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H I G H L I G H T S

• UV-234 (commercially Tinuvin®234)

addition is beneficial when printing

inherently porous tissue engineering

constructs via stereolithography.

• Formation of PolyHIPE surface skin dur-

ing stereolithography is reduced by

adding UV-234 to the monomer phase.

• UV-234 reduces the cured area of the

PolyHIPE, permitting higher resolution

structures to be produced with smaller

spacing.

• UV-234 PolyHIPEs were non-toxic and

supported improved osteoblast activity

showing their great prospects in 3D

cell culture.
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Using stereolithography (vat photopolymerisation) to polymerise High Internal Phase Emulsions (PolyHIPEs) is a

potent additive manufacturing route to produce materials with a hierarchical porosity. These multiscale porous

materials have a microporosity (1–50 μm) dictated by emulsion templating and a macroporosity (100 μm up-

wards) controlled by additivemanufacturing. The interconnected, hierarchical porosity of these structures is par-

ticularly desirable in thefield of bone tissue engineering as it promotes tissue formation and allows efficientmass

transport. However, due to the high light-scattering nature of the HIPEs, the achievable feature resolution is poor

in comparison to other photocurable polymers, and they are prone to the formation of a closed porosity ‘skin

layer’ at the surface. This study focuses on different methods of both improving the resolution of structures fab-

ricated from HIPEs via stereolithography and minimising skin formation. The inclusion of 2-(2H-Benzotriazol-2-

yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (commercially UV-234 or Tinuvin®234), a UV light-absorber, was

found to significantly improve the achievable resolution of PolyHIPE structures fabricated via stereolithography

with no cytotoxic effects and reduce the skin formation. Furthermore, in direct comparison with a non-

microporous scaffold of the same architecture, the inclusion of a microporosity significantly promoted the prolif-

eration of MLO-A5 murine osteoblasts and permitted superior bone-matrix deposition.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Synthetic biomaterials that can be structured into porous scaffolds to

support cell growth have played an influential role in developing the

field of tissue engineering [1]. An emerging research interest in this

area is the combination of additive manufacturing technologies and

emulsion templating to produce multiscale porosity materials [2–4]. A

high level of pore interconnectivity and percentage porosity are essen-

tial requirements for a tissue engineering scaffold as they permit suffi-

cient oxygen and nutrient transfer to support the growth and

proliferation of cells [5], and emulsion templating is an appealing

method to incorporate these requirements into the scaffold due to the

ease with which interconnected porosity can be generated [6].

To achieve this, an emulsion is created where a typically hydropho-

bic pre-polymer ismixedwithwater and a suitable surfactant; thismix-

ture of immiscible liquids creates a suspension of water droplets

surrounded by a continuous pre-polymer phase. When the droplet

phase exceeds 74% of the total volume the emulsion is classified as a

High Internal Phase Emulsion (HIPE) [7]. By polymerising the continu-

ous phase through gelling and crosslinking the pre-polymer component

within this emulsion, the three-dimensional (3D) structure of the emul-

sion is preserved whilst thewater is removed, and the resulting scaffold

is known as a PolyHIPE [19].

The pre-processing conditions of the emulsion directly affect the

PolyHIPEmorphology. Very high porosity can be achieved by increasing

the droplet volume ratio in the emulsion, with ratios of up to 99% being

reported [8]. Varying the surfactant concentration affects both the

emulsion stability and the pore interconnectivity [9]. Furthermore, the

preferential solubility of the initiator into the internal or continuous

phase can determine whether open or closed porosity scaffolds are cre-

ated [10]. A range of polymer materials have been used with this fabri-

cation method [11,12], enabling the production of a new generation of

scaffold materials for 3D cell culture and tissue engineering constructs

[13–16].

The choice of materials with which one can create a biodegradable

PolyHIPE is limited to sufficiently hydrophobic monomers to create

the initial water-in-oil emulsion. Despite this, thermally cured biode-

gradable monomers such as poly(lactic acid) [17], and propylene fuma-

rate dimethacrylate (PFDMA) exist [18]. Photocurable biodegradable

thiol-ene based PolyHIPEs containig a PCL-triacrylate have also been de-

veloped by Cameron et al. [19].

There are currently two additive manufacturing techniques that

have been combined with light initiated emulsion templating:

stereolithography (vat photopolymerisation) and materials extrusion

(fused deposition modelling, robocasting or slurry dispensing). In

stereolithography the photocurable resin is cross linked via spatially re-

solved exposure to ultraviolet (UV) light. This can be combined with

emulsion templating either by using dynamic mask projection [2], or

by directly scanning the UV light to polymerise the emulsion [3,4,13].

During materials extrusion an emulsion ink is extruded through a sy-

ringe and the emulsion sets afterwards via a thermal or UV initiated po-

lymerisation [15]. Emulsion templating is ideally suited to produce a

resin for these techniques because its viscosity can be modulated; the

viscosity of the HIPEs can be low enough for sufficient surface spreading

for stereolithography [3,4] or high enough to retain its shape during ex-

trusion via addition of high viscosity additives or high speed mixing

[15,20]. In all cases, themicroporosity of the polyHIPE can be controlled

independently from the macroporosity, which is produced by additive

manufacturing.

The microporosity within polyHIPEs can range from 1 to 100 μmde-

pending on the initial emulsion formulation [7]. This distribution en-

compasses the ideal feature size range for cell ingrowth and

proliferation,making them excellent scaffolds for 3D cell culture. 3D tis-

sue culture has been observed on porous disks of these materials for a

range of cell types and applications, including cartilage regeneration

[6], proliferation of human fibroblasts [17], neuronal cells [21], and

osteoblasts [10,18,22]. The pore size and interconnectivity is a crucial

factor for cell ingrowth and 3D tissue generation [23]. Additionally,

structuring of these PolyHIPEs via stereolithography was previously

demonstrated to enable fabrication of a range of structures with hierar-

chical porosity [2,3,24]. Previous work within our group has developed

PolyHIPE based porous woodpile structures for bone tissue engineering

applications, focusing on incorporating hydroxyapatite and

implementing tunable mechanical properties [4,13].

This photopolymerisation technique for 3D printing bone tissue en-

gineering scaffolds is not the only method utilised recently to progress

the field. For example, other groups have employed extrusion-based

techniques to create woodpile structures from a range of polymer (e.g.

PLA, PCL) and composite materials (e.g. PCL/hydroxyapatite) [25,26].

Fused deposition modelling has been used to produce gyroid scaffolds

from PLA [27], and alginate/gelatin bio-inks with nano-hydroxyapatite

coatings have also been developed to create composite scaffolds [28].

In a similar fashion, the osteoconductive properties of biodegradable

PolyHIPE scaffolds can be improved by the addition of amorphous cal-

cium phosphate nanoparticles [29], or by hydroxyapatite and

strontium-modified hydroxyapatite [30] during the emulsion stage.

In comparison to other methods, a key advantage of this emulsion

templating technique is the ease with which a microporosity within

scaffold fibres that can be included and controlled. Despite this, a limita-

tion of using a HIPE as a photocurable resin for stereolithography is its

highly light scattering nature. This scattering has a pronounced effect

on the maximum achievable feature resolution, reducing it in compari-

son to non-emulsified pre-polymers. Furthermore, it also can result in a

closed surface porosity due to the formation of a surface ‘skin’, negating

the benefits of the highly porous PolyHIPE material.

In this study we assess the consequences of this light scattering on

the achievable feature resolution and surface skin formation, and deter-

mine to what extent inclusion of light absorbers canmitigate it. Any po-

tential cytotoxicitywas subsequently evaluated by culturing themurine

osteoblast cell line MLO-A5 on PolyHIPE scaffolds produced with or

without the light absorber, and comparing cell viability. Finally,

PolyHIPE scaffolds were compared to a commercial product that had a

similar-macroscopic architecture but lacked the inherent microporosity

of the PolyHIPE material, thereby allowing the potential advantages of

usingHIPEs as resins for stereolithography in the field of bone tissue en-

gineering to be assessed.

2. Materials and methods

All solvents mentioned in the methods are reagent grade and pur-

chased from Sigma-Aldrich (Poole, UK) unless otherwise mentioned.

2.1. HIPE synthesis

PolyHIPEs were fabricated from isobornyl acrylate (IBOA)

based HIPEs. The continuous phase was formed from two organic

components; IBOA and a crosslinker (trimethylolpropane triacrylate

(TMPTA) added at 26.96 wt% of the IBOA. A surfactant, Hypermer

B246-SO-(MV) (kindly donated by Croda, UK), was added at 3 wt%

of the organic components and left to dissolve in a sonic water bath.

Finally, a photoinitiator (2,4,6-trimethylbenzoyl)-phosphine oxide/

2-hydroxy-2-methylpropiophenone, 50/50) was added at 5 wt% of the

organic components. If the composition included the light-absorber, 2-

(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV-

234, commercially known as Tinuvin®234), it was added with the

surfactant. HIPEs of 80% porosity were formed through the dropwise

addition of the internal phase (distilled water) to the continuous

phase whilst stirring at 350 rpm (Pro40, SciQuip). IBOA PolyHIPEs

are referred to as either ‘IBOA’ or ‘IBOA+UV-234’ if they contain the

light-absorber.
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2.2. PolyHIPE scaffold fabrication

The stereolithography setup consisted of a sub-nanosecond pulse

duration, passively Q-switched DPSS microchip laser (PULSELAS-P355-

300, ALPHALAS, Germany), controlled using a laser diode and thermo-

electric cooler driver (LDD1-1BT-D, ALPHALAS, Germany), emitting

wavelengths of 1064, 532 and 355 nm was used as the light source. A

Pellin–Broca prism (ADB-10, Thorlabs, UK)was used to separate a single

wavelength of 355 nm. Beam delivery was controlled with a shutter

(UNIBLITZ LS6, Vincent Associates, Canada) linked to a shutter driver

(VCM-D1, Vincent Associates, Canada). The beam was focused through

a microscope objective (EC-Plan NEOFLUAR 10×, Carl Zeiss Ltd., UK). A

high precision translation stage ANT130-XY (Aerotech, UK) for xy-

translation & PRO115 (Aerotech, UK) for z-translation, controlled by

software (A3200 Software-Based Machine Controlled (Aerotech, UK))

was used to scan the focal spot through the resin. The laser was focused

just above the coverslip-HIPE interface for the bottom layer and the

fibre-HIPE interface for each subsequent layer in order to write the

scaffold.

Four-layer circular woodpile scaffolds were fabricated following the

protocols described in [4]. In this study,we used untreated coverslips for

all scaffolds to ensure it could be removed from the glass base, creating a

free-standing scaffold. For compositionswithout UV-234, the UV power

was measured to be 1–5 mW directly after the objective (using a

PM100D power meter, with a S310C thermal sensor, Thorlabs). When

compositions contained the light-absorber, the power was set to

5 mW. To create the scaffold, a layer of HIPE was pipetted onto the cov-

erslip attached to a glass slide mounted on the stage and the first layer

fabricated. Additional HIPE was added after the completion of each

layer. Once completed, scaffolds were washed with acetone and air

dried.

2.3. Mechanical characterisation

Sheets of IBOA or IBOA+ UV-234 PolyHIPE were fabricated and cut

into tensile specimens in accordance with the protocol developed by

Owen, et al. [31]. Briefly, HIPE was pipetted into a silicone mould and

cured using a UV spot curer for 30 s at 100 W [Omnicure S1500,

Excelitas Technologies] before washing in acetone overnight and dry-

ing. Sheets were laser cut (Mini 18 Laser, Epilog Laser) to a test shape

in accordance with a modified version of ASTM D638-10. Specimens

were tested on a TA Instruments ElectroForce 3200 using a 450 N load

cell, an extension rate of 0.02 mm/s, a grip distance of 10 mm, and a

maximum extension of 10 mm. The Young's Modulus of each sample

was determined using the gradient of the linear-elastic region of the

force displacement curve, with the first point taken at 0.02 mm and

the final at yield.

2.4. Scanning electron microscopy

A Philips XL-20 SEM was used to image the PolyHIPE samples. All

samples were sputter coated with gold to improve surface conductivity

before SEM imaging. We estimated the average pore size of the

PolyHIPE by measuring 150 pores and multiplying them by the statisti-

cal correction factor 2=
ffiffiffi

3
p

. This is because the measured values are an

underestimate of the true pore diameters due to the uneven sectioning

through the pores [32].

2.5. General cell culture

MLO-A5, a murine osteoblast cell line, (kindly donated by Dr. Lynda

Bonewald, University of Missouri) was selected for cell culture testing

due to its previous use in evaluating bone tissue engineering scaffolds

[33, 34]. Theywere expanded at 37 °C, 5% CO2 in basalmedia (BM), con-

taining Minimum Essential Alpha Medium (α-MEM, Lonza, UK), 10%

foetal bovine serum (FBS, Labtech, UK), 2 mM L-glutamine (Sigma Al-

drich, UK) and 100 mg/mL penicillin/streptomycin (Sigma Aldrich,

UK) in gelatine-coated T75 flasks until ~90% confluent. During passage,

media was changed every 2–3 days. Cells were used between the 34th

and 39th passage, supplemented media (SM), was added from day 1.

PolyHIPE scaffolds were sterilised by submerging in 70 vol% ethanol

for 90 min before rinsing three times in sterile PBS. They were then

soaked in Basal Medium (BM) for 30 min prior to seeding. For cell

seeding suspension of 25,000 cells at a concentration of

250,000 cells/mL was added to the BM soaking the scaffolds and

orbitally shaken at 50 rpm for 45 min to disperse the cells throughout

the scaffold. Cultures were left overnight in BM and the following day

replaced with supplemented media (SM) consisting of BM with 5 mM

beta-glycerolphosphate (βGP) and 50 μg/mL ascorbic acid 2-

phosphate (AA2P). Media was changed every 2–3 days.

2.6. Cell viability assays

To evaluate cell viability, resazurin reduction (RR) assays were per-

formed. Resazurin sodium salt is reduced to resorufin by metabolically

active cells, changing the colour of the media from a non-fluorescent

blue to a highlyfluorescent pink. The intensity of thefluorescence is cor-

relatedwithmetabolic activity. A RRworking solutionwasmade by dis-

solving 10 vol% resazurin stock solution (1mM resazurin sodium salt in

diH2O) in BM. To perform the assay, scaffolds were transferred to a new

well plate before adding 1 mL of the working solution to ensure only

cells adhered to the scaffold were analysed. The well plate was then

wrapped in aluminium foil and incubated for 4 h under standard condi-

tions. 200 μL of the reduced solutionwas transferred in triplicate to a 96-

well plate and read on a plate reader (Tecan infinite 200-pro) at λex:

540 nm and λem: 590 nm. Finally, scaffolds were washed twice with

PBS to elute any residual RR before adding fresh media.

2.7. Calcium and collagen quantification

The extracellular matrix deposited by osteoblasts contains an inor-

ganic mineral phase containing calcium, and an organic phase predom-

inantly consisting of collagen. By analysing calcium and collagen

deposition, the amount of bone-like tissue that has been deposited

can be ascertained. Samples were fixed prior to calcium and collagen

quantification by removing the media, washing twice with PBS, and

submerging in 3.7% formaldehyde for 30 min. The fixative was then re-

moved and the samples washed twice in deionised water (diH2O).

Calciumquantificationwas performed by Alizarin Red S (ARS) stain-

ing. ARS was dissolved at 1 w/v% in diH2O. The solution was filtered

using a 0.45 μm to remove undissolved particulates and the pH adjusted

to 4.1. Samples were submerged in a known volume of the stain and left

for 30 min. The stain was then removed and the samples washed with

diH2O every 5 min whilst orbitally shaking at 100 rpm until the wash-

water remained clear. A known volume of 5% perchloric acid was then

added to destain the samples and left on the orbital shaker at 100 rpm

for 15 min. 150 μL was then transferred in triplicate to a 96 well plate

and read at an absorbance of 405 nm. (Tecan infinite 200-pro). The con-

centration of ARS was determined via a standard curve created by seri-

ally diluting the staining solution in the destain. From this, the

absorbance units can be converted to a quantity of ARS.

Collagen production was evaluated by Direct Red 80 (DR80) stain-

ing. Similar to ARS, it can also be destained and quantified. DR80 was

dissolved in saturated picric acid at 1 w/v%. The solution was filtered

using a 0.45 μm to remove undissolved particulates. Samples were sub-

merged in a known volume of DR80 stain and left for 18 h on an orbital

shaker at 100 rpm. The staining solution was then removed and the

samples washed with diH2O every 5 min whilst orbitally shaking at

100 rpm until the wash-water remained clear. A known volume of

0.2MNaOHandMeOH in a 1:1 ratiowas then added to destain the sam-

ples and left on the orbital shaker at 100 rpm for 20 min. 150 μL was
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then transferred in triplicate to a 96 well plate and read at an absor-

bance of 405 nm. (Tecan infinite 200-pro). The concentration of DR80

was determined via a standard curve created by serially diluting the

staining solution in the destain. From this, the absorbance units can be

converted to a quantity of DR80.

2.8. Statistical analysis

All statistical analysis was undertaken in Graphpad Prism (version

7.00). Data was analysed by two-way analysis of variance (ANOVA)

with Tukey's multiple comparisons test to evaluate significant differ-

ences. Differences were considered significantwhen p b 0.05. All graphs

are presented as mean ± standard deviation unless otherwise stated

and notable significant differences are indicated on the graphs or in

the legends. All experiments were performed a minimum of two

times in triplicate for each condition. The total number of replicates

(n) is stated in the figure legend.

3. Results

3.1. Laser scan speed affects the resolution and quality of polymerised

features

Increasing the laser scan speed decreased the width of the

polymerised lines. A series of 8 lines, 2 mm long and spaced 1 mm

apart were polymerised at different speeds by scanning the laser light

(5 mW) focused onto the IBOA emulsion/glass interface from under-

neath the coverslip. The laser scan speed for each line was increased

in increments of 0.5 mm/s. The width of the polymerised lines de-

creased as the laser scan speed was increased from 0.5 to 1.0 and

1.5 mm/s (Fig. 1C). Laser scan speeds 3.5 mm/s and above resulted in

in a very thin polymer being formed on the glass surface (Supplemen-

tary Fig. S1).

There was a polymer skin on the side of all the PolyHIPE lines. No

polymer skin or closed pored surface was found on the top of the

PolyHIPE lines polymerised with a slow scan speed of 0.5 and 1 mm/s.

The top surface for these write speeds was cured against air while the

side surface has cured against the surrounding emulsion (see Fig. 1A–

B). The features were cut with a scalpel and imaged by SEM. The surface

skin of polymer was only observed on the outer surface of the lines. All

polymerised lines retained an internal PolyHIPE morphology (Fig. 1C).

The two lines written at the slowest speeds (0.5 and 1 mm/s) were

abridged by a layer of cross-linked polymer (Fig. 1C). This overcuring ef-

fect was not observed between the lineswritten at the faster fabrication

speeds (above 1.5 mm/s). A polymer residue was present on the glass

surface between the polymerised lines and surrounded the base of the

PolyHIPE lines.

3.2. Laser light scattering produces connecting polymer strands/bridges

To determine parameters where overcuring occurs, a 10 × 12 dot

array was produced with the laser at a constant spacing of 700 μm to

produce 120 polymerised PolyHIPE protrusions. The laser exposure

time was increased from 0.01–1.30 s in increments of 0.01 s which re-

sulted in the polymerised regions gradually increasing in size, and even-

tually merging together (Fig. 2).

As when fabricating the lines, the PolyHIPE protrusions had a closed

outer skin layer. These can be seen from the highmagnification SEM im-

ages (Fig. 2B–D). This thin layer of polymer was also found on the glass

surface between and around the protrusions and in line with the

connecting polymer bridges (Fig. 2C–D).When the laser exposure dura-

tion exceeded 0.79–0.82 s, at a spacing of 700 μm, straight, well defined

polymer bridges formed between the protrusions.

The formation of these polymer bridges was highly controllable and

determined by the pulse duration and distance between the protrusions

(Supplementary Fig. S2). From Fig. 2C, it was determined that the poly-

mer bridges start to formwhen the distance between the protrusions is

twice their diameter. As the laser exposure time was further increased

(0.8–1.3 s), all the polymer protrusions gradually merged together to

form an ‘egg-box’ like structure. The polymer bridges are caused by

the high light scattering nature of the emulsions during photo-

polymerisation (as further indicated by Section 3.3). This scattering

HIPE

Glass

Skin layer

A

B

C

Fig. 1. (C) SEM images of PolyHIPE lines polymerised on top of a glass coverslip at (left to right) 0.5, 1.0 and 1.5 mm/s. Lines have been cut in half to view their internal morphology.

Overcuring (red arrow) occurs between the 0.5 and 1.0 mm/s line. A ‘side skin’ can be seen on the lateral surfaces of the lines (blue arrow). (B) Diagram showing the overcuring effect.

The black line shows where the surface skin is present (A) Diagram showing how increased light scattering (purple arrows) at lower laser scan speeds causes overcuring. The solid

line shows the curing region while the dashed line indicates the boundary of the partially crosslinked emulsion.
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process results in the emulsion acting as a diffuse light source, with a

radius-dependent intensity profile emanating from the focal spot that

results in a gradual reduction in the degree of polymerisation as the dis-

tance increases from the focal spot. When the partially polymerised re-

gions surrounding two separate PolyHIPE irradiation spots overlap, a

connecting polymer bridge forms between them. The polymer bridge

forms along the straight path that is the shortest distance between the

two irradiation spots. The surface skin surrounding the PolyHIPE is

also formed by this partially cross-linked polymer as it collapses around

the fabricated structure.

3.3. Incorporation of light-absorbers can reduce surface skin formation

Due to the undesirable nature of this surface skin, different strategies

to remove the surface skin were explored. Acid degradation of the sur-

face skin was examined by a 12-hour submersion in piranha solution.

However, this treatment did not result in the removal of the surface

skin (data not shown). In addition to the use of oxidisers such as a

0.1 M solution of potassium permanganate (KMnO4), or air plasma

(2 h exposure) to etch the surface were explored. However, these ap-

proaches were also ineffective.

An alternative strategy to degrading the skin post-fabrication was to

try andminimise its initial formation through the incorporation of a UV

light-absorber or a radical scavenger into the HIPE. To test this, the rad-

ical scavenger 4-methoxyphenol (MEHQ) or the light-absorber UV-234

were added to the HIPE at 1wt%. To quantify their effects on the achiev-

able resolution, a series of single spots were irradiatedwith a 0.1 s dwell

time in a straight line,with the spacing gradually decreased by10 μmin-

crements until the PolyHIPE protrusions connected. The distance be-

tween them was recorded at that point. This was repeated for

different laser dwell times ranging from 0.1 to 1 s in increments of

0.1 s and the values were plotted for the original emulsion together

with the emulsion with MEHQ and UV-234 (Fig. 3A). Additionally, the

achieved feature size (measured as diameter) for the different resins

and laser irradiation was recorded and plotted (Fig. 3B). Interestingly,

both the diameter of the protrusion and the minimal obtainable dis-

tance between features has a strong linear correlationwith curing expo-

sure time. The addition of these additives achieved a reduction in the

minimal feature size and an improvement in obtainable resolution.

The addition of MEHQ showed a small improvement in resolution and

minimal achievable feature size. UV-234 demonstrated a much higher

improvement and the maximum reduction in feature spacing when

using the light-absorber was significantly greater (500 to 240 μm)

(Fig. 3).

The feature resolution and fabricated structure quality is clearly in-

creased when UV-234 is incorporated into the HIPE resin (Fig. 4). In

comparison to the standard resin, the incorporation of the UV-234

light-absorber mitigates the formation of the surface skin, revealing an

open pore surface. Furthermore, amarked improvement in print resolu-

tion can also be observed, as the features written with the standard

IBOA resin began to overlap when their distance was 500 μm, whilst

the features written with the IBOA+UV-234 resin began to overlap at

200 μm.

3.4. UV-234 is not cytotoxic in non-degradable polymers

Although the incorporation of UV-234 can significantly improve the

printing resolution of PolyHIPEs, within the field of 3D cell culture and

tissue engineering, this is irrelevant if its presence causes cell death.

To assess the potential cytotoxicity of UV-234, the murine osteoblast

cell line MLO-A5 was cultured on 4-layer woodpile scaffolds fabricated

from IBOA or IBOA+UV-234 PolyHIPEs. The achievable fibre spacing

was determined by SEM image analysis and cell metabolic activity

(RR) assays were performedweekly over a 28-day period. Furthermore,

themechanical properties of the bulk PolyHIPE material with and with-

out UV-234 were compared to assess whether its inclusion affected the

stiffness (Fig. 5).

Fig. 2.A) SEM image of part of the PolyHIPE protrusion spot array showing the isolated protrusions gradually increasing in size andmerging together. The laser pulse timewas increased in

increments of 0.01 s until a final exposure time of 1.3 s and a constant spacing of 700 μmwas used for all the protrusions. Scale bar 1 mm. (B) A single PolyHIPE protrusion produced by

pulsing the laser, a surface skin can be observed around the object. Scale bar 100 μm. (C) Top viewof polymer bridges that have formed between 4 PolyHIPE protrusions that can be seen in

image A. Scale bar 200 μm. (D) Side view of the polymer bridge seen in image A and C. A thin layer of polymer skin can be seen covering both the polymer bridge down towards the glass

surface. Scale bar 100 μm.
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Incorporation of UV-234 allowed scaffold fibres to be written ap-

proximately 200 μm closer together without a skin forming between

them. Furthermore, side skin formation appeared to be reduced by the

presence of UV-234, but was not eliminated entirely. The inclusion of

UV-234 had no significant effect on the Young's Modulus of the

PolyHIPE, demonstrating that its inclusion will not change the material

stiffness and any subsequent cellular response. To control for scaffold

surface area when evaluating cytotoxicity, the fibre spacing in the

IBOA-UV-234 scaffold was kept the same as in the IBOA scaffold. There

was no significant difference in between cell metabolic activity on the

IBOA and IBOA+UV-234 scaffolds at any time point (Fig. 5E), indicating

that the addition of UV-234 had no detectable cytotoxic effect. Themet-

abolic activity of theMLO-A5 cells increased during the first week of the

experiment, indicating that the cells were proliferating. The plateau

from day 7 onwards indicates that the cells on the scaffold had reached

confluence.

3.5. In scaffolds of similar architecture, multiscale porosity improves cellular

performance

To evaluatewhether the inclusion of amultiscale porosity in awood-

pile architecture is beneficial, PolyHIPE scaffolds were compared to the
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Fig. 3. (A)–(B) Composite light microscope images of PolyHIPE protrusions in a 3 by 3 square lattice. (A) The original emulsion, and (B) emulsion with 1 wt% UV-234. (A) The spacing

between the protrusions in the square lattice is reduced by 100 μm going from 700 to 200 μm. (B) The spacing between the protrusions is reduced by 40 μm from 400 to 240 μm. All

samples were produced with a laser exposure of 0.2 s, at 5 mW. (C)–(D) Scatter graph showing the distance between the PolyHIPE protrusions when they started to merge together

for the emulsion with no light absorber, 1 wt% MEHQ radical scavenger and 1 wt% UV-234 light-absorber. (D) Scatter graph showing the diameter of the PolyHIPE protrusions at

different exposure durations.

Fig. 4. SEM images of the PolyHIPE protrusions. (A) Two standard IBOA emulsion-based PolyHIPE protrusions with a closed surface skin around them and excess curing between them.

(B) The same IBOA PolyHIPE but with the incorporation of 1% UV-234. An open surface porosity and significantly reduced extraneous curing are clearly visible despite the distance

between the protrusions being significantly smaller.
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3D Insert™-PCL (Biotek, 3D Biotek, USA), a commercially available

woodpile scaffoldwith a similar architecture that has non-porousfibres.

Both scaffolds have a fibre diameter and spacing of approximately 300

μm and a diameter of 13–14 mm; however, the PCL-based Biotek scaf-

fold has six layers whereas the IBOA-based PolyHIPE has only 4. Impor-

tantly, only the PolyHIPE scaffold has microporous fibres. Cellular

performance was compared by culturing each scaffold with 25,000

MLO-A5 for 28days, assessingmetabolic activity eachweek and calcium

and collagen deposition on days 21 and 28. The Biotek scaffold was

seeded according to manufacturer instructions (Fig. 6).

Although cells proliferated on both scaffolds, metabolic activity in-

creased significantly faster on the PolyHIPE and reached a plateau, indi-

cating confluence (Fig. 6A). Fig. 6B illustrates a typical cross-section of

the 6-layer Biotek scaffold indicating a strut size of 300 μm and an

inter-strut distance of 300 μm; there was also variation in fibre geome-

try and spacing. (Fig. 6B). Mineralisation as indicated by ARSwas signif-

icantly higher on the PolyHIPE scaffold (p b 0.001) and mineral

distribution was uniform throughout the scaffold, rather than patchy

as observed on the Biotek scaffold (Fig. 6C & D). Collagen deposition

followed the same pattern as mineralisation, and was 4–5× less on the

Biotek scaffold (Fig. 6E).

4. Discussion

Porous matrices based on PolyHIPEs have been readily used in the

last 10 years as scaffolds to study 3D cell culture due to the ease with

which a porous structure can bemade and the tunability of the resulting

microporosity to optimise cell ingrowth. The application of these scaf-

folds for 3D cell culture has been highly successful, yielding a commer-

cially available scaffold for 3D cell culture (ALVATEX®). This scaffold is a

flat porous polystyrene disk, 200 μm in thickness with 40 μm pore sizes

that is optimised for in vitro cell culture. To increase the application of

these PolyHIPE materials towards more complex 3D cell culture there

has been a recent research effort to combine this emulsion templating

with 3D printing approaches such as stereolithography or materials ex-

trusion to build structures with a hierarchy of pore sizes.

Additivemanufacturing of PolyHIPEs via stereolithography produces

a surface skin on the outer surface that could impede cell ingrowth by

Fig. 5. SEM images of an (A&C) IBOA and (B&D) IBOA+UV-234 woodpile scaffold. Minimum achievable fibre spacing is reduced in scaffolds fabricated from IBOA+UV-234. Side skin

formation is reduced but not eliminated. (E) Incorporation of UV-234 had no significant effect on the Young's modulus of the PolyHIPE (n = 8). (F) Metabolic activity for IBOA

scaffolds with and without UV-234 over a 28-day period. No significant difference at any time point indicating no cytotoxic effect of UV-234 (n = 6).
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acting as a physical barrier and therefore negating the advantages of

using theHIPE as a template. The internal porosity of the PolyHIPE is un-

affected by this unwanted polymerisation on the exterior and remains

an open-pored network (Fig. 1), a finding which is in agreement with

our previous work [3]. Stereolithography of emulsions to build mate-

rials with hierarchical porosity is currently an emerging research area

and presently little detailed information is available on how to optimise

the resolution and mitigate closed surface porosity in these structures.

This study reports on how to optimise the structure resolution and ob-

tain open surface porosity via adding a light absorber to the resin.

The occurrence of a closed surface skin layer has previously been re-

ported when performing bulk polymerisation of PolyHIPEs, with the

skin forming at the emulsion-mould interface [7,35]. This is comparable

to the closed-pore skin layer often observed when curing against a

mould in other porousmaterial fabrication techniques, e.g. supercritical

fluid-foaming [36]. This surface layer can easily be removed frommono-

liths by cutting after polymerisation; however, this approach is unsuit-

able for any complex structures produced by additive manufacturing.

Therefore, an approach that minimises its formation is required, and

to achieve this, understanding the mechanism by which it is formed is

essential. It was observed that no surface skin is present when the

HIPE is polymerised with an emulsion/air interface (Fig. 1). Further-

more, the top surface of the woodpile PolyHIPE lines were open pored

whilst their sides had a surface skin, which indicates that it is the

transition from cured to non-cured polymer that is causing the localised

collapse of the PolyHIPE surface resulting in the surface skin (Fig. 5).

This study strongly indicates that UV light scatteringwithin theHIPE

is a major contributing factor in the formation of the surface skin, as it

directly relates to the boundary layer of partially polymerised polymer

surrounding the PolyHIPE. The HIPE scatters light, evident from the

opaquewhite colour when the emulsion is produced, and this is caused

by the mismatch between the refractive index between two phases in

an emulsion [37]. The scattering of the UV light from its initial focal

pointwithin the emulsion produces an intensity gradient that decreases

in energy outwards from the initial point of exposure. This results in a

continual decrease in the degree of polymerisation as the distance

from the focal spot increases, resulting in the transition from cured to

non-cured polymer. This transition results in the production of a me-

chanically weak polymer on the surface of the PolyHIPE that cannot

support its own structure but is sufficiently-crosslinked to be resistant

to the washing solvent. The subsequent collapse of this layer during

washing creates the closed surface skin layer.

To evaluate whether this mechanism of skin formation was correct,

lines were cured by stereolithography but the surrounding uncured

pre-polymer was not washed away. Instead, the residual HIPE bulk

polymerised and the resulting structure cross-sectioned (Supplemen-

tary Fig. S3). As no surface skin or indication of the initial polymerised

lines were seen in these images, this approach confirmed that the

Fig. 6.Comparison of the PolyHIPE andBiotekwoodpile scaffolds. (A)metabolic activity ofMLO-A5 increased significantly faster on the PolyHIPE scaffold (n=12). (B) The Biotekwoodpile

architecturewas inconsistent andfibreswere not always above the spacing of the layer below. (C&D)mineral deposition and distributionwas significantly greater andmore uniform in the

PolyHIPE scaffold (n = 6) (E) as was collagen deposition (n = 6). *** = p b 0.001.
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cured outer surface thatwould typically collapse and form the skin layer

was still supported by the emulsion droplets after fabrication, demon-

strating that the collapse does not occur until solvent washing.

During the drying of the PolyHIPE, capillary forces generated by the

solvent evaporating causes the collapse of the polymer on the surface.

Freeze drying could be used to prevent surface collapse by these forces,

but this is an involved process requiring long waiting times [38]. In our

single spot exposure experiment (Fig. 2), all the protrusions possessed a

surface skin which indicated that varying the UV light exposure alone

does not eliminate the skin layer, and it was only with the addition of

a light-absorber that no skin was formed on the PolyHIPE protrusion

(Fig. 4).

The addition of the UV light-absorber UV-234 eliminated the closed

surface skin effect (Fig. 4), and had a very notable effect on the reduction

of a single PolyHIPE feature size in comparison to the addition of MEHQ

radical scavenger or plain IBOA-HIPE (Fig. 3). A surface skin surrounded

the plain IBOA-HIPE and the MEHQ-HIPE, suggesting that the surface

skin relates to the UV light scattering. The addition of UV-234-like ab-

sorbers (from the Tinuvin Carboprotect product family) has been previ-

ously reported to improve the resolution of stereolithography printing

of a HIPE; however, there was no mention of a surface skin [2]. The

light scattering has been highlighted in previous papers on projection-

based stereolithography as the major contributing factor in reducing

the resolution of a written object [39–41]. It is common practice to use

a light-absorber to improve the resolution as it decreases the cure

depth by absorbing the incident light [42]. Other UV absorbers can be

used for this, e.g. Tinuvin 327 has a broad UV absorbance with a peak

of 40% at 365 nm [42], while Tinuvin P absorbs between 250 and

400 nm. When a typical 1 wt% is added to the monomer both the solid-

ification width and depth of the exposed areas can be decreased [41].

Without any light-absorber, thewritten features, when placed at the

correct distance, often present polymer bridges in between them

(Fig. 2C and D). The proposed mechanism for the polymer bridges is

the overlapping of the partially polymerised polymer that surrounds

the PolyHIPE protrusions. This causes additional crosslinking of the

monomer which is sufficient to form a polymer bridge connecting adja-

cent protrusions. The overlap between these partially polymerised re-

gions can be controlled by varying the amount of UV light exposure

(Fig. 2), or changing the distance between adjacent protrusions

(Fig. 3). In all cases there appears to be an outer boundary limit that de-

termines if polymer bridges will form. The overlapping of sub-activated

radical regions has been previously reported as the cause behind

connecting polymer bridges by high resolution two photon polymerisa-

tionwhich is caused by radical diffusion [43]. The radical diffusion scale

is of minor importance in the production of our sub-millimetre scale

features. Nevertheless, they share visual similarities to the polymer

bridges reported in this paper, and are both exposure and distance

dependent.

The PolyHIPE scaffolds used in this studywere produced by scanning

stereolithography which cures the polymer in a single focal point. The

important parameters are the scan speed and laser intensity. In this ex-

periment we used a low intensity (1–5 mW) picosecond pulsed UV

source, which also restricted our maximum write speed. Using higher

power lasers should enable a significant increase in write speed. Taking

this into account our experiment could still create features at a write

speed of 3 mm/s. Faster write speeds created a line of polymer residue

that had no internal structure due to insufficient amount of polymerisa-

tion. Thesewrite speeds (0.5–5mm/s)were also previously reported by

our group [3]. Additionally, these HIPE resins can be used in combina-

tion with projection stereolithography, which uses typically a spatial

light modulator-based dynamic mask [2,3] which can drastically de-

crease the processing time as a single layer is polymerised at the same

time. In contrast, materials extrusion speeds up to 10 mm/s have been

reported [15], but with lower resolution i.e. line widths of 600 μm. Our

previous publication reported structures with feature resolution of

330 μm [4] via stereolithography and this study shows that this

resolution can be improved upon to 200 μm by inclusion of a light-

absorber (Fig. 4). Length scales are crucial to achieve optimal cell in-

growth within the scaffolds as nutrient and oxygen diffuse up to

100–200 μm within a micrometre porous scaffold and any cells further

away from a nutrient/oxygen source will likely undergo hypoxic necro-

sis [44].

Inclusion of UV-234 successfully reduced the formation of the side

skin on the scaffoldfibres, although it did not completelymitigate its de-

velopment. Despite this, a greater proportion of the scaffold surface hav-

ing an open porosity will be beneficial to diffusion-based processes,

such as nutrient and waste diffusion, as well as facilitating greater cell

ingrowth which in turn permits more continuous neo-tissue formation

throughout the scaffold. Importantly, the inclusion of UV-234 had no

significant effects on cell metabolic activity over a long culture period,

indicating that its inclusion was not cytotoxic, and that it did not leach

out of the polymer over time. This is in agreement with the work of

Zhang, et al., how found that the inclusion of UV-234did not have a neg-

ative effect on the growth of HUVECs and NIH-3T3 cells cultured on a

non-degradable poly(ethylene glycol) diacrylate (PEGDA, Mw

700 g/mol) scaffold [45]. However, whether this remains the case

when a biodegradeable, more clinically relevant polymer is used

would need to be assessed prior to its consideration for use in vivo.

To assess whether the theorised benefits of the inclusion of a micro-

porosity within the fibre were valid, PolyHIPE scaffolds were compared

to Biotek 3D Insert™-PCL scaffolds which possess a similar macrostruc-

ture but lack the inherentmicropores of the PolyHIPEmaterial. MLO-A5

were able to proliferate significantly faster over the PolyHIPE scaffolds,

resulting in them reaching confluence sooner and depositing signifi-

cantly greater amounts of mineralised extracellular matrix. Synthesis

of the bone-like matrix was also more evenly distributed over the

PolyHIPE scaffold, showing that cells were able to quickly grow

throughout the entire structure. The benefits of fibre microporosity

seen here are in agreement with the findings of other groups, who

found that it improves cell ingrowth in PCL-based scaffolds [46,47].

In addition to the benefits of enhanced diffusion-based processes,

another potential reason for this enhanced cellular response when mi-

cropores are present is that the cells are able to develop a more physio-

logically relevant morphology in comparison non-porous fibres. On

smooth fibres, cells are likely to retain a similar morphology to when

they a cultured on a flat, planar surface such as a tissue culture plate.

However, when cells are cultured on a surface with features and pores

that are a similar size to themselves, they are able to attach to the sur-

face and develop a morphology that is more similar to that observed

in vivo, and this has been shown improver osteogenic differentiation

and osteoblast activity [48–50]. For future work we foresee that the ad-

dition of calcium phosphate-based components, such as hydroxyapa-

tite, may increase the bone-matrix deposition. The benefits of this

composite material approach have been shown with extrusion based

woodpile scaffolds [26] and the PolyHIPE based structure [29,30]. Nev-

ertheless, effects of incorporating another element into the emulsion

on UV-light scattering and surface skin formation would need to be ad-

dressed if a stereolithography-based manufacturing approach is taken.

5. Conclusion

To conclude, UV-234 (or Tinuvin®234), a UV light absorber, was

found to improve the fabrication of PolyHIPE structures by

stereolithography (vat photopolymerisation) through twomechanisms.

First, it reduced the formation of an undesirable surface skin that has a

closed porosity, negating the benefits of the PolyHIPE material. Second,

it increased the resolution of the fabrication technique by permitting

smaller PolyHIPE features to be fabricated with greatly decreased spac-

ing. The addition of UV-234 was found to be non-cytotoxic, and when

PolyHIPE scaffoldswere compared to scaffolds with similar architecture

but without microporosity, they were found to support superior MLO-

A5 osteoblast proliferation and matrix production.
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This study demonstrates how the simple incorporation of a UV light

absorber into the prepolymer can greatly improve the printing resolu-

tion of PolyHIPEs by stereolithography, allowing for bespoke, highly

customisable substrates to be fabricated. This finding continues to ex-

emplify the excellent candidacy of PolyHIPE materials for use as tissue

engineering and cell culture substrates in comparison to standard,

non-emulsified polymers.
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