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Abstract—As we move towards the Exascale era of super-
computing, node-level failures are becoming more common-
place; frequent checkpointing is currently used to recover
from such failures in long-running science applications. While
compute performance has steadily improved year-on-year,
parallel I/O performance has stalled, meaning checkpointing
is fast becoming a bottleneck to performance. Using current
file systems in the most efficient way possible will alleviate
some of these issues and will help prepare developers and
system designers for Exascale; unfortunately, many domain-
scientists simply submit their jobs with the default file system
configuration.

In this paper, we analyse previous work on finding optimality
on Lustre file systems, demonstrating that by exposing paral-
lelism in the parallel file system, performance can be improved
by up to 49×. However, we demonstrate that on systems where
many applications are competing for a finite number of object
storage targets (OSTs), competing tasks may reduce optimal
performance considerably. We show that reducing each job’s
request for OSTs by 40% decreases performance by only 13%,
while increasing the availability and quality of service of the
file system. Further, we present a series of metrics designed
to analyse and explain the effects of contention on parallel
file systems. Finally, we re-evaluate our previous work with
the Parallel Log-structured File System (PLFS), comparing it
to Lustre at various scales. We show that PLFS may perform
better than Lustre in particular configurations, but that at large
scale PLFS becomes a bottleneck to performance. We extend
the metrics proposed in this paper to explain these performance
deficiencies that exist in PLFS, demonstrating that the software
creates high levels of self-contention at scale.

Keywords-Data storage systems; File servers; File systems;
High performance computing; Optimization; Performance
analysis; Supercomputers;

I. INTRODUCTION

Historically, the optimisation of I/O performance has been

the responsibility of application developers, configuring their

own software to achieve the best performance – a respon-

sibility that has often been ignored. Software solutions to

achieving better performance, such as custom-built MPI-IO

drivers that target specific file systems, are often not installed

by default. For instance, on the systems installed at the

Open Compute Facility (OCF) at the Lawrence Livermore

National Laboratory (LLNL), an optimised Lustre-specific

driver is not installed despite the software being readily

available with most implementations of the Message Passing

Interface (MPI) library.

Many previously published works show optimised mid-

dlewares outperforming MPI-IO in its default configuration

considerably, and make no attempt to compare the software

to an optimised MPI-IO installation [1]–[3]. In this paper, an

MPI library with a custom Lustre driver is built and utilised

on the Cab machine (see Section III for details) at LLNL.

The research presented by Behzad et al. [4], [5] suggests that

performance can be improved by as much as two orders

of magnitude using this Lustre-specific driver with tuned

parameters.

In this paper we perform a parameter sweep in order to

find a more optimal Lustre configuration for a small test with

IOR. Through this, we demonstrate a performance improve-

ment of up to 49×. While performance is vastly improved

by tweaking the Lustre settings, optimal performance for

one application can reduce the quality of service (QoS)

provided to other users on a large shared system. This paper

investigates these potential issues, demonstrating that with

the introduction of contention, optimal performance may be

reduced considerably. Further, we demonstrate that reducing

the demand on resources increases QoS at relatively little

expense to performance. Finally, this paper compares the

approach of Behzad et al. to the Parallel Log-structured File

System (PLFS) from the Los Alamos National Laboratory

(LANL) and EMC2, showing that PLFS at scale acts much

like several contended jobs.

Specifically this paper makes the following contributions:

• We utilise the Lustre MPI driver and an exhaustive pa-

rameter search to find an optimal Lustre configuration

for a small I/O intensive test application, demonstrating

a 49× performance improvement over the default MPI-

IO performance. We then demonstrate the effect of

this optimised configuration on a contended file sys-

tem. Specifically, we show that with four simultaneous

I/O intensive applications, each using the previously

discovered optimal configuration, the performance for

each task is decreased by a factor of 4. Reducing the

amount of resources demanded by each task is shown

to improve the system’s availability, while having a

minimal effect on each job’s performance;

• We introduce a series of metrics designed to predict

the possible effect of additional contention on Lustre



file systems. With these equations we can predict the

average load of the file system’s Object Storage Targets

(OSTs) and thus quantify the level of contention being

experienced by competing jobs. Additionally, we use

a benchmark to predict how a single OST behaves

under contention. Our analysis suggests that for three

simultaneous tasks or more, OST contention begins to

produce a noticeable performance overhead;

• Finally, we re-evaluate our previous work with PLFS

in order to explain the deficiencies experienced at

scale [6]. By extending our contention metrics to de-

scribe PLFS-based applications, we demonstrate that at

scale PLFS creates high levels of self-contention on

Lustre file systems.

The remainder of this paper is structured as follows: Section

2 summarises related work in the area of I/O optimisation

and parallel file systems; Section 3 outlines the system used

in the experiments in this paper; Section 4 describes our

search for an optimal Lustre configuration for a simple I/O

benchmark application; Section 5 shows how contended jobs

may affect the performance achieved when using previously

discovered tuned Lustre configurations, providing metrics

and results that demonstrate that when contended, jobs can

request lesser resources to achieve a similar level of perfor-

mance; Section 6 extends this analysis to PLFS, showing

that at scale PLFS introduces heavy self-contention; Section

7 concludes this paper.

II. RELATED WORK

As supercomputers have grown in compute power, so too

have they grown in complexity, size and component count.

With the push towards Exascale computing (estimated by

2022 at the time of writing [7]), the explosion in machine

size will result in an increase in component failures. To

combat these reliability issues, long running scientific simu-

lations require checkpointing to reduce the impact of a node

failure. Periodically, during a time consuming calculation,

the system’s state is written out to persistent storage so that

in the event of a crash, the application can be restarted and

computation can be resumed with a minimal loss of data.

Writing out this data to a parallel file system is fast becoming

a bottleneck to science applications at scale.

Just as MPI has become the de facto standard for the

development of parallel applications, so too has MPI-IO be-

come the preferred method for coordinating parallel I/O [8].

The ROMIO implementation [9], common to OpenMPI [10],

MPICH2 [11] and various other vendor-based MPI solu-

tions [12], [13], offers a series of potential optimisations. Us-

ing an abstract API such as MPI-IO allows optimisations to

be made to particular implementations. Specifically, ROMIO

implements collective buffering [14] and data-sieving [15] in

order to increase the potential bandwidth available. Through

understanding the I/O demands of an application, and tun-

ing which of these optimisations to make use of, modest

performance improvements can be achieved [16], [17].

In addition to file system agnostic optimisations, ROMIO

provides an Abstract Device I/O Interface (ADIO) [18]

for developers to implement custom drivers for their file

systems. Many supercomputers today utilise the Lustre file

system [19], which splits files into blocks that are then

distributed across a number of object storage targets (OSTs).

While Lustre does provide a POSIX-compliant interface, the

ad_lustre ADIO driver allows users to specify MPI-IO

hints in order to control the data layout of a file [20].

Using the configuration parameters made available by

the ad_lustre ADIO driver, Behzad et al. [4], [5] have

demonstrated a 100× increase in performance over using the

system’s stock configuration options, something that is all

too often left unchanged. Similar performance improvements

have been reported by Lind [21] and You et al. [22] suggest-

ing that configuring the Lustre file system correctly prior to

its use can produce a considerable boost in performance.

However, in a system with a small number of OSTs and a

large number of concurrent jobs, optimising performance in

the manner suggested by Behzad [5], Lind [21] and You [22]

may induce large amounts of contention due to overlapping

OSTs. It is this issue that this paper aims to address.

Another approach to handling substandard I/O in parallel

applications has been to design virtual file systems. PLFS [1]

is one such example that was developed at LANL and

combines file partitioning and a log-structure to improve

I/O bandwidth. In an approach that is transparent to an

application, a file access from n processors to 1 file is trans-

formed into an access of n processors to n files. The authors

demonstrate speed-ups of between 10× and 100× for write

performance. Furthermore, due to the increased number of

file streams, they report an increased read bandwidth when

the data is being read back on the same number of nodes

used to write the file [23].

Although PLFS has been shown to provide increases

in performance that are in-line with those of using

ad_lustre with optimal configuration options, it has also

been shown that at large scale, PLFS may harm performance,

such that it performs worse than even an unoptimised

MPI-IO installation (using the UNIX file system, POSIX-

compliant driver ad_ufs) [6].

This paper analyses the potential performance of the

Lustre ADIO driver over the standard UFS driver in similar

way to previous studies [4], [5], [21], [22]. However, none

of these works consider the impact of background I/O

load upon file system performance – this is an important

consideration on large multi-user systems and this paper

addresses this concern. We also focus on the work of Bent

et al. [1] demonstrating how using PLFS at scale behaves

much like a heavily contented file system.



Cab

Processor Intel Xeon E5-2670
CPU Speed 2.6 GHz
Cores per Node 16
Memory per Node 32 GB
Nodes 1,200
Interconnect QLogic TrueScale 4× QDR InfiniBand

File System Lustre 2.4.2
I/O Servers 32
Theoretical Bandwidth ≈30 GB/s

Storage Metadata
Number of Disks 4,800 30 (+2)a

Disk Size 450 GB 147 GB
Spindle Speed 10,000 RPM 15,000 RPM
RAID Configuration Level 6 (8 + 2) Level 1+0

Table I: Configuration for the lscratchc Lustre File System

installed at LLNL.

aThe MDS used by OCF’s lscratchc file system uses 32 disks: two
configured in RAID-1 for journalling data, 28 disks configured in RAID-
1+0 for the data volume itself and a further two disks to be used as hot
spares.

III. COMPUTING PLATFORMS

For the experiments in this paper, the results were all

collected on the Cab supercomputer installed in the OCF

at LLNL. Cab is a Cray-built Xtreme-X cluster with 1,200

batch nodes, each containing two oct-core Xeon E5-2670

processors clocked at 2.6 GHz. An InfiniBand fat-tree

connects each of the nodes. Cab is connected to LLNL’s

islanded I/O network, which provides Lustre (version 2.4.2)

file systems to a number of large clusters. For all exper-

iments, the Intel compiler (version 13.0) and OpenMPI

(version 1.4.3) were used. The experiments with PLFS were

performed using OpenMPI 1.4.3 built with the PLFS 2.0.1

ADIO driver. More information can be found in Table I.

IV. EFFECTIVE USE OF UNCONTENDED PARALLEL FILE

SYSTEMS

As we have previously demonstrated [6], [17], the large

parallel file systems connected to some of the most powerful

supercomputers in the world are currently being under

utilised – partially due to a lack of available software drivers,

partially due to lack of optimisation in the applications

themselves. The work presented by Behzad et al. [5] shows

how using the Lustre-specific MPI-IO driver (ad_lustre)

distributed with most MPI implementations can lead to

performance improvements of up to 100× over the default

installation. The authors utilise a genetic algorithm to search

the parameter space for an optimal configuration [5], varying

the stripe factor (the number of OSTs to use), the stripe size,

the number of collective buffering nodes and the collective

buffer size (as well as some HDF-5 specific options).

Using the same approach as Behzad et al. (but with

reduced complexity due to the absence of a genetic algo-

rithm), we performed a parameter sweep on a small IOR

Option Value

API MPI-IO
Write file On
Read file Off
Block Size (bytes) 4 MB
Transfer Size (bytes) 1 MB
Segment Count 100

Table II: IOR configuration options for experiments.

execution running on 64 nodes (64×16 = 1, 024 cores). The

configuration used for IOR can be found in Table II. The

collective buffer size was set to the default value (16 MB)

and each node contributed one collective buffer process,

meaning there was a total of 64 buffering processes. To

reduce the search space, a linear search was conducted with

a stripe count between 1 and 160 (as there is a 160 OST

limit in the Lustre version 2.4.2, which is used on OCF

machines) and a stripe size between 1 and 256 MB.

The results of this parameter search are shown in Figure 1.

Using the default Lustre configuration (stripe count = 2,

stripe size = 1 MB), the application achieves an average

bandwidth of 313 MB/s. Through varying the stripe size,

performance can be increased from this baseline bandwidth

up to 395 MB/s, and by varying the stripe count perfor-

mance can be increased much further, up to a maximum of

4,075 MB/s.

Figure 1 shows that through varying both parameters the

maximum bandwidth is found when using 160 stripes of size

128 MB; performance increases from the baseline 313 MB/s,

up to 15,609 MB/s, representing a 49× improvement in write

performance. This result largely echoes those reported by

previously [5], where the greatest performance is usually

found by striping across the maximum number of OSTs and

writing stripes that are a multiple of the application’s I/O

block size.

That the optimal performance is found when exploiting

the maximum amount of available parallelism may seem

obvious, but on many systems, it is simply not possible to

achieve this without a rebuilt software stack. Exploiting a

larger proportion of the available file servers and storage

targets may be optimal on a quiet system, however when

there are many tasks requiring I/O simultaneously, the per-

formance may decrease to the OST contention,

V. QUANTIFYING THE PERFORMANCE OF CONTENDED

FILE SYSTEMS

On a multi-user system, with limited resources, using a

large percentage of the OSTs available may be detrimental

to the rest of the system. The lscratchc file system used in

this paper exposes 480 OSTs to the user. The assignment

of OSTs to files is done at file creation time, with targets

assigned at random (based on current usage, to maintain an

approximately even capacity). This suggests that three jobs,



8 16 32 64 128 160
0

5000

10000

15000

Object Storage Targets (OSTs)

B
an

d
w

id
th

(M
B

/s
)

32M

64M

128M

256M

Figure 1: Write bandwidth achieved over 1,024 processors by varying both the stripe count and the stripe size.

each using 160 OSTs, would fully occupy the file system

if the assignment had no overlaps. However, as OSTs are

assigned randomly, for two jobs (of which the first uses

160/480 of the available OSTs) approximately one third of

the OSTs assigned to the second job will also be in use by

the first job.

Dinuse(n) = Dinuse(n−1)+

✓

rj −
Dinuse(n− 1)

Dtotal

rj

◆

(1)

If each job (j ∈ {1 . . . n}) requests rj OSTs, the total

number of OSTs in use (Dinuse) after each job starts is

described by Equation 1, where Dinuse(0) = 0. Each time

a new job starts, the number of OSTs in use increases by

the size of the request, minus the average number of OST

collisions that occur. If each job is requesting the same num-

ber of resources (R) – which may be the case if a parameter

sweep has determined that the optimal configuration is when

the maximum number of OSTs are used – then the number

of OSTs in use can be simplified to:

Dinuse = Dtotal −

✓

Dtotal ×

✓

1−
R

Dtotal

◆n◆

(2)

With these two equations the average load of each OST

(Dload) can be calculated, for any particular workload, by

taking the number of stripes requested in total, and dividing

it by the number of OSTs in use. A load of 1 would imply

that each OST is, on average, only in use by a single job,

whereas a higher number would indicate that there are a

number of collisions on some OSTs, potentially resulting in

a job switching overhead.

Dreq = R× n (3)

Dload =
Dreq

Dinuse

(4)

Table III demonstrates this for the lscratchc file system

where each job is requesting the previously discovered

optimal number of stripes (160). With 10 simultaneous

Dtotal = 480, R = 160

Jobs Dinuse Dreq Dload

1 160.00 160 1.00

2 266.67 320 1.20

3 337.78 480 1.42

4 385.19 640 1.66

5 416.79 800 1.92

6 437.86 960 2.19

7 451.91 1120 2.48

8 461.27 1280 2.78

9 467.51 1440 3.08

10 471.68 1600 3.39

Table III: The average number of OSTs in use and their av-

erage load based on the number of concurrent I/O intensive

jobs with 160 stripes requested by each job.

Dtotal = 480, R = 64

Jobs Dinuse Dreq Dload

1 64.00 64 1.00

2 119.47 128 1.07

3 167.54 192 1.15

4 209.20 256 1.22

5 245.31 320 1.30

6 276.60 384 1.39

7 303.72 448 1.48

8 327.22 512 1.57

9 347.59 576 1.66

10 365.25 640 1.75

Table IV: The average number of OSTs in use and their av-

erage load based on the number of concurrent I/O intensive

jobs with 64 stripes requested by each job.

I/O intensive jobs each using 160 OSTs, an average of 4

collisions will occur on each OST, though a small subset of

OSTs may well incur all 10 potential collisions (and some

may incur none), reducing the performance of the file system

for every job. Table IV shows that by reducing the size of the

stripe requests to 64, the OST load is decreased significantly,

possibly avoiding many of the bottlenecks associated with

OST contention.

In order to ascertain how the OSTs in the lscratchc file

system behave under contention, a study was undertaken

using a custom-written benchmark that creates a split com-

municator that therefore allows each process to read and
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Figure 2: The performance per-processor of the lscratchc file system under contention, with the ideal upper and lower

bounds.

write its own file in a single MPI application. The benchmark

opens a number of files, with the same Lustre configuration

(a single 1 MB stripe). Using the stripe_offset MPI

hint, the OST to use is specified such that every rank writes

to its own file that is stored on the same target. Figure 2

shows the per-process bandwidth achieved with a varying

number of contended file writes.

In Figure 2, the shaded area indicates idealised scaling

behaviour, where the upper and lower limits are calculated

from the 95% confidence intervals from the single job exper-

iment and scaled linearly; as lscratchc is already a shared-

user file system, there is some variance in performance with

no forced contention. The graph shows that, as the number

of jobs is increased, the performance diverges from the

top of the ideal scaling line, illustrating the performance

degradation associated with high OST load.

To investigate this on the whole file system, a job was

submitted to Cab that created four identical IOR executions

each running simultaneously with the configuration stated

in Table II. Each task utilised 64 nodes (1,024 processes)

and thus the total job consumed 4,096 cores, and the MPI

hints were specified according to the previously discovered

optimal values (Figure 1). As can be seen in Figure 3, each

individual application achieved approximately 4,500 MB/s –

a 3.44× reduction from the peak value (15,609 MB/s) seen

in Figure 1.

Using the mean of five experiments, Table V and Figure 4

demonstrate how reducing the number of stripes per job

increases the OST availability to the rest of the system while

having a minimal effect on performance. Using as few as 32

stripes per file, the average bandwidth achieved by each of

the four applications is 3,500MB/s, but by Equation 2, only

115 OSTs will be in use in the average case, providing an

average OST load of ≈1.1.

Furthermore, Table V shows that when using a stripe
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Figure 4: Graphical representation of the data in Table V,

showing optimal performance at 160 stripes per file, but very

minor performance degradation at just 32 stripes per file.

count of 160, there are 42 OSTs that are being contended by

3 of the 4 jobs and there are 7 OSTs being contended by all

4. By reducing the demand to 64 stripes, the performance

is reduced by ≈14% while the number of OSTs in use is

reduced by ≈37%, leaving more resources available for a

larger number of tasks, while also reducing the number of

collisions significantly. Although it is unlikely that many

simultaneous jobs will request such a large number of OSTs

each, we seek only to demonstrate a worst case scenario and

demonstrate the potentially harmful nature of auto tuning

without consideration for the QoS of a shared file system.

Although the optimal performance on lscratchc, with four

competing tasks, is still found using the maximum number of

stripes allowed, the bandwidth achieved is almost a quarter

of the previously achieved maximum. On file systems where

there are less OSTs (such as those used by Behzad et

al. [5]), any job contention will decrease the achievable
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Figure 3: Performance of each of 4 tasks over 5 repetitions where all tasks are contenting the file system.

Average Total OST Usage Predicted Actual

R Bandwidth Bandwidth Dreq 1 2 3 4 Dinuse Dload Dinuse Dload

32 3654.06 14616.24 128 103.2 11.2 0.8 0.0 115.76 1.11 115.20 1.11

64 3910.51 15642.03 256 172.6 35.8 3.4 0.4 209.20 1.22 212.20 1.21

96 4042.98 16171.92 384 199.4 76.4 9.8 0.6 283.39 1.36 286.20 1.34

128 4172.17 16688.66 512 211.6 111.4 22.4 2.6 341.18 1.50 348.00 1.47

160 4541.37 18165.46 640 191.8 147.0 41.8 7.2 385.19 1.66 387.80 1.65

Table V: Average and total bandwidth achieved across four tasks for a varying stripe size request, along with values for the

average number of tasks competing for 1, 2, 3 and 4 OSTs respectively.

Dtotal = 160, R = 128

Jobs Dinuse Dreq Dload

1 128.00 128 1.00

2 153.60 256 1.67

3 158.72 384 2.42

4 159.74 512 3.21

5 159.95 640 4.00

6 159.99 768 4.80

7 160.00 896 5.60

8 160.00 1024 6.40

9 160.00 1152 7.20

10 160.00 1280 8.00

Table VI: Predicted OST usage and average load for the

Stampede I/O setup described in [5] with contended jobs.

performance and may be detrimental to the rest of the

system. To demonstrate this further, the equations presented

in this paper have been applied to the configuration of the

Stampede supercomputer [5]. Table VI shows our predicted

OST load for Stampede’s file system using the optimal stripe

count found by Behzad et al. for the VPIC-IO application

(128 stripes on a file system with 58 OSSs and 160 OSTs).

Our analysis demonstrates that with only three simultaneous

tasks with a similar I/O demand, the OSTs on Stampede

could be in use by as many as two or three simultaneous

tasks in the average case. This may potentially cause a

significant performance degradation.

VI. THE INFLUENCE OF PLFS ON CONTENTION

In our previous work PLFS was shown to produce a

noticeable performance increase on LLNL systems under

certain conditions [6], [17]. However, this paper has already

demonstrated that the performance gap is reduced when

using a tuned Lustre-specific MPI-IO driver. Furthermore,

some of our previous work has shown that at scale, PLFS

performs worse than even the unoptimised UFS MPI-IO file

system driver (ad_ufs) [6].

Figure 5 shows the performance of the lscratchc file

system when running the IOR problem described in Table II

on Cab. PLFS operates by creating a separate data and index

file for each rank, in directories controlled by a hashing

function; this increases the number of file streams available

and consequently increases the number of Lustre stripes in

use. As the files are written by PLFS through POSIX file

system calls, each file is created with the system default

configuration of two 1 MB stripes per file (unless otherwise

specified using the lfs control program).

It should be noted that as PLFS creates a large number

of files, with randomly placed stripes, there is a larger vari-

ance in PLFS performance. An execution running with 256

processes will create 256 data files, requiring 512 stripes.

Experimentally, this produces an average OST load of 1.58

and a bandwidth between 3,329.9 MB/s and 11,539.4 MB/s

(average 7,126.9 MB/s). Conversely, through the Lustre

driver, the variance is much lower as at most 160 stripes

will be created with no collisions between OSTs. Due to
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ad_lustre ad_plfs

Processors B/W 95% CI B/W 95% CI

16 403.75 (390.73, 416.77) 752.96 (398.41, 1107.51)

32 404.71 (393.09, 416.34) 727.33 (558.95, 895.70)

64 857.35 (832.82, 881.88) 1776.70 (648.90, 2904.50)

128 1987.51 (1908.24, 2066.78) 3814.62 (1375.19, 6254.05)

256 4354.98 (4288.69, 4421.27) 7126.88 (4159.66, 10094.10)

512 8985.14 (8777.61, 9192.66) 10723.42 (9947.06, 11499.77)

1024 13859.58 (12582.68, 15136.47) 8575.13 (8474.06, 8676.21)

2048 16200.16 (15441.57, 16958.74) 5696.41 (5604.86, 5787.97)

4096 16917.11 (16291.58, 17542.64) 3069.05 (3052.82, 3085.28)

Table VII: Numeric data for Figure 5, showing the performance of IOR through Lustre and PLFS.

background machine noise it is difficult to know what the

load is on each OST at any given time, but generally PLFS

performs better when the number of OSTs experiencing a

high number of collisions is minimised.

Table VIII shows the number of OST collisions in the

PLFS backend directory for the 512 cores case – the highest

core count for which PLFS produces a speed-up over the

ad_lustre driver. At 512 cores, the performance of PLFS

reaches its peak before Lustre begins to provide better

performance. Although PLFS has been designed to target

unaligned accesses, the scaling issues in PLFS will still be

present at scale due to the number of files being created.

However, unaligned accesses may be detrimental to the

performance of Lustre.

Using the equations introduced earlier to quantify the

number of OST collisions for contended jobs, but amending

the equations to deal with the contention created by PLFS

we can analyse the average OST load for PLFS. To modify

the equations, we instead treat each rank as a separate task

with 2 stripes (i.e. R = 2) and set the number of tasks (n)

to the number of ranks in use. This mimics the behaviour of

PLFS on a single application run (where n files are created,

instead of a single file).

Dinuse = Dtotal −

✓

Dtotal ×

✓

1−
2

Dtotal

◆n◆

(5)

Experiment

Collisions 1 2 3 4 5

0 121 135 122 116 129

1 134 126 134 129 133

2 97 88 85 94 82

3 49 55 56 45 54

4 21 22 21 20 28

5 6 6 6 12 2

6 1 1 2 1 1

7 0 0 0 0 1

8 0 0 0 1 0

Dinuse 429 433 426 418 430

Dload 2.39 2.36 2.40 2.45 2.38

BW (MB/s) 12062.68 10469.38 10234.97 9768.07 11081.99

Table VIII: Stripe collision statistics for PLFS backend

directory running with 512 processors.

Dload =
2× n

Dinuse

(6)

With these equations we can show that, while PLFS

may provide a small-scale fix, it inevitability overwhelms a

Lustre file system at higher core counts. Using Equations 5

and 6, at 512 cores on the lscratchc file system there is

an average of 2.4 tasks using each OST; by 688 cores,

there are 3 tasks per OST (which is shown in Figure 2

to still provide “good” performance). At 2,048 and 4,096

cores, the number of collisions reaches 8.53 and 17.06



Experiment

Collisions 1 2 3 4 5

0 0 0 0 0 0

1 0 0 0 0 0

2 1 0 0 0 0

3 0 0 1 0 0

4 0 0 0 0 0

5 0 1 1 1 0

6 1 2 2 2 4

7 2 4 2 10 2

8 8 7 5 3 7

9 9 10 13 16 15

10 15 13 21 18 18

11 26 18 30 21 25

12 33 38 34 37 29

13 48 46 36 33 37

14 45 48 38 40 48

15 28 33 45 51 46

16 51 49 32 44 46

17 42 42 46 41 36

18 30 35 34 29 33

19 44 46 39 34 29

20 28 21 27 20 25

21 24 18 21 22 26

22 17 14 14 12 17

23 10 9 14 11 10

24 6 12 4 8 9

25 1 3 8 11 7

26 5 5 8 9 5

27 4 5 4 3 2

28 0 0 1 1 3

29 2 1 0 2 0

30 0 0 0 0 0

31 0 0 0 0 0

32 0 0 0 1 0

33 0 0 0 0 0

34 0 0 0 0 0

35 0 0 0 0 1

Dinuse 480 480 480 480 480

Dload 17.07 17.07 17.07 17.07 17.07

BW (MB/s) 3042.06 3077.16 3083.26 3084.89 3057.90

Table IX: Stripe collision statistics for PLFS backend direc-

tory running with 4,096 processors.

respectively, which begins to saturate the file system and

decreases performance not just for the host application, but

for all other users of the file system too. Tables VIII and

IX show the observed collision statistics for two of these

application configurations. Table IX specifically shows that

at 4,096 cores, most OSTs are being used for the stripe data

of between 10 and 23 files and in one of the five repeated

experiments, a single OST is being used by 35 competing

ranks, placing a large overhead on its potential performance.

VII. CONCLUSION

In this paper it has been shown that current-day I/O sys-

tems perform much better than some literature suggests [1]–

[3]. However, this level of performance can only be achieved

if the file system is being used correctly. Behzad et al. [4],

[5] suggest that on Lustre file systems, a good level of

performance can be found by adjusting particular file layout

settings. They show that, with an optimised configuration,

the file system scales almost linearly. However, due to

restrictions in the version of Lustre used for the experiments

in this paper, the maximum number of OSTs that can be used

is only 160; this suggests that when problems are scaled

up to hundreds of thousands of nodes (as may be the case

for Exascale), the I/O performance will not scale. Particular

versions of Lustre already scale beyond this OST limit [24],

but they are not currently being used by some of the biggest

supercomputing centres (such as the OCF at LLNL).

We have utilised an exhaustive search algorithm to per-

form a parameter sweep to find an optimal configuration for

the Lustre file system connected to the Cab supercomputer.

After finding an optimal configuration for a small IOR

problem, this paper analyses the effect of I/O contention on

the achievable bandwidth. A series of metrics have also been

proposed that aim to quantify the contention that is created

by several jobs competing for this shared resource. Section V

shows that when jobs are run with the optimal configuration

on a contented resource, performance drops considerably,

and using less resources vastly improves system availability

with a minor performance degradation.

We have previously explored the work of LANL and

EMC2 in creating PLFS, which has been shown to provide

significant speed-ups at mid-scale [6], [17]. However, this

paper shows that PLFS may be harmful to performance on

Lustre file systems at large-scale. The work in this paper

provides an explanation for the performance degradation

experienced previously, within the framework of the Lustre

contention metrics provided.

Using the equations given, the load of each OST can be

calculated for both competing I/O intensive applications and

for PLFS-based applications. With the results from these

equations, various file system purchasing decisions can be

made; for instance, the number of OSTs can be increased in

order to reduce the OST load for a theoretically “average”

I/O workload. Furthermore, the benefits PLFS may have on

an application can be calculated based on the scale at which

it will be run, as well as on the number of OSTs available

for the task.

While, at the time of writing, the I/O backplanes in mod-

ern day systems are being under-utilised, with the correct

configuration options and some optimisation by application

developers, acceptable performance can be achieved with

relatively little effort. Making these changes to applications

and file system configurations will not only improve current

scientific applications, but will also benefit future systems

and inform future I/O system developers on how to best

proceed towards Exascale-class storage.
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