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Input/Output (I/0) operations can represent a significant proportion of the run-
time of parallel scientific computing applications. Although there have been
several advances in file format libraries, file system design and I/O hardware,
a growing divergence exists between the performance of parallel file systems
and the compute clusters that they support. In this paper we document the
design and application of RIOT, an I/O tracing toolkit being developed at the
University of Warwick with our industrial partners at the Atomic Weapons
Establishment and Sandia National Laboratories. We use the toolkit to assess
the performance of three industry-standard I/O benchmarks on three contrasting
supercomputers, ranging from a mid-sized commodity cluster to a large-scale
proprietary IBM BlueGene/P system. RIOT provides a powerful framework
in which to analyse I/O and parallel file system behaviour — we demonstrate,
for example, the large file locking overhead of IBM’s General Parallel File
System, which can consume nearly 30% of the total write time in the FLASH-
I0 benchmark. Through I/O trace analysis we also assess the performance of
HDF-5 in its default configuration, identifying a bottleneck created by the use
of sub-optimal MPI hints. Furthermore, we investigate the performance gains
attributed to the Parallel Log-structured File System (PLFS) being developed by
EMC Corporation and the Los Alamos National Laboratory. Our evaluation of
PLFS involves two HPC systems with contrasting I/O backplanes and illustrates
the varied improvements to I/O that result from the deployment of PLFS (ranging
from up to 25x speed-up in I/O performance on a large I/O installation to 2x
speed-up on the much smaller installation at the University of Warwick).

Keywords: High Performance Computing; Input/Output; MPI; Checkpointing; File Systems

INTRODUCTION

second (FLOP/s).

The substantial growth in the size of supercomputers
— over two orders of magnitude in terms of processing
elements since 1993 — has created machines of extreme
computational power and scale. As a result, users
have been able to develop increasingly sophisticated
and complex computational simulations, advancing
scientific understanding across multiple domains.
Historically, industry and academia have focused
on the development of scalable parallel algorithms
and their deployment on increasingly sophisticated
hardware, creating a perception that supercomputer
performance is synonymous with the number of
floating-point operations that can be performed each

One of the consequences of this has been that some
of the vital contributors to application run-time have
developed at a much slower rate. One such area is that
of input and output (I/O), typically required to read
data at the start of a run and write state information
on completion.

As we advance towards exa-scale computing, the
increasing number of compute components will have
huge implications for system reliability. As a result,
checkpointing — where the system state is periodically
written to persistent storage so that, in the case of a
hardware or software fault, the computation can be
restored and resumed — is becoming common-place.
The cost of checkpointing is a slowdown at specific
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points in the application in order to achieve some level
of resilience. Understanding the cost of checkpointing,
and the opportunities that might exist for optimising
this behaviour, presents a genuine opportunity to
improve the performance of parallel applications at
scale.

The Message Passing Interface (MPI) has become the
de facto standard for managing the distribution of data
and process synchronisation in parallel applications.
The MPI-2 [1] standard introduced MPI-1O, a library
of functions designed to standardise the output of data
to the file system in parallel. The most widely adopted
MPI-IO implementation is ROMIO [2] which is used by
both OpenMPI [3] and MPICH2 [4], as well as by a
number of vendor-based MPI solutions [5, 6].

In addition to the standardisation of parallel 1/O
through MPI, many file format libraries exist to further
abstract low-level I/O operations (e.g. data formatting)
from the application. Libraries such as HDF-5 [7],
NetCDF [8] and Parallel NetCDF [9] allow applications
to output data in a standardised format, enabling
information to be more easily utilised by multiple
parallel applications. Optimisations can also be made
to a single library, creating improvements in the data
throughput of many dependent applications.

Unfortunately this has, in part at least, encouraged
code designers to treat these libraries as a black-box,
instead of investigating and optimising the data storage
operations required by their applications. The result
has been poor I/O performance that does not utilise
the full potential of expensive parallel disk systems.

In this paper we document the design and application
of the RIOT I/O Toolkit (referred to throughout the
remainder of this paper by the recursive acronym
RIOT), first introduced in [10], to demonstrate the
I/O Dbehaviours of three standard benchmarks at
scale on a variety of contrasting high-performance
computing (HPC) systems. RIOT is a collection
of tools specifically designed to enable the tracing
and subsequent analysis of application I/O activity.
This tool is able to trace parallel file operations
performed by the ROMIO layer and relate these to
their underlying POSIX file operations. We note that
this recording of low-level parameters permits analysis
of I/O middleware, file format libraries, application
behaviour and even the underlying file systems utilised
by large clusters.

Specifically this paper makes the following contribu-
tions:

e We present RIOT, an I/O tracer designed to
intercept the file functions in the MPI-2 standard,
as well as the low-level system calls triggered by
the MPI-IO library. Our tool records not only the
timing information, but also information relating
to how much data is written and the file offset
to which it is written. We also introduce a post-
processing tool capable of generating statistical

summaries and graphical representations of an
application’s parallel I/O activities;

e Using RIOT we analyse the I/O behaviour
of three industry-standard benchmarks: the
Block-Tridiagonal (BT) solver, from NASA’s
Parallel Benchmark (NPB) Suite; the FLASH-
10 benchmark, from the University of Chicago
and the Argonne National Laboratory (ANL);
and IOR, a HPC file system benchmark which
is used during procurement and file system
assessment [11, 12]. Our analysis employs three
contrasting platforms: a mid-size commodity
cluster located at the University of Warwick,
a large-scale capacity resource housed at the
Open Computing Facility (OCF) at the Lawrence
Livermore National Laboratory (LLNL) and a
proprietary IBM BlueGene/P (BG/P) system
installed at the Daresbury Laboratory in the UK;

e Through using RIOT we demonstrate the signif-
icant overhead associated with file locking on a
small-scale installation of IBM’s General Parallel
File System (GPFS) and contrast this to a larger
GPFS installation, as well as to a large-scale Lus-
tre installation. We provide an analysis of both the
locking semantics of the contrasting file systems as
well as the different hardware configurations;

e RIOT is the first tool, to our knowledge, to show
the relationship between POSIX and MPI function
calls and thus allow developers to analyse the
POSIX file behaviour that is a direct result of
MPI-IO calls. In Section 6.1 we utilise this ability
to visualise the performance of the FLASH-IO
benchmark, demonstrating a significant slow down
in performance due to the use of sub-optimal MPI
hints. We optimise the application’s behaviour
using MPI hint directives and achieve more than
a 2x improvement in write bandwidth;

e Finally, through I/O trace analysis, we provide
insight into the performance gains reported by the
Parallel Log-structured File System (PLFS) [13,
14] — a novel I/O middleware being developed by
EMC Corporation and the Los Alamos National
Laboratory (LANL) to improve file write times.
We show how improvements in I/O performance
can be demonstrated on relatively small parallel
file systems and how large gains can be achieved
on much larger installations. = We also offer
some insight into why this is the case and how
PLFS reduces file system contention, improving
achievable bandwidth.

The remainder of this paper is structured as follows:
Section 2 gives an overview of related work in the
area of parallel I/O analysis and optimisation; Section
3 outlines the design and implementation of RIOT;
Section 4 describes the experimental set up used in this
paper, ranging from the configuration of the machines
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Ganglia Collectl Darshan IPM RIOT
Monitoring Level System System  Application Application Application
Monitoring Style Sampled  Sampled Continuous Continuous Continuous
Syscall Monitoring Limited Limited POSIX-10 POSIX-IO POSIX-10
MPI Monitoring None None MPI-IO Complete MPI-IO
Statistics Collection Counters Counters Counters Counters Full Trace
Statistics Reported  Per-node Per-node Per-rank Per-rank Per-rank

TABLE 1: Feature comparison between a collection of cluster I/O monitoring tools (Ganglia and Collectl) and
application I/0 profiling tools (Darshan, IPM and RIOT).

used to the three applications employed in this study;
Section 5 demonstrates the low overhead of our tool,
as well as RIOT operating on three different HPC
systems, presenting the initial results for the three
codes on the contrasting platforms; Section 6 presents
a comparison of the different file systems in use on the
machines used in our study. We present an analysis
of the HDF-5 middleware library and we investigate
PLFS, offering insight into the gains reported in [13];
and finally, Section 7 concludes the paper and offers
potential avenues for future work.

2. BACKGROUND AND RELATED WORK
2.1. I/0 Benchmarking

The assessment of file system performance, either dur-
ing procurement or during system installation and up-
grade, has resulted in a number of benchmarking utili-
ties which attempt to characterise common read/write
behaviour. Notable tools in this area include the
I0Bench [15] and IOR [11] parallel benchmarking appli-
cations. Whilst these tools provide a good indication of
potential performance, they are rarely indicative of the
true behaviour of production codes. For this reason, a
number of mini-application benchmarks have been cre-
ated that extract file read/write behaviour from larger
codes to ensure a more accurate representation of appli-
cation I/0O. Examples include the BT solver application
from the NPB Suite [16] and the FLASH-IO [17] bench-
mark from the University of Chicago — both of which
are employed in this paper.

2.2. System Monitoring and Profiling Tools

Whilst benchmarks may provide a measure of file
system performance, their use in diagnosing problem
areas or identifying optimisation opportunities within
large codes is limited. For this activity, monitoring or
profiling tools are required to either sample the system’s
state or record the file read and write behaviour of
parallel codes in real-time.

The tools iotop and iostat both monitor a single
workstation and record a wide range of statistics
ranging from the I/O busy time to the CPU
utilisation [18]. iotop is able to provide statistics
relevant to a particular application, but this data is not
specific to a particular file system mount point. iostat

can provide more detail that can be targeted to a
particular file system, but does not provide application-
specific information. These two tools are targeted at
single workstations, but there are many distributed
alternatives, including Collectl [19] and Ganglia [20].

Ganglia and Collectl both operate using a daemon
process running on each compute node and therefore
require some administrative privileges to install and
operate correctly. Data about the system’s state is
sampled and stored in a database; the frequency of
sampling therefore dictates the overhead incurred on
each node. The I/O statistics generated by the tools
focus only on low-level POSIX system calls and the load
on the I/O backend and, therefore, much of the data will
be inclusive of the calls made by other running services
and applications. Furthermore, the data generated by
these applications may not include information relating
to file locks, or the file offsets currently being operated
on. These applications, therefore, have a limited use for
application analysis and optimisation, since they do not
provide an appropriate amount of application-specific
data (see Table 1). It is for this reason that many large
multi-science HPC laboratories (e.g. ANL, Lawrence
Berkeley National Laboratory (LBNL)) have developed
alternative tools.

Application profiling tools can be used to generate
more detailed information about a particular execution
on a function-by-function basis. The data produced
relates only to the specific application being traced
along with its library (e.g. MPI) and low-level system
calls.

Using function interpositioning, an intermediate
library can intercept communications between the
application and the underlying file system to analyse the
behaviour of I/O intensive applications. Intercepting
the POSIX and MPI file operations is the approach
taken by RIOT; Darshan [21], developed at ANL; and
the Integrated Performance Monitoring (IPM) suite of
tools [22], from LBNL.

Darshan has been designed to record file accesses over
a prolonged period of time, ensuring each interaction
with the file system is captured during the course of
a mixed workload. As described in [21], the aim of
this work is to monitor I/O activity for a substantial
amount of time on a production BG/P machine in order
to guide developers and administrators in tuning the
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1/0 backplanes used by large machines.

Similarly, TPM [23] uses an interposition layer to
catch all calls between the application and the file
system. This trace data is then analysed in order to
highlight any performance deficiencies that exist in the
application or middleware. Based on this analysis,
the authors were able to optimise two applications,
achieving a 4x improvement in I/O performance.

Darshan and ITPM both collect data using counters
to record I/O statistics. By contrast, RIOT records
all I/O events in memory and thus provides users with
a full trace of file activities. As a result, RIOT’s post-
processing tools can relate individual POSIX operations
to their parent MPI-IO function calls, permitting
analysis not only of the application’s I/O behaviour but
also of the underlying POSIX file behaviour induced
by the use of MPI-IO. This data can then be used
to analyse the performance of a particular peice of
middleware. Furthermore, RIOT is able to highlight
any deficiencies that may exist within a ROMIO file
system driver or provide guidance as to which MPT hints
may benefit a particular application or file system.

Table 1 summarises the features of each of the tools
described above.

2.3. Distributed File Systems

The I/O backplane of high-performance clusters is
generally provided by a distributed file system. The two
most widely used file systems are IBM’s GPFS [24] and
the Lustre File System [25], both of which are analysed
in this study. Whilst both ultimately serve the same
purpose, their architectures are somewhat different.

A Lustre installation consists of a number of Object
Storage Servers (OSS) and a single, dedicated Metadata
Server (MDS). Conversely, GPFS uses a number of
I/O servers, and distributes metadata over each of
them. Whilst the MDS in Lustre uses its own hard
drives to store metadata (e.g. directory tree, file
structure), GPFS can be configured to store this data
either to the same disks as the raw data, or to higher
performance metadata-specific disks, depending on the
configuration.

2.4. Virtual File Systems

In addition to distributed file systems, a variety of
virtual file systems have been produced to further
improve performance. The Parallel Log-structured File
System (PLFS) [13] and Zest [26] have both been shown
to improve file write performance. In these systems,
multiple parallel writes are written sequentially to the
file system with a log tracking the current data. Writing
sequentially to the file system in this manner offers
potentially large gains in write performance, at the
possible expense of later read performance [27].

In the case of Zest, data is written sequentially using
the fastest path to the file system available. There is,

however, no read support in Zest; instead, it serves
as a transition layer, caching data that is later copied
to a fully featured file system at a later mon-critical
time. The result of this is high write throughput but
no ability to restart the application until the data has
been transferred and rebuilt on a read-capable system.

In a similar vein to [28] and [29], in which
I/O throughput is vastly improved by transparently
partitioning a data file (creating multiple, independent,
I/O streams), PLFS uses file partitioning as well as
a log-structured file system to further improve the
potential I/O bandwidth. Through our tracing tools,
we offer an in-depth analysis of the benefits offered by
PLFS (see Section 6.3).

We previously introduced RIOT in [10, 30]. In this
paper we significantly extend this work as follows:

e We utilise a custom I/O benchmark designed
specifically to assess the impact of using RIOT
on I/O intensive applications. We demonstrate
that the performance overheads incurred through
the use of RIOT are minimal, thus making it an
appropriate tool for tracing large and long-running
production-grade codes;

e We demonstrate the first applications of RIOT
on a proprietary BlueGene system, IBM’s highly
scalable, low power massively parallel HPC
platform;

e We present a detailed application of RIOT in a
comparative study of the I/O performance of a
mid-range and a large-scale commodity cluster,
and also the IBM BG/P. The contrasting I/0
configuration of these three platforms are exten-
sively evaluated, offering insight into potential fu-
ture designs and also demonstrating the versatility
of RIOT;

e We complement our previous analysis of collective
buffering [30] with an assessment of the use of
dedicated I/O aggregators, such as the dedicated
I/O nodes found in the BG/P. Our results show
that collecting the data from many nodes prior to
committing the data to the file system can lead to
exceptional I/O performance;

e We utilise RIOT’s ability to visualise file write
behaviour to analyse the write pattern used by
HDF-5 with data-sieving enabled. This data
clearly demonstrates how a single MPI write
operation is decomposed into a series of smaller
POSIX lock, read, write, unlock cycles;

e Through a new case study, we demonstrate that
a RIOT trace can be used to detect performance
bottlenecks in an application’s 1/0. By disabling
data-sieving (a problem highlighted by RIOT)
and enabling collective buffering in the FLASH-IO
benchmark, we increase the achievable bandwidth
of this industry-standard benchmark by 2x on two
of our three test systems.
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FIGURE 1: Tracing and Analysis Workflow using the RIOT Toolkit.

3. RIOT OVERVIEW

The left-hand side of Figure 1 depicts the usual flow
of I/O in parallel applications; generally, applications
either utilise the MPI-1O file interface directly, or use a
third party library such as HDF-5 or NetCDF. In both
cases, MPI is ultimately used to perform the read and
write operations. In turn, the MPI library calls upon
the MPI-IO library which, in the case of both OpenMPI
and MPICH, is the ROMIO implementation [2]. The
ROMIO file system driver [31] then calls the system’s
POSIX file operations to read and write the data to the
file system. In this paper we utilise the PLFS ROMIO
file system driver during our experiments.

RIOT is an I/O tracing tool that can be utilised
either as a dynamically loaded library (via run-time
pre-loading and linking) or as a static library (linked
at compile time). In the case of the former, the shared
library uses function interpositioning to place itself
in the library stack immediately prior to execution.
When compiled as a dynamic library, RIOT redefines
several functions from the POSIX system-layer and
MPI libraries — when the running application makes
calls to these functions, control is instead passed to
handlers in the RIOT library. These handlers allow
the original function to be performed, timed and
recorded into a log file for each MPI rank. By
using the dynamically loadable libriot, application
recompilation is avoided; RIOT is therefore able to
operate on existing application binaries and remain
compiler and implementation language agnostic.

For situations where dynamic linking is either not
desirable or is only available in a limited capacity (such

as in the BG/P system used in this study), a static
library can be built. A compiler wrapper is used to
compile RIOT into a parallel application using the
-wrap functionality found in the Linux linker.

As shown in Figure 1, libriot intercepts I/O calls
at three positions. In the first instance MPI-IO calls
are intercepted and redirected through RIOT, using
either the PMPI interface, or dynamic or static linking.
In the second instance POSIX calls made by the MPI
library are intercepted, and in the final instance any
POSIX calls made by the ROMIO file system interface
are caught and processed by RIOT.

Traced events in RIOT are recorded in a buffer
stored in main memory. Whilst the size of the buffer
is configurable, our experiments have led us to set
the buffer size at 8 MB. This allows approximately
340,000 operations to be stored before needing to be
flushed to the disk. This delay of logging (by storing
events in memory) may have a small affect on compute
performance (since the memory access patterns may
change), but storing trace data in memory helps to
prevent any distortion of application I/O performance.
In the event that the buffer becomes full, the data is
written out to disk and the buffer is reset. This repeats
until the application has terminated.

Time coherence is maintained across multiple nodes,
by overloading the MPI_Init function to force all ranks
to wait on an MPI_Barrier before each resetting their
respective timers. This allows us to order events even
after nodes have experienced a degree of time drift.

After the recording of an application trace is
complete, a post-execution analysis phase can be
conducted (shown on the right-hand side of Figure 1).
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Minerva Sierra BlueGene/P
Processor Intel Xeon 5650 Intel Xeon 5660 PowerPC 450
CPU Speed 2.66 Ghz 2.8 Ghz 850 Mhz
Cores per Node 12 12 4
Nodes 258 1,849 1,024
Interconnect QLogic TrueScale 4X QDR InfiniBand 3D Torus Collective Tree
File System GPFS Lustre GPFS
I/0 Servers / OSS 2 24 4
Theoretical Bandwidth ~4 GB/sec ~30 GB/sec ~6 GB/sec
Storage Disks
Number of Disks 96 3,600 110 35
Disk Size 2 TB 450 GB 147 GB 500 GB
Disk Speed 7,200 RPM 10,000 RPM 15,000 RPM 7,200 RPM
Bus Type Nearline SAS SAS  Fibre Channel S-ATA
Raid Level 6 (8+2) 6 (8+2) 5(4+1)
Metadata Disks
Number of Disks 24 30 (+2)* N/A
Disk Size 300 GB 147 GB N/A
Disk Speed 15,000 RPM 15,000 RPM N/A
Bus Type SAS SAS N/A
Raid Level 10 10 N/A

TABLE 2: Benchmarking platforms used in this study.

During execution RIOT builds a file lookup table and
for each operation only stores the time, the rank, a
file identifier, an operation identifier and the file offset.
After execution, these log files are merged and time-
sorted into a single master log file, as well as a master
file database. Using the information stored, RIOT can:

e Produce a complete run-time trace of application’s
1/0 behaviour;

e Demonstrate the file locking behaviour of a
particular file system;

e (Calculate the effective POSIX bandwidth achieved
by MPI to the file system,;

e Visualise the decomposition of an MPI file
operation into a series of POSIX operations;

e Demonstrate how POSIX operations are queued
and then serialised by the I/O servers.

Throughout this paper we make a distinction between
effective MPI-IO and POSIX bandwidths — MPI-
10 bandwidths refer to the data throughput of the
MPI functions on a per MPI-rank basis. POSIX
bandwidths relate to the data throughput of the POSIX
read/write operations as if performed serially and
called directly by the MPI library. We make this
distinction due to the inability to accurately report
the perceived POSIX bandwidth due to the non-
deterministic nature of parallel POSIX writes. The
perceived POSIX bandwidth is therefore bounded below
by the perceived MPI bandwidth (since the POSIX
bandwidths must necessarily be at least as fast as the
MPI bandwidths), and is bounded above by the effective
POSIX bandwidth multiplied by the number of ranks
(assuming a perfect parallel execution of each POSIX
operation).

4. EXPERIMENTAL SETUP

In this paper we demonstrate RIOT working on three
distinct HPC systems. We utilise the recently installed
Minerva supercomputer, located at the University of
Warwick’s Centre for Scientific Computing, the Sierra
cluster from the OCF at LLNL and, finally, the IBM
BG/P proprietary system housed at the Daresbury
Laboratory in the United Kingdom.

Minerva and Sierra are built from similar compo-
nents, utilising commodity Intel Xeon dual-socket hex-
core Westmere-EP processors, clocked at 2.66 GHz and
2.80 GHz respectively. The interconnect between Min-
erva nodes is QLogic’s TrueScale 4X QDR InfiniBand,
offering a theoretical maximum bandwidth of 32 Gb/s.
Each Minerva node is connected through InfiniBand to
its two I/O nodes. Similarly, Sierra compute nodes are
also connected via InfiniBand to the 24-node storage
system utilised in this study — the I/O backplane used
in these experiments is part of LLNL’s “islanded 1/0”
network, whereby many large I/O systems are shared
between multiple clusters in the computing facility.

The BG/P system used for the experiments in
this paper is a single cabinet, consisting of 1,024
compute nodes. Each node contains a single quad-
processor compute card clocked at 850 MHz. The
BlueGene features dedicated networks for point-to-
point communications and MPI collective operations.
File system and complex operating system calls (such
as timing routines) are routed over the MPI collective
tree to specialised higher-performance login or I/0O
nodes enabling the design of the BlueGene compute
node kernel to be significantly simplified to reduce

aSjerra’s MDS uses 32 disks: two configured in RAID-1 for
journalling data, 28 disks configured in RAID-10 for the data
volume itself and a further two disks to be used as hot spares.
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. . Minerva Sierra BG/P
Function Tracing Level o, g 96 24 48 96 32 64 128
None 44.00 84.54 150.91 44.75  60.32  119.72 71.31 120.26 262.96
MPI File_write POSIX 44.22  93.05 150.72 46.78 67.07 113.41 68.99 113.52 256.70
Complete 44.36  84.66 155.48 46.33  70.72 123.89 69.00 116.13 256.89
None 26.39 50.62 100.96 36.25  T71.13 129.69 71.46 101.24 140.40
MPI _File_write_all POSIX 26.17 51.95 101.08 38.59 68.44 131.63 70.59 100.93 135.17
Complete 26.99 50.66 99.95 38.11  64.32  127.30 70.70  100.09 139.02
None 12.91 25.83 57.00 37.52  70.68 127.12 61.37 69.50 96.83
MPI_File_write_at_all POSIX 11.81 28.27 55.39 36.64 63.91 126.87 61.48 70.87 98.30
Complete 13.20 27.08 54.51 36.27  73.06 135.99 60.78 72.06 96.96
None 7.26 12.22 25.81 2.77 5.41 15.04 47.74 56.97 182.20
MPI _File_read POSIX 6.73 11.99 25.10 5.83 6.66 19.57 48.45 57.27 190.51
Complete 7.05 12.46 26.10 2.36 5.00 16.42 48.41 57.60 179.90
None 21.09 26.03 40.66 15.81 21.56 49.47 55.92 65.89  203.63
MPI_File_read_all POSIX 19.85 27.17 42.31 18.63 24.73 58.97 56.27 64.52  211.50
Complete 20.67  26.62 41.24 16.99 25.74 63.82 58.97 68.57  209.91
None 2.21 3.61 6.36 4.41 4.56 5.15 36.73 37.89 41.23
MPI File read_at_all POSIX 2.33 3.79 5.87 4.14 4.72 5.56 36.45 39.97 44.06
Complete 2.14 3.70 5.60 4.83 4.71 5.31 38.53 40.63 45.33
Average overhead of RIOT (%) 0.48 1.15 0.31 239 4.23 5.95 0.54 0.74 0.08

TABLE 3: Average time (s) to perform a hundred 4 MB operations: without RIOT, with only POSIX tracing and

with complete MPI and POSIX RIOT tracing.

background compute noise. For these experiments
we utilise a compute-node to I/O server ratio of
1:32; however, differing ratios are provided by IBM to
support varying levels of workload I/O intensity.

As well as variation in compute architecture and size,
the machines selected utilise different file systems for
their I/O backends. Minerva employs IBM’s GPF'S,
whilst the file system used for our experimentation on
Sierra is formatted for use with Lustre. The BG/P
system also uses GPFS, but does so with faster hard
disks and a higher density of I/O servers than Minerva.

A detailed specification of the three machines utilised
in this study can be found in Table 2.

4.1. Input/Output Benchmarks

For this study we have selected three applications which
are representative of a broad range of high performance
applications.

We employ a standard benchmark (IOR) that can
be customised to recreate typical, or problematic I/O
behaviours, as well as being customised to use either an
MPI-IO interface or the HDF-5 application library.

Two additional applications have also been chosen
(FLASH-IO, BT) that recreate the I/O behaviour of
much larger codes but with reduced compute time and
less configuration required than the parent version.
This permits the investigation of system configurations
that may have an impact on the I/O performance of the
larger codes, without requiring considerable machine

resources.

The three applications used in this study are:

e IOR [11, 12]: A parameterised benchmark that
performs I/O operations through both the HDF-
5 and MPI-IO interfaces. In this study IOR has
been configured to write 256 MB per process to a
single file in 8 MB blocks. IOR’s write performance
through both MPI-IO and HDF-5 are assessed.

e FLASH-IO [32, 33]: This benchmark replicates
the checkpointing routines found in FLASH [17,
34], a thermonuclear star modelling code. In this
study we use a 24 x 24 x 24 block size per process,

causing each process to write approximately
205 MB to disk through the HDF-5 library.

e BT [16, 35]: An application from the NAS Parallel
Benchmark (NPB) Suite which has been configured
by NASA to replicate I/O behaviours from several
important internal production codes. A variety of
possible problem sizes are available but our focus
is the C problem class (162 x 162 x 162), writing a
data-set of approximately 6.4 GB.

We note that since all three machines are production
platforms, and results are subject to variation, all data
is derived from five runs; where appropriate the mean
is reported.
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FIGURE 2: Perceived MPI write bandwidth for (a) IOR (through MPI-IO), (b) IOR (through HDF-5), (c¢) FLASH-
IO (through HDF-5), and (d) BT Class C (through MPI-10), measured using RIOT.

5. PERFORMANCE ANALYSIS

5.1. RIOT Performance Analysis

We first use an I/O benchmark specifically designed to
assess the overheads which our toolkit may introduce at
run-time. Since RIOT requires all I/O functions to be
interposed, we utilise a custom benchmark designed to
perform a known set of read and write operations over
a series of files. Write sizes of 256 KB, 1 MB, 4 MB and
16 MB per process were performed 100 times for both
read and write operations.

Table 3 shows the time taken to perform 100
operations, each 4 MB in size (other file sizes
demonstrate similar effects and so the results are
therefore not shown), in three configurations: (%)
without RIOT, (i4) with RIOT configured to only
trace POSIX file calls and, (i¢3) with RIOT performing
a full trace of MPI and POSIX file activity. Our
benchmark reports timings for the six MPI-1O functions
that we believe to be the most commonly used in

scientific codes. It should be noted that we would
expect the overhead of RIOT associated with other
MPI-1O functions to be approximately the same, since
the function interposition and timings routines would
be equivalent.

In Table 3 we see that RIOT adds minimal overhead
to an application’s run-time, although it is particularly
difficult to precisely quantify this overhead since the
machines employed operate production workloads. In
some cases the overheads appear negligible (or indeed
present themselves as slight improvements over the
original run-time).  We account for this by the
fact that the machines and their I/O backplanes are
shared resources and are therefore subject to a small
(~10%) variation in run-time performance. Despite
this variability (which is a feature of any large-scale
production system) the low variation between run-
times with and without RIOT loaded demonstrates the
minimal impact that our toolkit has on application
run-time. This is a key feature of our design and
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is an important consideration for profiling activities
associated with large codes that may already take
considerable lengths of time to run in their own right.

5.2. I/O Subsystem Performance

We next use RIOT to trace the write behaviour of the
three codes in five different configurations. Figure 2
shows the perceived bandwidth achieved by each of
the benchmarks on the three different systems. It
is interesting to note that the two HDF-5 based
codes (FLASH-IO and IOR through HDF-5) perform
significantly worse than the other two codes on both
Minerva and Sierra. The parallel HDF-5 library, by
default, attempts to utilise data-sieving in order to
transform many discontinuous small writes into a single
much larger write. In order to do this, a large region
(containing the target file locations) is locked and read
into memory. The small changes are then made to the
block in memory, and the data is then written back out
to persistent storage in a single write operation. Whilst
this offers a large improvement in performance for
small unaligned writes [36], many HPC applications are

Processors
16 64 256 1,024

Minorva POSIX  159.65 84.90 24.48 —

merva - rpr 2141 495 111 —

Siorra POSIX 169.56 40.78  7.98  1.55

MPI 1449 194 044  0.09

POSIX 132.10 49.06 21.10 875

BG/P MPI 84.15 2.88 858  3.45
TABLE 4: Effective POSIX and MPI bandwidths

(MB/s) achieved on the three platforms for BT.

constructed to perform larger sequential file operations.
The use of file locks will help to maintain file
coherence but, as RIOT is able to demonstrate,
when writes do not overlap, the locking, reading
and unlocking of file regions may create a significant
overhead — this is discussed further in Section 6.1.
Also of note in Figure 2(d) is that BT performs
significantly better on the BlueGene/P after 256
processors are used (note the logarithmic-scale). Due to
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the architecture of the machine and the relatively small
amount of data that each process writes at this scale,
the data is flushed very quickly to the I/O node’s cache
and this gives the illusion that the data has been written
to disk at speeds in excess of 1 GB/s. For much larger
output sizes the same effect is not seen, since the writes
are much larger and therefore cannot be flushed to the
cache at the same speed. We note that while the I/O
performance of Minerva and Sierra plateau quite early,
the I/O performance of the BG/P system does not.
Whilst a commodity cluster using MPI will often use
ROMIO hints such as collective buffering [37] to reduce
the contention for the file system, the BG/P performs
what could be considered “super” collective buffering,
where 32 nodes send all of their I/O traffic through a
single I/O node. This results in the exceptional scaling
behaviour observed in Figure 2(d). As the output
size and the number of participating nodes increases,
contention begins to affect performance as Figure 2(a)
demonstrates.

The write performance on each of the commodity
clusters is roughly equivalent to the write speed of
a single disk. When we consider that these systems
consist of hundreds (or thousands) of disks, configured
to write in parallel, it is clear that the full potential
of the hardware is not being realised. If we analyse
the effective bandwidth of each of the codes, (i.e. the
total amount of data written, divided by the total time
taken by all nodes) it becomes apparent that data
is being written very slowly to the individual disks.
Figures 3 and 4 and Table 4 show the effective MPI and
POSIX bandwidths achieved by each of the codes on our
three machines. The POSIX bandwidth is significantly
higher than the MPI bandwidth, demonstrating a large
overhead in MPI. However, even the POSIX bandwidth
does not approach the potential achievable bandwidth
of the machine.

We believe that much of this slow down can be
attributed to two main problems: (i) disk seek time,
and (%) file system contention. In the former, since data

is being accessed simultaneously from many different
nodes and users, the file server must constantly seek
for the information that it requires. In the latter case,
since reads and writes to a single file must maintain
some degree of consistency, contention for a single file
can become prohibitive.

From the results presented in Figures 2-4 and
Table 4, it is clear that Sierra generally has a much
quicker I/O subsystem than Minerva. However, the
BG/P’s file system far outperforms both clusters when
scaled. The unusual interconnect and architecture that
it uses allows its compute nodes to flush their data to
the I/O nodes cache quickly, allowing computation to
continue. Similarly, when the writes are small, Minerva
can be shown to outperform Sierra, mainly due to the
locality of its I/O backplane. However, when HDF-5
is in use on Minerva, the achievable bandwidth is much
lower than that of the other machines due to file-locking
and the poor read performance of its hard disk drives.

6. FILE SYSTEM COMPARISON

As highlighted in Table 2, the I/O subsystem utilised
by Minerva is much smaller than that used by Sierra.
Each machine utilises a different file system, providing
us with an opportunity to not only compare the
hardware differences between the machines, but also
to compare the semantics of the differing file systems
and MPI-IO ROMIO drivers. Furthermore, there exists
a clear opportunity to find ways in which Minerva’s
I/0 system could be better utilised to provide a higher
level of service to users. Using RIOT, we undertake a
comparative study of IBM’s GPFS and the Lustre File
System. We also explore the HDF-5 middleware library,
as well as the effect of the PLFS virtual file system on
the contrasting systems.

6.1. GPFS vs. Lustre

Through our experiments with FLASH-IO and IOR,
both through HDF-5, a large performance gap has been
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identified between using the HDF-5 file format library
and performing I/0 directly via MPI-IO. Whilst a slight
slowdown may be expected, since there is an additional
layer in the software stack to traverse, the decrease in
performance is quite large (up to a 50% slowdown).
Figure 5 shows the percentage of MPI file write time
spent in each of the four main contributing POSIX file
functions.

For the Minerva supercomputer, at low core counts,
there is a significant overhead associated with file
locking (Figure 5(a)). In the worst case, on a single
node, this represents an approximate slowdown of 30%
in performance. The reason for the use of file locking

in HDF-5 is that data-sieving is often utilised to write
small unaligned blocks in much larger blocks. The
penalty for this is that data must be read into memory
prior to writing; this behaviour can prove to be a large
overhead for many applications, where the writes may
perform much better were data-sieving to be disabled.
Figure 5(c) shows how the BG/P does not perform data-
sieving and therefore there is no overhead associated
with reading data into memory. However, due to the
use of dedicated I/O nodes, the compute nodes spend
approximately 80% of their MPI write time waiting for
the I/O nodes to complete.

In contrast to Minerva, the same locking overhead
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is not experienced by Sierra; however up to 20% of
the MPI write time is spent waiting for other ranks.
It is also of note that Minerva’s I/O subsystem is
backed by relatively slow 7,200 RPM 2 TB Nearline
SAS hard drives; Sierra on the other hand uses much
quicker 10,000 RPM 450 GB SAS enterprise-class hard
disk drives, providing a much smaller seek time, a
much greater bandwidth and various other performance
advantages (e.g. greater rotational vibration tolerance).
As a consequence of this, a single Sierra I/O node can
service a read request much more quickly than one of
Minerva’s, providing an overall greater level of service.

Despite Sierra having 12 times more 1/O servers,
nearly 40 times more disks (which also spin faster
and are connected through a faster bus connection),
its performance is mnot significantly greater (as
demonstrated in Figure 2). One explanation for this
is that ultimately, reads and writes to a single file must
be serialised, in part at least, by the I/O servers.

We next explore two ways to improve the perfor-
mance of I/O intensive codes. Firstly, we utilise RIOT
to analyse why we experience such a slowdown with
HDF-5 based applications on the Minerva and Sierra
supercomputers; secondly, we use RIOT to analyse the
behaviour of the PLFS virtual file system, developed
at LANL, to gain more understanding into how a log-
based file system and transparent file partitioning can
offer such impressive improvements in achievable band-
width.

6.2. Middleware Analysis: HDF-5

Using RIOT’s tracing and visualisation capabilities, the
execution of a small run of the FLASH-IO benchmark
(using a 16 x 16 x 16 grid size and only two processors)
is investigated. Figure 6 shows the composition of a

single MPI-IO write operation in terms of its POSIX
operations. Rank 0 (Figure 6(a)) spends the majority
of its write time performing read, lock and unlock
operations, whereas Rank 1 (Figure 6(b)) spends much
of its time performing only lock, unlock and write
operations. Since Rank 1 writes to the end of the file,
increasing the end-of-file pointer, there is no data for
it to read in during data-sieving; Rank 0, on the other
hand, will always have data to read (since there will be
zeroes present between its current position and the new
end-of-file pointer).

Also of interest is the fact that both processors are
splitting one large write into five lock, read, write,
unlock cycles. This is indicative of using data-sieving,
with the default 512 KB buffer, to write approximately
2.5 MB of data. When performing a write of this
size, where all the data is “new”, data-sieving may
be detrimental to performance. In order to test this
hypothesis we located the MPI_Info_set operations in
the FLASH-IO source code (used to set the MPI-IO
hints) and added additional operations to disable data-
sieving. We then performed the same experiment in
order to visualise the write behaviour with data-sieving
disabled. Figure 7 shows that now the MPI-IO write
operation is consumed by a single write operation, and
the time taken to perform the write is shorter than that
found in Figure 6.

Using the problem size benchmarked previously
(24 x 24 x 24), we performed further executions of
FLASH-IO on Minerva and Sierra using between 1
and 32 compute nodes (12 to 384 processors) in three
configurations: firstly, in its original configuration;
secondly, with data-sieving disabled; and, finally,
with collective buffering enabled and data-sieving
disabled.  Figure 8(a) demonstrates the resulting
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improvement on Minerva, showing a 2X increase in
write bandwidth over the unmodified code. Better
performance is observed when using collective buffering.
On Sierra (Figure 8(b)) we see a similar improvement
in performance (approximately 2x improvement in
bandwidth). We also see that on a single node (12
processor cores), performing only data-sieving is slightly
faster than using collective buffering, and beyond this
we see that using collective buffering increases the
bandwidth by between 5% and 20%.

It should be noted that this result does not mean
that data-sieving will always decrease performance. In
the case that data in an output file is being updated
(rather than a new output file generated), using data-
sieving to make small differential changes may improve
performance.

6.3. Virtual File System Analysis: PLFS

PLFS is an I/O interposition layer designed primarily
for checkpointing and logging operations.  PLFS
intercepts MPI-1IO calls through a ROMIO file system
driver and transparently translates them from n-
processes writing to 1 file, to n-processes writing to n-
files. The middleware creates a view over the n-files, so
that the calling application can operate on these files as
if they were all concatenated into a single file. The use
of multiple files by the PLFS layer helps to significantly
improve file write times, as multiple, smaller files can
be written simultaneously. Furthermore, improved read
times have also been demonstrated when using the same
number of processes to read back the file as were used
in its creation [14].

Table 5 presents the average perceived and effective
MPI-IO and POSIX bandwidths achieved by the BT
benchmark when running with and without the PLFS
ROMIO file system driver. Note that, as previously,
effective bandwidth in this table refers to the bandwidth
of the operations as if called serially and hence are much
lower than the perceived bandwidths.

When not using PLFS we see that the effective
POSIX write bandwidth decreases as the applications
are scaled. PLFS partially reverses this trend as writes
are no longer dependent on operations performed by
other processors and can therefore be flushed to the file
server’s cache much more quickly. The log-structured
nature of PLFS also increases the bandwidth, as data
can be written in a non-deterministic sequential manner
with a log file keeping track of the data ordering.
For a BT Class C execution on 256 processors, PLFS
increases the bandwidth from 115.2 MB/s perceived
bandwidth up to 3,118.08 MB/s on the Sierra cluster,
representing a 27-fold increase in write performance.

Much smaller gains are seen on Minerva, but due to
its rather limited I/O hardware this is to be expected.
There are fewer I/O servers to service read and write
requests on Minerva and as a result there is much less
bandwidth available for the compute nodes.

Figure 9 demonstrates that during the execution of
BT on 256 processors, concurrent POSIX write calls
wait much less time for access to the file system.
As each process is writing to its own unique file, it
has access to its own unique file stream, reducing
file system contention. For non-PLFS writes we see
a stepping effect where all POSIX writes are queued
and complete in a serialised, non-deterministic manner.
Conversely, on larger I/O installations, PLFS writes
do not exhibit this stepping behaviour, and on smaller
I/0 installations they exhibit this behaviour to a much
lesser extent, as the writes are not waiting on other
processes to complete.

7. CONCLUSIONS

Parallel I/O operations continue to represent a
significant bottleneck in large-scale parallel scientific
applications. This is, in part, because of the slower
rate of development that parallel storage has witnessed
when compared to that of microprocessors. Other
causes include limited optimisation at code level and the
use of complex file formatting libraries. Contemporary
applications can often exhibit poor I/O performance
because code developers lack an understanding of how
their code utilises I/O resources and how best to
optimise for this.

In this paper we document the design, implementa-
tion and application of RIOT, a toolkit with which these
issues might be addressed. We demonstrate RIOT’s
ability to intercept, record and analyse information re-
lating to file reads, writes and locking operations within
three standard industry I/O benchmarks. RIOT has
been utilised on two commodity clusters as well an IBM
BG/P supercomputer.

The results generated by our tool illustrate the
difference in performance between the relatively small
I/O subsystem installed on the Minerva cluster and
the much larger Sierra I/O backplane. Whilst there
is a large difference in the size and complexity of
these I/O systems, much of the performance differences
originate from the contrasting file systems that they
use. Furthermore, through using the BG/P located
at Daresbury Laboratory, we have demonstrated that
exceptional performance can be achieved on small I/0
subsystems where dedicated 1/O aggregators are used,
allowing data to be quickly flushed from the compute
node to an intermediate node.

RIOT provides the opportunity to:

e Calculate not only the bandwidth perceived by a
user, but also the effective bandwidth achieved by
the I/O servers. This has highlighted a significant
overhead in MPI, showing that the POSIX write
operations to the disk account for little over half of
the MPI write time. It has also been shown that
much of the time taken by MPI is consumed by
file locking behaviours and the serialisation of file
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MPLIO PLFS
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. . Minerva  223.36  53.76  61.44 276.32  224.64 12544
Perceived Bandwidth Sierra 22224 126.08 115.20 337.12  1,518.08 3,118.08
. , Minerva  12.39 172 0.83 72.07 36.60 8.86
Effective POSIX Bandwidth ¢ " 15056 4078 7.8 235.44  538.13  437.88
. . Minerva  13.96  0.84  0.24 17.27 3.51 0.49
Effective MPI Bandwidth Sierra 13.89 1.97 045 21.07 23.72 12.18

writes by the I/O servers;

Demonstrate the significant overhead associated
with using the HDF-5 library to store data grids.
Through our analysis we have shown that on a
small number of cores, the time spent acquiring
and releasing file locks can consume nearly 30% of
the file write time. Furthermore, on small-scale,
multi-user I/O systems, reading data into memory,
in order to perform data-sieving, can prove very
costly;

Visualise the write behaviour of MPI when data-
sieving is in use, showing how large file writes are
segmented into many 512 KB lock, read, write,
unlock cycles. Through adjusting the MPI hints to
disable data-sieving we have shown that on some
platforms, and for some applications, data-sieving
may degrade performance;

Analyse the performance gains resulting from
PLFS. In this paper, we have demonstrated a
25x speed-up on the Sierra supercomputer through
using PLFS. The increased number of individual
file streams allows an I/O server to better handle
many concurrent write requests. Even on the much
smaller Minerva cluster, PLFS was able to yield

TABLE 5: Perceived and Effective Bandwidth (MB/s) for BT class C through MPI-IO and PLFS, measured using
RIOT.

almost a 2x speed-up;

Next we plan to utilise the log files produced by RIOT
to create an automated benchmark generator. We
believe that RIOT can be used to create synthetic I/0
benchmarks with which I/O configuration options for
the host or file system can be quickly assessed. We also
believe this offers an opportunity for many laboratories
to release I/O benchmarks that recreate the I/O
operations in classified, production-grade applications.
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