.34 4.42 0.2423
R30-R39 | Symptoms & signs involving the urinary system -59.20 -5.72 100.36 8.90 0.9711
R40-R46 | Symptoms & signs inv. Cognition, perception etc. 38.34 2.72 63.26 4.12 0.5745
R47-R49 | Symptoms & signs inv. speech & voice -28.90 -0.93 138.49 4.10 0.1082
R50-R68 | General symptoms & signs 38.25 5.17 271.35 33.67 2.0899
R69 | Unknown & unspecified causes of morbidity 36.09 4.08 354.44 36.74 1.5654
R70-R89 | Abnormal findings of bodily fluids or samples without diag. -31.58 -1.85 235.03 12.66 0.3178
R90-R94 | Abnormal findings on diagnostic imaging/function studies 103.03 5.58 218.00 10.84 0.3062
R95-R99 | Ill-defined & unknown causes of mortality dropped dropped 0.0003
S00-S09 | Injuries to the head -77.66 -5.89 66.40 4.62 0.7506
S10-S19 | Injuries to the neck 287.67 6.24 421.96 8.39 0.0423
S20-S29 | Injuries to the thorax 85.28 2.82 86.36 2.62 0.1099
S30-S39 | Injuries to abdomen, lower back, lumbar spine & pelvis -88.36 -3.59 -27.05 -1.01 0.1693
S40-S49 | Injuries to the shoulder & upper arm -49.89 -2.24 101.32 417 0.2033
S50-S59 | Injuries to the elbow & forearm -257.15 -14.65 -10.21 -0.53 0.3510
S60-S69 | Injuries to the wrist & hand -302.64 -17.69 -6.23 -0.33 0.3701
S70-S79 | Injuries to the hip & thigh 93.60 4.92 -72.41 -3.49 0.3954
S80-S89 | Injuries to the knee & lower leg -113.36 -6.48 93.82 4.92 0.3632
S90-S99 | Injuries to the ankle & foot -135.80 -4.31 32.31 0.94 0.0885
TOO-TO7 | Injuries involving multiple body regions 138.75 1.90 163.52 2.05 0.0157
T08-T14 | Injuries to unspecified part of trunk limb or body -157.43 -3.43 5.14 0.10 0.0467
T15-T19 | Effects of foreign body entering through natural orifice -207.05 -5.26 39.41 0.92 0.0584
T20-T32 | Burns and corrosions -207.86 -4.39 -26.72 -0.52 0.0428
T33-T35 | Frostbite 833.87 1.24 1063.15 1.46 0.0002
T36-T50 | Poisonings by drugs medicaments & biological substances -243.57 -10.85 -49.88 -2.04 0.4012
T51-T65 | Tox. effcts. of substances. chiefly non-medicinal as to | -143.08 -4.96 -12.22 -0.39 0.1278
source
T66-T78 | Other and unspecified effects of external causes 21.85 0.62 197.35 5.17 0.0691
T79 Certain early complications of trauma -347.78 -5.35 -131.15 -1.85 0.0228
T80-T88 | Complications of surgical & medical care nec. 296.52 23.96 1035.76 76.90 0.8436
T90-T98 | Sequelae of injuries of poisoning & other consequences -49.54 -1.68 7.84 0.24 0.1073
Z00-Z13 | Examination and investigation -230.59 -28.36 82.49 9.31 1.4851
Z220-Z29 | Potential health hazards related to communicable diseases 69.12 3.89 276.72 14.27 0.2522
Z30-Z39 | Health services in circumstances related to reproduction -327.30 -47.16 -86.42 -11.43 6.0527
Z40-Z54 | Persons encountering health services for specific care -123.09 -17.36 858.62 112.14 2.4993
Z55-765 | Potential health hazards reltd. to socioeconomic & 99.72 6.68 61.65 3.79 0.5344
psychosoc./
Z70-Z76 | Persons encountering health services in other circs. -58.49 -7.31 63.26 7.25 1.5769
Z80-Z99 | Persons with potential health hazards related to family 45.76 9.13 248.08 45.48 5.6386
U00-U99 | New diseases, bacterial agents dropped dropped 0.0000
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V00-V99 | Transport accidents -133.64 -6.39 3.07 0.13 0.2776
WO00-W99 Falls, submersion, electric current, extreme temperatures -28.60 -2.53 26.44 2.15 1.9121
X00-X99 | Fire, venomous animals, self-harm, assault -79.00 -4.56 109.67 5.81 0.7474
Y00-Y99 | Undetermined intent, war, complications of medical care -97.59 -9.00 64.01 5.41 1.1323

Table 7. Correlations between alternative practice needs indices (n=8222; 48 practices with fewer than
500 patients have been excluded)

Original Frozen Restricted CARAN
Parsimonious Parsimonious | Parsimonious
Original Parsimonious 1.000
Frozen Parsimonious 0.824 1.000
Restricted Parsimonious 0.949 0.879 1.000
CARAN 0.841 0.941 0.887 1.000

Note: All variables are (practice share of predicted PCT need/practice share of PCT population.

Table 8. Correlations of difference between PBRA practice-based needs indices and CARAN indices with

average of PBRA practice-based needs indices (PCT-based) and CARAN indices.

Mean of Mean of frozen Mean of
parsimonious | parsimonious and restricted
and CARAN CARAN parsimonious
and CARAN
Difference : 0.273
Parsimonious and CARAN
Difference: -0.795
Frozen parsimonious and CARAN
Difference: 0.151

Restricted parsimonious and CARAN

Note: All variables relate to the PCT based need index per person (that is, the practice share of predicted PCT need/the
practice share of PCT population). n=8,222 and excludes 48 practices with fewer than 500 patients.

Table 9. Distribution of practices by distance from target (DFT)

Percentage of practices more than x% away from target
> +/-5% > +/-10% > +/-20%
DFT relative to PCT mean
Parsimonious model 53.2 26.1 11.1
Frozen parsimonious 69.5 45.7 19.4
Restricted parsimonious model 61.1 34.6 14.0
Table 10. Correlation between practice need and distance from target (DFT)
Practice need per person

DFT relative to PCT mean Parsimonious Frozen parsimonious Restricted

model model model
Parsimonious model 0.0378
Frozen parsimonious model 0.0867
Restricted parsimonious model 0.0400




