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Background: Many reviews aim to compare numerous treatments and report

results stratified by subgroups (eg, by disease severity). In such cases, a network

meta‐analysis model including treatment by covariate interactions can estimate

the relative effects of all treatment pairings for each subgroup of patients. Two

key assumptions underlie such models: consistency of treatment effects and

consistency of the regression coefficients for the interactions. Consistency

may differ depending on the covariate value at which consistency is assessed.

For valid inference, we need to be confident of consistency for the relevant

range of covariate values. In this paper, we demonstrate how to assess consis-

tency of treatment effects from direct and indirect evidence at various covariate

values.

Methods: Consistency is assessed using visual inspection, inconsistency

estimates, and probabilities. The method is applied to an individual patient

dataset comparing artemisinin combination therapies for treating uncompli-

cated malaria in children using the covariate age.

Results: The magnitude of the inconsistency appears to be decreasing with

increasing age for each comparison. For one comparison, direct and indirect

evidence differ for age 1 (P = .05), and this brings results for age 1 for all

comparisons into question.

Conclusion: When fitting models including interactions, the consistency of

direct and indirect evidence must be assessed across the range of covariates

included in the trials. Clinical inferences are only valid for covariate values

for which results are consistent.

KEYWORDS

consistency, indirect comparison, individual patient data, meta‐regression, mnetwork meta‐analysis,

treatment by covariate interaction
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1 | INTRODUCTION

When many treatments (eg, treatments 1, 2, and 3) exist

for the same condition and they form a connected

network, network meta‐analysis (NMA) can estimate the

relative effects of all treatment pairings (eg, 2 vs 1, 3 vs

1, and 3 vs 2) using all direct and indirect evidence.1-5

The NMA models assume consistency between direct

and indirect evidence for the treatment effects.6,7 The

assumption is satisfied when the consistency equations

hold, for example, for a 3‐treatment network d23=d13
−d12, where, for example, d23 is the treatment effect for

3 vs 2. In other words, the assumption holds when, for

each treatment pairing, the treatment effect is the same

regardless of which trials allocated the 2 interventions.

Methods to assess consistency include comparing

characteristics, investigating treatment effect modifiers,

comparing outcome measurements in the referent group,

node splitting, inconsistency modelling, hypothesis tests,

back‐transformation, multidimensional scaling, a 2‐stage

approach, and a graph‐theoretical method.3,4,6,8-15

It is very common to explore treatment by covariate

interactions in meta‐analyses using meta‐regression or

subgroup analysis.16 Interactions can be included in an

NMA model to evaluate whether each relative treatment

effect varies with a covariate (eg, a patient or methodolog-

ical characteristic, such as disease severity or allocation

concealment).

The benefits of including interactions can be substan-

tial. The model can produce the relative effects of all

treatment pairings for each covariate value. For example,

including an interaction for a categorical covariate, such

as disease severity, which has 2 categories (ie, severe and

nonsevere), would give one set of the relative effects for

patients with severe disease and another set for patients

with nonsevere disease. Similarly, using a continuous

covariate (eg, patient age in years), the relative effects of

all treatment pairings could potentially be calculated for

any covariate value (eg, ages 1, 2, and 3). The estimation

of results for each covariate value allows different

recommendations to be made for different subgroups of

patients; personalising treatment in this way can benefit

patients and ensure the cost‐effective use of health

care.17-26 For example, as shown in an NMA, for the

treatment of epilepsy, sodium valproate is recommended

for patients with generalised seizures whereas carbamaze-

pine is advised for patients with partial seizures.26,27

Furthermore, when heterogeneity and/or inconsistency

is detected in the NMA without interactions, results may

be unreliable. If the treatment effect–modifying covariates

that are causing the variability can be identified, results

from models including interactions can be used to draw

clinically meaningful results.

When fitting NMA models including interactions, we

assume consistency of the treatment effects, where the

treatment effects are estimated at the point where the

covariate is zero (eg, d23=d13−d12) and consistency is

also assumed for the regression coefficients for the

interactions. As an example, for a 3‐treatment network,

β23 = β13 − β12, where, for instance, β23 is the interaction

regression coefficient for 3 vs 2.17,18,20 The assumption for

the coefficients holds when, for each treatment pairing,

the coefficient is the same no matter which trials allocated

the 2 interventions. Another way of viewing these 2

assumptions is simply that the treatment effects must be

consistent at every covariate value. If such assumptions

do not hold, results may be invalid and unreliable conclu-

sions may be drawn.

Therefore, there are 4 possible scenarios that can occur

when including interactions: both assumptions hold

(ie, consistent treatment effects at the zero covariate value

and consistent coefficients); neither assumption holds

(ie, inconsistent treatment effects at zero covariate and

inconsistent coefficients); or only one assumption holds

(either consistency of the treatment effects at zero covari-

ate or consistency of the coefficients). Figure 1A‐D shows

examples of the 4 scenarios. The figures show how the

treatment effect for 3 vs 2 changes with an increasing

covariate value; separate regression lines are shown for

direct and indirect evidence. The direct evidence for 3 vs

2 is from trials that allocated treatments 2 and 3, and the

indirect evidence for 3 vs 2 would be from the remaining

trials. Note that the 2 lines have the same intercept when

the treatment effects at the zero covariate value are consis-

tent (Figure 1A and 1D) and the lines have the same slope

when the coefficients are consistent (Figure 1A and 1C).

In Figure 1, the consistency of the treatment effects at

each covariate value is represented by the distance

between the 2 lines at each covariate value. We see that

when both assumptions hold, the consistency of the treat-

ment effects is the same regardless of the covariate value

(Figure 1A). In Figure 1C, where there are consistent coef-

ficients but inconsistent treatment effects at the covariate

zero, the level of consistency of the treatment effects is the

same at every covariate value. Yet in Figure 1B and 1D,

where the coefficients are inconsistent, consistency of the

treatment effects may differ depending on the covariate

value at which consistency is assessed; at some values,

there is consistency while at other values there is not.

Notice that Figure 1B and 1D is essentially the same graph

but with the y‐axis drawn at a different covariate value. In

Figure 1D, there is consistency at the zero covariate, and in

Figure 1B, there is consistency at a different point. For

Figure 1B, if consistency is only assessed for the parame-

ters estimated by the model (ie, the log odds ratios at zero

covariate and the regression coefficient), the covariate
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range where there is reasonable consistency would be

missed, whereas in the situation presented by Figure 1D,

no points of consistency would bemissed if only the param-

eters estimated by the model are assessed for consistency.

To draw reliable inferences, we must be confident that

there is no evidence of inconsistency for the relevant

range of covariates. Therefore, to gain a full understand-

ing of consistency for a particular dataset, it is important

to assess consistency at different covariate values to deter-

mine whether the consistency assumptions hold across

the entire covariate range of interest, a limited covariate

range, or not at all.

In this article, we demonstrate how to check consis-

tency at different covariate values. To our knowledge, no

other literature has highlighted this issue or demonstrated

methods. We describe and demonstrate how consistency

can change using real individual patient data with a

dichotomous outcome and a continuous covariate under

a Bayesian framework. However, the methods introduced

certainly apply whenever NMA models exploring

interactions are used including frequentist or Bayesian

approaches and any data types.

2 | METHODS

Here, we explain how to assess consistency at different

covariate values by suggesting how to choose the covari-

ate values at which to make the assessment, various ways

to assess consistency, and possible conclusions to draw

from the results.

2.1 | Choosing covariate values

For continuous covariates, consistency can be assessed at

particular covariate values that span the whole covariate

range for which data are available. For example, for the

covariate age in years, if the age of included patients in

FIGURE 1 Graphs showing how the

treatment effect for treatment 3 vs

treatment 2 could change with a covariate

value with separate lines representing

direct evidence (from trials that allocated

treatments 2 and 3) and indirect evidence

(from the remaining trials) when (A) the

treatment effects at zero covariate are

consistent and the regression coefficients

for the treatment by covariate interaction

are consistent; (B) the treatment effects at

zero covariate are inconsistent and the

coefficients are inconsistent; (C) the

treatment effects at zero covariate are

inconsistent and the coefficients are

consistent; and (D) the treatment effects at

zero covariate are consistent and the

coefficients are inconsistent

DONEGAN ET AL. 3



the trials ranged from 18 to 77 years, consistency could be

assessed at equally spaced time points (eg, years 20, 30, 40,

50, 60, and 70). Of course, it is also important to consider

whether results for particular covariate values are of

interest for clinical decision‐making.

For categorical covariates, consistency can be assessed

at each covariate value. For example, for the covariate

disease severity, consistency could be assessed for the

treatment effect applicable for patients with severe disease

and then for those with nonsevere disease.

2.2 | Ways to assess consistency

We propose 3 ways to assess consistency: visual

inspection, calculating inconsistency estimates, and the

corresponding probabilities of consistency.

To set notation, suppose we are comparing the direct

and indirect evidence for a particular comparison,

denoted as treatment Z vs treatment Y. For a treatment

pair YZ, direct evidence would be from trials that

allocated treatments Y and Z, whereas indirect evidence

would be from the remaining trials.

Using direct evidence, suppose the treatment effect for

Z vs Y at the covariate value zero is ddir
YZ and the regression

coefficient for the treatment by covariate interaction for Z

vs Y is βdir
YZ . Therefore, the treatment effect for Z vs Y at

covariate value X from direct evidence is given by

ddir
YZ þ βdir

YZX : (1)

Also, using indirect evidence, suppose d ind
YZ represents

the treatment effect for Z vs Y at the covariate value zero

and β ind
YZ represents the regression coefficient for Z vs Y.

Then, the treatment effect for Z vs Y at covariate value X

from indirect evidence is

d ind
YZ þ β ind

YZ X : (2)

For a 3‐treatment network, estimates of the treatment

effects at the covariate value zero (ie, ddir
12 ; ddir

13 ; and ddir
23 )

and of the regression coefficients (ie, βdir
12 ; βdir

13 ; and βdir
23 )

from direct evidence can be calculated by fitting multiple

pairwise meta‐regression models. The corresponding

results based on indirect evidence (ie, d ind
12 ;

d ind
13 ; d ind

23 ; β ind
12 ; β ind

13 ; and β ind
23 ) could be calculated using

the consistency equations, for example, d ind
23 ¼ ddir

13 −d
dir
12

and β ind
23 ¼ βdir

13 −β
dir
12 . Then, for each chosen covariate

value, the calculated estimates of the treatment effect

and coefficients can be substituted into Equations 1 and

2 along with the covariate value to provide, for each

covariate value, an estimate of the treatment effect for

each comparison Z vs Y based on direct evidence and also

estimates based on indirect evidence.

For larger networks, for each comparison Z vs Y, esti-

mates of the treatment effects and regression coefficients

based on direct evidence and estimates from indirect evi-

dence can be calculated using more advanced techniques,

such as node splitting or back‐calculation.10 Once these

results have been obtained, consistency can then be assessed.

2.2.1 | Visual inspection

For each treatment comparison Z vs Y, at each covariate

value X, consistency can be assessed by visually

comparing the direction, size, and precision of the

treatment effect estimated using indirect evidence (ie,

d ind
YZ þ β ind

YZ X) and that estimated from direct evidence

(ie, ddir
YZ þ βdir

YZX).

2.2.2 | Inconsistency estimates

Also, for each comparison Z vs Y, at each covariate value,

an inconsistency estimate can be calculated as the differ-

ence between the treatment effect estimated using indi-

rect evidence (ie, d ind
YZ þ β ind

YZ X) and that estimated from

direct evidence (ie, ddir
YZ þ βdir

YZX). Therefore, the inconsis-

tency estimate wYZ is

wYZ ¼ ddir
YZ þ βdir

YZX
� �

− d ind
YZ þ β ind

YZ X
� �

;

which can be rewritten as

wYZ ¼ ddir
YZ−d

ind
YZ

� �

þ X βdir
YZ−β

ind
YZ

� �

: (3)

Large positive and large negative values of the incon-

sistency estimate would indicate inconsistency, whereas

values near to zero would suggest agreement between

direct and indirect evidence.

The inconsistency estimate can be calculated at

different covariate values by substituting the estimated

treatment effects and coefficients into Equation 3 along

with the various chosen covariate values.

Notice that if the regression coefficient from direct

evidence (ie, βdir
YZ ) is consistent with the regression

coefficient from indirect evidence (ie, β ind
YZ Þ, that is,

βdir
YZ−β

ind
YZ

� �

¼ 0;

then the inconsistency estimate becomes

wYZ ¼ ddir
YZ−d

ind
YZ

� �

;

and therefore, the estimate does not depend on the

covariate value X and is the same for any covariate value.

4 DONEGAN ET AL.



This is why the level of consistency is the same at every

covariate value in Figure 1C.

However, if instead the treatment effect at the zero

covariate value from direct evidence, ddir
YZ , is consistent

with that from indirect evidence (ie, d ind
YZ Þ, such that

ddir
YZ−d

ind
YZ

� �

¼ 0;

then the inconsistency estimate can be written as

wYZ ¼ X βdir
YZ−β

ind
YZ

� �

;

and therefore the estimate is zero when the covariate is

zero or when the regression coefficients from direct and

indirect evidence are consistent (ie, βdir
YZ−β

ind
YZ

� �

¼ 0),

and would depend on the covariate otherwise. This is

the scenario observed in Figure 1D.

Yet if the treatment effects at the zero covariate value

from direct and indirect evidence are inconsistent, that is,

ddir
YZ−d

ind
YZ

� �

≠0;

and if

βdir
YZ−β

ind
YZ

� �

>0;

then the inconsistency estimate increases with increasing

covariate values, whereas if

βdir
YZ−β

ind
YZ

� �

<0;

then the inconsistency estimate decreases with increas-

ing covariate values. This scenario was presented in

Figure 1B.

2.2.3 | Probabilities and hypothesis testing

Furthermore, to assess consistency, for each comparison

Z vs Y, at each covariate value X, a Bayesian probability

(eg, from node‐splitting models) can be calculated to

determine the probability that the direct and indirect

evidence agrees.6,10 Further details are given in Section 3.2.

Under a frequentist approach (eg, using back‐calcula-

tion), for each comparison Z vs Y, at each covariate value

X, a 2‐sample t test can be performed provided no

multiarm trials contribute to the evidence, to test the null

hypothesis that there is no difference between direct and

indirect evidence.10 The inconsistency estimate

wYZ ¼ ddir
YZ þ βdir

YZX
� �

− d ind
YZ þ β ind

YZ X
� �

has variance

var wYZð Þ ¼ var ddir
YZ þ βdir

YZX
� �

þ var d ind
YZ þ β ind

YZ X
� �

:

The test statistic

TYZ ¼
wYZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var wYZð Þ
p

can be compared with the standard t distribution to obtain

a P value. Small P values indicate a significant difference

between the results from direct and indirect evidence.

Previously, similar consistency tests have used a level of

5%14,28-30 or 10%29-31 to denote statistical significance; we

advocate using the 10% level because it errs on the side

of caution.

2.3 | Interpreting results

For continuous covariates, if the direct and indirect

evidence appears consistent across the whole covariate

range studied, the results from the NMA model including

interactions are valid for that covariate range. Conversely,

if the direct and indirect evidence is inconsistent across

the whole covariate range studied, the results from the

model are invalid for that covariate range. If the direct

and indirect evidence is consistent for some covariate

values studied and inconsistent at other covariate values,

the results from the model would be useable for the

covariate range where consistency is observed.

Similarly, for categorical covariates, the results from

the model are valid if the direct and indirect evidence is

consistent for each category studied; the results from the

model are not reliable if the evidence is inconsistent for

each category studied; and it may be appropriate to draw

conclusions from the model for the categories where con-

sistency is observed if the evidence is consistent for some

categories studied and inconsistent for other categories.

3 | ILLUSTRATIVE APPLICATION

In this section, the described methods are demonstrated

through application to an individual patient dataset.

3.1 | The dataset

The individual patient data are from a trial performed at

sites across Africa that randomised children with

uncomplicated Plasmodium falciparum malaria.32 Four

artemisinin‐based combination therapies were compared:

amodiaquine‐artesunate (AQ + AS), dihydroartemisinin‐

piperaquine (DHAPQ), artemether‐lumefantrine (AL),

and chlorproguanil‐dapsone plus artesunate (CD + A).

Meta‐analysis was used to analyse the trial because inves-

tigators at each site chose which treatments they wanted

to allocate (on the basis of antimalarial resistance and

malaria endemicity); this is analogous to a meta‐analysis

DONEGAN ET AL. 5



of trials where trial investigators choose treatments to

randomise in their study.

Treatment success at day 28 was an outcome, and

patient age was considered to be a potentially treatment

effect–modifying covariate. The data consisted of the

treatment allocation, outcome, site, and baseline age, of

each child. Table S1 displays a summary of the data.

The 17 sites each included 2 or 3 of the following treat-

ments: DHAPQ, AQ + AS, AL, and CD + A. All 6 com-

parisons were supported by direct evidence (Figure 2).

3.2 | Implementation

We fitted a standard NMAmodel including a treatment by

covariate interactions and a second node‐splitting NMA

model that provided estimates of the treatment effect at

zero covariate and estimates of the coefficient based on

direct evidence alone and separate estimates from indirect

evidence alone. Correlation between treatment effects

from the same site was taken into account in the models.

In both models, we fixed the between‐site variances to be

identical across treatment comparisons. See the Supporting

Information for modelling specifications and code.

The drugs were ordered by treatment success rate:

DHAPQ (1), AQ + AS (2), AL (3), and CD + A (4). The

covariate was centred at its mean. In a node‐splitting

model, direct and indirect evidence is separated for 1

comparison. Node splitting could not be used to assess

consistency for AQ + AS vs DHAPQ because of the nature

of the multiarm trials in the network, which meant that

no indirect evidence contributed to the comparison

AQ + AS vs DHAPQ after direct evidence was removed

from the network. Similarly, node‐splitting models could

not be used for AL vs DHAPQ or CD + A vs DHAPQ.

WinBUGS 1.4.3 and the R2WinBUGS package in R

were used to fit the models.33-35 A uniform prior

distribution (ie, σ~uniform (0, 10)) was chosen for the

between‐site standard deviation. All other parameters

were given noninformative normal prior distributions

(ie, normal (0, 100 000)). Three chains with different

initial values were run for 300 000 iterations. The initial

100 000 draws were discarded, and chains were thinned

such that every fifth iteration was retained. Convergence

was assessed using Gelman–Rubin plots, trace plots, and

autocorrelation plots.

Log odds ratios for children aged 1, 2, 3, 4, and 5 years

were reported. These covariate values were chosen

because the age of children included in the trial ranged

from 6months to 5 years, and age is traditionally expressed

by year. Also, results for children of average age were

presented because the models were centred at the mean.

The inconsistency estimate was calculated at each itera-

tion of the chain. A probability was estimated by counting

the number of iterations for which the estimate was positive

(≥0) and then calculating the probability (ie, prob) that the

estimate was positive, by dividing the number of counted

iterations by the total number of iterations of the chain.

The probability value corresponding with a 2‐tailed test

was obtained by P=2×minimum (prob,1−prob) that

represents the probability of consistent direct and indirect

evidence with lower probabilities indicating lower levels of

agreement.10,36 The posterior distribution of the inconsis-

tency estimates was checked for symmetry and unimodality.

4 | RESULTS

4.1 | Visual inspection

For AL vs AQ+AS, Figure 3 displays, for each age, the pos-

terior distribution of the log odds ratio from direct evidence

and indirect evidence. At each age, the direct and indirect

evidence differs in terms of the direction and size of the

log odds ratio, but not the precision. The magnitude of the

inconsistency appears to be decreasing with increasing

age. Table S2 displays the corresponding odds ratios, which

also differ in terms of size and direction and also precision.

Figure 4 shows how age varies the log odds ratio. For AL vs

AQ+AS, there are differences between direct and indirect

evidence for both the intercept and slope; in particular,

the log odds ratio increases with age using direct evi-

dence, and it decreases with age using indirect evidence.

For CD + A vs AQ + AS, the results from direct and

indirect evidence differ but not as much as for AL vs

AQ + AS (Figure S1). Differences exist between direct

and indirect evidence with respect to the size of the log

odds ratio. The magnitude of the inconsistency estimate

decreases with increasing age. Differences are also seen

between odds ratios from direct and indirect evidence

(Table S2). In Figure 4, differences exist between direct

FIGURE 2 Network diagram of artemisinin‐based combination

therapies. AL indicates artemether‐lumefantrine; AQ + AS,

amodiaquine‐artesunate; CD + A, chlorproguanil‐dapsone plus

artesunate; DHAPQ, dihydroartemisinin‐piperaquine. Number of

sites (number of patients) displayed

6 DONEGAN ET AL.



and indirect evidence for the slope and intercept forCD+A

versus AQ + AS. However, in this case, the log odds ratio

decreases with age regardless of the type of evidence used.

Similarly, for CD +A vs AL, the results from direct and

indirect evidence are quite similar in terms of the precision

but not the size of the log odds ratio (Figure S2). Also, the

magnitude of the inconsistency decreases with increasing

age. Table S2 shows the odds ratios from direct and

indirect evidence also differ slightly in terms of size. The

intercept and slope estimated using direct evidence differ

from those using indirect evidence; but the log odds ratio

decreases with age for each evidence type (Figure 4).

FIGURE 4 A‐C, Graphs showing, for

each comparison, how the posterior

median of the log odds ratio for treatment

success and its 95% credibility interval

change with age; separate results are

presented for direct evidence and indirect

evidence. Lines represent the posterior

median and upper and lower bound of the

95% credibility interval, and the shaded

area represents the 95% credibility interval.

AL indicates artemether‐lumefantrine;

AQ + AS, amodiaquine‐artesunate;

CD + A, chlorproguanil‐dapsone plus

artesunate; DHAPQ, dihydroartemisinin‐

piperaquine

FIGURE 3 A‐F, Posterior distributions of log odds ratios at various ages for treatment success for AL versus AQ + AS. AL indicates

artemether‐lumefantrine; AQ + AS, amodiaquine‐artesunate. The mean age was 2.5 years. Posterior median (95% credibility interval)

presented

DONEGAN ET AL. 7



4.2 | Inconsistency estimates

Figure 5 displays how the inconsistency estimate changes

with the covariate. For AL vs AQ + AS, the inconsistency

estimate increases with increasing age (from −1.40 to

0.25); yet the absolute value of the estimate decreases

from 1.40 for age 1 to 0.16 for age 4 and then increases

to 0.25 for age 5. For CD + A vs AQ + AS, the inconsis-

tency estimate decreases with increasing age (from 0.95

to −0.42), but the absolute value of the estimate decreases

from 0.95 for age 1 to 0.07 for age 4 and then increases to

0.42 for age 5. For CD + A vs AL, the inconsistency

estimate increases with age (from −1.07 to 0.34), while

the absolute value of the estimate decreases from 1.07

for age 1 to 0.01 for age 4 and then increases to 0.34 for

age 5.

4.3 | Probabilities

For AL vs AQ + AS, there is a low level of agreement

between direct and indirect evidence for age 1 (P = .05)

(Figure 3). For CD + A vs AQ + AS and CD + A vs AL,

the probabilities indicate reasonable agreement between

direct and indirect evidence (Figures S1 and S2).

4.4 | Overall interpretation

The magnitude of the inconsistency appears to be decreas-

ing with increasing age for each comparison. Using the

probabilities, there is inconsistency around age 1 year

for AL vs AQ + AS, and arguably, the results are reason-

ably consistent for ages 2 to 5 years for all comparisons;

therefore, the results from the NMA model including

interactions could be used to draw inferences for children

aged 2 to 5 years. Further results from the model are

shown in Table S3.

5 | DISCUSSION

We have demonstrated that, when fitting NMA models

including interactions, the level of consistency of direct

and indirect evidence can change with the covariate

value. We have shown that it is important to check consis-

tency at different values and have suggested how to do

this.

When we applied the method, we found inconsistent

evidence for AL vs AQ + AS at age 1 (P = .05). If we

had only assessed consistency at a particular covariate

value (eg, at the mean age), we could have incorrectly

concluded that the results were consistent at any covari-

ate value and drawn unreliable conclusions. This shows

that consistency must be assessed at a range of covariate

values, rather than one particular value.

Using the probabilities, we found that the log odds

ratios for all comparisons were consistent for ages 2 to

5 years; therefore, the results from the model including

interactions could be used to draw inferences for this

age range. However, an inconsistency is observed at age

1 for AL vs AQ + AS, and this brings results at age 1 for

FIGURE 5 Graphs showing, for each comparison, how the posterior median of the inconsistency estimate and its 95% credibility interval

change with age (A, C, and E) and how the absolute value of the posterior mean of the inconsistency estimate changes with age (B, D, and F).

AL indicates artemether‐lumefantrine; AQ + AS, amodiaquine‐artesunate; CD + A, chlorproguanil‐dapsone plus artesunate; DHAPQ,

dihydroartemisinin‐piperaquine
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all comparisons into question because we do not know

whether the direct and/or indirect evidence is unreli-

able.10 Therefore, it may be more appropriate to recon-

sider all the evidence by exploring other potential

treatment effect–modifying covariates, considering non-

linear relationships and checking methodological rigour

and risk of bias of the evidence sources.

One possible explanation for the inconsistency at age 1

for AL vs AQ + AS is that the eligibility criteria in terms of

age differed across sites. The direct evidence is from 5 sites

where children aged 6 to 59 months were eligible.

However, the indirect evidence is based on 6 sites where

children aged 6 to 59 months were eligible (2 sites

compared AQ + AS vs DHAPQ and 4 sites compared AL

vs DHAPQ) and six sites where children aged 12 to

59 months were eligible (2 sites compared AQ + AS vs

DHAPQ and 4 sites compared AL vs DHAPQ).

The methods presented in this article are extremely

flexible. We applied the methods to individual patient

data for a dichotomous outcome and continuous covariate

using Bayesian methods, but they can be easily adapted

to accommodate aggregated data, other outcome and

covariate data types, and frequentist methods.

The models used in the application assumed that the

regression coefficients for each treatment versus the refer-

ence treatment are independent. However, other model

specifications are possible; for instance, exchangeable

interactions assume that the regression coefficients are

related and follow a distribution, and common

interactions assume the coefficients are the same.17,18,20

The methods presented in this article can be applied with

different modelling specifications.

We have applied similar models to aggregate datasets,

and application is straightforward (application not pre-

sented in this article). However, if aggregate data are

limited, it can be difficult to identify inconsistencies if

they exist because credibility intervals can be wide. When

using aggregate data, if for a particular comparison only

one study contributes direct evidence, the regression

coefficient based on direct evidence would be based on

prior information (using a Bayesian approach) or would

not be estimable (using a frequentist approach). To over-

come the problem, exchangeability of coefficients could

be assumed to borrow strength from other coefficients,

or informative prior distributions may be used. In any

case, node‐splitting models may be applied for other

comparisons to assess consistency.

In this article, consistency was assessed using node

splitting. Node‐splitting models have the advantage of

providing an estimate based on direct evidence and an

estimate from indirect evidence along with agreement

probabilities, and they can take the correlation in

multiarm trials into account. However, other methods,

for example, back‐calculation, may be used to assess

consistency in NMA models including interactions.

Regardless of the method chosen, consistency across

various covariate values must be considered.

The main limitation of this research is that the

methods have only been demonstrated using one dataset;

therefore, the methodology should certainly be applied in

other contexts to further evaluate the strengths and

weaknesses of the method. As with all NMA methods,

we anticipate that application of the methods to large

networks will become more complicated to apply and

report. In particular, in such cases, the number of possible

comparisons where consistency can be assessed can be

large and therefore time‐consuming to assess. There are

automatic routines, which are particularly useful for

complex networks, to identify the relevant comparisons

for a given network.37

The presented methods assume that within‐trial inter-

actions and across‐trial interactions are equivalent. If

ecological bias is at play, across‐trial information may be

biased and may differ from interactions found within tri-

als.38,39 The NMA models that separate within‐trial and

across‐trial interaction have been previously proposed to

explore biases.19,20 The principles presented in this article

could be extended to accommodate within‐trial and

across‐trial information.

Furthermore, multiple testing issues can play a role

especially for large networks. When many statistical tests

are performed, there is an increased chance of incorrectly

concluding there is inconsistency when, in fact, results

are consistent. At any rate, detecting inconsistency when

there is no real inconsistency is erring on the side of

caution. Assessments of consistency should be based on

visual inspection as well as probabilities or P values.

Methods used to adjust for multiple testing in a

frequentist framework (eg, Bonferroni corrections) could

be used to aid interpretation of P values in both

frequentist and Bayesian frameworks.

Lastly, extrapolation issues may arise. Extrapolation

can occur when the covariate distribution differs across

comparisons and the results are interpreted across the

whole covariate range of the included studies. However,

interpreting results across this covariates range allows

one to make predictions for treatment effects at covariate

values where there may be no evidence. Although this can

be attractive, such predictions must be interpreted with

caution.

In conclusion, it is important to evaluate the consis-

tency of direct and indirect evidence at various covariate

values when fitting models including interactions because

the level of consistency can change with the covariate

value. Clinical inferences may be drawn for covariate

values for which results are consistent.
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