
M
A

E
G
NS

I
T A T

MOLEM

UNIVERSITAS WARWICENSIS

Monitoring, Analysis and Optimisation of I/O in

Parallel Applications

by

Steven Alexander Wright

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

July 2014

Abstract

High performance computing (HPC) is changing the way science is performed

in the 21st Century; experiments that once took enormous amounts of time,

were dangerous and often produced inaccurate results can now be performed

and refined in a fraction of the time in a simulation environment. Current gen-

eration supercomputers are running in excess of 1016 floating point operations

per second, and the push towards exascale will see this increase by two orders

of magnitude. To achieve this level of performance it is thought that applica-

tions may have to scale to potentially billions of simultaneous threads, pushing

hardware to its limits and severely impacting failure rates.

To reduce the cost of these failures, many applications use checkpointing

to periodically save their state to persistent storage, such that, in the event

of a failure, computation can be restarted without significant data loss. As

computational power has grown by approximately 2⇥ every 18 � 24 months,

persistent storage has lagged behind; checkpointing is fast becoming a bottleneck

to performance.

Several software and hardware solutions have been presented to solve the

current I/O problem being experienced in the HPC community and this thesis

examines some of these. Specifically, this thesis presents a tool designed for

analysing and optimising the I/O behaviour of scientific applications, as well as a

tool designed to allow the rapid analysis of one software solution to the problem

of parallel I/O, namely the parallel log-structured file system (PLFS). This

thesis ends with an analysis of a modern Lustre file system under contention from

multiple applications and multiple compute nodes running the same problem

through PLFS. The results and analysis presented outline a framework through

which application settings and procurement decisions can be made.

ii

This thesis is dedicated to the memory of my Grandad.

Ian Haig Henderson

(1928 – 2014)

Acknowledgements

Since walking into the Department of Computer Science for the first time in

October 2006, I have been fortunate enough to meet, work with and enjoy the

company of many special people. First and foremost, I would like to thank my

supervisor, Professor Stephen Jarvis, for all his help and hard work over the past

4 years and for allowing me the opportunity to undertake a Ph. D. I would also

like to thank him for providing me with funding and a post-doctoral position in

the department.

Secondly, I would like to thank the two best o�ce-mates I’m ever likely to

have, Dr. Simon Hammond and Dr. John Pennycook. I have been in a lull

since each of them moved on to pastures new. I consider my time sharing an

o�ce with each of them to be both the most productive (with Si) and most

entertaining (with John) time in my Warwick career, and I miss their daily

company dearly.

Thirdly, I acknowledge my current o�ce-mates, Robert Bird and Richard

Bunt. Both provide nice light entertainment and interesting discussions to break

up the day and make my working environment a more pleasant place to spend

my time. Additionally, I thank the other members of the High Performance and

Scientific Computing group, past and present – David Beckingsale, Dr. Adam

Chester, Peter Coetzee, James Davis, Timothy Law, Andy Mallinson, Dr. Gihan

Mudalige, Dr. Oliver Perks and Stephen Roberts – for their lunchtime company

and occasional pointless discussions.

Finally, within the University, I would like to thank the group of individuals

that have helped me through both my undergraduate and postgraduate studies

– Dr. Abhir Bhalerao, Jane Clarke, Dr. Matt Ismail, Dr. Arshad Jhumka, Dr.

Matthew Leeke, Dr. Christine Leigh, Prof. Chang-Tsun Li, Rod Moore, Dr.

Roger Packwood, Catherine Pillet, Jackie Pinks, Gill Reeves-Brown, Phillip

iv

Taylor, Stuart Valentine, Dr. Justin Ward, Paul Williamson, amongst many

others.

Outside of University, thanks go to the organisations that have contributed

resources and expertise to much of the material in this thesis: the team at the

Lawrence Livermore National Laboratory for allowing access to the Sierra and

Cab supercomputers; the team at Daresbury Laboratory for granting time on

their IBM BlueGene/P; and finally, to both Meghan Wingate-McLelland, at

Xyratex, and John Bent, at EMC2, for contributing their time and expertise to

my investigations into the parallel log-structured file system.

Special thanks is reserved for my closest friend for four years of undergrad-

uate studies and current snowboarding partner, Chris Stra↵on. I only wish our

snowboarding excursions were both longer and more frequent; they’re currently

the week of the year I look forward to the most.

And last, but certainly not least, thanks go to my family – Mum, Dad,

Gemma and Paula; my beloved Gran and Grandad; my aunties and uncles; and

my nieces and nephews – Chloe, Sophie, Megan, Lauren, Charlie, Holly-Mae,

Liam, Tyler, Aimee and Isabelle – who often make me laugh uncontrollably and

cost me so much money each Christmas time. And finally huge thanks go to

my girlfriend, Jessie, for putting up with me throughout my Ph. D. and making

my life more enjoyable.

Declarations

This thesis is submitted to the University of Warwick in support of the author’s

application for the degree of Doctor of Philosophy. It has been composed by the

author and has not been submitted in any previous application for any degree.

The work presented (including data generated and data analysis) was carried

out by the author except in the cases outlined below:

• Performance data in Chapters 4 and 5 for the Sierra supercomputer were

collected by Dr. Simon Hammond.

Parts of this thesis have been previously published by the author in the following

publications:

[141] S. A. Wright, S. D. Hammond, S. J. Pennycook, R. F. Bird, J. A. Herd-

man, I. Miller, A. Vadgama, A. H. Bhalerao, and S. A. Jarvis. Parallel

File System Analysis Through Application I/O Tracing. The Computer

Journal, 56(2):141–155, February 2013

[142] S. A. Wright, S. D. Hammond, S. J. Pennycook, and S. A. Jarvis. Light-

weight Parallel I/O Analysis at Scale. Lecture Notes in Computer Science

(LNCS), 6977:235–249, October 2011

[143] S. A. Wright, S. D. Hammond, S. J. Pennycook, I. Miller, J. A. Herd-

man, and S. A. Jarvis. LDPLFS: Improving I/O Performance without

Application Modification. In Proceedings of the 26th IEEE International

Parallel & Distributed Processing Symposium Workshops & PhD Forum

(IPDPSW’12), pages 1352–1359, Shanghai, China, 2012. IEEE Computer

Society, Washington, DC

[144] S. A. Wright, S. J. Pennycook, S. D. Hammond, and S. A. Jarvis. RIOT

– A Parallel Input/Output Tracer. In Proceedings of the 27th Annual UK

vi

Performance Engineering Workshop (UKPEW’11), pages 25–39, Brad-

ford, UK, July 2011. The University of Bradford, Bradford, UK

[145] S. A. Wright, S. J. Pennycook, and S. A. Jarvis. Towards the Automated

Generation of Hard Disk Models Through Physical Geometry Discovery.

In Proceedings of the 3rd International Workshop on Performance Model-

ing, Benchmarking and Simulation of High Performance Computing Sys-

tems (PMBS’12), pages 1–8, Salt Lake City, UT, November 2012. ACM,

New York, NY

In addition, research conducted during the period of registration has also led

to the following publications which, while not directly focused on parallel I/O,

have nevertheless shaped the research presented in this thesis:

[12] R. F. Bird, S. J. Pennycook, S. A. Wright, and S. A. Jarvis. Towards

a Portable and Future-proof Particle-in-Cell Plasma Physics Code. In

Proceedings of the 1st International Workshop on OpenCL (IWOCL’13),

Atlanta, GA, May 2013. Georgia Institute of Technology, GA

[13] R. F. Bird, S. A. Wright, D. A. Beckingsale, and S. A. Jarvis. Performance

Modelling of Magnetohydrodynamics Codes. Lecture Notes in Computer

Science (LNCS), 7587:197–209, July 2013

[98] S. J. Pennycook, S. D. Hammond, G. R. Mudalige, S. A. Wright, and S. A.

Jarvis. On the Acceleration of Wavefront Applications using Distributed

Many-Core Architectures. The Computer Journal, 55(2):138–153, Febru-

ary 2012

[99] S. J. Pennycook, S. D. Hammond, S. A. Wright, J. A. Herdman, I. Miller,

and S. A. Jarvis. An Investigation of the Performance Portability

of OpenCL. Journal of Parallel and Distributed Computing (JPDC),

73(11):1439–1450, November 2013

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

• The University of Warwick, United Kingdom:

Engineering and Physical Sciences Research Council Doctoral Training

Accounts Studentship (2010–2014)

• Royal Society:

Industry Fellowship Scheme (IF090020/AM)

• UK Atomic Weapons Establishment:

“The Production of Predictive Models for Future Computing

Requirements” (CDK0660)

“AWE Technical Outreach Programme” (CDK0724)

“TSB Knowledge Transfer Partnership” (KTP006740)

viii

Abbreviations

ADIO Abstract Device Interface for Parallel I/O

ANL Argonne National Laboratory

API Application Programmable Interface

ATA Advanced Technology Attachment

B/W Bandwidth

BG/P IBM BlueGene/P

CPU Central Processing Unit

DFS Distributed File System

EMC2 EMC Corporation

FLOP/s Floating-Point Operations per Second

FUSE File system in User Space

GB 10243 Bytes

GFLOP/s 109 FLOP/s

GPFS IBM General Parallel File System

HDD Hard Disk Drive

HDF-5 Hierarchical Data Format, Version 5

HPC High-Performance Computing

I/O Input/Output

KB 1024 Bytes

LANL Los Alamos National Laboratory

LBNL Lawrence Berkeley National Laboratory

LDPLFS ld Loadable PLFS

LLNL Lawrence Livermore National Laboratory

MB 10242 Bytes

MDS Metadata Server

MDT Metadata Target

ix

MFLOP/s 106 FLOP/s

MGS Management Server

MPI Message Passing Interface

NASA National Aeronautics and Space Administration

NFS Network File System

NPB NASA Parallel Benchmarks

OCF Open Compute Facility

OSS Object Storage Server

OST Object Storage Target

PFLOP/s 1015 FLOP/s

PLFS Parallel Log-Structured File System

PMPI Profiling Message Passing Interface

POSIX Portable Operating System Interface

PVFS Parallel Virtual File System

QDR Quad Data Rate

RAID Redundant Array of Inexpensive/Independent Disks

RIOT RIOT I/O Toolkit

RPM Revolutions per Minute

SAS Serial Attached SCSI

SATA Serial-ATA

SSD Solid State Drive

STFC Science & Technology Facilities Council

TB 10244 Bytes

TFLOP/s 1012 FLOP/S

UFS UNIX File System

ZBR Zoned-Bit Recording

Contents

Abstract ii

Dedication iii

Acknowledgements iv

Declarations vi

Sponsorship and Grants viii

Abbreviations ix

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Contributions . 2

1.3 Thesis Overview . 4

2 Performance Analysis and Engineering 7

2.1 Parallel Computation . 8

2.2 I/O in Parallel Computing . 10

2.2.1 Issues in Parallel I/O . 10

2.2.2 Parallel File Systems . 12

2.2.3 Parallel I/O Middleware 15

2.3 Performance Engineering Methodologies 17

2.3.1 Benchmarking . 18

2.3.2 System Monitoring and Profiling 19

xi

2.3.3 Analytical Modelling . 21

2.3.4 Simulation-based Modelling 22

2.4 Summary . 24

3 Hardware and Software Overview 26

3.1 Hard Disk Drive . 26

3.1.1 Disk Drive Mechanics . 26

3.1.2 Data Layout . 27

3.1.3 Disk Controller . 30

3.1.4 Redundant Array of Independent Disks 31

3.2 File Systems . 33

3.2.1 The Extended File System 33

3.2.2 The Sun Network File System 36

3.3 Distributed File Systems . 37

3.3.1 The Lustre File System 39

3.3.2 IBM’s General Parallel File System 40

3.3.3 The Parallel Log-structured File System 41

3.4 Computing Platforms . 42

3.5 Input/Output Benchmarking Applications 45

3.6 Summary . 47

4 I/O Tracing and Application Optimisation 49

4.1 The RIOT I/O Toolkit . 50

4.1.1 Feasibility Study . 53

4.2 File System Analysis . 55

4.2.1 Distributed File Systems – Lustre and GPFS 56

4.3 Middleware Analysis and Optimisation 61

4.4 Summary . 65

5 Analysis and Rapid Deployment of the Parallel Log-Structured

File System 68

5.1 Analysis of PLFS . 69

5.2 Rapid Deployment of PLFS . 71

5.2.1 Performance Analysis . 74

5.3 Summary . 81

6 Parallel File System Performance Under Contention 82

6.1 E↵ective Use of Uncontended Parallel File Systems 83

6.2 Quantifying the Performance of Contended File Systems 85

6.3 Performance Comparison: Lustre vs. PLFS 90

6.4 Summary . 93

7 Discussion and Conclusions 96

7.1 Limitations . 98

7.2 Future Work . 100

7.3 The Road to Exascale . 101

Bibliography 105

Appendices 127

A RIOT Feasibility Study – Additional Results 127

B Numeric Data for Perceived and E↵ective Bandwidth 130

C FLASH-IO Analysis and Optimisation Data 133

D LDPLFS Source Code Examples 135

E LDPLFS Numeric Data 137

F Optimality Search Numeric Data 141

G PLFS Performance and Stripe Collision Data 142

List of Figures

2.1 An example of the parallelisation of a simple particle simulation

between four processors. 9

2.2 The three basic approaches to I/O in parallel applications. 11

2.3 An example of two nodes (four ranks per node) writing to a file

system with collective bu↵ering o↵ and on. 16

3.1 Basic internal structure of a hard disk drive. 27

3.2 Data layout on a disk with no zoning and three zones of increasing

density. 28

3.3 Four examples of serpentine sector mapping. 29

3.4 An example of four requests fulfilled in-order without NCQ and

out of order with NCQ. 32

3.5 Two common RAID data distribution schemes. 33

3.6 Structure of an ext2 inode block. 34

3.7 An example Lustre configuration with four OSSs and a fail-over

MGS and MDS. 38

3.8 An example of a GPFS setup with four OSSs connected via a high

performance switch to three targets and separate management

and metadata targets. 40

3.9 An application’s view of a file and the underlying PLFS container

structure. 41

4.1 Tracing and analysis workflow using the RIOT toolkit. 50

xiv

4.2 Total runtime of RIOT overhead analysis benchmark for the func-

tions MPI File write all() and MPI File read all(), on three

platforms at varying core counts, with three di↵erent configura-

tions: No RIOT tracing, POSIX RIOT tracing and complete

RIOT tracing. 55

4.3 User-perceived bandwidth for applications on the three test sys-

tems. 57

4.4 E↵ective POSIX and MPI bandwidth for IOR through MPI-IO. . 59

4.5 E↵ective POSIX and MPI bandwidth for IOR through HDF-5. . 59

4.6 E↵ective POSIX and MPI bandwidth for FLASH-IO. 60

4.7 E↵ective POSIX and MPI bandwidth for BT Problem C, as mea-

sured by RIOT. 60

4.8 Percentage of time spent in POSIX functions for FLASH-IO on

three platforms. 62

4.9 Composition of a single, collective MPI write operation on MPI

ranks 0 and 1 of a two core run of FLASH-IO, called from the

HDF-5 middleware library in its default configuration. 63

4.10 Composition of a single, collective MPI write operation on MPI

ranks 0 and 1 of a two core run of FLASH-IO, called from the

HDF-5 middleware library after data-sieving has been disabled. . 63

4.11 Perceived bandwidth for the FLASH-IO benchmark in its original

configuration (Original), with data-sieving disabled (No DS), and

with collective bu↵ering enabled and data-sieving disabled (CB

and No DS) on Minerva and Sierra, as measured by RIOT. . . . 65

5.1 Concurrent write() operations for BT class C on 256 cores on

Minerva and Sierra. 71

5.2 The control flow of LDPLFS in an applications execution. 73

5.3 Benchmarked MPI-IO bandwidths on FUSE, the ad plfs driver,

LDPLFS and the standard ad ufs driver (without PLFS). 75

5.4 BT benchmarked MPI-IO bandwidths using MPI-IO, as well as

PLFS through ROMIO and LDPLFS. 78

5.5 FLASH-IO benchmarked MPI-IO bandwidths using MPI-IO, as

well as PLFS through ROMIO and LDPLFS. 80

6.1 Write bandwidth achieved over 1,024 cores by varying just the

stripe count and just the stripe size. 84

6.2 Write bandwidth achieved over 1,024 cores by varying both the

stripe count and the stripe size. 85

6.3 The performance per-task of the lscratchc file system under con-

tention, with the ideal upper and lower bounds. 88

6.4 Performance of each of 4 tasks over 5 repetitions where all tasks

are contending the file system. 89

6.5 Graphical representation of the data in Table 6.3, showing opti-

mal performance at 160 stripes per file, but very minor perfor-

mance degradation at just 32 stripes per file. 90

6.6 Achieved write bandwidth achieved for IOR through an optimised

Lustre configuration and through the PLFS MPI-IO driver. . . . 91

6.7 The number of OST collisions for IOR running through PLFS

with 512 cores. 92

7.1 The memory hierarchy with potentially two additional layers for

improved I/O performance on supercomputers. 102

A.1 Total runtime of RIOT overhead analysis software for the func-

tions MPI File write() and MPI File read(), on three plat-

forms, with three di↵erent configurations: No RIOT tracing,

POSIX RIOT tracing and complete RIOT tracing. 127

A.2 Total runtime of RIOT overhead analysis software for the func-

tions MPI File write at all() and MPI File read at all(), on

three platforms, with three di↵erent configurations: No RIOT

tracing, POSIX RIOT tracing and complete RIOT tracing. . . . 128

List of Tables

3.1 Hardware specification of the Minerva, Sierra and Cab supercom-

puters. 42

3.2 Configuration for the GPFS installation connected to Minerva. . 42

3.3 Configuration for the lscratchc Lustre File System installed at

LLNL in 2011 (for the experiments in Chapter 5) and 2013 (for

the experiments in Chapter 6). 43

3.4 Hardware configuration for the IBM BlueGene/P system at the

Daresbury Laboratory. 45

3.5 Configuration for the GPFS installation connected Daresbury

Laboratory’s BlueGene/P, where data is first written to Fibre

Channel connected disks because being staged to slower SATA

disks. 45

5.1 Perceived and E↵ective Bandwidth (MB/s) for BT class C through

MPI-IO and PLFS, as well as the speed-up generated by PLFS. . 70

5.2 Time in seconds for UNIX commands to complete using PLFS

through LDPLFS, and without PLFS. 76

6.1 IOR configuration options for experiments. 83

6.2 The average number of OSTs in use and their average load based

on the number of concurrent I/O intensive jobs. 87

6.3 Average and total bandwidth achieved across four tasks for a

varying stripe size request, along with values for the average num-

ber of tasks competing for 1, 2, 3 and 4 OSTs respectively. 89

6.4 OST usage and average load for the Stampede I/O setup de-

scribed by Behzad et al. [10]. 90

xviii

6.5 Stripe collision statistics for PLFS backend directory running

with 4,096 cores. 93

A.1 Incidence of MPI File * function calls in 9 application suites,

benchmarks and I/O libraries. 128

A.2 Average time (s) to perform one hundred 4 MB operations: with-

out RIOT, with only POSIX tracing and with complete MPI and

POSIX RIOT tracing. The change in time is shown between full

RIOT tracing and no RIOT tracing. 129

B.1 Perceived MPI, e↵ective MPI and e↵ective POSIX bandwidths

for IOR through HDF-5 on Minerva, Sierra and BG/P. 130

B.2 Perceived MPI, e↵ective MPI and e↵ective POSIX bandwidths

for IOR through MPI-IO on Minerva, Sierra and BG/P. 131

B.3 Perceived MPI, e↵ective MPI and e↵ective POSIX bandwidths

for FLASH-IO through HDF-5 on Minerva, Sierra and BG/P. . . 131

B.4 Perceived MPI, e↵ective MPI and e↵ective POSIX bandwidths

for BT class C on Minerva, Sierra and BG/P. 132

B.5 Perceived MPI, e↵ective MPI and e↵ective POSIX bandwidths

for BT class D on Minerva and Sierra. 132

C.1 MPI and POSIX function statistics for FLASH-IO on Minerva. . 133

C.2 MPI and POSIX function statistics for FLASH-IO on Sierra 12

to 96 cores. 133

C.3 MPI and POSIX function statistics for FLASH-IO on Sierra 192

to 1536 cores. 133

C.4 MPI and POSIX function statistics for FLASH-IO on BG/P. . . 134

C.5 FLASH-IO performance on Minerva and Sierra with collective

bu↵ering and data sieving optimisation options. 134

E.1 Read and write performance of PLFS through FUSE, the ad plfs

MPI-IO driver and LDPLFS compared to the standard ad ufs

MPI-IO driver on Minerva, using 1 core per node. 137

E.2 Read and write performance of PLFS through FUSE, the ad plfs

MPI-IO driver and LDPLFS compared to the standard ad ufs

MPI-IO driver on Minerva, using 2 cores per node. 138

E.3 Read and write performance of PLFS through FUSE, the ad plfs

MPI-IO driver and LDPLFS compared to the standard ad ufs

MPI-IO driver on Minerva, using 4 cores per node. 139

E.4 Write performance in BT class C for PLFS through the ad plfs

MPI-IO driver and LDPLFS compared to the standard ad ufs

MPI-IO driver on Sierra. 140

E.5 Write performance in BT class D for PLFS through the ad plfs

MPI-IO driver and LDPLFS compared to the standard ad ufs

MPI-IO driver on Sierra. 140

E.6 Write performance in FLASH-IO for PLFS through the ad plfs

MPI-IO driver and LDPLFS compared to the standard ad ufs

MPI-IO driver on Sierra. 140

F.1 Numerical data for Figure 6.2, displaying bandwidth achieved by

IOR on 1,024 cores, while varying Lustre stripe size and stripe

count. 141

F.2 Numerical data for Figure 6.3, displaying bandwidth per task

under contention, along with the idealised values. 141

G.1 Stripe collision statistics for PLFS backend directory running

with 16 cores. 142

G.2 Stripe collision statistics for PLFS backend directory running

with 32 cores. 142

G.3 Stripe collision statistics for PLFS backend directory running

with 64 cores. 142

G.4 Stripe collision statistics for PLFS backend directory running

with 128 cores. 143

G.5 Stripe collision statistics for PLFS backend directory running

with 256 cores. 143

G.6 Stripe collision statistics for PLFS backend directory running

with 512 cores. 143

G.7 Stripe collision statistics for PLFS backend directory running

with 1,024 cores. 144

G.8 Stripe collision statistics for PLFS backend directory running

with 2,048 cores. 144

G.9 Numeric data for Figure 6.6, showing the performance of IOR

through Lustre and PLFS. 144

CHAPTER 1
Introduction

Since the birth of the modern computer, in the early 20th Century, there has

been a dramatic shift in how science is performed; where previously countless

experiments were performed with varying results and levels of accuracy, now

simulations are performed ahead of time, reducing – and in some cases elimi-

nating – the number of experiments that need to be performed. To handle the

burden of simulating and predicting the outcome of these experiments, comput-

ers have become evermore complex and powerful; the most powerful supercom-

puter at the time of writing can perform 33 quadrillion (33⇥1015) floating point

operations every second [87], and there is a hope that within the next decade

this will be increased to 1 quintillion (1018) operations per second [25,40].

Achieving this level of performance relies on an enormous amount of par-

allelism – the world’s fastest supercomputer in November 2013, Tianhe-2, con-

sists of 3,120,000 distinct processing elements operating in parallel [87]. The

sheer size of the problems being calculated on machines such as this means

that loading data from disk often becomes a burden at scale. Furthermore, the

number of components in use in these machines has a serious e↵ect on their

reliability, with most production supercomputers experiencing frequent node

failures [58, 116, 149]. To combat this, resilience mechanisms are required that

often involve writing large amounts of data to persistent storage, such that in the

event of a failure, the application can be restarted from a checkpoint, avoiding

the need to relaunch the computation from the very beginning.

Unfortunately, the persistent storage available on large parallel systems has

not kept pace with the development of microprocessors; checkpointing is becom-

ing a bottleneck in many science applications when executed at extreme scale.

1

1. Introduction

Fiala et al. show that at 100,000 nodes, only 35% of runtime is spent performing

computation, with the remaining time spent checkpointing and recovering from

failures [46]. As the era of exascale computing approaches, this performance

gap is widening further still.

1.1 Motivation

The increasing divergence between compute and I/O performance is making

analysing and improving the state of current generation storage systems of ut-

most importance. Improvements to I/O systems will not only benefit current-

day applications but will also help inform the direction that storage must take

if exascale computing is to become practically useful. This thesis demonstrates

methods for analysing the performance of I/O intensive applications and shows

that by making small changes to how parallel libraries are currently used perfor-

mance can be improved; furthermore, with the correct combination of software

libraries and configuration options, performance can be increased by an order

of magnitude on present day systems.

This thesis also contains an investigation into one potential solution to poor

parallel file system performance. The parallel-log structured file system (PLFS)

is reported to be providing huge improvements in write performance [11,103] and

this thesis investigates these claims; specifically it is shown that while many of

the techniques used in PLFS may prove important on future systems, on many

current day systems, PLFS induces a performance penalty at scale.

1.2 Thesis Contributions

The research presented in this thesis makes the following contributions:

• The development and deployment of an I/O tracing library (RIOT) is de-

scribed in detail. RIOT is a dynamically loadable library that intercepts

the function calls made by MPI-based applications and records them for

2

1. Introduction

later analysis. This is demonstrated using industry-standard benchmarks

to show how their performance di↵ers between three distinct supercomput-

ers with a variety of I/O backplanes. RIOT allows application developers

to visualise how data is written to the file system and identify potential

opportunities for optimisation. In particular, through the analysis of an

HDF-5 based code, it is shown that by changing some of the low-level

configuration options in MPI-IO, a performance improvement of at least

2⇥ can be achieved;

• Using RIOT, the performance of PLFS is analysed on two commodity clus-

ters. The analysis presented in this thesis not only explains why PLFS

produces large speed-ups for general users on large file systems but also

suggests that there exists a tipping point where PLFS may harm parallel

I/O performance beyond a certain number of cores. The burden of in-

stalling and using PLFS is also addressed in this thesis, where a simpler,

more convenient method of using PLFS is developed. This pre-loadable

library, known as LDPLFS, allows application developers and end users

to assess the applicability of PLFS to their codes before investing further

time and e↵ort into using PLFS natively;

• Building upon previous work [10, 76, 148], the performance of the Lustre-

optimised MPI-IO driver is analysed. On the systems operated by the

Lawrence Livermore National Laboratory (LLNL), used throughout this

thesis, a Lustre-optimised driver (ad lustre) is not available by default,

and this is also true of other studies, whereby a potential optimisation is

compared against a Lustre file system using the unoptimised UNIX file

system MPI-IO driver (ad ufs) [11]. In this thesis, a customised MPI

library is built in order to measure the impact of the specialised driver –

demonstrating a potential 49⇥ boost in performance. This thesis extends

previous works, demonstrating that although the optimal performance is

found by using the maximum amount of parallelism available, this may

3

1. Introduction

not be optimal for a system with many I/O intensive applications com-

peting for a shared resource. A number of metrics are presented to aid

procurement decisions and explain potential performance deficiencies that

may occur;

• The metrics presented to explain the e↵ect of job contention on parallel

file systems are adapted and used to explain the performance defects in

PLFS at scale, demonstrating that at 4,096 cores each storage target is

being contented by 17 tasks in the average case, with some targets expe-

riencing as many as 35 collisions. The equations presented in this thesis

will allow scientists to make decisions about whether PLFS will benefit a

given application if the scale at which it will be run and the number of file

system targets available is known beforehand. At large scale, Lustre with

an optimal set of configuration options outperforms PLFS by 5.5⇥, and

induces much less contention on the whole file system, thus benefitting

the shared file system as a whole.

1.3 Thesis Overview

The remainder of the thesis is structured as follows:

Chapter 2 contains an overview of current work in the field of high performance

computing. Specifically, it describes work related to improving I/O and file

system performance, with a focus on the methods that can be used to increase

the performance of data intensive applications. This chapter also contains a

literature review of current work in the fields of performance benchmarking,

system profiling and performance modelling, both analytical and simulation-

based.

Chapter 3 presents a brief explanation of the hardware and software environ-

ments used in this thesis. The chapter begins with a brief introduction to how

spinning-disk-based file systems function, from the operation of the single disks

4

1. Introduction

themselves, up to the distributed file systems that bring all the components to-

gether. Chapter 3 concludes with an overview of the applications and systems

used throughout this thesis.

Chapter 4 describes the development and use of RIOT, an I/O tracing toolkit

designed to analyse the usage patterns in parallel MPI-based applications. The

overheads associated with using RIOT are studied, showing that the perfor-

mance impact is negligible, motivating its use in this thesis. RIOT is used to

assess the performance of both IBM’s General Parallel File System (GPFS) and

the Lustre file system which are commonplace on leading contemporary super-

computers. GPFS on an IBM BlueGene/P is shown to significantly outperform

GPFS and Lustre on commodity clusters due to the use of an optimised MPI-

IO driver, specialised aggregator nodes and a tiered storage architecture. The

performance of applications dependent on the HDF-5 data formatting library is

shown to be suboptimal on two of the clusters used throughout this thesis and,

through analysis with RIOT, its performance is improved using a more optimal

set of MPI hints.

Chapter 5 contains an analysis of PLFS, a virtual file system developed at

the Los Alamos National Laboratory (LANL), showing that at mid-scale PLFS

achieves a significant performance improvement over the system’s “stock” MPI

library. The reasons for this performance improvement are analysed using

RIOT, showing that the use of multiple file streams increases the parallelism

available to applications. Due to the burden of installing PLFS on shared re-

sources, a rapid deployment option is developed called LDPLFS – a preloadable

library that can be used not only with MPI-based applications but also with the

standard UNIX tools, where the PLFS FUSE mount is not available. LDPLFS

is deployed on two supercomputers, showing that its performance matches that

of PLFS through the MPI-IO driver.

Chapter 6 analyses previous works in improving performance on Lustre file sys-

tems [9,10,76,148] and expands upon them, showing that although the optimal

5

1. Introduction

configuration produces a 49⇥ performance increase in isolation, the performance

increase is nearer 10�12⇥ on a system shared with multiple I/O intensive appli-

cation. Further, it is shown that using fewer resources has a negligible impact on

performance, while freeing up a significant amount of resources. In Chapter 5,

performance degradation was observed in PLFS at scale; this chapter analyses

why this slowdown occurs. Finally, this chapter presents a number of metrics

for assessing the impact of job contention on parallel file systems, and the use

of PLFS. These equations could be used to inform purchasing and configuration

decisions.

Chapter 7 concludes the thesis, and discusses the implications of this research

on future I/O systems. The limitations of the research contained therein are

discussed and directions for ongoing and future work are presented.

6

CHAPTER 2
Performance Analysis and Engineering

Improving computational performance has been a long standing goal of many

scientists and mathematicians for thousands of years, even before the advent

of the modern computer. Devising more e�cient algorithms to solve computa-

tional problems can reduce the time taken to reach a solution by many orders

of magnitude, meaning calculations relating to natural phenomena can be per-

formed in seconds rather than weeks or months.

The earliest known examples of algorithm optimisation come from Babylo-

nian mathematics [72]. Tablets dating back to around 3000 B.C.E. show that

the Babylonians had algorithms that today read very much like early computer

programs. These algorithms allowed the Babylonians to e�ciently and accu-

rately calculate the results of divisions and square roots, amongst other things.

A more modern example of algorithm optimisation was used during the

Manhattan Project at the Los Alamos National Laboratory (LANL). Richard

Feynman devised a method for distributing the calculations for the energy re-

leased by di↵erent designs of the implosion bomb [64]. Through Feynman’s use

of pipelining, his team of human computers were able to produce the results

to 9 calculations in only 3 months, where 3 calculations had previously taken 9

months to produce – representing a 9⇥ speed-up. Distributed computation in

this manner is one form of what is now commonly called parallel computation.

This chapter summarises: (i) some of the basic concepts and terminology

used in parallel computation and high performance computing literature; (ii)

some of the principles used to analyse, reason about, and predict computing

performance; and finally, (iii) recent advances in performance engineering, with

a particular focus on I/O and parallel storage systems.

7

2. Performance Analysis and Engineering

2.1 Parallel Computation

The first general-purpose computer was the Electronic Numerical Integrator and

Computer (ENIAC), built in 1939. The machine was capable of performing be-

tween 300 and 500 floating point operations per second (FLOP/s). Due to the

prevalence and importance of floating point operations in modern day science

applications, the FLOP rate is the standard way in which modern supercom-

puter performance is assessed.

The era of the modern supercomputer began in the 1960s with the release of

the CDC 6600. Designed by Seymour Cray for the Control Data Corporation

(CDC), the CDC 6600 was the first mainframe computer to separate many of the

components, typically found in CPUs of the era, into separate processing units.

This resulted in the CPU being able to use a reduced instruction set, simplifying

its design, and also allowing operations usually performed by the CPU (such

as memory accesses and I/O) to instead be handled by dedicated peripheral

processors in parallel. Consequently, the CDC 6600 was approximately three

times faster than its predecessor, the IBM 7030, and the machine held the record

for the world’s fastest computer from 1964 to 1969, performing approximately

1 million floating point operations per second (1 MFLOP/s).

In the 50 years since the CDC 6600, supercomputers have become increas-

ingly more complex. The use of advanced features such as instruction pipelining,

branch prediction and SIMD (single-instruction, multiple-data) instruction sets,

has led to modern CPUs achieving up to 10 GFLOP/s of computational power

per core. A typical CPU now consists of multiple cores (as many as 16 cores

on some AMD Opteron CPUs, and many more on some GPUs and specialised

processors) and a single CPU can provide as much as four orders of magnitude

more performance than the CDC 6600’s processor.

As a result of the ever-increasing power of supercomputers, a broad range of

applications are now executed on them. Some algorithms are inherently serial,

and thus the increase in single core performance has benefitted them. The grow-

8

2. Performance Analysis and Engineering

P1 P2 P3 P4

P1 P2 P3 P4

Co
m
pu
te

Di
st
rib
ut
e

Re
co
ns
tr
uc
t

Figure 2.1: An example of the parallelisation of a simple particle simulation
between four processors.

ing size of today’s supercomputers also means that many more of these types

of application can be executed simultaneously. The increasing core density in

modern CPUs is benefitting application that use shared-memory, such as those

written using OpenMPI directives [31]. However, this thesis focuses largely on

applications using the data-parallel paradigm, where an application divides its

data across many processors, all working towards a common goal. These appli-

cations may use a partitioned global address space (PGAS) model, where the

memory is logically partitioned and shared between cooperating processes, or

use a message passing model, where messages are explicitly exchanged between

cooperating processes.

This thesis focuses on applications using message passing, as they (i) repre-

sent a large proportion of the work performed on modern day supercomputers;

(ii) make the most use of parallel file systems; and (iii) will benefit most from

any optimisations to parallel I/O.

Figure 2.1 represents the division of a particle simulation across four pro-

cessors. Typically a problem space is divided evenly between cooperating pro-

cessors, the local problems are solved, and then a communication phase takes

place to exchange border information. The computation of the next time step

can then commence. After a defined number of time steps, the problem space

can be recombined and the result stored.

9

2. Performance Analysis and Engineering

Because of the significant decrease in runtime when applications are paral-

lelised in this way, supercomputers are now used to investigate a wide variety

of problems in both academia and industry. High performance computing is

used across a wide variety of domains such as cancer research, weapons design

and automotive aerodynamics, as well as investigating astrophysical phenomena

such as star formation.

2.2 I/O in Parallel Computing

As supercomputers have grown in compute power, so too have they grown in

complexity, size and component count. With the push towards exascale com-

puting (estimated by 2022 at the time of writing [33]), the explosion in machine

size will result in an increase in component failures. To calculate the speed

of the Sequoia supercomputer, the computational benchmark (LINPACK [81])

required multiple execution attempts due to the di�culty of keeping every com-

pute node running for the required 23 hour computation, and this problem is

expected to get worse at exascale.

To combat reliability issues, long running scientific simulations now use

checkpointing to reduce the impact of a node failure. Periodically, during a

time consuming calculation, the system’s state is written out to persistent stor-

age so that in the event of a crash, the application can be restarted and com-

putation can be resumed with a minimal loss of data. Furthermore, frequent

checkpointing facilitates another important scientific endeavour – visualisation.

With a stored state recorded at set points in computation, scientists can load

these checkpoints into a visualisation tool and observe the state of a simulation

at various time steps.

2.2.1 Issues in Parallel I/O

Writing checkpoints or visualisation data from a serial application may be rela-

tively trivial but for a parallel application, coordinating the writing or reading

10

2. Performance Analysis and Engineering

P1 P2 P3 P4

File Output

(a) N -to-N

P1 P2 P3 P4

File Output

(b) N -to-root

F1

P1

F2

P2

F3

P3

F4

P4

File Output

(c) N -to-1

Figure 2.2: The three basic approaches to I/O in parallel applications.

process can be di�cult. This has resulted in a number of solutions with various

advantages and disadvantages. Figure 2.2 shows three approaches to outputting

data in parallel, where (a) all ranks write their own data file; (b) all ranks send

their data to one “writer” process; and finally, (c) all ranks write their data to

the same file in parallel1.

While the fastest performance is usually achieved using the approach shown

in Figure 2.2(a), this is also the most di�cult to manage. If the application

is always executed in the same fashion (using exactly the same number of pro-

cesses) this is the most e�cient approach. However, should the problem be run

on a di↵ering number of cores (e.g. initially executed on N cores, writing N

files, before reloading data from N files, but on M cores), reloading the data

becomes computationally expensive and complicated as each process must read

sections from multiple di↵erent files.

Figure 2.2(b) shows the case where the root process becomes a dedicated

writer, writing all of the data to a single file, and redistributing the data in the

event of a problem reload. This is the easiest writing fashion to manage but is

also the slowest. While the computation is taking advantage of the increased

parallelism, the I/O becomes a serialisation point.

The approach taken by most simulation applications is demonstrated in

Figure 2.2(c). This approach strikes a good balance between speed and man-

1Figure 2.2(c) represents a simplified case where each rank is only writing out values from
a single shared array. More complicated write patterns (such as data striding) are common-
place.

11

2. Performance Analysis and Engineering

ageability. This is also the approach most parallel file systems are designed for,

and many communication libraries provide convenient APIs for handling data

in this manner.

2.2.2 Parallel File Systems

A hard disk drive (HDD) is essentially a serial device; one piece of data can

be sent over the connector at any given time. The inner workings of a single

HDD and how this has been improved over time will be discussed in Chapter 3,

but when multiple parallel threads or simultaneously running applications are

using a single storage system, the total performance of the disk will decrease

due to the overhead associated with resource contention. On large parallel

supercomputers, not only is a single HDD not nearly large enough to handle the

required data workloads, but the performance would also decrease to the point

of the HDD being practically unusable. To produce a greater quality of service

(QoS) across a shared platform, large I/O installations are necessary, using

thousands of disks connected in parallel using technologies such as Redundant

Array of Independent Disks (RAID) [97] and distributed file systems (DFS).

Distributed File Systems

The I/O backplane of high-performance clusters is generally provided by a DFS.

The two most widely used file systems today are IBM’s General Parallel File

System (GPFS) [115] and the Lustre file system [117], both of which will be

discussed in more detail in Chapter 3.

Most DFSs in use today provide parallelism by o↵ering simultaneous access

to a large number of file servers within a common namespace – files are divided

into blocks and distributed across multiple storage backends. An application

running in parallel may then access di↵erent parts of a given file without the

interactions colliding with each other, as each block may be stored on a di↵erent

server.

However, the use of a common namespace complicates DFSs – in the Lus-

12

2. Performance Analysis and Engineering

tre file system, a dedicated server is used to maintain the directory tree and

properties of each file, while in GPFS the metadata is distributed across the file

servers, complicating some operations but potentially providing higher perfor-

mance metadata queries.

One precursor to both Lustre and GPFS was the Parallel Virtual File System

(PVFS) developed primarily at the Argonne National Laboratory (ANL) [22].

PVFS used the same object-based design [85] that is now common in almost all

DFSs and, like Lustre, used a single metadata server to manage the directory

tree. However, over time PVFS (and its successor PVFS2) has adopted dis-

tributed metadata to decrease the burden on a single sever. Likewise, the Ceph

file system strikes a balance between Lustre and GPFS by distributing metadata

across multiple servers. In Ceph, directory subtrees are mapped to particular

servers using a hashing function, though larger directories are mapped across

many servers to provide higher performance metadata operations [137].

Hedges et al. suggest that GPFS outperforms Lustre for almost all tasks,

except some metadata tasks, where Lustre uses caching to improve performance

while GPFS performs a disk flush and read [63]. Furthermore, Logan et al.

suggest smaller stripe sizes on a Lustre system lead to better performance [79].

The findings in this thesis and other literature demonstrates that much of the

di↵erences in performance can be explained by di↵ering hardware and software

configurations [9, 10, 142]. This thesis also suggests that larger stripe sizes may

be beneficial on some Lustre file systems at scale.

Although most DFSs provide a POSIX-compliant interface (allowing stan-

dard UNIX tools like cp, ls, etc. to be used), the best performance is often

achieved using their own APIs.

Virtual File Systems

In addition to DFSs, a variety of virtual file systems have been developed to

improve performance. One approach shown to produce large increases in write

bandwidth is the use of so called log-structured file systems [104]. When per-

13

2. Performance Analysis and Engineering

forming write operations, the data is written sequentially to persistent storage

regardless of intended file o↵sets. Writing in this manner reduces the number

of expensive seek operations required on I/O systems backed by spinning disks.

In order to maintain file coherence, an index is built alongside the data so that

it can be reordered when being read. In most cases this o↵ers a large increase

in write performance, which benefits checkpointing, but does so at the expense

of poor read performance.

In the Zest implementation of a log-structured file system, the data is written

in this manner (via the fastest available path) to a temporary staging area that

has no read-back capability [94]. This serves as a transition layer, caching data

that is later copied to a fully featured file system at a non-critical time.

As well as writing sequentially to the disk, file partitioning has also been

shown to produce significant I/O improvements. Wang et al. use an I/O profiling

tool to guide the transparent partitioning of files written and read by a set of

benchmarks [135,136]. Through segmenting the output into several files spread

across multiple disks, the number of available file streams is increased, reducing

file contention on the storage backplane. Furthermore, file locking incurs a much

smaller overhead as each process has access to its own unique file.

The parallel log-structured file system (PLFS) from LANL combines file

partitioning and a log-structure to improve I/O bandwidth [11]. In an approach

that is transparent to an application, a file access from N processes to 1 file is

transformed into an access of N processes to N files. The authors demonstrate

speed-ups of between 10⇥ and 100⇥ for write performance. Due to the increased

number of file streams, they also report an increased read bandwidth when the

data is read back on the same number of nodes used to write the file [103].

With PLFS representing a single file as a directory of files, where each MPI

rank creates 2 files (an index file and a data file), there can be an enormous load

created on the underlying file system’s metadata server. Jun He et al. demon-

strate this, suggesting methods for reducing this burden and thus accelerating

the performance of PLFS further [62].

14

2. Performance Analysis and Engineering

While log-structured file systems usually produce a decrease in read per-

formance, the use of file partitioning in PLFS improves read performance to

a much greater extent on large I/O systems [103]. PLFS is described in more

depth in Chapter 3 and its performance is analysed in Chapter 5.

2.2.3 Parallel I/O Middleware

Writing data in parallel can be a complicated process for programmers; ensur-

ing the output doesn’t su↵er from race conditions may require explicit o↵set

calculations or file locking semantics. To simplify this process, there are a range

of parallel libraries that abstract this complex behaviour away from the appli-

cation.

Just as the Message Passing Interface (MPI) has become the de facto stan-

dard library used to abstract data communication from parallel applications, so

too has MPI-IO become the preferred method for abstracting parallel I/O [86].

The ROMIO implementation [127] – used by OpenMPI [49], MPICH2 [56] and

various other vendor-based MPI solutions [2, 15] – o↵ers a series of potential

optimisations, closing the performance gap between N -to-N and N -to-1 file

operations.

Within MPI-IO itself there are two features applicable to improving the per-

formance of all parallel file systems. Firstly, collective bu↵ering (demonstrated

in Figure 2.3) has been shown to yield a significant speed-up, initially on appli-

cations writing relatively small amounts of data [92, 126] and more recently on

densely packed nodes [142]. These improvements come in the first instance due

to larger “bu↵ered” writes that make better use of the available bandwidth and

in the second instance due to the aggregation of data to fewer ranks per node,

reducing on-node file system contention.

Secondly, data-sieving has been shown to be extremely beneficial when using

file views to manage interleaved writes within MPI-IO [126]. In order to achieve

better utilisation of the file system, a large block of data is read into memory

before small changes are made at specific o↵sets. The data is then written

15

2. Performance Analysis and Engineering

File System

(a) Collective Bu↵ering O↵

File System

(b) Collective Bu↵ering On

Figure 2.3: An example of two nodes (four ranks per node) writing to a file
system with collective bu↵ering o↵ and on.

back to the disk in a single block. This decreases the number of seek and write

operations that need to be performed at the expense of locking a larger portion

of the file and therefore may benefit sparse writes, where small portions of data

may need to be updated [26].

The MPI-IO specification outlines ADIO, an abstract interface for provid-

ing custom file system drivers to improve the performance of parallel file sys-

tems [125]. On the IBM BlueGene/L (and subsequent generations), a custom

driver is provided for GPFS (ad bgl) [2]. As these drivers are aware of the file

system’s APIs, they do not rely on unoptimised POSIX-compliant alternatives.

As is demonstrated later in this thesis, performance can be boosted significantly

through using file system specific drivers.

For the Lustre file system, the ad lustre driver is provided in the standard

ROMIO distribution [35, 36]. Using the driver allows an application developer

to specify additional options to customise the file layout at runtime, potentially

increasing the parallelism available [9, 10, 100,101].

In addition to drivers within the MPI-IO framework tthere are middleware

layers that exist between the applications and parallel communication libraries

16

2. Performance Analysis and Engineering

designed to standardise the I/O in scientific applications. NetCDF [106] and

Parallel NetCDF [75] exist for this purpose, with Parallel NetCDF making use

of the MPI-IO library to provide parallel and improved performance.

More commonly, the hierarchical data format (HDF-5) is used to write data

to disk for checkpointing or analysis purposes [73]. The library can be compiled

and can operate with the MPI library to allow parallel access to a common data

file; in this way the library can make use of optimisations in MPI to increase

performance [66, 146]. Additionally, PLFS has been demonstrated to improve

the performance of HDF-5 based applications by Mehta et al., dividing a single

HDF-5 output file into a data layout that is more optimal for the underlying

file system [84].

In this thesis, two applications that make use of HDF-5 are analysed, demon-

strating the shortcomings that may exist in the library’s default configuration,

while presenting opportunities for optimising performance.

2.3 Performance Engineering Methodologies

In high performance computing parlance, performance engineering is the collec-

tion of processes by which an application’s or computing system’s performance

is measured, predicted and optimised. With supercomputers typically costing

anywhere between £1.4 million (approximate cost of Minerva, the University of

Warwick operated supercomputer used throughout this thesis) and £750 mil-

lion (approximate cost of K-computer, the 10 PFLOP/s supercomputer installed

at the RIKEN Advanced Institute for Computation Science in Kobe, Japan),

understanding the potential performance and utility of these machines ahead

of procurement is becoming significantly more important [60]. In addition to

making sense of the performance of a parallel machine, it is also important to

understand the performance of the applications that are expected to run on

these systems.

Further to system procurement, performance engineers also require tools to

17

2. Performance Analysis and Engineering

assess the current performance of their applications in order to understand why

they perform as they do. With this data, optimisations can be made, alongside

predictions about how hardware or software changes may a↵ect the performance

of their applications [32, 98].

2.3.1 Benchmarking

The most common way to assess a new computing architecture or parallel file

system is through the use of benchmarking. There exist multiple benchmarks

specifically designed for the assessment of supercomputers and many of these

benchmark suites form the basis of various performance rankings [6, 28, 39, 81].

For example, the LINPACK benchmark is a linear solver code that produces

a performance number (in FLOP/s) that is used to rank the most commonly

cited list of the fastest supercomputers, namely the TOP500 list [87].

For the purpose of procurement, running LINPACK on a small test ma-

chine and extrapolating the performance forward can produce an approxima-

tion of the parallel performance of a much larger, similarly architected machine

(since LINPACK scales almost linearly [39]). Additionally, benchmarks such as

STREAM [83] and SKaMPI [68] exist to assess the performance of memory and

communication subsystems.

The aforementioned benchmarks all target particular facets of parallel ma-

chines that are particularly important to performing computation. For data-

driven workloads, there are a number of benchmarks specifically designed to

assess the performance of the parallel file systems attached to these systems.

Notable tools in this area include the IOR [121] and IOBench [139] parallel

benchmarking applications. While these tools provide a good indication of po-

tential performance, much like LINPACK, they are rarely indicative of the true

behaviour of production codes. For this reason, a number of mini-application

benchmarks have been created that extract file read/write behaviour from larger

codes to ensure a more accurate representation of an application’s I/O opera-

tions. Examples include the Block Tridiagonal (BT) solver application from the

18

2. Performance Analysis and Engineering

NAS Parallel Benchmark (NPB) Suite [7, 8] and the FLASH-IO [47, 109, 155]

benchmark from the University of Chicago – both of which are employed later

in this thesis.

2.3.2 System Monitoring and Profiling

While benchmarks may provide a measure of file system performance, their use

in diagnosing problem areas or identifying optimisation opportunities within

large codes is limited. For this activity, monitoring or profiling tools are required

to either sample the system’s state or record the system calls of parallel codes

in real-time.

The gprof tool is often used in code optimisation to identify particular func-

tions that consume a large about of an application’s runtime [55]. For parallel

applications this task is complicated, as the program is spread across a wide

number of processes; a parallel profiler is therefore required for these applica-

tions. For Intel architectures, the VTune application can inform an engineer how

the CPU is being used, how the cache is being used and much more [69]. Oracle

Solaris Studio (formally, Sun Studio) consists of high performance compilers in

addition to a collection of performance analysis tools [27].

For parallel applications, there are a range of tools specifically designed to

monitor and record data relating to inter-process communications. Notable tools

in this area include the Integrated Performance Monitoring (IPM) suite [48]

from the Lawrence Berkley National Laboratory (LBNL), Vampir [90] from

TU Dresden, Scalasca [50] from the Jülich Supercomputing Centre, Tau [122]

from the University of Oregon and the MPI profiling interface (PMPI) [38].

Each of these profiling tools record interactions with the MPI library, and thus

produce large amounts data useful for identifying communication patterns and

performance bottlenecks in parallel applications. Further, both Scalasca and

Tau can generate additional data relating to performance using function call-

stack traversal and hardware performance counters.

For monitoring I/O performance the tools iotop and iostat both monitor

19

2. Performance Analysis and Engineering

a single workstation and record a wide range of statistics ranging from the I/O

busy time to the CPU utilisation [74]. iotop is able to provide statistics rel-

evant to a particular application, but this data is not specific to a particular

file system mount point. iostat can provide more detail that can be targeted

to a particular file system, but does not provide application-specific informa-

tion. These two tools are targeted at single workstations, but there are many

distributed alternatives, including Collectl [118] and Ganglia [82].

Collectl and Ganglia both operate using a daemon process running on each

compute node and therefore require some administrative privileges to install

and operate correctly. Data about the system’s state is sampled and stored in

a database; the frequency of sampling therefore dictates the overhead incurred

on each node. The I/O statistics generated by the tools focus only on low-level

POSIX system calls and the load on the I/O backend and therefore the data will

include system calls made by other running services and applications. For more

specific information regarding the I/O performance of parallel science codes

many large multi-science HPC laboratories (e.g. ANL, LBNL) have developed

alternative tools.

Using function interpositioning, where a library is transparently inserted into

the library stack to overload common functions, tools such as Darshan [21] and

IPM [48] intercept the POSIX and MPI file operations. Darshan has been de-

signed to record file accesses over a prolonged period of time, ensuring that each

interaction with the file system is captured during the course of a mixed work-

load. The aim of the Darshan project is to monitor I/O activity for a substantial

amount of time on a production BG/P machine in order to guide developers and

administrators in tuning the I/O backplanes used by large machines [21].

Similarly, IPM uses an interposition layer to catch all calls between the ap-

plication and the file system [48]. This trace data is then analysed in order to

highlight any performance deficiencies that exist in the application or middle-

ware. Based on this analysis, the authors are able to optimise two applications,

achieving a 4⇥ improvement in I/O performance.

20

2. Performance Analysis and Engineering

ScalaTrace [93] and its I/O-based equivalent ScalaIOTrace [134] have simi-

larly been used to record and analyse the communication and I/O behaviours

of science codes. Using the MPI traces collected by ScalaTrace, the authors

have demonstrated the ability to auto-generate skeleton applications in order to

obfuscate potentially sensitive code for the purpose of benchmarking di↵ering

communication strategies and interconnects [34]. Their success in producing

applications representative of the communication behaviours of science codes

suggests that a similar methodology could be used for building I/O benchmarks.

2.3.3 Analytical Modelling

Performance modelling and simulation have been previously used to predict the

compute performance of various science codes at varying scales on hypothetical

supercomputers. Analytical models (predominantly based on the LogP [30] and

LogGP [3] models) have been heavily used to analyse the scaling behaviour of

hydrodynamic [32] and wavefront codes [60, 89], as well as many other classes

of applications [13, 16,51,71].

Modelling the performance of a single-disk file system may be simple for

certain configurations, where all writes are of a fixed size, large enough such

that caching e↵ects do not skew performance. More complex configurations or

usage patterns complicate matters, with issues such as head switches and head

seeks changing the performance characteristics.

Ruemmler and Wilkes present an analytical model for head seeks, in which

small seeks are handled di↵erently to larger seeks (where the head has the op-

portunity to reach its maximum speed and therefore coast for a period) [111].

Further, they demonstrate a simulator using analytical models for various as-

pects of a physical hard disk drive, but use some simulation-based modelling

to produce a complete disk model [111]. Shriver et al. produce a complete an-

alytical behaviour model for a hard disk drive, taking into account a simple

readahead cache as well as request reordering [123]. Probabilistic functions are

used throughout to model cache hits and misses. The culmination of the work is

21

2. Performance Analysis and Engineering

a model that is within 5% of the observed data for some workload traces, but de-

creases in accuracy for large multi-user systems with many parallel applications

reading from and writing to the file system.

Work has also been conducted into building an analytical model of a parallel

file system. Zhao et al. present a performance model for the Lustre file system,

demonstrating an average model error of between 17% and 28%, thus illustrating

the di�culty of modelling complex parallel I/O systems with a large number of

components [152].

While analytical models can produce near instant answers to some per-

formance modelling problems, when faced with heavy machine or file system

contention, analytical models fail to produce accurate answers [98]; for these

problems, simulation is often required.

2.3.4 Simulation-based Modelling

Two simulation platforms have been developed recently at Sandia National Lab-

oratories (SNL) and the University of Warwick. The Structural Simulation

Toolkit (SST), from SNL, provides a framework for both macro-level and micro-

level simulation of parallel science applications, simulating codes at an abstract

level (predicting MPI behaviours and approximate function timings), as well

as at a micro-instruction level [107]. Similarly, the Warwick Performance Pre-

diction (WARPP) toolkit simulates parallel science codes at macro-level, and

includes simulation parameters to introduce network contention (through the

use of a Gaussian distribution of background network load) [59, 61].

While WARPP only attempts to simulate computation and communication

behaviour, SST can also predict I/O performance using an optional plugin to

simulate a single hard disk (using DiskSim [14]). However, the module is not

included by default and is currently not capable of simulating an entire parallel

file system. Simulation of an HDD using DiskSim relies on the target disk being

benchmarked using the DIXtrac application, which determines the values for

“over 100 performance-critical parameters” [113,114], including the disk’s data

22

2. Performance Analysis and Engineering

layout, its seek profile and various disk cache timing parameters; however, much

of this feature extraction relies on features of the SCSI interface that are not

applicable to modern HDDs. For newer disks, with more complex data layouts,

geometry extraction relies on some benchmarking and guesswork.

Specifically, Gim et al. use an angular prediction algorithm, along with a host

of other metrics to determine many of these parameters [52,54]. From their data,

they can predict the data layout of the disk. Where DIXtrac currently takes up

to 24 hours to fully characterise a disk, Gim et al. demonstrate similar accuracy

(on newer disks) within an hour [54].

Additional work into disk simulation has been done by both IBM and Hewlett-

Packard (HP) Laboratories. Hsu et al. use a trace driven simulation to analyse

the performance gains of various I/O optimisations and disk improvements [67].

They assess the benefits of read caching, prefetching and write bu↵ering, demon-

strating their benefits to improving I/O performance. Likewise, Ruemmler and

Wilkes assess the impact of disk caching using a simulation, demonstrating a

large error in predictions for small operations when the cache is not modelled,

highlighting the importance of disk cache modelling [111].

Early disk caches (typically less than 2 MB in size) would partition their

available storage into equally sized blocks to allow multiple simultaneous read

operations to use the cache. Modern hard disks do not have this same restric-

tion, instead partitioning the cache according to some heuristic. Suh et al.

demonstrate, using a simulator, that the disk’s cache hit-ratio can be improved

by using an online algorithm to dynamically partition the cache [124]. Similarly,

Zhu et al. demonstrate the benefit of both read and write caching on sequential

workloads, but conclude that there is very little benefit when there are more

concurrent workloads than cache segments [154].

Thekkath et al. develop a “sca↵old” interface in order to allow them to

use a real file system module to simulate performance [129]. Their sca↵olding

simulator mimics many of the operations that would otherwise be performed by

the kernel in order to bypass writing to physical media, instead directing data

23

2. Performance Analysis and Engineering

towards a disk model.

Simulating parallel file systems is much more di�cult, instead requiring the

simulation of both a shared metadata target, as well as multiple data targets.

Molina-Estolano et al. have developed IMPIOUS [88], a trace-driven parallel file

system simulator that attempts to mimic a storage system using PanFS [91].

Although their absolute results are out by an order of magnitude, the trend-line

of their results is similar to the true performance.

The CODES storage system simulator has been developed by Liu et al. to

predict the performance of a large PVFS2 installation at ANL [77]. They use

their model to predict the benefit of burst-bu↵er solid state drives (SSD) within

their installation, concluding that performance may be greatly improved if burst

bu↵er disks were deployed more widely [78].

Finally, Carns et al. use a simulator of PVFS2 in order to demonstrate

the ine�ciencies in server-to-server communication, used to maintain file con-

sistency [23]. They modify the algorithms used by PVFS2 and demonstrate

speed-ups in file creation, file removal and file stat operations.

2.4 Summary

Parallel computers are forever changing, and achieving optimal performance

is becoming increasingly di�cult as the technology evolves. From its humble

beginnings in the laboratories at LANL – using human computers to distribute

complex equations – to the current generation billion dollar parallel behemoths,

supercomputing has changed how science is performed. In this chapter a survey

of current research in HPC has been presented.

Of particular interest, the work performed by Carns et al. [21] and Furlinger

et al. [48] inspires much of the work in Chapter 4. Both Darshan and IPM

perform similar tasks to the tool described in this thesis, however much less

focus is put on associating the MPI library function calls with the underlying

POSIX operations that commit data to the file system.

24

2. Performance Analysis and Engineering

The work of Bent et al. [11] in developing PLFS demonstrates the current

divergence between how applications perform I/O and how file systems expect

I/O to be performed. In Chapter 5, the performance gains reported in the

PLFS literature [11,62,84,103] are investigated, demonstrating that there is still

progress to be made in achieving the best performance on current-generation

parallel file systems.

Finally this thesis analyses the work of Behzad et al. [10], Lind [76] and

You et al. [148] to show that current generation file systems are often better

than reported, though this thesis demonstrates that performance often su↵ers

under contention. The work in this thesis also ties the issues associated with

file system contention back to PLFS, demonstrating that PLFS has a similar

e↵ect to contended jobs when applications are run at large scale.

25

CHAPTER 3
Hardware and Software Overview

Throughout the work contained in this thesis many di↵erent hardware and soft-

ware systems have been used. This chapter provides a basic overview of how

each device works and how various parallel files systems are structured. Fi-

nally, the systems and applications used for the experiments in this thesis are

summarised.

3.1 Hard Disk Drive

While solid state drives (SSD) are decreasing in cost and improving in perfor-

mance, mechanical disk drives still dominate on large HPC installations. The

adoption of SSD drives is beginning to pick up pace, with the drives already

being used in tiered storage systems as burst-bu↵ers (storing recently accessed

data and writing to mechanical drives at a later time) [78]. However, in order

to understand the performance of current generation parallel storage systems,

the e↵ects of mechanical disks must be considered in order to understand the

performance of I/O in a multi-user system.

3.1.1 Disk Drive Mechanics

Figure 3.1 shows the basic internal layout of a standard spinning disk. Data

is stored on the platters by magnetising a thin film of ferromagnetic material;

depending on the magnetic polarity, a particular space on the disk may represent

either a 1 or a 0. The disk platters (which may be stacked) can hold data on both

sides and the platter assembly rotates at a constant speed. Disks used in laptops

and desktop computers typically spin at either 5,400 or 7,200 revolutions per

26

3. Hardware and Software Overview

Spindle

Platters

Read/Write Heads

Actuator Arm

Actuator Assembly
Drive Connectors

Figure 3.1: Basic internal structure of a hard disk drivea.

aImage includes resources from: http://openclipart.org/detail/28678

minute (RPM); server systems usually make use of disks that run at 7,200 RPM,

10,000 RPM or even 15,000 RPM.

Data is arranged on the disk platters in concentric circles and the “first”

track on a platter is always the outermost. In order to read/write data from/to

the tracks, the read/write head is moved over a particular track by the actuator

mechanism. The disk controller then enables one of the read/write heads at a

time in order to read/write data from/to a specific location.

3.1.2 Data Layout

The data on hard disk drives (HDD) was originally addressed using a method

known as cylinder-head-sector (CHS). First the actuator would move the read-

/write head to the correct cylinder (where a cylinder is the set of tracks on

each platter that are equidistant from the spindle), the correct read/write head

would be activated and when the particular sector (where a sector is a 512-bit

block of data) required was under the read/write head, data would be accessed.

However, using a disk in this way wasted a lot of the potential area of the disk

platters, as the data density decreases as data is stored further away from the

spindle. In addition to this, because of the CHS addressing standard, disks

27

http://openclipart.org/detail/28678

3. Hardware and Software Overview

(a) No Zoning (b) Zoned

Figure 3.2: Data layout on a disk with no zoning and three zones of increasing
density.

were constrained to 65,536 cylinders, 16 heads and 63 sectors per track; giving

a total of approximately 4 GB of maximum storage capacity (the limit on older

hardware where only 1,024 cylinders are allowed may be as low as 63 MB).

To overcome these limits, modern disk systems now use logical block ad-

dressing (LBA), though CHS addressing systems are still present in most BIOS

systems for legacy support. In LBA systems, the disk controller takes an ad-

dress and converts this to a physical address transparently to the user. Because

of this, disks can use much more complex data layout schemes.

As the outermost track of a platter is much longer than the innermost track,

it can store much more data (though storing data at the same density com-

plicates the read/write heads behaviour and the disk controller). To simplify

things, modern disks strike a balance between the complexity of storing all data

at the same density and the simplicity of storing all data at the same data

rate; the disk is partitioned into multiple zones where each zone has a di↵erent

data rate. Modern disks typically use between 10 and 30 zones and the com-

plexity of zoned-bit recording (ZBR) is handled by the disk drive’s internal disk

controller [150].

Figure 3.2 illustrates how data may be laid out (a) with a constant data rate,

and (b) with three zones. Since the spindle speed of modern disks is constant,

28

3. Hardware and Software Overview

Sp
in
dl
e

(a) Traditional

Sp
in
dl
e

(b) Surface Serpentine

Sp
in
dl
e

(c) Cylinder Serpentine

Sp
in
dl
e

(d) Hybrid Serpentine

Figure 3.3: Four examples of serpentine sector mapping.

towards the outer edge of a platter more physical space passes under the read

head; thus, more data can be stored and read/written in a single rotation of

the disk. In Figure 3.2(b), the white zone stores data at double the data rate

of the blue zone, which itself has twice the data rate of the yellow zone. As

the data rate increases, the available bandwidth to and from the disk increases,

thus ZBR not only increases the available capacity, it additionally provides

increased performance on the outer tracks. Due to manufacturing processes,

translating an LBA address to a physical address is complicated further by the

use of di↵ering zone data rates used by each platter; the data rate of a given

zone on one surface may not be the same as the corresponding zone on any

other surface.

In addition to the use of ZBR to increase the performance of a disk, modern

disks use a serpentine pattern for data layout [53, 110, 150]. With modern ad-

vances in engineering, it may be more e�cient in HDDs to switch to the next

track on a disk than to switch head and start reading from another platter (this

is due to a head switch requiring an adjustment to the head as well as some

29

3. Hardware and Software Overview

“settling” time). For this reason, a serpentine layout may be used to reduce

either the frequency of head switches or track-to-track switches. Figure 3.3 il-

lustrates four common sector mapping schemes. The choice of which layout is

used is based on the mechanical aspects of a particular disk; a disk with a high

overhead for head switching but a low overhead for track-to-track switches may

use of the layout in Figure 3.3(b), whereas a disk with a low overhead for head

switches may use the scheme in Figure 3.3(c).

3.1.3 Disk Controller

In order to address the speed divergence between main memory and HDDs

(many GB/s for memory, compared to a maximum of ⇡ 100 MB/s for HDDs),

high speed cache memory is used by the disk controller to bu↵er data. The disk

cache is able to partially nullify the e↵ect of the mechanical operations performed

by the disk for largely sequential workloads. Variations of the following cache

policies are found on most hard disk drives:

Read-ahead

Data that is sequential to the current request is read and stored in cache

as it may be used shortly.

Read-behind

Data prior to the current request is stored in cache as the platters rotate

to the correct position as this data may be then be accessed later at no

cost, as the head was passing over the data anyway.

Write-through

Data is written to the cache and also to the disk simultaneously. Written

data remains in cache as it may be read or updated later.

Write-back

Data is stored only in cache until the cache segment is about to be modified

or replaced, at which point the data is committed to disk.

30

3. Hardware and Software Overview

Modern disk caches usually provide between 8 and 32 MB of cache that can

be used for either read or write operations. Simple caches on much older disks

would partition the small amount of cache memory available into a number of

preset cache blocks of a fixed size; a least-recently used (LRU) algorithm would

be used to keep the most important data in cache, and write out or overwrite

old data. Today, disk caches implement much more complex algorithms us-

ing a combination of LRU, least-frequently used and other cache replacement

strategies.

Additionally, cache blocks are also dynamically sized and allocated by the

disk controller [124, 130]. This added complexity allows much larger sequential

reads to be improved when using a large cache. Small reads on a multi-user

system can also benefit, as many more smaller cache blocks can be created to

deal with each request.

The Serial-ATA (SATA) protocol in 2003 introduced native command queu-

ing (NCQ), allowing disks to re-order operations in a command queue in order to

reduce the number of rotations required, thus decreasing the time taken to fulfil

queued requests. Figure 3.4 shows how four requests can be reordered, using

the elevator algorithm, to decrease the time taken to service the requests [140];

servicing the third request while the disk is spinning to the second request elim-

inates the need for an extra rotation.

Disk manufacturers also add additional proprietary features to modern hard

disks. Due to the commercially sensitive nature of many of these optimisations,

it is becoming increasingly di�cult to understand the performance of spinning

disks, thus any simulations and models must make many simplifying assump-

tions to provide a generalised model of an HDD.

3.1.4 Redundant Array of Independent Disks

Modern enterprise-class HDDs have a mean time between failures (MTBF) of

between 1,200,000 and 2,000,000 hours, representing an annualised failure rate

(AFR) of between 0.73% and 0.44% (for the Seagate Constellation ES SAS

31

3. Hardware and Software Overview

1

2

3

4

(a) NCQ o↵

1

2

3

4

(b) NCQ on

Figure 3.4: An example of four requests fulfilled in-order without NCQ and out
of order with NCQ.

HDD, and the Seagate Enterprise Performance 15K HDD, respectively). In a

system with thousands of disks, the probability that one of those disks will fail

within a year becomes large. To overcome potential drive losses redundancy is

required, where some data is duplicated to another disk, such that in the event

of a failure, no data is lost.

Patterson, Gibson and Katz outline the first five configurations for redun-

dant arrays of independent disks (RAID)1 [97]. The first level, RAID-1, allows

numerous disks to be connected in parallel, with each pair of disks creating a

duplicate of each block simultaneously. This potentially provides better read

performance (as each simultaneous read can be processed in parallel), but at the

expensive of poor write performance, as data duplication requires each disk to

synchronise. To reduce the cost of data duplication, RAID-2 uses a Hamming

code to provide error correction, while all subsequent RAID levels use parity

checking. RAID-3 uses a single dedicated parity disk, while data is striped at

a byte level. RAID-4 level is similar to RAID-3, except block-level striping is

used with a dedicated parity disk. In the event of a failure, a new disk can be

swapped into the RAID system and rebuilt either by recalculating the parity,

or by using the present parity data to reconstruct the original data.

1Initially redundant array of inexpensive disks, this has been retroactively changed to be
independent disks.

32

3. Hardware and Software Overview

C1

B1

A1

Cp

B2

A2

C2

Bp

A3

C3

B3

Ap

(a) RAID-5

C1

B1

A1

Cp

B2

A2

Cp

Bp

A3

C2

Bp

Ap

C3

B3

Aq

(b) RAID-6

Figure 3.5: Two common RAID data distribution schemes.

RAID-5 and RAID-6 are the most commonly used “standard” levels of RAID

at the time of writing, with block-level striping of data and distributed parity.

Figure 3.5 shows how data is structured on both RAID-5 and RAID-6, where the

parity data is distributed. RAID-5 can survive a single disk failure, while RAID-

6 can survive two, as it provides double distributed parity. Due to the ability

to access disks in parallel, RAID-5 and RAID-6 also o↵er potential performance

boosts. Specifically, RAID-5 allows read and write performance of (n � 1)x,

while RAID-6 provides (n � 2)x, where n is the number of disks and x is the

performance of a single disk.

Additionally, there is RAID-0, where there is no fault tolerance but data

is striped to provide performance equivalent to nx. On HPC systems, meta-

data storage targets often employ RAID-1+0, where data is both striped and

mirrored to provide additional resilience and performance.

3.2 File Systems

When writing to an HDD, performance is not only dependent upon the disk

drive in use; the performance of the disk is also dictated by how the operating

system interacts with the hardware. This is largely controlled by the file system

in use.

3.2.1 The Extended File System

The extended file system (ext) was the first file system created specifically for the

Linux kernel and was inspired by the UNIX file system (UFS). The file system

33

3. Hardware and Software Overview

inode
info

data

data data

data data

data

data

data

Direct blocks

Indirect blocks
Double indirect
blocks

Figure 3.6: Structure of an ext2 inode block.

was superseded almost immediately by the second extended file system (ext2)

which used similar metadata structures but remedied many of the limitations

of ext. The third iteration of the extended file system (ext3) was developed 8

years later and made use of a journal to improve its reliability and performance.

The successor to ext3 was released in 2008 and provided further improvements

to performance, mostly in file system checking.

The Second Extended File System

In each of the ext file systems, files are represented by inodes, where an inode is a

structure that contains all of the information about a file except its filename and

the data itself [20]. The POSIX inode description lists the following attributes

(amongst others that are not listed below):

• Size of the file in bytes.

• User ID and group ID of the file owner.

• File access modes.

• Creation, last access and last modification times.

• Number of file blocks.

• Pointers to the disk blocks containing the file’s data.

34

3. Hardware and Software Overview

Under ext2, the block size for the file system may be 1, 2 or 4 KB and is typically

the highest of the three (4 KB). Each inode has a storage area that contains

15 pointers; the first 12 point directly to file data blocks, the next points to an

indirect block (which contains pointers to file data blocks), the next points to a

double indirect block (which contains pointers to indirect blocks) and the final

points to a trebly indirect block. Figure 3.6 outlines the structure of an ext2

inode.

When allocating space for the data blocks of a file, ext2 attempts to preallo-

cate 8 blocks upon file creation; this helps to prevent file fragmentation (where

a file’s data is not stored contiguously on the physical medium). Additionally,

ext2 attempts to place new file blocks as close as possible to the data of other

files in the same directory.

The Third Extended File System

The ext3 file system is an extension of ext2 with the addition of a journal (and

some other additional features that will not be discussed in this thesis) [133].

The journal on ext3 is essentially a file that is configurable in size and location

that stores transactions to the disk. The journal can be configured to work in

one of three ways:

Journal

Both metadata and file contents are written into the journal before being

committed to the main file system.

Ordered

Only metadata is written to the journal. Data is not, but it is guaranteed

that the data will have been written to the file system before the entry is

marked as committed in the journal.

Writeback

Only metadata is written to the journal, however the journal entry may be

marked as committed before the data has been written to the file system.

35

3. Hardware and Software Overview

The journal may be stored on the file system it is journalling, or it may be

stored on another disk or in memory. The advantage of the journal is that

in the event of a file system crash, it can be replayed in order to repair the

file system and bring the storage back online much more quickly. However, as

metadata is usually written to the disk twice (and in some cases the file data

may also be written twice), it can have implications for file system performance.

In ext3, the default behaviour is to use ordered journalling where only meta-

data entries are written to the journal, which behaves like a circular log of

transactions. At a particular interval, or when the journal reaches its maximum

size, the entries are committed to the file system.

The Fourth Extended File System

The fourth extended file system (ext4) is again largely feature compatible with

ext2 and ext3 but contains a series of extensions that were originally designed

for use by the Lustre file system [117]. The file system allows preallocation of

on-disk space of up to 128 MB, allowing applications to reserve large contiguous

storage spaces for improved performance. Additionally, the allocation of disk

space can be delayed until data is flushed to the file system; this allows a more

e�cient allocation that may reduce fragmentation and improve performance by

using the actual file size for the allocation [133].

In contrast to the previous iterations of the extended file systems, ext4 makes

use of file extents instead of traditional block mapping. Rather than using the

inode block mapping scheme described above, ext4 inodes can instead store four

extents (where an extent is a block of up to 128 MB of contiguous storage). If

more than four extents are required for a file, an HTree (a tree data structure

specialised for directory indexing) is used to store the additional extents.

3.2.2 The Sun Network File System

The Sun Network File System (NFS) is perhaps the most well known and most

widely used file system that provides a unified directory structure to a collection

36

3. Hardware and Software Overview

of clients over a network [112]. It uses Sun’s Remote Procedure Call (RPC) pro-

tocol in order to allow clients to issue file system commands across the network.

The first public release of NFS (NFSv2) operated using UDP only and there-

fore provided only a stateless protocol; operations such as a write had to be

completed synchronously, whereby the server would have to perform the com-

plete operation before it could return a result to the client. Stateless operation

also restricted the use of file locking, and this therefore had to be implemented

outside of the core protocol.

Although support for TCP was added in NFSv3, a stateful protocol was not

added until NFSv4. Asynchronous write operations were added to NFSv3 in

order to provide greater write performance.

3.3 Distributed File Systems

While NFS provides a unified storage solution for many connected nodes, the

performance of the file system does not scale with the size of the network. For

this reason, distributed file systems (DFS) exist to provide a unified storage

space across a network of servers. As a DFS is spread across multiple servers

(allowing parallelised access without interprocess interference) it generally pro-

vides a greater quality of service (QoS) than NFS. The IBIS file system [131],

developed in 1985, was one of the first DFSs where the file system was spread

across all nodes of the network, allowing all nodes to transparently access any file

regardless of whether the file was stored locally or remotely. Modern DFSs now

provide dedicated storage servers, each themselves containing high performance

storage backends (using techniques such as RAID).

In most modern DFSs, there are four components. This thesis adopts the

naming convention of the Lustre file system; di↵erent file systems may use

alternate terms but the functions they provide are largely equivalent.

37

3. Hardware and Software Overview

OST

OST

OST

OSS 1

OSS 2

OSS 3

OSS 4

MGT

MGS 1 MGS 2

Client

Client

Client

Client

In
te

rc
on

ne
ct

MDT

MDS 1 MDS 2

Figure 3.7: An example Lustre configuration with four OSSs and a fail-over
MGS and MDS.

Object Storage Targets (OST)

HDDs are usually grouped using RAID (to improve performance and pro-

vide some redundancy), these are then referred to as Object Storage Tar-

gets. The OSTs are used to store the stripe data blocks that make up each

file.

Object Storage Servers (OSS)

One or more OSTs are connected to one or more Object Storage Servers.

The OSSs are directly responsible for reading and writing file data from

and to the OSTs.

Metadata Server (MDS)

Metadata (such as the directory tree, file permissions and file block loca-

tions) is either stored on a dedicated Metadata Server or is stored on the

OSSs (as in GPFS). The MDS is used by the clients to get file information

and file structure, such that they can access the file stripes stored on the

OSTs.

38

3. Hardware and Software Overview

Management Server (MGS)

Finally, there are usually one or two Management Servers holding the

server configurations.

The parallel file systems used throughout this thesis di↵er in the number of

OSTs and OSSs in use, as well as the use of a dedicated MDS for the Lustre file

system used, and distributed metadata on the GPFS installations used. Other

parallel file systems, such as Ceph [137], make use of multiple MDSs in order

to improve the performance of metadata updates, which are often identified as

a bottleneck in some large, heavily loaded Lustre installations [1].

3.3.1 The Lustre File System

The Lustre file system is used by many of the world’s fastest and largest com-

puters, with up to 66 of the top 100 HPC systems using Lustre in 20102. The

basic architecture of a Lustre file system is shown in Figure 3.7. Although Lus-

tre (up to version 2.4) uses only a single MDS, a fail-over MDS and MGS can be

present. Additionally, as shown in Figure 3.7, multiple OSSs can be connected

to common OSTs and this will again provide some fail-over capability.

Much like previous DFSs, Lustre makes use of file striping to allow load to

be distributed across a number of service nodes. The size and width of each

stripe (where the width is the number of servers over which to stripe) can be

configured on a per-file or per-directory basis. The Lustre installation used in

this thesis stripes across 2 OSTs with each stripe being 1 MB in size in its

default configuration. The lfs command can be used to view and modify these

settings.

When writing to a Lustre system, the server used for the first stripe is

randomised in order to provide some load balancing between di↵erent clients.

From this point onwards, the data is striped across a number of servers based

on the configured stripe width.

2http://opensfs.org/wp-content/uploads/2011/11/Rock-Hard1.pdf

39

http://opensfs.org/wp-content/uploads/2011/11/Rock-Hard1.pdf

3. Hardware and Software Overview

OST

OST

OST

OSS 1

OSS 2

OSS 3

OSS 4

MGT

Client

Client

Client

Client

In
te

rc
on

ne
ct

MDT

Fi
br

e
Ch

an
ne

l S
wi

tc
h

Figure 3.8: An example of a GPFS setup with four OSSs connected via a high
performance switch to three targets and separate management and metadata
targets.

To maintain consistency and allow correct concurrent access to the DFS,

Lustre makes use of a distributed lock manager. Each OSS maintains its own

file locks and so if two processes attempt to access the same chunk of a file, the

OSS will only grant a lock to one of the clients (unless both accesses are read

requests).

3.3.2 IBM’s General Parallel File System

The General Parallel File System (GPFS) from IBM operates similarly to Lus-

tre; large files are distributed across multiple storage targets using stripes. How-

ever, GPFS di↵ers from Lustre in that all OSSs are connected to all OSTs and

MDTs, usually through a fibre channel switch. This provides additional re-

silience in that many more OSSs can fail before the file system must go o✏ine.

Figure 3.8 demonstrates an example GPFS configuration. Although it is possible

to store metadata on the same disks as file data, many installations (including

the configuration in use at the University of Warwick at the time of writing)

make use of dedicated higher performance data targets.

40

3. Hardware and Software Overview

0 1 2 3 4 5 File

File

0 1

hostdir.1

index.1

2 3

hostdir.2

index.2

4 5

hostdir.3

index.3

Application File View

PLFS File View

Figure 3.9: An application’s view of a file and the underlying PLFS container
structure.

On GPFS, metadata is maintained by all servers, potentially providing better

performance for metadata intensive workloads. As shown by Hedges et al., the

file creation rate on GPFS is much higher than on a Lustre system, provided

that the files are being created in distinct directories; the use of fine grained

directory locking in GPFS makes file creation slower in the same directory [63].

GPFS makes use of a much smaller stripe size than Lustre (typically 16 KB

or 64 KB) and sets the stripe width adaptively. For large parallel writes, data

can be striped across all available GPFS servers, potentially providing a much

greater maximum bandwidth [63].

3.3.3 The Parallel Log-structured File System

On top of parallel file systems like Lustre or GPFS, virtual file systems may

provide an additional performance boost by transforming parallel file operations

to be more appropriate for the underlying file system. One such example of

this is the parallel log-structured file system (PLFS) [11] developed at the Los

Alamos National Laboratory (LANL).

PLFS is a virtual file system that makes use of file partitioning and a log-

structure (as described in Section 2.2.2) to improve the performance of parallel

file operations. Each file within the PLFS mount point appears to an application

as though it is a single file; PLFS, however, creates a container structure, with

41

3. Hardware and Software Overview

Minerva Sierra Cab

Processor Intel Xeon 5650 Intel Xeon 5660 Intel Xeon E5-2670
CPU Speed 2.66 GHz 2.8 GHz 2.6 GHz
Cores per Node 12 12 16
Memory per Node 24 GB 24 GB 32 GB
Nodes 492 1,856 1,200
Interconnect — QLogic TrueScale 4⇥ QDR InfiniBand —
File System See Table 3.2 See Table 3.3 See Table 3.3

Table 3.1: Hardware specification of the Minerva, Sierra and Cab supercomput-
ers.

Minerva File System

File System GPFS
I/O servers 2
Theoretical Bandwidtha ⇡4 GB/s

Storage Metadata

Number of Disks 96 24
Disk Size 2 TB 300 GB
Spindle Speed 7,200 RPM 15,000 RPM
Bus Connection Nearline SAS SAS
RAID Configuration Level 6 (8 + 2) Level 1+0

Table 3.2: Configuration for the GPFS installation connected to Minerva.

aTheoretical Bandwidth refers the maximum rate at which data can be transferred to the
file servers and is therefore bounded only by the network interconnect.

a data file and an index for each process or compute node. This provides each

process with its own unique file stream, potentially increasing the available

bandwidth. Figure 3.9 demonstrates how a six rank (two processes per rank)

execution would view a single file and how it would be stored within the PLFS

backend directory.

In order to use PLFS on a supercomputer, either: the FUSE file system

driver must be installed; a custom MPI library must be built; or applications

must be rewritten to use the PLFS API directly. In Chapter 5 an alternative

solution is provided, in addition to an in-depth investigation into why PLFS

achieves the performance gains reported by its developers [11].

3.4 Computing Platforms

The work presented in this thesis has been carried out on four distinct HPC

systems. Three of these are built from commodity hardware, one is a machine

installed at the University of Warwick and the other two systems are installed

42

3. Hardware and Software Overview

OCF lscratchc File System

2011–2012 2013

File System Lustre Lustre
I/O Servers 24 32
Theoretical Bandwidtha ⇡30 GB/s ⇡30 GB/s

Storage Metadata Storage Metadata

Number of Disks 3,600 30 (+2)b 4,800 30 (+2)b

Disk Size 450 GB 147 GB 450 GB 147 GB
Spindle Speed 10,000 RPM 15,000 RPM 10,000 RPM 15,000 RPM
Bus Connection SAS SAS SAS SAS
RAID Configuration Level 6 (8 + 2) Level 1+0 Level 6 (8 + 2) Level 1+0

Table 3.3: Configuration for the lscratchc Lustre File System installed at LLNL
in 2011 (for the experiments in Chapter 5) and 2013 (for the experiments in
Chapter 6).

aTheoretical Bandwidth refers the maximum rate at which data can be transferred to the
file servers and is therefore bounded only by the network interconnect.

bThe MDS used by OCF’s lscratchc file system uses 32 disks: two configured in RAID-1
for journalling data, 28 disks configured in RAID-1+0 for the data volume itself and a further
two disks to be used as hot spares.

at the Lawrence Livermore National Laboratory (LLNL) in the United States.

The final machine used was the now decommissioned IBM BlueGene/P (BG/P)

system that was installed at the Daresbury Laboratory in the United Kingdom.

Specifically, the machines are:

Minerva

A capacity (used for many small tasks) supercomputer installed at the

Centre for Scientific Computing within the University of Warwick. Min-

erva is an IBM iDataPlex system consisting of 492 nodes, each containing

two hex-core Westmere-EP processors clocked at 2.66 GHz. The system

is served by a small GPFS installation and the nodes are connected via

QLogic’s TrueScale 4⇥ QDR InfiniBand. The full specification can be

found in Tables 3.1 and 3.2.

Sierra

A capability (used for a few very large tasks) HPC system installed in

the Open Compute Facility (OCF) at LLNL. Sierra is a Dell Xanadu

3 Cluster consisting of 1,856 compute nodes, each containing two hex-

core Westmere-EP processors running at 2.8 GHz. The interconnect is

a QLogic QDR InfiniBand fat-tree (very similar to Minerva). Sierra is

43

3. Hardware and Software Overview

connected to LLNL’s “islanded I/O” network, and can therefore make

use of various di↵erent Lustre installations. In this thesis, work has been

predominantly performed on the lscratchc file system due to its locality

to Sierra. The experiments on Sierra were all performed prior to 2013,

when the lscratchc file system was upgraded from 360 to 480 OSTs. More

details can be found in Tables 3.1 and 3.3.

Cab

A capacity supercomputer installed in the OCF at LLNL. Cab is a Cray-

built Xtreme-X cluster with 1,200 batch nodes, each containing two oct-

core Xeon E5-2670 processors clocked at 2.6 GHz. An InfiniBand fat-tree

connects each of the nodes and, like Sierra, Cab is connected to LLNL’s

islanded I/O network. The work in this thesis was performed on the

lscratchc file system after its upgrade to 480 OSTs. More information can

be found in Tables 3.1 and 3.3.

BG/P

Daresbury’s BG/P system was a single cabinet, consisting of 1,024 com-

pute nodes. Each node contained a single quad-processor compute card

clocked at 850 MHz. The BlueGene/P architecture featured dedicated net-

works for point-to-point communications and MPI collective operations.

File system and complex operating system calls (such as timing routines)

were routed over the MPI collective tree to specialised higher-performance

login or I/O nodes, enabling the design of the BlueGene compute node

kernel to be significantly simplified to reduce background compute noise.

The BG/P at Daresbury used a compute-node to I/O server ratio of 1:32;

however, di↵ering ratios were provided by IBM to support varying levels

of workload I/O intensity. The BlueGene used in this thesis was supported

by a GPFS storage solution with a hierarchical storage structure, where

data was written to Fibre Channel disks initially (Stage 1 in Figure 3.5)

before being staged onto slower SATA connected hard disks later (Stage 2

44

3. Hardware and Software Overview

STFC BlueGene Platform

Processor PowerPC 450
CPU Speed 850 MHz
Cores per Node 4
Nodes 1,024

Interconnects
3D Torus

Collective Tree
Storage System See Table 3.5

Table 3.4: Hardware configuration for the IBM BlueGene/P system at the
Daresbury Laboratory.

STFC BlueGene Platform File System

File System GPFS
I/O servers 4
Theoretical Bandwidtha ⇡6 GB/s

Stage 1 Stage 2

Number of Disks 110 35
Disk Size 147 GB 500 GB
Spindle Speed 15,000 RPM 7,200 RPM
Bus Connection Fibre Channel SATA
RAID Configuration Level 6 (8 + 2) Level 5 (4 + 1)

aTheoretical Bandwidth refers the maximum rate at which data can be transferred to the
file servers and is therefore bounded only by the network interconnect.

Table 3.5: Configuration for the GPFS installation connected Daresbury Lab-
oratory’s BlueGene/P, where data is first written to Fibre Channel connected
disks because being staged to slower SATA disks.

in Figure 3.5). Furthermore, data and metadata were stored on the same

storage medium. Daresbury’s BG/P compute and I/O configuration is

summarised in Tables 3.4 and 3.5, respectively.

3.5 Input/Output Benchmarking Applications

Throughout this thesis, work has been performed using a variety of di↵erent

benchmarks. Specifically, this thesis makes extensive use of four benchmarks

which are representative of a broad range of high performance applications.

These applications are:

IOR

A parameterised benchmark that performs I/O operations through both

the HDF-5 and the MPI-IO interfaces [120, 121]. The application can be

configured to be representative of a large number of science applications

45

3. Hardware and Software Overview

with minimal configuration.

FLASH-IO

A benchmark that replicates the HDF-5 checkpointing routines found in

the FLASH [4,155] thermonuclear star modelling code [47,109]. The local

problem size can be configured at compile time to behave in the same way

as any given FLASH dataset.

BT

An application from the NAS Parallel Benchmark (NPB) Suite which

has been configured by NASA to replicate I/O behaviour from several

important internal production codes [7, 8].

mpi io test

A parameterised benchmark developed at LANL, primarily used for bench-

marking the performance of PLFS. In particular, mpi io test provides an

interface for writing N -to-N , N -to-M and N -to-1, allowing for a compar-

ison of writing techniques [95].

Of these four applications, two are standard benchmarks used for the assessment

of parallel file systems (IOR and mpi io test), while the other two have been

chosen as they recreate the I/O behaviour of much larger codes but with a

reduced compute time and less configuration than their parent codes (FLASH-

IO and BT). This permits the investigation of system configurations that may

have an impact on the I/O performance of the larger codes, without requiring

considerable machine resources.

In addition to these applications, a custom benchmark has been written to

assess the impact of some of the tools presented in this thesis on the performance

of the MPI communication library (see Chapter 4). A further benchmarking

application has also been written to explore the e↵ect of contention on the

Lustre file system (see Chapter 6).

46

3. Hardware and Software Overview

3.6 Summary

The hardware and software in use on modern supercomputers varies drasti-

cally between di↵erent organisations and installations, but the principles that

dictate performance remain largely the same. In this chapter the history and

structure of I/O in parallel computation has been described, starting with the

development and improvement of HDDs (which continue to dominate HPC I/O

installations [151]), to the creation of the first networked file system, and up to

the DFSs in use at the time of writing.

Modern parallel file systems make use of an object-based storage approach

which is not dissimilar to the operation of standalone file systems such as ext4.

Files are divided into discrete blocks and, where on standalone file systems

these blocks are spread across a single disk, on a DFS the blocks are distributed

amongst several separate disks and file servers. The structure of these files and

the properties associated with them are then stored in a metadata database,

which may itself be distributed.

With the decreasing cost of solid state drives, their use in HPC installations

is increasing. Modern HPC systems are beginning to combine both HDDs and

SSDs into tiered architectures – using SSDs as a staging area, before committing

data to slower HDDs at a non-critical time [151]. The idea of using tiered

storage is not new and is used in the BlueGene/P used in this thesis – where

data is written initially to fast Fibre Channel disks, before being moved to

slower disks. The use of tiered/hybrid I/O systems is changing the performance

characteristics of parallel file systems [138]. However, much of the work in

this thesis will similarly apply when SSD adoption increases; ensuring data

consistency through the use of file locking will still reduce the performance of

large distributed writes and contention will still hamper the performance of

shared file systems, albeit to a lesser extent.

The primary purpose of modern day parallel storage for science applications

is to provide an interface through which applications can store the results of

47

3. Hardware and Software Overview

long-running computations. The data generated by these applications can be

used for additional purposes beyond producing the answers to important scien-

tific questions. Data written throughout an execution of a scientific application

can be used to visualise the progression of a computation and to facilitate soft-

ware resilience. It is estimated that on exascale machines, applications may

have to survive multiple node failures per day; the focus of this thesis is on

the checkpointing routines that are used in scientific applications to provide

snapshots, enabling application state recovery following a failure.

Throughout this thesis, multiple applications and hardware systems are used

to assess the current state of parallel I/O and how it must adapt to solve the

challenges exascale computation will bring. The hardware configurations used

throughout the remainder of this thesis are summarised in this chapter, along

with the applications that are used to assess them.

48

CHAPTER 4
I/O Tracing and Application Optimisation

As the HPC industry moves towards exascale computing, the increasing num-

ber of compute components will have huge implications for system reliability.

As a result, checkpointing – where the system state is periodically written to

persistent storage so that, in the case of a hardware or software fault, the com-

putation can be restored and resumed – is becoming common-place. The cost

of checkpointing is a slowdown at specific points in the application in order

to achieve some level of resilience. Understanding the cost of checkpointing,

and the opportunities that might exist for optimising this behaviour, presents

a genuine opportunity to improve the performance of parallel applications at

scale.

Performing I/O operations in parallel using MPI-IO or file format libraries,

such as the hierarchical data format (HDF-5), has partially encouraged code

designers to treat these libraries as a black box, instead of investigating and op-

timising the data storage operations required by their applications. Their focus

has largely been improving compute performance, often leaving data-intensive

operations to third-party libraries. Without configuring these libraries for spe-

cific systems, the result has often been poor I/O performance that has not

realised the full potential of expensive parallel disk systems [9, 10, 66,141,146].

This chapter documents the design, implementation and application of the

RIOT I/O Toolkit (referred to throughout the remainder of this thesis by the

recursive acronym RIOT), described previously [141, 142, 144] to demonstrate

the I/O behaviours of three standard benchmarks at scale on three contrasting

HPC systems. RIOT is a collection of tools developed specifically to enable the

tracing and subsequent analysis of application I/O activity. The tool is able to

49

4. I/O Tracing and Application Optimisation

MPI-IO
Bandwidths and

Overheads

Perceived and
Effective POSIX

Bandwidths

File Locking
Overheads

Concurrent POSIX
Operations

Application

libriot

MPI

ROMIO (incl. PLFS)

libc / POSIX Layer

Operating System

Storage
File System

Po
st

-P
ro

ce
ss

or
 (r

io
t-s

ta
ts

)

Application Libraries (HDF-5, etc.)

 n-1 1 0

I/O
Event
Trace

Merge and Sort

MPI_File_read/write()

POSIX read/write()

POSIX read/write()

0.00032 0 23 1 0
0.00045 0 13 1 0
.
.
0.00321 0 24 1 2048

Event Buffer(s)

Figure 4.1: Tracing and analysis workflow using the RIOT toolkit.

trace parallel file operations performed by the ROMIO layer (see Section 2.2.3

for details) and relate these to their underlying POSIX file operations. This

recording of low-level parameters permits analysis of I/O middleware, file format

libraries, application behaviour and to some extent even the underlying file

systems used by large clusters.

4.1 The RIOT I/O Toolkit

The left-hand side of Figure 4.1 depicts the usual flow of I/O in parallel ap-

plications; generally, applications either use the MPI-IO file interface directly,

or use a third-party library such as HDF-5 or NetCDF. In both cases, MPI is

ultimately used to perform the read and write operations. In turn, MPI calls

upon the MPI-IO library which, in the case of both OpenMPI and MPICH, is

the ROMIO implementation [127]. The ROMIO file system driver [125] then

calls the file system’s operations to read/write the data from/to the file system.

RIOT is an I/O tracing tool that can be used either as a dynamically loaded

library (via runtime pre-loading and linking) or as a static library (linked at

50

4. I/O Tracing and Application Optimisation

compile time). In the case of the former, the shared library uses function inter-

positioning to place itself in to the library stack immediately prior to execution.

When compiled as a dynamic library, RIOT redefines several functions from the

POSIX API and MPI libraries – when the running application makes calls to

these functions, control is instead passed to handlers in the RIOT library. These

handlers allow the original function to be performed, timed and recorded into a

log file for each MPI rank. By using the dynamically loadable libriot, appli-

cation recompilation is avoided completely; RIOT is therefore able to operate

on existing application binaries and remain agnostic to compiler and implemen-

tation language.

For situations where dynamic linking is either not desirable or is only avail-

able in a limited capacity (such as in the BG/P system used in this study), a

static library can be built. The RIOT software makes use of macro functions in

order to control how the library is built (i.e. whether a statically linked library

or a dynamically loadable library should be built). A compiler wrapper is then

used to compile RIOT into a parallel application using the -wrap functional-

ity found in the Linux linker. Listing 4.1 shows how one function (namely the

MPI File open() function) looks within RIOT.

As shown in Figure 4.1, libriot intercepts I/O calls at three positions. In

the first instance, MPI-IO calls are intercepted and redirected through RIOT,

using either the PMPI interface, or via dynamic or static linking; in the second

instance, POSIX calls made by the MPI library are intercepted; and in the final

instance, any POSIX calls made by the ROMIO file system interface are caught

and processed by RIOT.

Traced events in RIOT are recorded in a bu↵er stored in main memory.

While the size of the bu↵er is configurable, experiments have suggested that a

bu↵er of 8 MB is su�cient for the experiments in this thesis and adds minimal

overhead to the application. A bu↵er of this size allows approximately 340,000

file operations to be stored before needing to be flushed to the disk. This delay

of logging (by storing events in memory) may have a small e↵ect on compute

51

4. I/O Tracing and Application Optimisation

int FUNCTION_DECLARE(MPI_File_open)(MPI_Comm comm , char *filename ,
int amode , MPI_Info info , MPI_File *fh) {

// The FUNCTION_DECLARE macro controls how

// functions are defined , depending on if the static or

// dynamic library is being built.

DEBUG_ENTER;

// Maps the real MPI_File_open command to __real_MPI_File_open

MAP(MPI_File_open);

// Add file to the database

int fileid = addFile(filename);

// Add a record to the log

addRecord(BEGIN_MPI_OPEN , fileid , 0);

// Perform correct operation

int ret = __real_MPI_File_open(comm , filename ,
amode , info , fh);

// Add a end record to the log

addRecord(END_MPI_OPEN , fileid , 0);

DEBUG_EXIT;
return ret;

}

Listing 4.1: Source code demonstrating how the MPI File open function is in-
terpositioned in RIOT.

performance (since the memory access patterns may change), but storing trace

data in memory helps to prevent any distortion of application I/O performance.

In the event that the bu↵er becomes full, the data is written out to disk and

the bu↵er is reset. This repeats until the application has terminated.

Time consistency is established across multiple nodes by overloading the

MPI Init() function to force all ranks to wait at the start of execution on

an MPI Barrier() before each resetting their respective timers; after this ini-

tial barrier, each rank can progress uninterrupted by RIOT. This is especially

important on architectures such as IBM’s BlueGene, as applications can take

several minutes to start across the whole cluster. Synchronising in this man-

ner enables more accurate ordering of events even if nodes have experienced a

significant degree of time drift.

After the recording of an application trace is complete, a post-execution

analysis phase can be conducted (see Figure 4.1).

52

4. I/O Tracing and Application Optimisation

During execution, RIOT builds a file lookup table and for each operation

only stores the time, the rank, a file identifier, an operation identifier and the

file o↵set. After execution, these log files are merged and time-sorted into a

single master log file, as well as a master file database.

Using the information stored, RIOT can:

• Produce a complete runtime trace of an application’s I/O behaviour;

• Demonstrate the file locking behaviour of a particular file system;

• Calculate the e↵ective POSIX bandwidth achieved by MPI to the file

system;

• Visualise the decomposition of an MPI file operation into a series of POSIX

operations; and,

• Demonstrate how POSIX operations are queued and then serialised by the

I/O servers.

Throughout this thesis, a distinction is made between e↵ective MPI-IO and

POSIX bandwidths – MPI-IO bandwidths refer to the data throughput of the

MPI functions on a per MPI-rank basis. POSIX bandwidths relate to the data

throughput of the POSIX read/write operations as if performed serially and

called directly by the MPI library. This distinction is made due to the inabil-

ity to accurately report the perceived POSIX bandwidth because of the non-

deterministic nature of parallel POSIX writes. The perceived POSIX bandwidth

is therefore bounded below by the perceived MPI bandwidth (since the POSIX

bandwidths must necessarily be at least as fast as the MPI bandwidths), and is

bounded above by the e↵ective POSIX bandwidth multiplied by the number of

ranks (assuming a perfect parallel execution of each POSIX operation).

4.1.1 Feasibility Study

To ensure RIOT does not significantly a↵ect the runtime behaviour and perfor-

mance of scientific codes, an I/O benchmark has been specifically designed to

53

4. I/O Tracing and Application Optimisation

assess the overheads introduced by the use of RIOT. The application performs

a known set of read and write operations over a series of files. Each process

performs 100 read and write operations in 4 MB blocks. The benchmark appli-

cation was executed on three of the test platforms used in this thesis in three

distinct configurations: (i) without RIOT; (ii) with RIOT configured to only

trace POSIX file operations; and, (iii) with RIOT performing a complete trace

of MPI and POSIX file activity. The six MPI operations chosen for this feasibil-

ity study were: MPI File read/write(), MPI File read all/write all() and

MPI File read at all/write at all(); analysis of the scientific codes used

throughout this thesis, and other similar applications, suggests that these func-

tions are amongst the most commonly used for performing parallel I/O (see

Appendix A for more details).

Figure 4.2 shows the time taken to perform 100 MPI File write all(), and

MPI File read all() operations at di↵ering core counts (results for additional

functions are shown in Appendix A). From these experiments it is clear that

RIOT adds minimal overhead to an application’s runtime, although it is partic-

ularly di�cult to precisely quantify this overhead since the machines employed

operate production workloads.

As shown by the confidence intervals in Figure 4.2, on Minerva, repeated

runs produce nearly identical results due to the relatively small size of the

machine and the lack of heavy utilisation on the I/O backplane. For Sierra,

results vary more widely due to several I/O intensive applications running on

the same storage subsystem simultaneously. On BG/P the results are similarly

varied, and in some cases the application runs vary more widely due to the use

of I/O aggregator nodes in addition to the compute nodes. Nevertheless, the

results of these experiments show that the average overhead of RIOT is rarely

greater than 5% for MPI File operations. Low overhead tracing is a key feature

in the design of RIOT, and is an important consideration for profiling activities

associated with large codes that may already take considerable lengths of time

to run in their own right.

54

4. I/O Tracing and Application Optimisation

No Tracing POSIX Tracing Complete Tracing

12 24 48 96 12 24 48 96 32 64 128
0

50

100

150

200

Cores
Minerva Sierra BG/P

R
u
nt
im

e
(s
)

(a) MPI File write all()

12 24 48 96 12 24 48 96 32 64 128
0

50

100

150

200

250

Cores
Minerva Sierra BG/P

R
u
nt
im

e
(s
)

(b) MPI File read all()

Figure 4.2: Total runtime of RIOT overhead analysis benchmark for the func-
tions MPI File write all() and MPI File read all(), on three platforms at
varying core counts, with three di↵erent configurations: No RIOT tracing,
POSIX RIOT tracing and complete RIOT tracing.

4.2 File System Analysis

One key use-case of RIOT is to trace the write behaviour of scientific codes.

To demonstrate this, analysis has been performed on three distinct codes (one

of which was executed in two di↵erent configurations). Each of the codes were

executed using the default configuration options for the test machine in question.

For both Minerva and Sierra, data was pushed to the disks using the UNIX

File System (UFS) MPI-IO driver (ad ufs). For Minerva, data was striped

across its two servers with metadata operations being distributed between these

55

4. I/O Tracing and Application Optimisation

two servers. For Sierra, metadata operations were performed on a dedicated

metadata server, while data was by striped across two OSTs.

4.2.1 Distributed File Systems – Lustre and GPFS

As outlined in Chapter 3, the three test clusters employed in this chapter make

use of two di↵erent file systems – both Minerva and BG/P make use of GPFS,

while Sierra uses a Lustre installation. The I/O backplane used by Minerva

and that used by Sierra may seem vastly di↵erent, but the default configuration

of lscratchc means that the performance of both are similar since in each case,

files are striped usually over two OSTs. Both GPFS installations adapt to their

workload, though as stated previously, this usually means striping data over

the two available servers in Minerva’s case. As demonstrated in Figure 4.3(a),

at low core counts Sierra achieves the fastest write speed for IOR using MPI-

IO, though this is soon exceeded by BG/P as the number of cores is increased.

Figure 4.3 shows that for IOR and FLASH-IO, Minerva’s performance follows

the trend of Sierra, though performs slightly worse due to the slower hardware

being employed.

It is interesting to note that IOR writing through the HDF-5 middleware

library (Figure 4.3(b)) exhibits very di↵erent performance to the same bench-

mark running with only MPI-IO, despite writing similar amounts of data to

the same o↵sets on both Sierra and Minerva. The performance of FLASH-IO

(Figure 4.3(c)) also suggests that a significant performance defect exists in the

HDF-5 library. On each of these systems, the parallel HDF-5 library, by de-

fault, attempts to use data-sieving in order to transform many discontinuous

small writes into a single much larger write. In order to do this, a large region

(containing the target file locations) is locked and read into memory. The small

changes are then made to the block in memory, and the data is then written

back out to persistent storage in a single write operation. While this o↵ers a

large improvement in performance for small unaligned writes [126], many HPC

applications are constructed to perform larger sequential file operations.

56

4. I/O Tracing and Application Optimisation

Minerva Sierra BG/P

12 24 48 96 192 384 768 1536
0

200

400

600

Cores

U
se
r-
p
er
ce
iv
ed

B
an

d
w
id
th

(M
B
/s
)

(a) IOR with MPI-IO

12 24 48 96 192 384 768 1536
0

200

400

600

Cores

U
se
r-
p
er
ce
iv
ed

B
an

d
w
id
th

(M
B
/s
)

(b) IOR with HDF-5

12 24 48 96 192 384 768 1536
0

200

400

600

Cores

U
se
r-
p
er
ce
iv
ed

B
an

d
w
id
th

(M
B
/s
)

(c) FLASH-IO

16 64 256 1024
1

10

100

1000

10000

Cores

U
se
r-
p
er
ce
iv
ed

B
an

d
w
id
th

(M
B
/s
)

(d) BT Problem Size C

Figure 4.3: User-perceived bandwidth for applications on the three test systems.

When using data-sieving, the use of file locks helps to maintain file coherence.

However, as RIOT is able to demonstrate, when writes do not overlap, the

locking, reading and unlocking of file regions may create a significant overhead

– this is discussed further in Section 4.3.

The results in Figure 4.3(d) show that the BT mini-application achieves

by far the greatest performance on all three test systems (note the logarithmic

scale). On the BG/P system, its performance at 256 cores is significantly greater

than at 64 cores. Due to the architecture of the machine and the relatively small

amount of data that each process writes at this scale, the data is flushed very

quickly to the I/O node’s cache and this gives the illusion that the data has

been written to disk at speeds in excess of 1 GB/s. For much larger output

sizes the same e↵ect is not seen, since the writes are much larger and therefore

cannot be flushed to the cache at the same speed. This is demonstrated in the

57

4. I/O Tracing and Application Optimisation

performance of IOR (Figures 4.3(a) and 4.3(b)) and FLASH-IO (Figure 4.3(c)).

Note that while the I/O performance of Minerva and Sierra plateau quite

early, the I/O performance of the BG/P system does not. A commodity cluster

using MPI will often use ROMIO hints such as collective bu↵ering [92] to reduce

the contention for the file system; the BG/P performs what could be considered

“super” collective bu↵ering, where 32 nodes send all of their I/O tra�c through

a single aggregator node. In addition to this, BG/P also uses faster disks and

a purpose written MPI-IO file system driver (ad bgl). The exceptional scaling

behaviour observed in Figure 4.3(d) can be attributed to this configuration.

As the output size and the number of participating nodes increases, contention

begins to a↵ect performance.

Although the configuration of the BlueGene’s file system was somewhere be-

tween that of Sierra and Minerva, it provided twice the number of file servers as

Minerva and therefore striped its data over four servers instead of two. Addi-

tionally, the disks were configured such that data was committed first to Fibre

Channel connected hard disk drives, before being staged to slower SATA disks.

The use of a tiered file system (where the I/O is performed from dedicated

nodes to FC-connected burst bu↵ers, before being committed to SATA disks)

and MPI-IO features such as collective bu↵ering and data-sieving (which can

be done at an I/O node level, rather than on each compute node) enabled the

BG/P’s GPFS installation to perform far better than the other file systems.

The write performance on each of the commodity clusters is roughly 2� 3⇥

the write speed of a single consumer-grade hard disk. Considering that these

systems consist of hundreds (or thousands) of disks, configured to read and

write in parallel, it is clear that the full potential of the hardware is not being

realised with the current configurations. Analysing the e↵ective bandwidth

of each of the codes (i.e. the total amount of data written, divided by the

total time taken by all nodes) shows that data is being written very slowly

to the individual disks when running at scale. The e↵ective MPI and POSIX

bandwidth achieved by each of the applications can be seen in Figures 4.4, 4.5,

58

4. I/O Tracing and Application Optimisation

Minerva Sierra BG/P

12 24 48 96 192 384 768 1536
0.01

0.1

1

10

100

Cores

E
↵
ec
ti
ve

P
O
S
IX

B
an

d
w
id
th

(M
B
/s
)

(a) POSIX

12 24 48 96 192 384 768 1536
0.01

0.1

1

10

100

Cores

E
↵
ec
ti
ve

M
P
I

B
an

d
w
id
th

(M
B
/s
)

(b) MPI

Figure 4.4: E↵ective POSIX and MPI bandwidth for IOR through MPI-IO.

Minerva Sierra BG/P

12 24 48 96 192 384 768 1536
0.01

0.1

1

10

100

Cores

E
↵
ec
ti
ve

P
O
S
IX

B
an

d
w
id
th

(M
B
/s
)

(a) POSIX

12 24 48 96 192 384 768 1536
0.01

0.1

1

10

100

Cores

E
↵
ec
ti
ve

M
P
I

B
an

d
w
id
th

(M
B
/s
)

(b) MPI

Figure 4.5: E↵ective POSIX and MPI bandwidth for IOR through HDF-5.

4.6 and 4.7. While one would expect the POSIX bandwidth to slightly exceed

the MPI bandwidth (due to a small processing overhead in the MPI library),

the degree to which this is true demonstrates a much larger than expected

overhead in the MPI library. For IOR, using MPI-IO directly (Figure 4.4), on

Minerva, the e↵ective POSIX bandwidth is often more than twice the e↵ective

MPI bandwidth, but peaks at only 11.105 MB/s for the single node case. For

the much larger Sierra supercomputer, for the single node case the e↵ective

MPI and POSIX bandwidths are almost equivalent but again peak at only

4.173 MB/s. Figures 4.5, 4.6 and 4.7 demonstrate a similar trend, showing

that the low e↵ective POSIX bandwidth achieved does not nearly approach the

potential performance of each storage system.

59

4. I/O Tracing and Application Optimisation

Minerva Sierra BG/P

12 24 48 96 192 384 768 1536
0.01

0.1

1

10

100

Cores

E
↵
ec
ti
ve

P
O
S
IX

B
an

d
w
id
th

(M
B
/s
)

(a) POSIX

12 24 48 96 192 384 768 1536
0.01

0.1

1

10

100

Cores

E
↵
ec
ti
ve

M
P
I

B
an

d
w
id
th

(M
B
/s
)

(b) MPI

Figure 4.6: E↵ective POSIX and MPI bandwidth for FLASH-IO.

Minerva Sierra BG/P

16 64 256 1024
0.01

0.1

1

10

100

1000

Cores

E
↵
ec
ti
ve

P
O
S
IX

B
an

d
w
id
th

(M
B
/s
)

(a) POSIX

16 64 256 1024
0.01

0.1

1

10

100

1000

Cores

E
↵
ec
ti
ve

M
P
I

B
an

d
w
id
th

(M
B
/s
)

(b) MPI

Figure 4.7: E↵ective POSIX and MPI bandwidth for BT Problem C, as mea-
sured by RIOT.

On the Lustre system data is striped across two OSTs, where each OST is

a RAID-6 caddy consisting of 10 disk drives. As the disks are Serial Attached

SCSI (SAS), each individual disk should have a maximum bandwidth of either

150 MB/s or 300 MB/s, giving a maximum potential bandwidth of 1,200 MB/s

or 2,400 MB/s1. While increasing the amount of parallelism in use for com-

putation reduces the time to solution for applications, as the storage resource

in use are not similarly scaled, the added contention harms the storage perfor-

mance. On the GPFS systems, similar e↵ective bandwidth is shown, though the

number of storage targets data is striped across is not known, as GPFS stripes

1The SAS version in use on lscratchc is unknown, and therefore may run at 3.0 Gbit/s or
6.0 Gbit/s.

60

4. I/O Tracing and Application Optimisation

dynamically. This poor level of performance may be partially attributed to two

problems: (i) disk seek time, and (ii) file system contention. In the former

case, since data is being accessed simultaneously from many di↵erent nodes and

users, the file servers must constantly seek for the information that is required.

In the latter case, since reads and writes to a single file must maintain some

degree of consistency, contention for a single file can become prohibitive.

From the results presented in Figure 4.3 and Appendix B, it is clear that

Sierra generally has a much higher performance I/O subsystem than Minerva.

However, the BG/P’s file system far outperforms both clusters when scaled. The

unusual interconnect and architecture that it uses allows its compute nodes to

flush their data to the I/O aggregator’s cache quickly, allowing computation

to continue. Similarly, when the writes are small, Minerva can be shown to

outperform Sierra, mainly due to the locality of its I/O backplane. However,

when HDF-5 is in use on Minerva, the achievable bandwidth is much lower than

that of the other machines due to file-locking and the poor read performance of

its hard disk drives.

Ultimately, both Sierra and Minerva exhibit similar performance (as ex-

pected by using only two OSTs of lscratchc). However, Sierra’s performance

does slightly exceed Minerva’s in almost all cases due to the use of faster

enterprise-class disks and centralised metadata storage, decreasing the amount

of processing each that OSS has to perform. The BG/P solution exhibits the

greatest performance due to the use of four OSSs, fibre channel connected disks,

and dedicated I/O aggregator nodes. As demonstrated in the next section, when

the I/O operations required are analysed and well understood, better perfor-

mance can be achieved on both Lustre and GPFS with minimal e↵ort.

4.3 Middleware Analysis and Optimisation

The experiments with FLASH-IO and IOR, both through HDF-5, demonstrate

that a large performance gap exists between using the HDF-5 file format li-

61

4. I/O Tracing and Application Optimisation

Write Read Locks Other

12 24 48 96 192 384
0

20

40

60

80

100

Cores

T
im

e
sp
en
t
in

fu
n
ct
io
n
(%

)

(a) Minerva

12 24 48 96 192 384
0

20

40

60

80

100

Cores

(b) Sierra

32 64 128 256 512 1024
0

20

40

60

80

100

Cores

(c) BG/P

Figure 4.8: Percentage of time spent in POSIX functions for FLASH-IO on
three platforms.

brary and performing I/O directly via MPI-IO. While a slight slowdown may

be expected, since there is an additional layer of abstraction in the software

stack to traverse, the decrease in performance is quite large (up to a 50% slow-

down). Figure 4.8 shows the percentage of time spent in each of the four main

contributing POSIX functions to MPI File write operations.

For the Minerva supercomputer, at low core counts, there is a significant

overhead associated with file locking (Figure 4.8(a)). In the worst case, on a

single node, this represents an approximate 30% decrease in performance. The

reason for the use of file locking in HDF-5 is that data-sieving is used by default

to write small unaligned blocks in much larger blocks. The penalty for this is

that data must be read into memory prior to writing; this behaviour can prove to

be a large overhead for many applications, where the writes may perform much

better were data-sieving to be disabled. Figure 4.8(c) shows that the BG/P does

not perform data-sieving, as evidenced by the lack of read functions. However,

due to the use of dedicated I/O nodes, the compute nodes spend approximately

80% of their MPI write time waiting for the I/O nodes to complete.

In contrast to Minerva, the same locking overhead is not experienced by

Sierra; however up to 20% of the MPI write time is spent waiting for other

ranks. It is also of note that Minerva’s storage subsystem is backed by relatively

slow HDDs; Sierra on the other hand uses much quicker enterprise-class drives,

62

4. I/O Tracing and Application Optimisation

Lock Read Write Unlock

0 0.005 0.010 0.015 0.020

10

13

16

Rank 0

Rank 1

Time (s)

O
↵
se
t
(M

B
)

Figure 4.9: Composition of a single, collective MPI write operation on MPI
ranks 0 and 1 of a two core run of FLASH-IO, called from the HDF-5 middleware
library in its default configuration.

Lock Read Write Unlock

0 0.005 0.010 0.015 0.020

10

13

16

Rank 0

Rank 1

Time (s)

O
↵
se
t
(M

B
)

Figure 4.10: Composition of a single, collective MPI write operation on MPI
ranks 0 and 1 of a two core run of FLASH-IO, called from the HDF-5 middleware
library after data-sieving has been disabled.

providing a much smaller seek time, a much greater bandwidth and various

other performance advantages (e.g. greater rotational vibration tolerance, larger

cache, etc.). As a consequence of this, a single Sierra I/O node can service a

read request much more quickly than one of Minerva’s, providing an overall

greater level of service.

Using RIOT’s tracing and visualisation capabilities, the execution of a small

run of the FLASH-IO benchmark (using a 16 ⇥ 16 ⇥ 16 grid size and only two

cores) can be investigated. Figure 4.9 shows the composition of a single MPI-IO

write operation in terms of its POSIX operations. Rank 0 spends the major-

ity of its MPI File write time performing read, lock and unlock operations,

63

4. I/O Tracing and Application Optimisation

whereas Rank 1 spends much of its time performing only lock, unlock and write

operations. Since Rank 1 writes to the end of the file, increasing the end-of-file

pointer, there is no data for it to read in during data-sieving; Rank 0, on the

other hand, will always have data to read, as Rank 1 will have increased the

file size, e↵ectively creating zeroed data between Rank 0’s position and the new

end-of-file pointer.

Both ranks splitting one large write into five “lock, read, write, unlock”

cycles is indicative of using data-sieving, with the default 512 KB bu↵er, to write

approximately 2.5 MB of data. When performing a write of this size, where all

the data is “new”, data-sieving may be detrimental to performance. In order

to test this hypothesis the MPI Info set operations present in the FLASH-IO

source code (used to set the MPI-IO hints) can be modified to disable data-

sieving. Figure 4.10 shows that, with the modified configuration, the MPI-IO

write operation is consumed by a single write operation, and the time taken to

perform the write is 40% shorter than that found in Figure 4.9.

Using the problem size benchmarked in Figures 4.3 and 4.6 (24⇥24⇥24), the

original experiments were repeated on both Minerva and Sierra using between

1 and 32 compute nodes (12 to 384 cores) in three configurations: firstly, in the

original configuration; secondly, with data-sieving disabled; and, finally, with

collective bu↵ering enabled and data-sieving disabled. Figure 4.11(a) demon-

strates the resulting improvement on Minerva, showing a 2⇥ increase in write

bandwidth over the unmodified code. Better performance is observed when

using collective bu↵ering. On Sierra (Figure 4.11(b)) there is a similar improve-

ment in performance (approximately 2⇥ increase in bandwidth). On a single

node (12 cores), performing only data-sieving is slightly faster than using collec-

tive bu↵ering, and beyond this collective bu↵ering increases the bandwidth by

between 5% and 20% (numeric data and confidence intervals are shown in Ap-

pendix C). Of particular note is the performance at 384 cores, where disabling

collective bu↵ering increases performance; however, the increased variance in

the results at this scale indicates that this may be a side e↵ect of background

64

4. I/O Tracing and Application Optimisation

Original No DS CB and No DS

12 24 48 96 192 384
0

100

200

300

400

500

600

Cores

B
an

d
w
id
th

(M
B
/s
)

(a) Minerva

12 24 48 96 192 384
0

100

200

300

400

500

600

Cores

B
an

d
w
id
th

(M
B
/s
)

(b) Sierra

Figure 4.11: Perceived bandwidth for the FLASH-IO benchmark in its original
configuration (Original), with data-sieving disabled (No DS), and with collective
bu↵ering enabled and data-sieving disabled (CB and No DS) on Minerva and
Sierra, as measured by RIOT.

machine noise.

This result does not mean that data-sieving will always decrease perfor-

mance; in the case that data in an output file is being updated (rather than a

new output file generated), using data-sieving to make small di↵erential changes

may improve performance [26].

4.4 Summary

Parallel I/O operations continue to represent a significant bottleneck in large-

scale parallel scientific applications. This is, in part, because of the slower rate

of development that parallel storage has witnessed when compared to that of

microprocessors. Other causes include limited optimisation at code level and the

use of complex file formatting libraries. Contemporary applications can often

exhibit poor I/O performance because code developers lack an understanding

of how their code use I/O resources and how best to optimise for this.

In this chapter the design, implementation and application of RIOT has

been presented. RIOT is a toolkit with which some of these issues might be

addressed. RIOT’s ability to intercept, record and analyse information relating

to file reads, writes and locking operations has been demonstrated using three

65

4. I/O Tracing and Application Optimisation

standard industry I/O benchmarks. RIOT has been used on two commodity

clusters as well an IBM BG/P supercomputer.

The results generated by the tool illustrate the di↵erence in performance

between the relatively small storage subsystem installed on the Minerva cluster

and the much larger Sierra I/O backplane. While there is a large di↵erence in the

size and complexity of these I/O systems, some of the performance di↵erences

originate from the contrasting hardware and file systems that they use and

how the applications make use of these. Furthermore, through using the BG/P

located at STFC Daresbury Laboratory, it has been shown that exceptional

performance can be achieved on small I/O subsystems where dedicated I/O

aggregators and tiered storage systems are used as burst bu↵ers, allowing data

to be quickly flushed from the compute node to an intermediate node.

RIOT provides the opportunity to:

• Calculate not only the bandwidth perceived by a user, but also the e↵ective

bandwidth achieved by the I/O servers. This has highlighted a significant

overhead in MPI, showing that the POSIX write operations to the disk

account for little over half of the MPI write time. It has also been shown

that much of the time taken by MPI is consumed by file locking behaviours

and the serialisation of file writes by the I/O servers.

• Demonstrate the significant overhead associated with using the HDF-5

library to store data grids. Through the data extracted by RIOT, it has

been shown that on a small number of cores, the time spent acquiring

and releasing file locks can consume nearly 30% of the file write time.

Furthermore, on small-scale, multi-user I/O systems, reading data into

memory before writing, in order to perform data-sieving, can prove very

costly.

66

4. I/O Tracing and Application Optimisation

• Visualise the write behaviour of MPI when data-sieving is in use, showing

how large file writes are segmented into many 512 KB lock, read, write,

unlock cycles. Through adjusting the MPI hints to disable data-sieving

it has been shown that on some platforms, and for some applications,

data-sieving may negatively impact performance.

The investigation into the use of RIOT to analyse the behaviour of parallel stor-

age continues in the next chapter, but already its use in identifying optimisation

opportunities has been demonstrated. RIOT a↵ords developers an opportunity

to understand exactly how configuration options change the I/O behaviour and

thus a↵ect performance. By analysing the current performance behaviour of

HDF-5 based applications a speed-up of at least 2⇥ can be achieved with a sys-

tem’s “stock” MPI installation, without a↵ecting other applications or services

on the system.

The results in this chapter have also highlighted the potential that exists in

tiered storage systems, suggesting that these could very well be the answer to

a↵ordable, e�cient and performant storage systems at exascale.

67

CHAPTER 5
Analysis and Rapid Deployment of the Parallel

Log-Structured File System

As the performance of I/O systems continue to diverge substantially from that

of the supercomputers that they support, a number of projects have been initi-

ated to look for software- and hardware-based solutions to address this concern.

One such solution is the parallel log-structured file system (PLFS) – which

was created at the Los Alamos National Laboratory (LANL) [11] and is now

being commercialised by EMC Corporation (EMC2). PLFS makes use of (i)

a log-structure, where write operations are performed sequentially to the disk

regardless of intended file o↵sets (keeping the o↵sets in an index structure in-

stead) [108]; and (ii) file partitioning, where a write to a single file is instead

transparently transposed into a write to many files, thus increasing the number

of available file streams [135].

Currently PLFS can be deployed in one of three ways: (i) through a file

system in userspace (FUSE) mount point, requiring installation and access to

the FUSE Linux kernel module and its supporting drivers and libraries [42]; (ii)

through an MPI-IO file system driver built into the Message Passing Interface

(MPI) library [125]; or (iii) through the rewriting of an application to use the

PLFS API directly [80]. These methods therefore require either the installation

of additional software, recompilation of the MPI application stack (and, subse-

quently, the application itself) or modification of the application’s source code.

In HPC centres which have a focus on reliability, or which lack the time and/or

expertise to manage the installation and maintenance of PLFS, it may be seen

as too onerous to be of use.

In this chapter an analysis of PLFS is performed using RIOT in order to

68

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

demonstrate why PLFS increases the potential bandwidth available to applica-

tions. Due to the implications of installing and maintaining PLFS on a large

system, an alternative approach to using PLFS is also presented [143]. This ap-

proach will facilitate rapid deployment of PLFS, and therefore allow application

developers to accelerate their I/O operations without the burdens associated

with PLFS installation. The techniques outlined are applicable to many virtual

file systems and allow users to forgo the need to rewrite applications, obtain

specific file/system access permissions, or modify the application stack.

5.1 Analysis of PLFS

The primary goal of PLFS is to intercept standard I/O operations and trans-

parently translate them from N processes writing to a single file, to N processes

writing to N files. The middleware creates a “view” over the N files, so that the

calling application can operate on these files as if they were all concatenated into

a single file. The use of multiple files by the PLFS layer helps to significantly

improve file write times, as multiple, smaller files can be written simultaneously.

Furthermore, improved read times have also been reported when using the same

number of processes to read back the file as were used in its creation [103].

Table 5.1 presents the average perceived and e↵ective MPI-IO and POSIX

bandwidths achieved by the BT benchmark when running with the PLFS MPI-

IO file system driver (ad plfs) and without it, using the UNIX file system

MPI-IO driver (ad ufs). Note that, as previously, e↵ective bandwidth in this

table refers to the bandwidth of the operations as if called serially and hence

are much lower than the perceived bandwidths.

As shown throughout Chapter 4, the e↵ective POSIX write bandwidth de-

creases significantly as the size of application runs is increased. PLFS partially

reverses this trend, as the individual POSIX writes are no longer dependent on

operations performed by other processes (which are operating on their own files)

and can therefore be flushed to the file server’s cache much more quickly. The

69

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

ad ufs ad plfs
16 64 256 16 64 256

Minerva

User Perceived Bandwidth 252.888 233.456 173.696 397.579 440.546 660.373
Speed-up 1.572⇥ 1.887⇥ 3.802⇥

E↵ective POSIX Bandwidth 218.024 80.091 19.049 196.738 124.340 105.597
Speed-up 0.902⇥ 1.552⇥ 5.543⇥

E↵ective MPI Bandwidth 15.883 3.651 0.678 25.036 6.899 2.580
Speed-up 1.576⇥ 1.900⇥ 3.805⇥

Sierra

User Perceived Bandwidth 212.486 126.102 115.191 405.495 1505.819 3122.271
Speed-up 1.908⇥ 11.941⇥ 27.105⇥

E↵ective POSIX Bandwidth 155.754 41.970 7.977 299.084 538.130 437.880
Speed-up 1.920⇥ 12.822⇥ 54.893⇥

E↵ective MPI Bandwidth 13.346 1.970 0.450 20.806 23.720 12.183
Speed-up 1.559⇥ 12.041⇥ 27.073⇥

Table 5.1: Perceived and E↵ective Bandwidth (MB/s) for BT class C through
MPI-IO and PLFS, as well as the speed-up generated by PLFS.

log-structured nature of PLFS also increases the bandwidth, as data can be writ-

ten in a non-deterministic sequential manner with a log file keeping track of the

data ordering. For a class C execution on 256 cores, PLFS increases the band-

width from 115.191 MB/s perceived bandwidth up to 3,122.271 MB/s on the

Sierra cluster, representing a 27⇥ increase in write performance. This increase

is partially attributable to the use of a separate file per MPI rank, meaning that

each file stream is writing stripes to two potentially di↵erent servers, making

use of a larger majority of the I/O subsystem; the e↵ect this may have on other

users of the file system is discussed in the next chapter.

Smaller gains are seen on Minerva, but due to its inferior I/O hardware and

GPFS directory level locking, this is to be expected. There are fewer I/O servers

to service read and write requests on Minerva and as a result there is much less

bandwidth available for the compute nodes.

Figure 5.1 demonstrates that during the execution of BT on 256 cores, con-

current POSIX write calls wait much less time for access to the file system.

As each process is writing to its own unique file, it has access to a unique file

stream, reducing file system contention. For non-PLFS writes a stepping e↵ect

is prominent, where all POSIX writes are queued and complete in a serialised,

70

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

MPI-IO PLFS

5.5 6 6.5 7 7.5 8
0

5

10

15

20

25

Time (s)

C
on

cu
rr
en
t
P
O
S
IX

w
r
i
t
e
(
)
ca
ll
s

(a) Minerva

5.5 6 6.5 7 7.5 8
0

5

10

15

20

25

Time (s)

C
on

cu
rr
en
t
P
O
S
IX

w
r
i
t
e
(
)
ca
ll
s

(b) Sierra

Figure 5.1: Concurrent write() operations for BT class C on 256 cores on
Minerva and Sierra.

non-deterministic manner. Conversely, on larger I/O installations, PLFS writes

do not exhibit this stepping behaviour, and on smaller I/O installations they

exhibit this behaviour to a much lesser extent, as the writes are not waiting on

other processes to acquire and release file locks.

5.2 Rapid Deployment of PLFS

To reduce the burden of installing and maintaining a PLFS mount point on

large production machines, this thesis details the development of an alternative

approach to using PLFS. This rapid deployment solution is called ‘LDPLFS’ –

as it is dynamically linked (using the Linux linker ld) immediately prior to ex-

ecution, enabling calls to POSIX file operations to be transparently retargeted

to PLFS equivalents. Like RIOT, this library requires only a simple environ-

ment variable to be exported in order for applications to make use of PLFS –

existing compiled binaries, middleware and submission scripts require no mod-

ification [143].

This section describes the design and implementation of LDPLFS, showing

how a dynamically loadable library can be used to retarget POSIX file operations

to PLFS specific file operations. Its performance is assessed on a collection of

standard UNIX tools, as well as on three parallel applications running at scale

71

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

int open(const char *filename , int flags , mode_t mode);
int plfs_open(Plfs_fd *fd, const char *filename , int flags ,

pid_t pid , mode_t mode , Plfs_open_opt *open_opt);

ssize_t write(int fd , const void *buf , size_t count);
ssize_t plfs_write(Plfs_fd *plfsfd , const void *buf ,

size_t count , off_t offset , pid_t pid);

ssize_t read(int fd , void *buf , size_t count);
ssize_t plfs_read(Plfs_fd *plfsfd , void *buf ,

size_t count , off_t offset);

Listing 5.1: Open, read and write functions from the POSIX and PLFS API.

ssize_t read(int fd , void *buf , size_t count) {
ssize_t ret;

// check if fd is a plfs file or a normal file

if (plfs_files.find(fd) != plfs_files.end ()) {
// if the file is a plfs file ,

// find its current virtual offset

off_t offset = lseek(fd, 0, SEEK_CUR);
// perform plfs read function

ret = plfs_read(plfs_files.find(fd)->second ->fd ,
(char *) buf , count , offset);

// update the virtual offset

lseek(fd , ret , SEEK_CUR);
} else {

// perform a standard read on a normal file

ret = __real_read(fd , buf , count);
}
return ret;

}

Listing 5.2: Source code demonstrating POSIX-PLFS translation in LDPLFS.

on the Minerva and Sierra supercomputers. The performance at scale not only

demonstrates the applicability of this technique for using virtual parallel file

systems, but also demonstrates one of the shortcomings of PLFS.

LDPLFS is a dynamic library specifically designed to interpose POSIX file

functions and retarget them to PLFS equivalents. By using the Linux loader,

LDPLFS overloads many of the POSIX file symbols (e.g. open, read, write),

causing an augmented implementation to be executed at runtime1. This al-

lows existing binaries and application stacks to be used without the need for

recompilation.

1Although LDPLFS makes use of the LD PRELOAD environmental variable in order to be
dynamically loaded, other libraries can also make use of the dynamic loader (by appending
multiple libraries into the environmental variable), allowing tracing tools to be used alongside
LDPLFS.

72

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

Application

libldplfs

MPI

libc / POSIX Layer

Operating System

Storage
File System

Application Libraries (HDF-5, etc.)

PLFS

fd
0x7df35

...

1

2 0x7ef32

Plfs_fd *

...

Figure 5.2: The control flow of LDPLFS in an applications execution.

Due to the di↵erence in semantics between the POSIX and PLFS APIs,

LDPLFS must perform two essential book-keeping tasks. Firstly, LDPLFS must

return a valid POSIX file descriptor to the application, despite PLFS using an

alternative structure to store file properties. Secondly, as the PLFS API requires

an explicit o↵set to be provided, LDPLFS must maintain a file pointer for each

PLFS file. Listing 5.1 shows three POSIX functions and their PLFS equivalents.

Listing 5.2 and the listings in Appendix D show how these POSIX functions can

be transparently transformed to make use of the PLFS alternatives.

When a file is opened from within a pre-defined PLFS mount point, a

PLFS file descriptor (Plfs fd) pointer is created and the file is opened with

the plfs open() function (using default settings for Plfs open opts and the

value of getpid() for pid t). In order to return a valid POSIX file descriptor

(fd) to the application, a temporary file (in our case a temporary file created

by tmpfile()) is also opened. The file descriptor of the temporary file is then

stored in a look-up table and related to the Plfs fd pointer. Future POSIX

operations on a particular fd will then either be transparently passed onto the

POSIX API, or, if a look-up entry exists, passed to the PLFS library.

In order to provide the correct file o↵set to the PLFS functions, a file pointer

73

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

is maintained through lseek() operations on the temporary POSIX file de-

scriptor. As demonstrated in Listing 5.2, when a POSIX operation is to be

performed on a PLFS container, the current o↵set of the temporary file is es-

tablished (through a call to lseek(fd, 0, SEEK CUR)), a PLFS operation is

performed (again using getpid() where needed), and then finally, the tempo-

rary file pointer is updated (once again through the use of lseek()). Figure 5.2

shows the control flow of an application when using LDPLFS.

5.2.1 Performance Analysis

Feasibility Study

The initial assessment of LDPLFS was conducted on Minerva. The MPI-IO Test

application from LANL was used to write a total of 1 GB per process in 8 MB

blocks [95]. Collective blocking MPI-IO operations were employed with tests

using PLFS through the FUSE kernel library, the ad plfs MPI-IO driver and

LDPLFS. In all cases the OpenMPI library used was version 1.4.3 with PLFS

version 2.0.1. The performance results were then compared to the achieved

bandwidth figures from the default ad ufs MPI-IO driver without PLFS.

Tests were conducted on between 1 and 64 compute nodes using 1, 2 and 4

cores per node23. Each run was conducted with collective bu↵ering enabled and

in the default MPI-IO configuration4 in order to provide better performance

with minimal configuration changes. The node-wise performance should remain

largely consistent, while the number of cores per node is varied – in each case

there remains only one process on each node performing the file system write.

As the number of cores per node is increased, an overhead is incurred because

of the presence of on-node communication and synchronisation.

Figure 5.3 demonstrates promising results, showing that the performance

2Due to machine usage limits, using all 12 cores per node would limit the results to a
maximum of 16 compute nodes, decreasing the scalability of the results.

3In some cases, other jobs were present on the compute nodes in use. Full numeric data
along with the 95% confidence intervals are given in Appendix E

4The default collective bu↵ering behaviour is to allocate a single aggregator per distinct
compute node.

74

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

ad ufs FUSE ad plfs LDPLFS

1 2 4 8 16 32 64
0

50

100

150

200

250

Nodes

B
an

d
w
id
th

(M
B
/s
)

(a) Write (1 Proc/Node)

1 2 4 8 16 32 64
0

50

100

150

200

250

Nodes

B
an

d
w
id
th

(M
B
/s
)

(b) Read (1 Proc/Node)

1 2 4 8 16 32 64
0

50

100

150

200

250

Nodes

B
an

d
w
id
th

(M
B
/s
)

(c) Write (2 Proc/Node)

1 2 4 8 16 32 64
0

50

100

150

200

250

Nodes

B
an

d
w
id
th

(M
B
/s
)

(d) Read (2 Proc/Node)

1 2 4 8 16 32 64
0

50

100

150

200

250

Nodes

B
an

d
w
id
th

(M
B
/s
)

(e) Write (4 Proc/Node)

1 2 4 8 16 32 64
0

50

100

150

200

250

Nodes

B
an

d
w
id
th

(M
B
/s
)

(f) Read (4 Proc/Node)

Figure 5.3: Benchmarked MPI-IO bandwidths on FUSE, the ad plfs driver,
LDPLFS and the standard ad ufs driver (without PLFS).

of LDPLFS closely follows the performance of PLFS through ROMIO and is

significantly better than FUSE (up to 2⇥) in almost all cases. It is interesting

to note that on occasion, LDPLFS performs better than the ad plfs MPI-IO

driver; however as can be seen from the confidence intervals, this is largely an

artefact of machine noise (numerical data can be found in Appendix E). On

Minerva, the performance of FUSE is worse than standard MPI-IO by 20%

on average for parallel writes. FUSE is known to degrade performance, due

to additional memory copies and extra context switches [70], and while this

75

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

PLFS Container Standard UNIX File

cp (read) 100.713 (97.182, 103.949)
114.279 (110.878, 119.906)

cp (write) 107.587 (106.473, 110.473)
cat 25.186 (23.413, 26.155) 25.433 (22.548, 28.469)
grep 130.662 (127.643, 131.396) 128.863 (126.445, 129.093)
md5sum 26.970 (26.018, 27.035) 26.781 (25.612, 28.511)

Table 5.2: Time in seconds for UNIX commands to complete using PLFS
through LDPLFS, and without PLFS.

overhead is addressed by Bent et al. [11], the I/O set-up used in that study is

much larger than that used by Minerva, and makes use of custom optimised

hardware. It is therefore likely that the much greater performance increase

generated by PLFS masks this overhead much better than the I/O hardware of

Minerva.

Standard UNIX Tool Performance

One of the current di�culties associated with the practical use of PLFS is the

complexity of managing PLFS containers. Since FUSE treats a PLFS mount

point as a self-contained file system, using the files in any application is trivial.

However, when using either of the alternative solutions for PLFS, applications

must either use MPI or be rewritten for PLFS. Files created under a PLFS

mount point appear inside the “backend” directory as directories themselves

with hundreds of files (see Figure 3.9 in Chapter 3). Visualising data or post

processing the information output becomes di�cult in this scenario; this is one

of the problems LDPLFS additionally addresses. As LDPLFS operates at the

POSIX call level, it can be used with any standard UNIX tools as well as parallel

science and engineering applications.

Table 5.2 presents the performance of several standard UNIX tools operating

on a 4 GB PLFS file container. Note that the file copy (cp) times correspond

to copying a file from a PLFS container to a standard UNIX file and vice versa.

These can be compared to a single time for copying from and to a standard

UNIX file.

Since each of these commands are serial applications, each command was

76

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

executed on the login node of Minerva. It is promising to see that the time

for each of the commands to complete is largely the same for both standard

UNIX files and PLFS container structures. These results show that PLFS is

marginally faster when copying to or from a PLFS file than a normal UNIX file.

This improvement in performance may be attributed to the increased number of

file streams available, improving the bandwidth achievable from the file servers.

The results presented above position LDPLFS as a viable solution to im-

proving the performance of I/O in parallel, as well as showing that there is no

substantial performance hit when using LDPLFS to interact with PLFS mount

points using serial (non-MPI) applications. Using LDPLFS, it is now much

easier to assess the performance of PLFS on a variety of systems without the

overhead associated with compiling a customised MPI library, or requesting

access to the FUSE kernel driver. In the next section, the performance of LD-

PLFS at much larger scales is demonstrated using a small set of I/O intensive

mini-applications.

Parallel Application Performance

Figure 5.3 shows that on Minerva, PLFS improves performance by approxi-

mately 2⇥ for parallel applications. Because of the relatively small I/O set-up

employed by Minerva, achieving performance increases such as those reported

by Bent et al. [11] – where a high-end PanFS I/O solution is used – is most

likely not possible. In order to better demonstrate how PLFS and LDPLFS

perform on a much more substantial I/O set-up, two applications have been

used to benchmark the lscratchc file system attached to Sierra (see Table 3.3 in

Chapter 3).

For this study the previously introduced BT solver and FLASH-IO have

been used. For BT, problem class C (162 ⇥ 162 ⇥ 162) has been used, writing

a total of 6.4 GB of data during an execution, as well as the D problem class

(408⇥ 408⇥ 408), writing a total of 136 GB of data. The application is strong

scaled – as the number of cores is increased, the global problem size remains

77

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

ad ufs ad plfs LDPLFS

4 16 64 256 1024
0

1000

2000

3000

4000

Cores

B
an

d
w
id
th

(M
B
/s
)

(a) Problem Class C

64 256 1024 4096
0

1000

2000

3000

4000

A

B

C

Cores

B
an

d
w
id
th

(M
B
/s
)

(b) Problem Class D

Figure 5.4: BT benchmarked MPI-IO bandwidths using MPI-IO, as well as
PLFS through ROMIO and LDPLFS.

the same, with each process operating over a smaller sub-problem. For the C

problem class, the global problem size is relatively small, and can only be scaled

to 1,024 cores before the local problem size becomes too small to operate on

correctly. Conversely for the D program class, the global problem size is so

large that on less than 64 cores, the execution time becomes prohibitive. For

this reason this study employs between 4 and 1,024 cores for the C problem

class, and between 64 and 4,096 cores for the D problem class.

Figures 5.4 and 5.5 show the achieved bandwidth for the two mini-applications

in their default configurations using the system’s pre-installed OpenMPI version

1.3.4 library (ad ufs); with the system’s OpenMPI library and LDPLFS; and

finally with the MPI-IO PLFS file system driver (ad plfs) compiled into a cus-

tomised build of OpenMPI (version 1.4.3). The performance of PLFS through

the two methods is largely the same, with a slight divergence at scale – as

previously, full numerical data can be found in Appendix E.

Since LDPLFS retargets POSIX file operations transparently and uses var-

ious structures in memory to maintain file consistency, a change in the local

problem size may a↵ect the LDPLFS performance due to the memory access

patterns changing and additional context switching. Furthermore, write caching

can produce a large di↵erence in performance – where data is small enough to

78

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

fit in cache, the writing of that data to disk can be delayed.

Write caching is most prevalent in the BT application where, at large-scale,

small amounts of data are being written by each process during each parallel

write step. For the C problem class (Figure 5.4(a)), 6.4 GB of data is written in

20 separate MPI write calls, causing approximately 300 KB of data to be written

by each process at each step. When writing to a single file, the file server must

make sure that writes are completed before allowing other processes to write

to the file. This causes each write command to wait on all other processes,

leading to relatively poor performance. Conversely, through PLFS, each process

writes to its own file, thereby allowing the write to be cleared to cache almost

instantaneously.

In Figure 5.4(b), the performance peaks at nearly 3000 MB/s (point A) due

to the increased parallelism exposed by PLFS. The performance then rapidly

decreases at 1,024 cores (point B), where each process is writing approximately

136 MB, in 20 steps. It is likely that these writes (of approximately 7 MB each)

are marginally too large for the system’s cache and therefore must be written to

disk. This potentially creates a large amount of contention on the file system,

causing performance that is equivalent to vanilla MPI-IO. However, when using

4,096 cores, each write is less than 2 MB per process, writing only 34 MB per

process during the execution (point C). This causes the write-caching e↵ects

seen in Figure 5.4(a) to reappear.

FLASH-IO is a weak scaled problem, and for these experiments the local

problem size was set to 24 ⇥ 24 ⇥ 24. This causes each process to write ap-

proximately 205 MB to the disk, through the HDF-5 library [73]. Runs were

conducted on between 1 node and 256 nodes, using all 12 cores each time, thus

using up to 3,072 cores. Note that as the number of compute nodes is in-

creased, so too is the output file size. Since each process was writing the same

total amount of data, over the same number of time steps, caching e↵ects were

less prevalent for these weak scaled problems.

Interestingly, Figure 5.5 shows that as the core count is increased on FLASH-

79

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

ad ufs ad plfs LDPLFS

12 24 48 96 192 384 768 1536 3072
0

500

1,000

1,500

2,000

Cores

B
an

d
w
id
th

(M
B
/s
)

Figure 5.5: FLASH-IO benchmarked MPI-IO bandwidths using MPI-IO, as well
as PLFS through ROMIO and LDPLFS.

IO, the write speed of MPI-IO gently increases up to approximately 550 MB/s.

However, when using PLFS a sharp increase in write speed is demonstrated

up to 192 cores (or 16 nodes), at which point the average write speed reaches

approximately 1,650 MB/s, before decreasing to 210 MB/s at 3,072 cores.

This decrease in performance may be explained by contention on the MDS;

the Lustre file system uses a dedicated MDS and therefore, as the number of

cores is increased, the performance may plateau and then decreases due to the

MDS becoming a bottleneck in the system. Since PLFS operates using multiple

files per core (at least one for the data and one for the index), it uses many more

files as the problem is scaled, potentially putting a large load on the MDS. This

bottleneck would be less evident in the BT mini-application due to the small

write sizes. However, without direct access to the MDS this theory is di�cult

to explore fully.

Another explanation for the decrease in performance at scale is that, as

many files are created and each single file is striped across two servers (in the

default case), at larger core counts data is split into a large number of stripes

(2⇥# of files). Creating more stripes than there are OSTs may introduce large

overheads on the file servers and may increase contention (as many of the files

will be striped across shared OSTs). This is investigated further in Chapter 6.

80

5. Analysis and Rapid Deployment of the Parallel Log-Structured File System

5.3 Summary

File I/O operations have, in many cases, been one of the last aspects considered

during application optimisation. In this chapter the performance gains of PLFS

have been partially explored and LDPLFS, which o↵ers the opportunity to

accelerate file read and write activities without modification to the machine’s

environment or an application’s source code, has been presented.

Specifically, it has been shown that PLFS creates many more file streams and

may therefore avoid file system contention by removing the need for file locks.

However, at large scale, PLFS may actually be detrimental to performance by

creating more file system stripes than there are servers.

In order to address the issue of installation and maintenance of PLFS, the

development of a dynamically loadable library has also been presented that

allows users to assess the benefits of PLFS without the installation burden.

The performance of LDPLFS has been compared to PLFS using the FUSE

Linux kernel module, PLFS using the MPI-IO file system driver and the original

MPI-IO library without PLFS. In this comparison LDPLFS was able to o↵er

approximately equivalent performance to using PLFS through the MPI-IO file

system driver and improved performance over FUSE.

LDPLFS is a solution which requires only the PLFS library and itself to be

built with no system administrator actions, thus forgoing the need to install

FUSE or a custom MPI library. The library is loadable from only a single envi-

ronmental variable, yet is potentially able to o↵er a significant improvement in

parallel I/O activity. The work presented in this chapter may be useful to several

industry partners, as such a solution helps to address concerns which may arise

over the security model of FUSE and the significant investment associated with

the recompilation of applications using a custom MPI-IO middleware. LDPLFS

therefore straddles the gap between o↵ering improved application performance

and the e↵ort associated with the installation of traditional PLFS.

81

CHAPTER 6
Parallel File System Performance Under Contention

The optimisation of I/O performance has largely been the responsibility of ap-

plication developers, configuring their own software to achieve the best perfor-

mance – a responsibility that has often been ignored. Software solutions to

achieving better performance, such as custom-built MPI-IO drivers that tar-

get specific file systems, are often not installed by default. For instance, on

the systems installed at the Lawrence Livermore National Laboratory (LLNL),

an optimised Lustre-specific driver is not installed despite the software being

available as standard in most MPI libraries.

The experiments described so far in this thesis have been performed using

the system “stock” MPI installations, or – in the case of Chapter 5 – a version

of MPI compiled with PLFS built in. In this chapter, an MPI library with an

optimised Lustre driver is built and utilised on the Cab machine (see Section 3.4

for details) at LLNL. Research by Behzad et al. [9, 10], Lind [76] and You et

al. [148] suggests that performance can be improved by as much as two orders

of magnitude with the correct settings and the Lustre-optimised driver.

In this chapter a parameter sweep is used to search for an optimised config-

uration for a small test with IOR. Through this, a performance improvement of

49⇥ is shown. However, while performance is vastly improved by adjusting the

Lustre settings, optimal performance for one application can reduce the quality

of service (QoS) provided to other users on a shared system such as Cab. The

e↵ect of OST contention on I/O intensive workloads is demonstrated, showing

that using optimised settings for four competing tasks may result in a 3�4⇥ re-

duction in performance for each application. Reducing the number of requested

resources increases the system’s QoS, at minimal cost to the overall performance

82

6. Parallel File System Performance Under Contention

Option Value

API MPI-IO
Write file On
Read file O↵
Block Size 4 MB
Transfer Size 1 MB
Segment Count 100

Table 6.1: IOR configuration options for experiments.

of the four tasks.

Finally, the optimised Lustre configuration is compared to the performance

of PLFS on the same file system. Below 512 processes, PLFS boosts performance

over that which can be achieved with an optimal Lustre configuration; however,

at scale, PLFS becomes detrimental to performance, just as was the case in the

previous chapter.

6.1 E↵ective Use of Uncontended Parallel File

Systems

As demonstrated in Chapters 4 and 5, the large parallel file systems connected to

some of the most powerful supercomputers in the world are currently being un-

der utilised – partially due to a lack of available software drivers, partially due to

lack of optimisation in the applications themselves. The work presented by Be-

hzad et al. [10] shows how using the Lustre-specific MPI-IO driver (ad lustre)

distributed with most MPI implementations can lead to performance improve-

ments of up to 100⇥ over the default installation. The authors use a genetic

algorithm to search the parameter space for an optimised configuration [10],

varying the stripe factor (the number of OSTs to use), the stripe size, the num-

ber of collective bu↵ering nodes and the collective bu↵er size (as well as some

HDF-5 specific options).

In this thesis a small IOR problem is configured in order to demonstrate

the benefits and consequences of this form of performance tuning. IOR was

configured such that each process wrote 100 4 MB blocks to a file in chunks of

83

6. Parallel File System Performance Under Contention

1 2 4 8 16 32 64 128 160
0

4000

8000

12000

16000

OSTs

B
an

d
w
id
th

(M
B
/s
)

1MB
4MB
16MB
128MB

(a) Varying Stripe Count

1 2 4 8 16 32 64 128 256
0

4000

8000

12000

16000

Stripe Size (MB)

B
an

d
w
id
th

(M
B
/s
)

2
16
128
160

(b) Varying Stripe Size

Figure 6.1: Write bandwidth achieved over 1,024 cores by varying just the stripe
count and just the stripe size.

1 MB. The parameters were chosen such that each write matched the default

stripe size, providing the best possible performance in Lustre’s default configu-

ration. In order to find an optimised Lustre configuration, a parameter sweep

was performed on 64 nodes (64 ⇥ 16 = 1, 024 cores). The collective bu↵er size

was set to the default value (16 MB) and each node contributed one collective

bu↵er process, meaning there was a total of 64 bu↵ering processes. To reduce

the search space, a linear search was conducted with a stripe count between 1

and 160 (as there is a 160 OST limit in the Lustre version 2.4.0, which is used

on OCF machines) and a stripe size between 1 and 256 MB.

Selected results of this parameter search are shown in Figures 6.1 and 6.2

(additional numeric data can be found in Appendix F). Using the default Lustre

configuration (stripe count = 2, stripe size = 1 MB), the application achieves

an average of 313 MB/s. Through varying the stripe size, performance can be

increased from this baseline bandwidth up to 395 MB/s, and through varying

the stripe count performance can be increased much further, up to a maximum

of 4,075 MB/s.

Figure 6.2 shows that through varying both parameters the maximum band-

width is found when using 160 stripes of size 128 MB; performance increases

from the baseline 313 MB/s, up to 15,609 MB/s, representing a 49⇥ improve-

ment in write performance. This result largely echoes previous work, where the

84

6. Parallel File System Performance Under Contention

8 16 32 64 128 160
0

5000

10000

15000

Object Storage Targets (OSTs)

B
an

d
w
id
th

(M
B
/s
)

32M
64M
128M
256M

Figure 6.2: Write bandwidth achieved over 1,024 cores by varying both the
stripe count and the stripe size.

greatest performance is usually found by striping across the maximum number

of OSTs and writing stripes that are a multiple of the application’s I/O block

size [10, 76,148].

That the optimal performance is found when exploiting the maximum amount

of available parallelism may seem obvious, but on many systems, it is simply

not possible to achieve this without a rebuilt software stack. Moreover, there

are a finite number of available file servers and storage targets; exploiting a

larger proportion of these may be optimal on a quiet system, but when many

tasks require I/O simultaneously, the performance may decrease due to OST

contention.

6.2 Quantifying the Performance of Contended

File Systems

On a multi-user system, with limited resources, using a large percentage of the

OSTs available may be detrimental to the rest of the system. The lscratchc file

system used in this chapter exposes 480 OSTs to the user1. The assignment of

OSTs to files is performed at file creation time, with targets assigned at random

1The lscratchc file system was upgraded from 360 OSTs to 480 OSTs between the exper-
iments in Chapters 4 and 5, and the experiments in this chapter

85

6. Parallel File System Performance Under Contention

(based on current usage, to maintain an approximately even capacity). This

suggests that three jobs using 160 OSTs each would fully occupy the file sys-

tem, if the assignment guaranteed no overlaps. However, as OSTs are assigned

randomly, for two jobs (of which the first uses 160/480 of the available OSTs)

approximately one third of the OSTs assigned to the second job will be on OSTs

in use by the first job.

Dinuse(n) = Dinuse(n� 1) +

✓
rj �

Dinuse(n� 1)

Dtotal
rj

◆
(6.1)

If each job (j 2 {1 . . . n}) requests rj OSTs, the total number of OSTs in use

(Dinuse) after each job starts is described by Equation 6.1, where Dinuse(0) = 0.

Each time a new job starts, the number of OSTs in use increases by the size

of the request, minus the average number of OST collisions that occur. If each

job is requesting the same number of resources (R) – which may be the case if

a parameter sweep has determined that the optimal configuration is when the

maximum number of OSTs are used – then the number of OSTs in use can be

simplified to:

Dinuse = Dtotal �
✓
Dtotal ⇥

✓
1� R

Dtotal

◆n◆
(6.2)

With these two equations the average load of each OST (Dload) can be cal-

culated, for any particular workload, by taking the number of stripes requested

in total, and dividing it by the number of OSTs in use. A load of 1 would

imply that each OST is only in use by a single job, whereas a higher number

would indicate that there are a number of collisions on some OSTs, potentially

resulting in a job switching overhead.

Dreq = R⇥ n (6.3)

Dload =
Dreq

Dinuse
(6.4)

86

6. Parallel File System Performance Under Contention

Dtotal = 480, R = 160 Dtotal = 480, R = 64

Jobs Dinuse Dreq Dload Jobs Dinuse Dreq Dload

1 160.000 160 1.000 1 64.000 64 1.000
2 266.667 320 1.200 2 119.467 128 1.071
3 337.778 480 1.421 3 167.538 192 1.146
4 385.185 640 1.662 4 209.199 256 1.224
5 416.790 800 1.919 5 245.306 320 1.304
6 437.860 960 2.192 6 276.599 384 1.388
7 451.907 1120 2.478 7 303.719 448 1.475
8 461.271 1280 2.775 8 327.223 512 1.565
9 467.514 1440 3.080 9 347.593 576 1.657
10 471.676 1600 3.392 10 365.247 640 1.752

Table 6.2: The average number of OSTs in use and their average load based on
the number of concurrent I/O intensive jobs.

Table 6.2 demonstrates this for the lscratchc file system where each job is

requesting the previously discovered optimal number of stripes, 160, and when

that request is reduced to 64. With 10 simultaneous I/O intensive jobs, an

average of 4 collisions will occur on each OST, though a small subset of OSTs

may well incur all 10 potential collisions (and some may incur none), reducing

the performance of the file system for every job. By reducing the size of the

stripe requests, the load is reduced, possibly avoiding many of the bottlenecks

associated with OST contention.

In order to ascertain how the OSTs in the lscratchc file system behave under

contention, a study was undertaken using a custom-written benchmark that

creates a split communicator, allowing each process to read and write to its

own file in a single MPI application. The benchmark then opens a number

of files, with the same Lustre configuration (a single 1 MB stripe). Using the

stripe offset MPI hint, the OST to use is specified such that every rank

writes to a file striped on the same target. Figure 6.3 shows the per-process

bandwidth achieved with a varying number of contended file writes.

Figure 6.3 shows the average per-task performance for concurrent tasks writ-

ing to the same OST simultaneously. The shaded area represents the estimated

performance as calculated from the single job experiment’s 95% confidence in-

tervals and scaled linearly; as lscratchc is already a shared-user file system,

there is some variance in performance with no forced contention. The graph

shows that, as the number of jobs is increased, the performance diverges from

87

6. Parallel File System Performance Under Contention

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9

18

36

72

144

288

Jobs

B
an

d
w
id
th

(M
B
/s
)

Estimates Upper and Lower Bounds Actual Bandwidth

Figure 6.3: The performance per-task of the lscratchc file system under con-
tention, with the ideal upper and lower bounds.

the top of the ideal scaling line, illustrating the overhead associated with task

serialisation.

To investigate this more thoroughly, a job was submitted to Cab that created

four identical IOR executions each running simultaneously with the configura-

tion stated in Table 6.1. Each task used 64 nodes (1,024 processes) and thus

the total job consumed 4,096 cores, and the MPI hints were specified according

to the previously discovered optimal values (Figure 6.2). As can be seen in

Figure 6.4, each individual application achieved approximately 4,500 MB/s – a

3.44⇥ reduction from the peak value (15,609 MB/s) seen in Figure 6.2.

Using the mean of five experiments, Table 6.3 and Figure 6.5 demonstrate

how reducing the number of stripes per job increases the OST availability to

the rest of the system while having a minimal e↵ect on performance. Using as

few as 32 stripes per file, the average bandwidth achieved by each of the four

applications is 3,500MB/s, but by Equation 6.2, only 115 OSTs will be in use

in the average case, providing an average OST load of ⇡1.1.

Furthermore, Table 6.3 shows that when using a stripe count of 160, there are

42 OSTs that are being contended by 3 of the 4 jobs and there are 7 OSTs being

contended by all 4. By reducing the demand to 64 stripes, the performance is

88

6. Parallel File System Performance Under Contention

1 2 3 4 5
0

1000

2000

3000

4000

5000

Repetition

B
an

d
w
id
th

(M
B
/s
)

1 2
3 4

Figure 6.4: Performance of each of 4 tasks over 5 repetitions where all tasks are
contending the file system.

Average Total OST Usage Predicted Actual
R Bandwidth Bandwidth Dreq 1 2 3 4 Dinuse Dload Dinuse Dload

32 3654.061 14616.244 128 103.2 11.2 0.8 0.0 115.759 1.106 115.200 1.111
64 3910.507 15642.026 256 172.6 35.8 3.4 0.4 209.199 1.224 212.200 1.207
96 4042.980 16171.918 384 199.4 76.4 9.8 0.6 283.392 1.355 286.200 1.342
128 4172.166 16688.662 512 211.6 111.4 22.4 2.6 341.182 1.501 348.000 1.472
160 4541.366 18165.462 640 191.8 147.0 41.8 7.2 385.185 1.662 387.800 1.650

Table 6.3: Average and total bandwidth achieved across four tasks for a varying
stripe size request, along with values for the average number of tasks competing
for 1, 2, 3 and 4 OSTs respectively.

reduced by ⇡14% while the number of OSTs in use is reduced by ⇡37%, leaving

more resources available for a larger number of tasks, while also reducing the

number of collisions significantly.

Although the optimal performance on lscratchc, with four competing tasks, is

still found using the maximum number of OSTs allowed, the bandwidth achieved

is almost a quarter of the previously achieved maximum. On file systems where

there are less OSTs (such as those used by Behzad et al. [10]), any job contention

will decrease the achievable performance and may be detrimental to the rest

of the system. To demonstrate this further the equations presented in this

thesis have been applied to the configuration of the Stampede supercomputer

described in [10]. Table 6.4 shows the predicted OST load for Stampede’s file

system using the optimal stripe count found by Behzad et al. for the VPIC-IO

application (128 stripes on a file system with 58 OSSs and 160 OSTs). Table 6.4

89

6. Parallel File System Performance Under Contention

32 64 96 128 160
0

5000

10000

15000

20000

OSTs

B
an

d
w
id
th

(M
B
/s
)

1 2 3 4

Figure 6.5: Graphical representation of the data in Table 6.3, showing optimal
performance at 160 stripes per file, but very minor performance degradation at
just 32 stripes per file.

Dtotal = 160, R = 128

Jobs Dinuse Dreq Dload

1 128.000 128 1.000
2 153.600 256 1.667
3 158.720 384 2.419
4 159.744 512 3.205
5 159.949 640 4.001
6 159.990 768 4.800
7 159.998 896 5.600
8 160.000 1024 6.400
9 160.000 1152 7.200
10 160.000 1280 8.000

Table 6.4: OST usage and average load for the Stampede I/O setup described
by Behzad et al. [10].

demonstrates that with only three equivalent simultaneous tasks with a similar

I/O demand, the OST load figure suggests that the majority of the OSTs are

being used by as many as two or three simultaneous tasks.

6.3 Performance Comparison: Lustre vs. PLFS

In the previous chapter, PLFS was shown to produce a noticeable performance

increase on LLNL systems under certain conditions. However, this thesis has

already demonstrated that the performance gap is reduced when using the

optimised MPI-IO driver. Furthermore, the results in the previous chapter

(Figure 5.5) show that at scale, PLFS performs worse than even the unopti-

90

6. Parallel File System Performance Under Contention

16 32 64 128 256 512 1024 2048 4096
0

5000

10000

15000

20000

Tasks

B
an

d
w
id
th

(M
B
/s
)

Lustre
PLFS

Figure 6.6: Achieved write bandwidth achieved for IOR through an optimised
Lustre configuration and through the PLFS MPI-IO driver.

mised UNIX file system (UFS) MPI-IO file system driver (ad ufs).

Figure 6.6 shows the performance of the lscratchc file system when running

the IOR problem described in Table 6.1 on Cab. PLFS operates by creating a

separate data and index file for each rank, in directories controlled by a hashing

function; this increases the number of file streams available and consequently

increases the number of Lustre OSTs in use. As the files are written by PLFS

through POSIX file system calls, each file is created with the system default

configuration of two 1 MB stripes per file (unless otherwise specified using the

lfs control program).

It should be noted that as PLFS creates a large number of files, with ran-

domly placed stripes, there is a larger variance in PLFS performance. An execu-

tion running with 256 processes will create 256 data files, requiring 512 stripes.

Experimentally, this produces an average OST load of 1.58 and a bandwidth

between 3,329.9 MB/s and 11,539.4 MB/s (average 7,126.9 MB/s). Conversely,

through the Lustre driver, the variance is much lower as at most 160 stripes

will be created with no collisions between OSTs. Due to background machine

noise it is di�cult to know what the load is on each OST at any given time, but

generally PLFS performs better when the number of OSTs experiencing a high

number of collisions is minimised.

91

6. Parallel File System Performance Under Contention

0 1 2 3 4 5 6 7 8
0

25

50

75

100

125

Collisions

O
S
T
s

(a) Execution 1

0 1 2 3 4 5 6 7 8
0

25

50

75

100

125

Collisions

O
S
T
s

(b) Execution 2

Figure 6.7: The number of OST collisions for IOR running through PLFS with
512 cores.

Figure 6.7 shows the number of OST collisions in the PLFS backend direc-

tory for the 512 cores case, for two of the five experiments. At 512 cores, the

performance of PLFS reaches its peak before Lustre begins to provide better

performance. Equation 6.2 can be amended to work for PLFS by treating each

rank as a separate task with 2 stripes (i.e. R = 2) and setting the number of

tasks (n) to the number of ranks in use.

Dinuse = Dtotal �
✓
Dtotal ⇥

✓
1� 2

Dtotal

◆n◆
(6.5)

Dload =
2⇥ n

Dinuse
(6.6)

With this in mind, it becomes an inevitability that on a reasonable Lustre

file system, PLFS provides a small-scale fix, but overwhelms the file system at

higher core counts. Using Equations 6.5 and 6.6, at 512 cores on the lscratchc

file system, there is an average of 2.4 tasks using each OST, by 688 cores,

there are 3 tasks per OST (which is shown in Figure 6.3 to still provide “good”

performance); at 2,048 and 4,096 cores, the number of collisions reaches 8.53

and 17.06 respectively, which begins to saturate the file system and decreases

performance not just for the host application, but for all other users of the file

system too. Table 6.5 and Appendix G shows the numeric collision statistics

92

6. Parallel File System Performance Under Contention

Experiment
Collisions 1 2 3 4 5

0 0 0 0 0 0
1 0 0 0 0 0
2 1 0 0 0 0
3 0 0 1 0 0
4 0 0 0 0 0
5 0 1 1 1 0
6 1 2 2 2 4
7 2 4 2 10 2
8 8 7 5 3 7
9 9 10 13 16 15
10 15 13 21 18 18
11 26 18 30 21 25
12 33 38 34 37 29
13 48 46 36 33 37
14 45 48 38 40 48
15 28 33 45 51 46
16 51 49 32 44 46
17 42 42 46 41 36
18 30 35 34 29 33
19 44 46 39 34 29
20 28 21 27 20 25
21 24 18 21 22 26
22 17 14 14 12 17
23 10 9 14 11 10
24 6 12 4 8 9
25 1 3 8 11 7
26 5 5 8 9 5
27 4 5 4 3 2
28 0 0 1 1 3
29 2 1 0 2 0
30 0 0 0 0 0
31 0 0 0 0 0
32 0 0 0 1 0
33 0 0 0 0 0
34 0 0 0 0 0
35 0 0 0 0 1

Dinuse 480 480 480 480 480
Dload 17.07 17.07 17.07 17.07 17.07
BW (MB/s) 3042.06 3077.16 3083.26 3084.89 3057.90

Table 6.5: Stripe collision statistics for PLFS backend directory running with
4,096 cores.

for other application configurations. Table 6.5 specifically shows that at 4,096

cores, most OSTs are being used for the stripe data of between 10 and 23 files

and in one of the five repeated experiments, a single OST is being used by 35

competing ranks, placing a large overhead on its potential performance.

6.4 Summary

In this chapter it has been shown that current-day I/O systems perform much

better than some literature suggests [11, 24, 29]. However, this level of perfor-

mance can only be achieved if the file system is being used correctly. Behzad et

93

6. Parallel File System Performance Under Contention

al. [9,10] suggest that on Lustre file systems, a good level of performance can be

found and that up to a point, the file system scales almost linearly. However,

due to restrictions in the version of Lustre used for the experiments in this the-

sis, the maximum number of OSTs that can be used is only 160; this suggests

that when problems are scaled up to millions of nodes (as may be the case for

exascale), the I/O performance will not scale. Particular versions of Lustre al-

ready scale beyond this OST limit [41], but they are not currently being used

by some of the biggest supercomputing centres (such as the OCF at LLNL).

In this chapter an exhaustive search algorithm has been used to perform

a parameter sweep to find a more performant configuration for the Lustre file

system connected to the Cab supercomputer. After finding such a configura-

tion for a small IOR problem, the e↵ect of I/O contention on the achievable

bandwidth is analysed. This chapter uses a small problem to show the e↵ect

of contention on an easily scalable job. This analysis therefore demonstrates

what happens in the best possible case, showing that even well aligned jobs

are a↵ected heavily by contention. A series of metrics have been proposed that

capture the contention that is created by several jobs competing for a shared

resource. Section 6.2 shows that when jobs are run with an optimised config-

uration on a contended resource, performance drops considerably, and using

fewer resources vastly improves system availability with a minor performance

degradation.

The previous chapter explored the work of LANL and EMC2 in creating

PLFS, which has been shown to provide significant speed-ups at medium-scale.

However, this thesis has demonstrated that PLFS may be harmful to perfor-

mance on Lustre file systems at large-scale. The work in this chapter provides

an explanation of this phenomenon within the framework of the provided Lustre

contention metrics.

Using the equations given, the load of each OST can be calculated for both

competing I/O intensive applications and for PLFS-based applications. With

the results from these equations, various file system purchasing decisions can be

94

6. Parallel File System Performance Under Contention

made; for instance, the number of OSTs can be increased in order to reduce the

OST load for a theoretically “average” I/O workload. Furthermore, the benefits

PLFS may have on an application can be calculated based on the scale at which

it will be run, as well as on the number of OSTs available for the task.

While, at the time of writing, the I/O backplanes in modern day systems

are being under-utilised, with the correct configuration options and some op-

timisation by application developers, acceptable performance can be achieved

with relatively little e↵ort. Making these changes to applications and file system

configurations will not only improve current scientific applications, but will also

benefit future systems and inform future I/O system developers on how to best

proceed towards exascale-class storage.

95

CHAPTER 7
Discussion and Conclusions

The work presented in this thesis outlines the current and potential future state

of I/O in parallel applications. As supercomputing approaches billion-way par-

allelism [119], node failures will become more prevalent; failure resilience will

be required to ensure computation will continue almost uninterrupted. The

usual approach of checkpointing may not be su�cient at exascale to recover

from failures [19,44]. However, many science codes have settled code-bases and

will therefore be resistant to significant changes in the way resilience is main-

tained. Additionally, checkpointing often provides additional benefits, such as

sub-problem analysis and visualisation. For this reason, work in improving stor-

age systems is still necessary if exascale computing is to become a reality [105].

Much of the literature on improving parallel I/O is focused on changing the

way current file systems operate, to perform write operations in a way that is

more conducive to spinning hard disks, but many of the comparisons presented

are against popular file systems operating in an unoptimised fashion [11]. As

demonstrated by Behzad et al. [10] and Hedges et al. [63], much better per-

formance can come from traditional parallel file systems like Lustre and IBM’s

General Parallel File System (GPFS). Often, large parallel systems are config-

ured to provide “acceptable” I/O performance for a large number of concurrent

general-purpose applications but, as demonstrated in this thesis, better perfor-

mance can be achieved without negatively impacting global availability, if the

workload of a parallel machine is well understood.

Specifically, Chapter 4 has demonstrated that by analysing the I/O be-

haviour of parallel codes, the large overhead associated with MPI and file-

formatting libraries can be reduced by selecting options that are more suitable

96

7. Discussion and Conclusions

for an application’s I/O patterns. Through analysis with the RIOT I/O toolkit,

the ine�ciencies of data-sieving were identified in two HDF-5 based applica-

tions where, through adjusting the MPI-IO driver options, performance was

improved by eliminating the “lock, read, write, unlock” cycles that data-sieving

induces. By analysing the information gathered by RIOT these bottlenecks were

identified and subsequently performance was improved by at least 2⇥.

Chapter 5 further demonstrated the applicability of RIOT to analysing the

underlying behaviour of parallel file systems. Specifically, the gains reported

by Bent et al. were investigated, showing that at low core counts, the paral-

lel log-structured file system (PLFS) provides a boost in performance over an

unoptimised MPI-IO driver [11] – however, at scale PLFS overwhelms the Lus-

tre file system used in this thesis. The results presented by Bent et al. show

some performance numbers for both Lustre and GPFS, but report the largest

gains on a PanFS installation, whereby specialised hardware and software is

used to boost bandwidth. For most potential users of PLFS, it is likely more

widespread file systems such as Lustre and GPFS will be in use and, as such,

Chapter 5 outlined a method for rapidly evaluating the potential performance

increase that PLFS could provide; the results in this thesis demonstrate an order

of magnitude speed-up over the default system performance for some specific

benchmarks and configurations.

The work in this thesis concluded in Chapter 6, with the comparison of the

optimised Lustre driver (ad lustre), which is often not available by default, to

the unoptimised UNIX file system driver (ad ufs). Previous work has demon-

strated that better performance can be achieved with the ad lustre driver and

by exposing more of the parallelism inherent in the Lustre file system architec-

ture [10, 76, 148]. Chapter 6 demonstrates similar results to previous studies,

similarly showing that the best performance often comes from exploiting the

maximum amount of parallelism available. This thesis has extended previous

studies to demonstrate that the use of locally optimal settings may be harmful to

global availability, where jobs that are competing for a shared resource (such as

97

7. Discussion and Conclusions

a parallel file system) collide with each other, reducing respective performance.

Further, this thesis has also evaluated the performance of PLFS at scale on a

Lustre file system, showing that the PLFS architecture creates large amounts

of self-contention, reducing the resources available to the entire system. The

metrics derived in Chapter 6 will allow users of large shared systems to evaluate

the impact their jobs may have on other users of the system, as well as allow

procurement decisions to be made based on an expected I/O workload.

7.1 Limitations

This thesis concentrates largely on the write performance of particular bench-

marks with little discussion of improving read performance. For HPC appli-

cations the initial state is usually loaded from an input deck, and from this

point on the state is only written out to disk at particular intervals. Shan et

al. suggest that write activities dominate on parallel machines because (i) post-

processing and visualisation tasks are often performed on separate systems to

the computation; (ii) most checkpoint files are never read back; and, (iii) input

files are often very small [121]. Despite this, much of the work in this thesis

is equally applicable to improving read performance. The work in Chapter 5

focuses on PLFS, a file system designed specifically to accelerate parallel write

performance [11]. It has been shown, however, that PLFS also improves read

performance [103], and much of the work on the Lustre file system in Chapter 6

will similarly improve both read and write performance.

Another potential limitation of this thesis is the use of unoptimised MPI-IO

drivers in Chapters 4 and 5. However, the usage of the ad ufs driver – or a lack

of customised optimisation instructions – is common on large parallel systems,

and is therefore representative of how these parallel machines are typically used.

Unlike commodity clusters using GPFS file systems, there is a custom MPI-IO

driver for the BlueGene architecture (ad bgl) and its benefits were demon-

strated in Chapter 4, where the BG/P achieved the highest average bandwidth

98

7. Discussion and Conclusions

in most experiments. For the LLNL clusters a Lustre driver was built specif-

ically for Chapter 6 and, again, demonstrated the benefit of optimised drivers

for improving I/O throughput.

When performing experiments on a shared resource (such as a file system),

the background machine load adds variability to the results. The machines

used throughout this thesis were all production supercomputers at the time

the experiments were performed, with a range of background loads. Minerva,

being the smallest of the four systems, demonstrates the lowest variability of the

clusters due to many background serial tasks that are not I/O-intensive. The two

machines at LLNL use a shared file system, and due to the size and background

load of these machines produce variable results. Finally, the decommissioned

BG/P was not heavily loaded, but the architecture and use of aggregator nodes

added variability to its performance. To allay these problems, full numerical

data is given in the appendices, showing confidence intervals to capture the

e↵ect of background noise on the experiments performed.

One final limitation of this thesis is the small set of applications that were

used throughout. All four benchmarks used are common throughout the liter-

ature and are also often used by industry to assess parallel file system perfor-

mance. Two of the benchmarks are highly configurable applications that have

been designed such that they can be made to replicate the I/O behaviour of

other science applications and the final two applications recreate the perfor-

mance characteristics of two production-grade codes. These four benchmarks

are broadly representative of a large proportion of the I/O routines in many

science codes; in particular two of the benchmarks perform their I/O through

the HDF-5 library, which is widespread in science applications1. The results

in this thesis will therefore similarly apply to other applications and systems.

Furthermore, much of the research in this thesis has been thoroughly tested

against custom-written benchmarks designed to stress-test the results in order

to demonstrate the applicability of the tools and techniques presented.

1See http://www.hdfgroup.org/users.html

99

http://www.hdfgroup.org/users.html

7. Discussion and Conclusions

7.2 Future Work

The work in this thesis largely focuses on two themes: (i) the improvement

of current generation I/O performance; and (ii) the procurement and potential

performance of future I/O systems. Currently many users are experiencing poor

performance from their systems due to a lack of optimisation and understanding

of their applications I/O routines. Attempts have been made to bridge this gap

with the use of auto-tuning to configure the MPI-IO options to get better perfor-

mance [10], but this gives little regard to the system as a whole. As the results

presented in this thesis demonstrate, a good quality of service can be achieved

with parameter tuning. To reduce the burden on application developers, this

parameter selection must be performed by the file system using some form of

auto-tuning that is workload-aware. File systems such as Lustre must improve

how resources are assigned, using some online monitoring and historical usage

data to inform how resources should be distributed. While users continue to run

their applications with “default” behaviours, the myth that current generation

I/O performance is poor will remain. Optimisations made to file systems and

applications to improve the current performance of storage systems will help

inform future system developers by identifying some of the problems that will

inevitably appear at exascale.

Procurement decisions for I/O systems currently rely on looking at the ag-

gregate bandwidth provided by the OSSs and OSTs, and the capacity that is

required. To make more sensible decisions about procurement, the usage pat-

terns of the file system need to be better understood. One such study into

doing this is being undertaken at the Argonne National Laboratory, using Dar-

shan [21]. Currently the tools available either monitor an entire system with

little information about the individual jobs, or monitor a specific job with little

information about the rest of the system; by monitoring at both points, the

current usage patterns and the users needs may be better understood.

Furthermore, the e↵ects of background load upon I/O performance need

100

7. Discussion and Conclusions

to be better understood. On capacity clusters (where there are many smaller

jobs running simultaneously), the network and file system load can create large

variances in runtimes, and this has long proved a problem in analytical perfor-

mance modelling [59,98]. Understanding noisy environments will help to assess

the performance potential of a file system better and aid the procurement pro-

cess. This issue can be partially overcome using simulation, with some form

of simulated machine noise (typically guassian) to introduce the variances that

are observed on production systems. However, the simulation platforms that

exist at the time of writing [61,107] focus only on the compute performance at

scale on shared-user machines; these must be extended to include I/O simula-

tion, alongside background machine noise, to truly predict how applications will

scale when they reach billion-way parallelism. Work has been done in simulat-

ing single disks and simple file systems [145] and with the addition of DiskSim,

and a simulation platform like SST [107], the communication between compute

nodes and I/O nodes can be investigated ahead of procurement, with the ef-

fect of OST placement being investigated to find smarter algorithms for data

placement and resource allocation.

7.3 The Road to Exascale

Throughout this thesis, it has remained clear that current generation I/O sys-

tems will not scale up to exascale. With this in mind, either applications need

to change how resilience is provided or storage systems require a redesign.

Many developers are reluctant to vastly change their stable codebases to

change how fault tolerance is performed in their applications, therefore check-

pointing will have to improve significantly, such that it does not become a

bottleneck to performance at exascale [46]. Many of the results in this thesis

o↵er small glimpses of what may be expected of I/O at exascale. Firstly the

work in Chapter 4 shows how an extended I/O hierarchy may improve perfor-

mance significantly [17]. On Daresbury’s BG/P system data was aggregated by

101

7. Discussion and Conclusions

I/O Aggregators

Main Memory

CPU Cache

Registers

Burst Buffers

Parallel Disk Storage

CostSp
eed

Figure 7.1: The memory hierarchy with potentially two additional layers for
improved I/O performance on supercomputers.

dedicated high-performance nodes, after I/O operations had been performed on

the compute nodes, and then sent to the file system. The file system also had

a tiered architecture, where data was initial sent to fast fibre channel hard disk

drives, before being committed to SATA disks. With the ever decreasing price,

and increasing capacity, of solid state drives (SSDs), it seems likely that SSDs

may be used as burst-bu↵ers at exascale, helping to speed-match disk writes,

before data is committed to spinning disks during computation [78, 96, 138].

Figure 7.1 shows how this augmented hierarchy may look.

The work that has been presented in Chapters 5 and 6 demonstrates one

potential answer to the current I/O problem, showing that PLFS may benefit

users running at small- to medium-scale, but does so by violating constraints

in the file system (by exceeding the limit of Lustre stripes allowed). However,

at large scale or on a large capacity system, PLFS either performs poorly or

negatively impacts the rest of the file system for other users; at exascale, it is

likely that without PLFS being re-engineered, this problem will get worse.

File systems will need to adapt to the upcoming challenges of billion-way

parallelism by allowing more scalability and customisation. Load monitors may

help the file system to exploit novel heuristics to make better decisions about

where to place data blocks, reducing the risk of overloading particular storage

102

7. Discussion and Conclusions

targets. The equations in Chapter 6 should allow for smarter procurement de-

cisions to be made using an approximation of performance under load. Present-

day large file system installations do perform much better than some literature

would suggest, but only when used appropriately by the users. However, if users

continue to run their applications with the default I/O configuration options,

it is likely that I/O performance will continue to advance much slower than

compute performance.

Recent e↵orts into reducing the time spent writing checkpoints have fo-

cussed on determining an optimal checkpointing period, such that the minimum

amount of time is consumed by checkpointing activities to achieve a particular

level of resilience. Cappello et al. investigate the use of preventive migration

and preventive checkpointing, showing the preventive migration is better in the

short term but that at large-scale (220 nodes), both techniques will achieve

poor utilisation unless the mean time between failures is large [18]. Aupy et

al. have derived mathematic models to determine the optimum checkpointing

period with respect to time and power consumption [5].

For developers willing to change the way their fault-tolerance is provided in

their applications, the path to exascale may be clearer. While the MPI library

contains mechanisms for handling application faults [57], some researchers have

extended the MPI specification to provide more explicit fault-tolerance mecha-

nisms [45]. However, even with MPI able to detect and continue in the presence

of faults, techniques are required to recover lost computation.

Zheng et al. describe a double checkpointing algorithm, whereby each process

is assigned a “buddy” process that they exchange an in-memory checkpoint with

at regular intervals [153]. In the event of a process failure, the buddy process

transfers a checkpoint to a new process which is swapped into the application

to replace the failed process. Dongarra et al. extend this algorithm with a

triple checkpointing algorithm that provides greater resilience at the expense of

a small additional overhead [37].

Elliot et al. outline the use of partial redundancy in MPI applications, where

103

7. Discussion and Conclusions

the communication routines in the MPI library are intercepted and the e↵ort is

replicated transparently to an application [43]. If a process in the system fails,

their RedMPI library begins to redirect the tra�c from a redundant process

such that the application is unaware of the crashed process.

Regardless, present-day large file system installations do perform much bet-

ter than some literature would suggest, but only when used appropriately by the

users. However, if users continue to run their applications with the default I/O

configuration options, it is likely that I/O performance will continue to advance

much slower than compute performance.

104

Bibliography

[1] S. R. Alam, H. N. El-Harake, K. Howard, N. Stringfellow, and F. Verzel-

loni. Parallel I/O and the Metadata Wall. In Proceedings of the 6th

Workshop on Parallel Data Storage (PDSW’11), pages 13–18, Seattle,

WA, 2011. ACM, New York, NY.

[2] G. Alamási, C. Archer, J. G. Castaños, C. C. Erway, P. Heidelberger,

X. Martorell, J. E. Moreira, K. Pinnow, J. Ratterman, N. Smeds,

B. Steinmacher-burrow, W. Gropp, and B. Toonen. Implementing MPI

on the BlueGene/L Supercomputer. Lecture Notes in Computer Science

(LNCS), 3149:833–845, August–September 2004.

[3] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP:

Incorporating Long Messages into the LogP Model – One Step Closer

Towards a Realistic Model for Parallel Computation. In Proceedings of

the 7th Annual ACM Symposium on Parallel Algorithms and Architectures

(SPAA’95), pages 95–105, Santa Barbara, CA, July 1995. ACM, New

York, NY.

[4] Argonne National Laboratory. Parallel I/O Benchmarking Consor-

tium. http://www.mcs.anl.gov/research/projects/pio-benchmark/

(accessed February 21, 2011), 2011.

[5] G. Aupy, A. Benoit, T. Hérault, Y. Robert, and J. Dongarra. Optimal

Checkpointing Period: Time vs. Energy. Lecture Notes in Computer Sci-

ence (LNCS), 8551:203–214, August 2014.

[6] D. A. Bader, J. Berry, S. Kahan, R. Murphy, E. J. Riedy, and J. Willcock.

Graph 500. http://www.graph500.org (accessed November 29, 2013),

2013.

105

http://www.mcs.anl.gov/research/projects/pio-benchmark/
http://www.graph500.org

BIBLIOGRAPHY

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, S. Fineberg, P. O. Frederickson, T. A. Lasinski,

R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.

The NAS Parallel Benchmarks. NASA Ames Research Center, Mo↵et

Field, CA, March 1994.

[8] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.

Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The

NAS Parallel Benchmarks. International Journal of High Performance

Computing Applications, 5(3):63–73, 1991.

[9] B. Behzad, S. Byna, S. M. Wild, and M. Snir. Improving Parallel I/O

Autotuning with Performance Modeling. Technical Report ANL/MCS-

P5066-0114, Argonne National Laboratory, Argonne, IL, January 2014.

[10] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,

Q. Koziol, and M. Snir. Taming Parallel I/O Complexity with Auto-

tuning. In Proceedings of the 25th ACM/IEEE International Confer-

ence for High Performance Computing, Networking, Storage and Anal-

ysis (SC’13), pages 1–12, Denver, CO, November 2013. IEEE Computer

Society, Washington, DC.

[11] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,

M. Polte, and M. Wingate. PLFS: A Checkpoint Filesystem for Parallel

Applications. In Proceedings of the 21st ACM/IEEE International Confer-

ence for High Performance Computing, Networking, Storage and Analysis

(SC’09), pages 21:1–21:12, Portland, OR, November 2009. ACM, New

York, NY.

[12] R. F. Bird, S. J. Pennycook, S. A. Wright, and S. A. Jarvis. Towards

a Portable and Future-proof Particle-in-Cell Plasma Physics Code. In

106

BIBLIOGRAPHY

Proceedings of the 1st International Workshop on OpenCL (IWOCL’13),

Atlanta, GA, May 2013. Georgia Institute of Technology, GA.

[13] R. F. Bird, S. A. Wright, D. A. Beckingsale, and S. A. Jarvis. Performance

Modelling of Magnetohydrodynamics Codes. Lecture Notes in Computer

Science (LNCS), 7587:197–209, July 2013.

[14] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger. The DiskSim

Simulation Environment Version 4.0 Reference Manual, 2008.

[15] Bull. BullX Cluster Suite Application Developer’s Guide. Les Clayes-sous-

Bois, Paris, April 2010.

[16] R. A. Bunt, S. J. Pennycook, S. A. Jarvis, B. L. Lapworth, and Y. K.

Ho. Model-Led Optimisation of a Geometric Multigrid Application. In

Proceedings of the 15th IEEE International Conference on High Perfor-

mance Computing and Communications (HPCC’13), pages 1–12. IEEE

Computer Society, Los Alamitos, CA, November 2013.

[17] D. Camp, H. Childs, A. Chourasia, C. Garth, and K. I. Joy. Evaluating

the Benefits of an Extended Memory Hierarchy for Parallel Streamline Al-

gorithms. In The 2011 IEEE Symposium on Large Data Analysis and Vi-

sualization (LDAV’11), pages 57–64, Providence, RI, October 2011. IEEE

Computer Society, Los Alamitos, CA.

[18] F. Cappello, H. Casanova, and Y. Robert. Preventive Migration vs. Pre-

ventive Checkpointing for Extreme Scale Supercomputers. Parallel Pro-

cessing Letters, 21(2):111–132, June 2011.

[19] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. Toward

Exascale Resilience. International Journal of High Performance Comput-

ing Applications, 23(4):374–388, November 2009.

[20] R. Card, T. Ts’o, and S. Tweedie. Design and Implementation of the

Second Extended Filesystem. In The Proceedings of the 1st Dutch Inter-

107

BIBLIOGRAPHY

national Symposium on Linux, Amsterdam, The Netherlands, December

1994. State University of Groningen, The Netherlands.

[21] P. H. Carns, R. Latham, R. B. Ross, K. Iskra, S. Lang, and K. Riley. 24/7

Characterization of Petascale I/O Workloads. In Proceedings of the IEEE

International Conference on Cluster Computing and Workshops (CLUS-

TER’09), pages 1–10, New Orleans, LA, September 2009. IEEE Computer

Society, Los Alamitos, CA.

[22] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. PVFS: A

Parallel File System for Linux Clusters. In Proceedings of the 4th Annaul

Linux Showcase and Conference (ALS’00), pages 317–327, Atlanta, GA,

October 2000. USENIX Association.

[23] P. H. Carns, B. W. Settlemyer, and W. B. Ligon III. Using Server-to-

Server Communication in Parallel File Systems to Simplify Consistency

and Improve Performance. In Proceedings of the 20th ACM/IEEE Interna-

tional Conference for High Performance Computing, Networking, Storage

and Analysis (SC’08), pages 6:1–6:8, Austin, TX, 2008. IEEE Computer

Society Press, Piscataway, NJ.

[24] Y. Chanel. Study of the Lustre File System Performances Before its

Installation in a Computing Cluster. http://upcommons.upc.edu/pfc/

bitstream/2099.1/5626/1/49964.pdf (accessed June 20, 2011), 2008.

[25] Y. Chen. Towards Scalable I/O Architecture for Exascale Systems. In Pro-

ceedings of the 2011 ACM International Workshop on Many Task Com-

puting on Grids and Supercomputers (MTAGS’11), pages 43–48, Seattle,

WA, November 2011. ACM New York, NY.

[26] Y. Chen, Y. Lu, P. Amritkar, R. Thakur, and Y. Zhuang. Performance

model-directed data sieving for high-performance i/o. The Journal of

Supercomputing, pages 1–25, September 2014.

108

http://upcommons.upc.edu/pfc/bitstream/2099.1/5626/1/49964.pdf
http://upcommons.upc.edu/pfc/bitstream/2099.1/5626/1/49964.pdf

BIBLIOGRAPHY

[27] I. D. Chivers and J. Sleightholme. An Introduction to Sun Studio. ACM

SIGPLAN Fortran Forum, 28(1):13–25, April 2009.

[28] W. chun Feng and K. W. Cameron. The Green 500. http://www.

green500.org (accessed February 20, 2014), 2014.

[29] J. Cope, M. Oberg, H. M. Tufo, and M.Woitaszek. Shared Parallel Filesys-

tems in Heterogeneous Linux Multi-Cluster Environments. In Proceedings

of the 6th LCI International Conference on Linux Clusters, pages 1–21,

Chapel Hill, NC, 2005. Linux Clusters Institute, NM.

[30] D. Culler, R. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, and T. von Eicken. LogP: Towards a Realistic Model

of Parallel Computation. In Proceedings of the 4th ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming (PPoPP’93),

pages 1–12, San Diego, CA, July 1993. ACM, New York, NY.

[31] L. Dagum and R. Menon. OpenMP: An Industry Standard API for

Shared-Memory Programming. IEEE Computational Science & Engineer-

ing, 5(1):46–55, January–March 1998.

[32] J. A. Davis, G. R. Mudalige, S. D. Hammond, J. A. Herdman, I. Miller,

and S. A. Jarvis. Predictive Analysis of a Hydrodynamics Application on

Large-Scale CMP Clusters. Computer Science – Research and Develop-

ment, 26(3–4):175–185, June 2011.

[33] Department of Energy. Department of Energy Exascale Strategy – Re-

port to Congress. Technical report, United States Department of Energy,

Washington, DC 20585, June 2013.

[34] V. Deshpande, X. Wu, and F. Mueller. Auto-Generation of Communica-

tion Benchmark Traces. SIGMETRICS Performance Evaluation Review,

40(2):99–105, October 2012.

109

http://www.green500.org
http://www.green500.org

BIBLIOGRAPHY

[35] P. M. Dickens and J. Logan. Towards a High Performance Implementation

of MPI-IO on the Lustre File System. In Proceedings of the OTM 2008

Confederated International Conferences, CoopIS, DOA, GADA, IS, and

ODBASE 2008. Part I on On the Move to Meaningful Internet Systems

(OTM’08), pages 870–885, Monterrey, Mexico, January 2008. Springer-

Verlag, Berlin, Heidelberg.

[36] P. M. Dickens and J. Logan. A High Performance Implementation of MPI-

IO for a Lustre File System Environment. Concurrency and Computation:

Practice & Experience, 22(11):1433–1449, August 2010.

[37] J. Dongarra, T. Hérault, and Y. Robert. Performance and Reliability

Trade-o↵s for the Double Checkpointing Algorithm. International Journal

of Networking and Computing, 4(1):23–41, 2014.

[38] J. J. Dongarra. The MPI Profiling Interface. http://www.netlib.org/

utk/papers/mpi-book/node182.html (accessed January 29, 2013), 1995.

[39] J. J. Dongarra. Performance of Various Computers Using Standard Linear

Equations Software. Technical Report CS-89-85, University of Tennessee,

Knoxville, TN, February 2013.

[40] S. S. Dosanjh, R. F. Barrett, D. W. Doerfler, S. D. Hammond, K. S.

Hemmert, M. A. Heroux, P. T. Lin, K. T. Pedretti, A. F. Rodrigues,

T. G. Trucano, and J. P. Luitjens. Exascale Design Space Exploration

and Co-design. Future Generation Computer Systems, 30:46–58, January

2014.

[41] O. Drokin. Lustre File Striping Across a Large Number of OSTs. In Pro-

ceedings of the 2011 Lustre User Group (LUG’13), pages 1–17, Orlando,

FL, April 2011. OpenSFS, LUG.

[42] P. R. E↵ert and D. S. Parker. File Systems in User Space. In Proceedings

of the 1993 USENIX Winter Conference, pages 229–240, San Diego, CA,

January 1993. USENIX Association, Berkeley, CA.

110

http://www.netlib.org/utk/papers/mpi-book/node182.html
http://www.netlib.org/utk/papers/mpi-book/node182.html

BIBLIOGRAPHY

[43] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. En-

gelmann. Combining Partial Redundancy and Checkpointing for HPC.

In Proceedings of the 32nd IEEE Intenational Conference on Distributed

Computing Systems (ICDCS’12), pages 615–626, Macau, China, June

2012. IEEE Computer Society, Washington, DC.

[44] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A Survey of

Rollback-Recovery Protocols in Message-Passing Systems. ACM Comput-

ing Surveys, 34(3):375–408, September 2002.

[45] G. E. Fagg and J. J. Dongarra. FT-MPI: Fault Tolerant MPI, Supporting

Dynamic Applications in a Dynamic World. Lecture Notes in Computer

Science (LNCS), 1908:346–353, 2000.

[46] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and

R. Brightwell. Detection and Correction of Silent Data Corruption for

Large-scale High-performance Computing. In Proceedings of the 24th

ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis (SC’12), pages 78:1–78:12, Salt Lake

City, UT, November 2012. IEEE Computer Society, Washington, DC.

[47] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb,

P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo. FLASH: An Adaptive

Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear

Flashes. The Astrophysical Journal Supplement Series, 131(1):273, 2000.

[48] K. Fuerlinger, N. J. Wright, and D. Skinner. E↵ective Performance Mea-

surement at Petascale Using IPM. In Proceedings of the IEEE 16th Inter-

national Conference on Parallel and Distributed Systems (ICPADS’10),

pages 373–380, Shanghai, China, December 2010. IEEE Computer Soci-

ety, Washington, DC.

[49] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.

Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Cas-

111

BIBLIOGRAPHY

tain, D. J. Daniel, R. L. Graham, and T. S. Woodall. Open MPI: Goals,

Concept, and Design of a Next Generation MPI Implementation. Lecture

Notes in Computer Science (LNCS), 3241:97–104, September 2004.

[50] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and B. Mohr.

The Scalasca Performance Toolset Architecture. Concurrency and Com-

putation: Practive & Experience, 22(6):702–719, April 2010.

[51] M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, and P. H. J. Kelly. Per-

formance Analysis of the OP2 Framework on Many-Core Architectures.

SIGMETRICS Performance Evaluation Review, 38(4):9–15, March 2011.

[52] J. Gim and Y. Won. Extract and Infer Quickly: Obtaining Sector Geom-

etry of Modern Hard Disk Drives. ACM Transactions on Storage (TOS),

6(2):6–26, July 2010.

[53] J. Gim and Y. Won. Relieving the Burden of Track Switch in Modern

Hard Disk Drives. Multimedia Systems, 17(3):219–235, June 2011.

[54] J. Gim, Y. Won, J. Chang, J. Shim, and Y. Park. DIG: Rapid Character-

ization of Modern Hard Disk Drive and Its Performance Implication. In

Proceedings of the 5th IEEE International Workshop on Storage Network

Architecture and Parallel I/Os (SNAPI’08), pages 74–83. IEEE Computer

Society, Washington, DC, September 2008.

[55] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a call graph

execution profiler. In Proceedings of the SIGPLAN Symposium on Com-

piler Construction (SIGPLAN’82), pages 120–126. ACM New York, NY,

ApriL 1982.

[56] W. Gropp. MPICH2: A New Start for MPI Implementations. Lecture

Notes in Computer Science (LNCS), 2474:7, October 2002.

112

BIBLIOGRAPHY

[57] W. Gropp and E. Lusk. Fault Tolerance in Message Passing Interface

Programs. International Journal of High Performance Computing Appli-

cations, 18(3):363–372, August 2004.

[58] T. J. Hacker, F. Romero, and C. D. Carothers. An Analysis of Clus-

tered Failures on Large Supercomputing Systems. Journal of Parallel and

Distributed Computing (JPDC), 69(7):652–665, July 2009.

[59] S. D. Hammond. Performance Modelling and Simulation of High Perfor-

mance Computing Systems. PhD thesis, University of Warwick, Coventry,

UK, 2011.

[60] S. D. Hammond, G. R. Mudalige, J. A. Smith, J. A. Davis, A. B. Mills,

S. A. Jarvis, J. Holt, I. Miller, J. A. Herdman, and A. Vadgama. Perfor-

mance Prediction and Procurement in Practice: Assessing the Suitability

of Commodity Cluster Components for Wavefront Codes. IET Software,

3(6):509–521, December 2009.

[61] S. D. Hammond, G. R. Mudalige, J. A. Smith, S. A. Jarvis, J. A.

Herdman, and A. Vadgama. WARPP: A Toolkit for Simulating High-

Performance Parallel Scientific Codes. In Proceedings of the 2nd Inter-

national Conference on Simulation Tools and Techniques (Simutools’09),

pages 19:1–19:10, Rome, Italy, 2009. Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering, Brussels, Bel-

gium.

[62] J. He, J. Bent, G. Grider, G. Gibson, C. Maltzahn, and X.-H. Sun. Discov-

ering Structure in Unstructured I/O. In 2012 SC Companion: High Per-

formance Computing, Networking Storage and Analysis (SCC’12), pages

1–6, Salt Lake City, UT, November 2012. IEEE Computer Society, Wash-

ington, DC.

[63] R. Hedges, K. Fitzgerald, M. Gary, and D. M. Stearman. Comparison of

Leading Parallel NAS File Systems on Commodity Hardware. In Proceed-

113

BIBLIOGRAPHY

ings of the 5th Annual Workshop on Petascale Data Storage (PDSW’10),

page 1, New Orleans, LA, November 2010. IEEE Computer Society, Los

Alamitos, CA.

[64] T. Hey. Richard Feynman and Computation. Contemporary Physics,

40(4):257–265, 1999.

[65] C. Hill, C. DeLuca, V. Balaji, M. Suarez, and A. da Silva. The Archi-

tecture of the Earth System Modeling Framework. Computing in Science

and Engineering, 6(1):18–28, January 2004.

[66] M. Howison. Tuning HDF5 for Lustre File Systems. In Proceedings of

the Workshop on Interfaces and Abstractions for Scientific Data Storage

(IASDS’10), Heraklion, Crete, Greece, September 2012. IEEE Computer

Society, Los Alamitos, CA.

[67] W. Hsu and A. J. Smith. The Performance Impact of I/O Optimiza-

tions and Disk Improvements. IBM Journal of Research and Development,

48(2):255–289, March 2004.

[68] L. P. Huse, K. Omang, H. O. Bugge, H. Ry, A. T. Haugsdal, and E. Rus-

tad. ScaMPI – Design and Implementation. Lecture Notes in Computer

Science (LNCS), 1734:249–261, January 1999.

[69] Intel. Intel VTune Amplifier XE 2013. https://software.intel.com/

en-us/intel-vtune-amplifier-xe (accessed December 20, 2013), 2013.

[70] S. Ishiguro, J. Murakami, Y. Oyama, and O. Tatebe. Optimizing Local

File Accesses for FUSE-Based Distributed Storage. In 2012 SC Com-

panion: High Performance Computing, Networking Storage and Analy-

sis (SCC’12), pages 760–765, Salt Lake City, UT, November 2012. IEEE

Computer Society, Washington, DC.

[71] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. A Performance Com-

parison Between the Earth Simulator and Other Terascale Systems on

114

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

BIBLIOGRAPHY

a Characteristic ASCI Workload: Research Articles. Concurrency and

Computation: Practive & Experience, 17(10):1219–1238, August 2005.

[72] D. E. Knuth. Ancient Babylonian Algorithms. Communications of the

ACM Magazine, 15(7):671–677, July 1972.

[73] Q. Koziol and R. Matzke. HDF5 – A New Generation of HDF: Reference

Manual and User Guide. Champaign, IL, 1998.

[74] J. Layton. HPC Storage – Getting Started with I/O Profiling. http:

//hpc.admin-magazine.com/Articles/HPC-Storage-I-O-Profiling

(accessed February 02, 2012), 2012.

[75] J. Li, W. keng Liao, A. N. Choudhary, R. B. Ross, R. Thakur, W. Gropp,

R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel netCDF:

A High-Performance Scientific I/O Interface. In Proceedings of the 15th

ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis (SC’03), pages 39–50, Pheonix, AZ,

November 2003. ACM, New York, NY.

[76] B. Lind. Lustre Tuning Parameters. In Proceedings of the 2013 Lustre

User Group (LUG’13), pages 1–12, San Diego, CA, April 2013. OpenSFS,

LUG.

[77] N. Liu, C. D. Carothers, J. Cope, P. H. Carns, R. B. Ross, A. Crume, and

C. Maltzahn. Modeling a Leadership-Scale Storage System. In Proceedings

of the 9th International Conference on Parallel Processing and Applied

Mathematics (PPAM’11), pages 10–19, Torun, Poland, 2012. Springer-

Verlag, Berlin, Heidelberg.

[78] N. Liu, J. Cope, P. H. Carns, C. D. Carothers, R. B. Ross, G. Grider,

A. Crume, and C. Maltzahn. On the Role of Burst Bu↵ers in Leadership-

Class Storage Systems. In Proceedings of the 28th IEEE Conference on

Massive Data Storage (MSST’12), pages 1–11, Pacific Grove, CA, April

2012. IEEE Computer Society, Los Alamitos, CA.

115

http://hpc.admin-magazine.com/Articles/HPC-Storage-I-O-Profiling
http://hpc.admin-magazine.com/Articles/HPC-Storage-I-O-Profiling

BIBLIOGRAPHY

[79] J. Logan and P. M. Dickens. Towards an Understanding of the Perfor-

mance of MPI-IO in Lustre File Systems. In Proceedings of the 2008 IEEE

Internation Conference on Cluster Computing (CLUSTER’08), pages

330–335, Tsukuba, Ibaraki, Japan, September 2008. IEEE Computer So-

ciety, Los Alamitos, CA.

[80] Los Alamos National Laboratory. PLFS Manual. http://institute.

lanl.gov/plfs/man/index.html (accessed June 1, 2014), 2014.

[81] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,

R. Rabenseifner, and D. Takahashi. The HPC Challenge (HPCC) Bench-

mark Suite. In Proceedings of the 18th ACM/IEEE International Confer-

ence for High Performance Computing, Networking, Storage and Analysis

(SC’06), pages 213:1–213:105, Tampa, FL, November 2006. ACM New

York, NY.

[82] M. Massie. Ganglia Monitoring System. http://ganglia.

sourceforget.net (accessed January 16, 2012), 2011.

[83] J. D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Per-

formance Computers. http://www.cs.virginia.edu/stream/ (accessed

May 12, 2014), 1995.

[84] K. Mehta, J. Bent, A. Torres, G. Grider, and E. Gabriel. A Plugin for

HDF5 Using PLFS for Improved I/O Performance and Semantic Analysis.

In 2012 SC Companion: High Performance Computing, Networking Stor-

age and Analysis (SCC’12), pages 746–752, Salt Lake City, UT, November

2012. IEEE Computer Society, Washington, DC.

[85] M. Mesnier, G. R. Ganger, and E. Riedel. Object-Based Storage. IEEE

Communications Magazine, 41(8):84–90, August 2003.

[86] Message Passing Interface Forum. MPI: A Message Passing Interface Stan-

dard Version 2.2. High Performance Computing Applications, 12(1–2):1–

647, 2009.

116

http://institute.lanl.gov/plfs/man/index.html
http://institute.lanl.gov/plfs/man/index.html
http://ganglia.sourceforget.net
http://ganglia.sourceforget.net
http://www.cs.virginia.edu/stream/

BIBLIOGRAPHY

[87] H. Meuer, E. Strohmaier, J. J. Dongarra, and H. D. Simon. Top 500

Supercomputer Sites. http://top500.org (accessed May 5, 2013), 2013.

[88] E. Molina-Estolano, C. Maltzahn, J. Bent, and S. A. Brandt. Building

a Parallel File System Simulator. Journal of Physics: Conference Series,

180(1), 2009.

[89] G. R. Mudalige, S. D. Hammond, J. A. Smith, and S. A. Jarvis. Pre-

dictive Analysis and Optimisation of Pipelined Wavefront Computations.

In Proceedings of the 23rd IEEE International Symposium on Parallel &

Distributed Processing (IPDPS’09), pages 1–8, Rome, Italy, May 2009.

IEEE Computer Society, Washington, DC.

[90] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach.

VAMPIR: Visualization and Analysis of MPI Resources. Supercomputer,

12(1):69–80, January 1996.

[91] D. F. Nagle, D. Serenyi, and A. Matthews. The Panasas ActiveScale

Storage Cluster: Delivering Scalable High Bandwidth Storage. In Pro-

ceedings of the 16th ACM/IEEE International Conference for High Per-

formance Computing, Networking, Storage and Analysis (SC’04), pages

53–62, Washington, DC, USA, 2004. IEEE Computer Society.

[92] B. Nitzberg and V. M. Lo. Collective Bu↵ering: Improving Parallel I/O

Performance. In Proceedings of the 6th IEEE International Symposium

on High Performance Distributed Computing (HPDC’97), pages 148–157,

Portland, OR, August 1997. IEEE Computer Society, Washington, DC.

[93] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R. de Supinski. Sca-

laTrace: Scalable Compression and Replay of Communication Traces for

High-Performance Computing. Journal of Parallel and Distributed Com-

puting (JPDC), 69(8):696–710, August 2009.

[94] P. Nowoczynski, N. Stone, J. Yanovich, and J. Sommerfield. Zest: Check-

point Storage System for Large Supercomputers. In Proceedings of the

117

http://top500.org

BIBLIOGRAPHY

3rd Annual Workshop on Petascale Data Storage (PDSW’08), pages 1–5,

Austin, TX, November 2008. IEEE Computer Society, Los Alamitos, CA.

[95] J. Nunez and J. Bent. MPI-IO Test User’s Guide. http://institutes.

lanl.gov/data/software/ (accessed February 21, 2011), 2011.

[96] X. Ouyang, S. Marcarelli, and D. Panda. Enhancing Checkpoint Perfor-

mance with Staging IO and SSD. In Proceedings of the 8th IEEE In-

ternational Workshop on Storage Network Architecture and Parallel I/O

(SNAPI’10), pages 13–20, Incline Village, NV, May 2010. IEEE Computer

Society, Los Alamitos, CA.

[97] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant

Arrays of Inexpensive Disks (RAID). In Proceedings of the ACM SIGMOD

International Conference on Management of Data (SIGMOD’88), pages

109–116, Chicago, IL, 1988. ACM, New York, NY.

[98] S. J. Pennycook, S. D. Hammond, G. R. Mudalige, S. A. Wright, and S. A.

Jarvis. On the Acceleration of Wavefront Applications using Distributed

Many-Core Architectures. The Computer Journal, 55(2):138–153, Febru-

ary 2012.

[99] S. J. Pennycook, S. D. Hammond, S. A. Wright, J. A. Herdman, I. Miller,

and S. A. Jarvis. An Investigation of the Performance Portability

of OpenCL. Journal of Parallel and Distributed Computing (JPDC),

73(11):1439–1450, November 2013.

[100] J. Piernas Cánovas and J. Nieplocha. Implementation and Evaluation

of Active Storage in Modern Parallel File Systems. Parallel Computing,

36(1):26–47, January 2010.

[101] J. Piernas Cánovas, J. Nieplocha, and E. J. Felix. Evaluation of Active

Storage Strategies for the Lustre Parallel File System. In Proceedings

of the 19th ACM/IEEE International Conference for High Performance

118

http://institutes.lanl.gov/data/software/
http://institutes.lanl.gov/data/software/

BIBLIOGRAPHY

Computing, Networking, Storage and Analysis (SC’07), pages 1–10, Reno,

NV, November 2007. ACM New York, NY.

[102] S. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynam-

ics. Journal of Computational Physics, 117(1):1–19, March 1995.

[103] M. Polte, J. F. Lofstead, J. Bent, G. Gibson, S. A. Klasky, Q. Liu,

M. Parashar, K. Schwan, and M. Wolf. ... And Eat It Too: High

Read Performance in Write-Optimized HPC I/O Middleware File For-

mats. In Proceedings of the 4th Annual Workshop on Petascale Data

Storage (PDSW’09), pages 21–25, Portland, OR, November 2009. ACM,

New York, NY.

[104] M. Polte, J. Simsa, W. Tantisiriroj, G. Gibson, S. Dayal, M. Chainani, and

D. K. Uppugandla. Fast Log-based Concurrent Writing of Checkpoints.

In Proceedings of the 3rd Annual Workshop on Petascale Data Storage

(PDSW’08), pages 1–4, Austin, TX, November 2008. IEEE Computer

Society, Los Alamitos, CA.

[105] I. Raicu, I. T. Foster, and P. Beckman. Making a Case for Distributed File

Systems at Exascale. In Proceedings of the 3rd International Workshop

on Large-scale System and Application Performance (LSAP’11), pages

11–18. ACM, New York, NY, June 2011.

[106] R. K. Rew and G. P. Davis. NetCDF: An Interface for Scientific Data

Access. IEEE Computer Graphics and Applications, 10(4):76–82, 1990.

[107] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,

M. I. Weston, R. Riesen, J. Cook, P. Rosenfeld, E. Cooper-Balis, and

B. Jacob. The Structural Simulation Toolkit. SIGMETRICS Performance

Evaluation Review, 38(4):37–42, March 2011.

[108] M. Rosenblum and J. K. Ousterhout. The Design and Implementation of

a Log-Structured File System. ACM Transactions on Computer Systems,

10(1):26–52, February 1992.

119

BIBLIOGRAPHY

[109] R. Rosner, A. Calder, J. Dursi, B. Fryxell, D. Q. Lamb, J. C. Niemeyer,

K. Olson, P. Ricker, F. X. Timmes, J. W. Truran, H. Tufo, Y. nan Young,

and M. Zingale. Flash Code: Studying Astrophysical Thermonuclear

Flashes. Computing in Science & Engineering, 2(2):33–41, March–April

2000.

[110] M. S. Rothberg. Disk Drive Refreshing Zones Based On Serpentine Access

of Disk Surfaces. US Patent 7872822 http://www.google.com/patents/

US7872822, January 2011.

[111] C. Ruemmler and J. Wilkes. An Introduction to Disk Drive Modeling.

Computer, 27(3):17–28, March 1994.

[112] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design

and Implementation of the Sun Network Filesystem. In The Proceedings

of the USENIX 1985 Summer Conference, pages 119–130, Portland, OR,

June 1985. USENIX Association.

[113] J. Schindler and G. R. Ganger. Automated Disk Drive Characterization.

Technical Report CMU-CS-99-176, Parallel Data Laboratory, School of

Computer Science, Carnegie Mellon University, Pittsburgh, PA, December

1999.

[114] J. Schindler and G. R. Ganger. Automated Disk Drive Characterization.

In Proceedings of the 2000 ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Systems (SIGMETRICS’00),

pages 112–113, Santa Clara, CA, 2000. ACM, New York, NY.

[115] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System for Large

Computing Clusters. In Proceedings of the 1st USENIX Conference on

File and Storage Technologies (FAST’02), pages 231–244, Monterey, CA,

January 2002. USENIX Association Berkeley, CA.

120

http://www.google.com/patents/US7872822
http://www.google.com/patents/US7872822

BIBLIOGRAPHY

[116] B. Schroeder and G. A. Gibson. Understanding Failures in Petascale

Computers. Journal of Physics: Conference Series, 78(1):012022, July

2007.

[117] P. Schwan. Lustre: Building a File System for 1,000-node Clusters. In

Proceedings of the Linux Symposium, pages 380–386, Ottawa, Ontario,

Canada, July 2003. The Linux Symposium.

[118] M. Seger. Collectl. http://collectl.sourceforge.net (accessed Jan-

uary 16, 2012), 2011.

[119] J. Shalf, S. S. Dosanjh, and J. Morrison. Exascale Computing Technology

Challenges. In Proceedings of the 9th International Conference on High

Performance Computing for Computational Science (VECPAR’10), pages

1–25. Springer-Verlag Berlin, Heidelberg, January 2011.

[120] H. Shan, K. Antypas, and J. Shalf. Characterizing and Predicting the

I/O Performance of HPC Applications using a Parameterized Synthetic

Benchmark. In Proceedings of the 20th ACM/IEEE International Confer-

ence for High Performance Computing, Networking, Storage and Analysis

(SC’08), Austin, TX, November 2008. IEEE Press Piscataway, NJ.

[121] H. Shan and J. Shalf. Using IOR to Analyze the I/O Performance for

HPC Platforms. Lawrence Berkeley National Laboratory, Berkeley, CA,

May 2007.

[122] S. S. Shende and A. D. Malony. The Tau Parallel Performance Sys-

tem. International Journal of High Performance Computing Applications,

20(2):287–311, May 2006.

[123] E. Shriver, A. Merchant, and J. Wilkes. An Analytic Behavior Model for

Disk Drives with Readahead Caches and Request Reordering. SIGMET-

RICS Performance Evaluation Review, 26(1):182–191, June 1998.

121

http://collectl.sourceforge.net

BIBLIOGRAPHY

[124] G. E. Suh, S. Devadas, and L. Rudolph. Analytical Cache Models with

Applications to Cache Partitioning. In Proceedings of the 15th Inter-

national Conference on Supercomputing (ICS’01), pages 1–12, Sorrento,

Italy, 2001. ACM, New York, NY.

[125] R. Thakur, W. Gropp, and E. Lusk. An Abstract-Device Interface for

Implementing Portable Parallel-I/O Interfaces. In Proceedings of the 6th

Symposium on the Frontiers of Massively Parallel Computation (FRON-

TIERS’96), pages 180–187, Annapolis, MD, October 1996. IEEE Com-

puter Society, Los Alamitos, CA.

[126] R. Thakur, W. Gropp, and E. Lusk. Data-Sieving and Collective I/O

in ROMIO. In Proceedings of the 7th Symposium on the Frontiers of

Massively Parallel Computation (FRONTIERS’99), pages 182–191, An-

napolis, MD, February 1999. IEEE Computer Society, Los Alamitos, CA.

[127] R. Thakur, E. Lusk, and W. Gropp. Users Guide for ROMIO: A

High-Performance, Portable MPI-IO Implementation. Technical Report

ANL/MCS-TM-234, Mathematics and Computer Science Division, Ar-

gonne National Laboratory, Argonne, IL, October 1997.

[128] The Mantevo Project. The Mantevo Benchmarks. https://mantevo.

org/ (accessed November 1, 2014), 2014.

[129] C. A. Thekkath, J. Wilkes, and E. D. Lazowska. Techniques for File

System Simulation. Software: Practice and Experience, 24(11):981–999,

1994.

[130] D. Thiébaut, H. S. Stone, and J. L. Wolf. Improving Disk Cache Hit-

Ratios Through Cache Partitioning. IEEE Transactions on Computers,

41(6):665–676, June 1992.

[131] W. F. Tichy and Z. Ruan. Towards a Distributed File System. Technical

Report CSD-TR-480, Perdue University, West Lafayette, IL, May 1984.

122

https://mantevo.org/
https://mantevo.org/

BIBLIOGRAPHY

[132] D. Toussaint, R. van de Water, R. Sugar, U. Heller, S. Gottlieb, M. Oktay,

J. Foley, J. Laiho, C. Winterowd, A. Bazavov, M. Lightman, J. Kim,

L. Levkova, C. Bernard, C. DeTar, R. Zhou, S. Qiu, S. Lee, J. Osborn, and

J. Hetrick. The MIMD Latice Computation (MILC) Collaboration. http:

//www.physics.utah.edu/~detar/milc/ (accessed November 1, 2014),

2014.

[133] S. Tweedie. Journalling the ext2fs File System. In Proceedings of the Linux

Expo 1998 (LinuxExpo’98), Durham, NC, May 1998. Duke University,

Durham, NC.

[134] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth. Scalable I/O tracing

and analysis. In Proceedings of the 4th Annual Workshop on Petascale

Data Storage (PDSW’09), pages 26–31, Portland, OR, November 2009.

ACM, New York, NY.

[135] Y. Wang and D. Kaeli. Profile-Guided I/O Partitioning. In Proceedings

of the 17th Annual International Conference on Supercomputing (ICS’03),

pages 252–260, San Francisco, CA, June 2003. ACM, New York, NY.

[136] Y. Wang and D. Kaeli. Source Level Transformations to Improve I/O

Data Partitioning. In Proceedings of the 1st International Workshop on

Storage Network Architecture and Parallel I/Os (SNAPI’03), pages 27–35,

New Orleans, LA, September 2003. ACM, New York, NY.

[137] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.

Ceph: A Scalable, High-Performance Distributed File System. In Pro-

ceedings of the 7th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’06), pages 307–320, Seattle, WA, November

2006. USENIX Association.

[138] B. Welch and G. Noer. Optimizing a Hybrid SSD/HDD HPC Storage

System Based on File Size Distributions. In Proceedings of the 29th IEEE

Symposium on Mass Storage Systems and Technologies (MSST’13), pages

123

http://www.physics.utah.edu/~detar/milc/
http://www.physics.utah.edu/~detar/milc/

BIBLIOGRAPHY

1–12, Long Beach, CA, May 2013. IEEE Computer Society, Washington,

DC.

[139] B. L. Wolman and T. M. Olson. IOBENCH: A System Independent IO

Benchmark. ACM SIGARCH Computer Architecture News, 17(5):55–70,

1989.

[140] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduling Algorithms

for Modern Disk Drives. SIGMETRICS Performance Evaluation Review,

22(1):241–251, May 1994.

[141] S. A. Wright, S. D. Hammond, S. J. Pennycook, R. F. Bird, J. A. Herd-

man, I. Miller, A. Vadgama, A. H. Bhalerao, and S. A. Jarvis. Parallel

File System Analysis Through Application I/O Tracing. The Computer

Journal, 56(2):141–155, February 2013.

[142] S. A. Wright, S. D. Hammond, S. J. Pennycook, and S. A. Jarvis. Light-

weight Parallel I/O Analysis at Scale. Lecture Notes in Computer Science

(LNCS), 6977:235–249, October 2011.

[143] S. A. Wright, S. D. Hammond, S. J. Pennycook, I. Miller, J. A. Herd-

man, and S. A. Jarvis. LDPLFS: Improving I/O Performance without

Application Modification. In Proceedings of the 26th IEEE International

Parallel & Distributed Processing Symposium Workshops & PhD Forum

(IPDPSW’12), pages 1352–1359, Shanghai, China, 2012. IEEE Computer

Society, Washington, DC.

[144] S. A. Wright, S. J. Pennycook, S. D. Hammond, and S. A. Jarvis. RIOT

– A Parallel Input/Output Tracer. In Proceedings of the 27th Annual UK

Performance Engineering Workshop (UKPEW’11), pages 25–39, Brad-

ford, UK, July 2011. The University of Bradford, Bradford, UK.

[145] S. A. Wright, S. J. Pennycook, and S. A. Jarvis. Towards the Automated

Generation of Hard Disk Models Through Physical Geometry Discovery.

124

BIBLIOGRAPHY

In Proceedings of the 3rd International Workshop on Performance Model-

ing, Benchmarking and Simulation of High Performance Computing Sys-

tems (PMBS’12), pages 1–8, Salt Lake City, UT, November 2012. ACM,

New York, NY.

[146] M. Yang and Q. Koziol. Using Collective IO Inside a High Performance

IO Software Package – HDF5. Technical report, National Center for Su-

percomputing Applications, University of Illinoi, Urbana-Champaign, IL,

2006.

[147] C. S. Yoo, R. Sankaran, and J. H. Chen. Three-dimensional Direct Nu-

merical Simulation of a Turbulent Lifted Hydrogen Jet Flame in Heated

Coflow: Flame Stabilization and Structure. Journal of Fluid Mechanics,

640:453–481, December 2009.

[148] H. You, Q. Liu, Z. Li, and S. Moore. The Design of an Auto-Tuning I/O

Framework on Cray XT5 System. In Proceedings of the 2011 Cray Users

Group Conference (CUG’11), pages 1–10, Fairbanks, AK, May 2011. Cray

Inc.

[149] Y. Yuan, Y. Wu, Q. Wang, G. Yang, and W. Zheng. Job Failures in High

Performance Computing Systems: A Large-scale Empirical Study. Com-

puters & Mathematics with Applications, 63(2):365–377, January 2012.

[150] S. Zangenehpour. Method and Apparatus for Positioning Head of

Disk Drive Using Zone-Bit-Recording. US Patent 5257143 http://www.

google.com/patents/US5257143, October 1993.

[151] S. Zertal. Using Solid State Disks for HPC Applications. In Proceedings

of the International Conference on Computing, Networking and Digital

Technologies (ICCNDT’12), pages 209–217, Sanad, Bahrain, 2012. The

Society of Digital Information and Wireless Communication.

[152] T. Zhao, V. March, S. Dong, and S. See. Evaluation of a Performance

Model of Lustre File System. In Proceedings of the 5th Annual Chi-

125

http://www.google.com/patents/US5257143
http://www.google.com/patents/US5257143

BIBLIOGRAPHY

naGrid Conference (ChinaGrid’10), pages 191–196, Guangzhou, Guang-

dong, China, 2010. IEEE Computer Society, Washington, DC.

[153] G. Zheng, L. Shi, and L. V. Kale. FTC-Charm++: An In-memory

Checkpoint-based Fault Tolerant Runtime for Charm++ and MPI. In

Proceedings of the 2004 IEEE Conference on Cluster Computing (CLUS-

TER’04), pages 93–103, San Diego, CA, September 2004. IEEE Computer

Society, Los Alamitos, CA.

[154] Y. Zhu and Y. Hu. Disk Built-in Caches: Evaluation on System Per-

formance. In The 11th IEEE/ACM International Symposium on Model-

ing, Analysis and Simulation of Computer Telecommunications Systems

(MASCOTS’03), pages 306–313, Orlando, FL, October 2003. IEEE Com-

puter Society, Los Alamitos, CA.

[155] M. Zingale. FLASH I/O Benchmark Routine – Parallel HDF 5. http://

www.ucolick.org/~zingale/flash_benchmark_io/ (accessed February

21, 2011), 2011.

126

http://www.ucolick.org/~zingale/flash_benchmark_io/
http://www.ucolick.org/~zingale/flash_benchmark_io/

APPENDIX A
RIOT Feasibility Study – Additional Results

None POSIX Complete

12 24 48 96 12 24 48 96 32 64 128
0

100

200

300

400

Cores
Minerva Sierra BG/P

R
u
nt
im

e
(s
)

(a) MPI File write()

12 24 48 96 12 24 48 96 32 64 128
0

50

100

150

200

Cores
Minerva Sierra BG/P

R
u
nt
im

e
(s
)

(b) MPI File read()

Figure A.1: Total runtime of RIOT overhead analysis software for the func-
tions MPI File write() and MPI File read(), on three platforms, with three
di↵erent configurations: No RIOT tracing, POSIX RIOT tracing and complete
RIOT tracing.

127

RIOT Feasibility Study – Additional Results

None POSIX Complete

12 24 48 96 12 24 48 96 32 64 128
0

25

50

75

100

125

150

Cores
Minerva Sierra BG/P

R
u
nt
im

e
(s
)

(a) MPI File write at all()

12 24 48 96 12 24 48 96 32 64 128
0

10

20

30

40

50

Cores
Minerva Sierra BG/P

R
u
nt
im

e
(s
)

(b) MPI File read at all()

Figure A.2: Total runtime of RIOT overhead analysis software for the functions
MPI File write at all() and MPI File read at all(), on three platforms,
with three di↵erent configurations: No RIOT tracing, POSIX RIOT tracing
and complete RIOT tracing.

AWE IOR NPB S3D Mantevo HDF5 MILC LAMMPS ESMF Total
[120] [7] [147] [128] [73] [132] [102] [65]

read 15 1 0 0 0 2 2 0 0 21
read all 43 1 0 12 44 0 0 3 4 107
read at 13 1 1 0 0 17 0 1 1 34
read at all 41 1 1 0 0 7 0 2 0 53
read ordered 47 1 0 0 0 0 0 0 0 48
read shared 15 0 0 0 0 0 0 0 0 15

write 27 1 0 0 12 3 2 0 0 45
write all 35 1 0 12 12 0 0 3 3 66
write at 11 1 1 0 0 19 0 9 4 45
write at all 35 1 1 0 0 8 0 7 0 54
write ordered 50 1 0 0 0 0 0 0 0 51
write shared 15 0 0 0 0 0 0 0 0 15

Table A.1: Incidence of MPI File * function calls in 9 application suites, bench-
marks and I/O libraries.

128

RIOT Feasibility Study – Additional Results

Tracing
Minerva Sierra BG/P

24 48 96 24 48 96 32 64 128

MPI File write()
None 44.00 84.84 156.75 45.71 64.49 119.72 71.68 112.17 173.02
POSIX 44.22 93.05 150.72 40.44 67.07 113.41 68.99 113.52 299.38
All 44.36 84.66 155.48 46.33 70.72 104.61 69.00 98.76 209.22
Change (%) 0.82 0.21 0.81 1.35 9.67 12.63 3.74 11.95 20.92

MPI File write all()
None 26.65 51.64 101.61 39.58 76.12 124.45 71.37 100.51 137.85
POSIX 26.17 51.95 101.08 38.59 68.44 131.63 70.59 100.93 135.17
All 26.99 50.66 99.95 38.11 64.32 127.30 70.70 100.09 139.02
Change (%) 1.28 1.92 1.64 3.70 15.50 2.29 0.95 0.42 0.85

MPI File write at all()
None 12.86 26.00 55.31 37.61 70.60 129.59 62.16 70.12 97.41
POSIX 11.81 28.27 55.39 36.64 63.91 109.65 61.48 70.87 98.30
All 13.20 27.08 54.51 36.27 73.06 140.14 60.78 72.06 96.96
Change (%) 2.59 4.16 1.44 3.57 3.48 8.14 2.22 2.77 0.46

MPI File read()
None 7.46 12.17 25.30 1.79 7.91 7.87 48.09 57.67 183.73
POSIX 6.73 11.99 25.10 5.43 7.64 7.92 48.45 57.27 190.51
All 7.05 12.46 26.10 2.36 5.00 12.82 48.41 57.60 179.90
Change (%) 5.52 2.37 3.16 32.11 36.78 62.98 0.67 0.13 2.08

MPI File read all()
None 21.64 26.29 41.45 15.67 28.06 53.38 57.86 68.32 205.37
POSIX 19.85 27.17 42.31 18.63 24.73 58.97 56.27 64.52 211.50
All 20.67 26.62 41.24 16.99 25.74 63.82 58.97 68.57 209.91
Change (%) 4.50 1.22 0.51 8.43 8.29 19.56 1.91 0.37 2.21

MPI File read at all()
None 2.60 3.76 6.42 4.94 4.55 6.55 36.89 38.89 43.20
POSIX 2.33 3.79 5.87 3.54 4.72 5.56 36.45 39.97 44.06
All 2.14 3.70 5.60 4.83 6.26 5.31 38.53 40.63 45.33
Change (%) 17.58 1.78 12.74 2.21 37.58 18.96 4.44 4.47 4.93

Table A.2: Average time (s) to perform one hundred 4 MB operations: without
RIOT, with only POSIX tracing and with complete MPI and POSIX RIOT
tracing. The change in time is shown between full RIOT tracing and no RIOT
tracing.

129

APPENDIX B
Numeric Data for Perceived and E↵ective Bandwidth

Perceived MPI E↵ective MPI E↵ective POSIX
Cores B/W 95% CI B/W 95% CI B/W 95% CI

Minerva

12 34.920 (26.942, 42.899) 2.907 (2.243, 3.571) 11.105 (8.640, 13.571)
24 44.742 (41.636, 47.848) 1.806 (1.702, 1.911) 4.916 (4.234, 5.597)
48 57.940 (51.178, 64.702) 1.064 (0.993, 1.134) 2.335 (1.737, 2.934)
96 65.293 (58.449, 72.137) 0.612 (0.568, 0.656) 1.077 (0.893, 1.261)
192 62.171 (56.461, 67.882) 0.314 (0.285, 0.343) 0.524 (0.505, 0.543)
384 61.051 (51.638, 70.464) 0.155 (0.131, 0.178) 0.244 (0.208, 0.281)

Sierra

12 46.988 (45.605, 48.371) 3.914 (3.799, 4.030) 4.173 (4.047, 4.299)
24 60.227 (57.508, 62.945) 2.507 (2.394, 2.621) 2.693 (2.578, 2.809)
48 71.567 (67.811, 75.323) 1.489 (1.411, 1.568) 1.590 (1.507, 1.674)
96 73.738 (67.218, 80.259) 0.767 (0.699, 0.834) 0.836 (0.757, 0.915)
192 108.503 (101.225, 115.780) 0.559 (0.521, 0.596) 0.620 (0.577, 0.663)
384 163.115 (155.688, 170.541) 0.413 (0.394, 0.433) 0.513 (0.469, 0.557)
768 177.109 (170.777, 183.441) 0.225 (0.219, 0.232) 0.273 (0.273, 0.274)
1536 159.163 (152.303, 166.023) 0.102 (0.098, 0.107) 0.121 (0.119, 0.122)

BG/P

32 141.436 (135.834, 147.037) 4.802 (4.611, 4.992) 29.302 (28.141, 30.462)
64 255.139 (245.034, 265.244) 4.328 (4.157, 4.500) 26.960 (25.892, 28.028)
128 424.403 (407.594, 441.211) 3.583 (3.441, 3.725) 23.886 (22.940, 24.832)
256 502.093 (482.207, 521.978) 2.077 (1.995, 2.159) 12.171 (11.689, 12.653)
512 490.853 (471.412, 510.293) 1.016 (0.975, 1.056) 5.079 (4.877, 5.280)
1024 246.878 (237.101, 256.656) 0.250 (0.240, 0.260) 2.398 (2.303, 2.493)

Table B.1: Perceived MPI, e↵ective MPI and e↵ective POSIX bandwidths for
IOR through HDF-5 on Minerva, Sierra and BG/P.

130

Numeric Data for Perceived and E↵ective Bandwidth

Perceived MPI E↵ective MPI E↵ective POSIX
Cores B/W 95% CI B/W 95% CI B/W 95% CI

Minerva

12 127.875 (119.601, 136.148) 10.655 (9.966, 11.345) 18.465 (16.925, 20.004)
24 109.681 (96.938, 122.424) 4.569 (4.039, 5.100) 9.175 (8.112, 10.239)
48 131.647 (119.650, 143.645) 2.742 (2.493, 2.992) 6.139 (5.394, 6.883)
96 142.439 (130.622, 154.256) 1.483 (1.360, 1.606) 3.201 (3.043, 3.360)
192 142.493 (131.716, 153.270) 0.742 (0.686, 0.798) 1.546 (1.433, 1.659)
384 164.584 (157.378, 171.790) 0.429 (0.410, 0.447) 0.874 (0.844, 0.903)

Sierra

12 207.496 (159.452, 255.540) 17.290 (13.287, 21.293) 33.002 (25.311, 40.692)
24 220.744 (163.499, 277.989) 9.197 (6.812, 11.581) 19.090 (13.827, 24.354)
48 205.559 (164.239, 246.880) 4.282 (3.422, 5.143) 10.768 (8.950, 12.586)
96 227.694 (225.807, 229.580) 2.371 (2.349, 2.392) 7.015 (6.333, 7.698)
192 234.375 (209.612, 259.138) 1.221 (1.092, 1.350) 3.714 (3.545, 3.883)
384 274.170 (241.217, 307.124) 0.714 (0.628, 0.800) 2.532 (2.187, 2.876)
768 273.953 (256.134, 291.771) 0.357 (0.333, 0.380) 1.327 (1.251, 1.403)
1536 308.307 (285.644, 330.969) 0.201 (0.186, 0.215) 0.622 (0.592, 0.652)

BG/P

32 141.099 (135.511, 46.687) 4.421 (4.246, 4.596) 30.101 (28.909, 31.293)
64 247.044 (237.260, 256.829) 3.870 (3.717, 4.023) 26.799 (25.738, 27.860)
128 402.305 (386.371, 418.238) 3.150 (3.025, 3.274) 23.680 (22.742, 24.617)
256 472.961 (454.229, 491.693) 1.851 (1.777, 1.924) 12.405 (11.914, 12.896)
512 483.548 (464.397, 502.699) 0.949 (0.911, 0.986) 5.659 (5.435, 5.883)
1024 245.878 (236.140, 255.616) 0.240 (0.231, 0.250) 2.298 (2.207, 2.389)

Table B.2: Perceived MPI, e↵ective MPI and e↵ective POSIX bandwidths for
IOR through MPI-IO on Minerva, Sierra and BG/P.

Perceived MPI E↵ective MPI E↵ective POSIX
Cores B/W 95% CI B/W 95% CI B/W 95% CI

Minerva

12 47.618 (44.166, 51.070) 3.965 (3.678, 4.252) 12.387 (8.558, 16.217)
24 41.117 (37.282, 44.952) 1.693 (1.543, 1.844) 3.181 (3.041, 3.322)
48 58.350 (51.025, 65.674) 1.205 (1.054, 1.357) 1.840 (1.587, 2.093)
96 64.538 (50.901, 78.176) 0.663 (0.520, 0.806) 0.971 (0.767, 1.176)
192 80.422 (74.442, 86.401) 0.412 (0.382, 0.443) 0.578 (0.531, 0.625)
384 80.507 (75.378, 85.635) 0.206 (0.190, 0.222) 0.292 (0.257, 0.328)

Sierra

12 147.348 (142.026, 152.669) 10.616 (10.080, 11.152) 27.228 (23.044, 31.412)
24 134.902 (119.046, 150.757) 5.511 (4.890, 6.132) 12.541 (10.025, 15.058)
48 154.352 (145.217, 163.488) 3.098 (2.903, 3.293) 5.483 (5.281, 5.685)
96 135.228 (128.708, 141.748) 1.385 (1.322, 1.447) 2.218 (2.151, 2.285)
192 132.892 (127.572, 138.212) 0.685 (0.658, 0.712) 1.179 (1.152, 1.206)
384 125.428 (121.639, 129.217) 0.323 (0.313, 0.333) 0.528 (0.507, 0.548)
768 134.317 (126.149, 142.485) 0.172 (0.161, 0.182) 0.246 (0.238, 0.255)
1536 129.882 (118.563, 141.200) 0.084 (0.079, 0.090) 0.106 (0.100, 0.112)

BG/P

32 172.849 (166.003, 179.695) 5.635 (5.412, 5.858) 28.985 (27.837, 30.133)
64 278.380 (267.355, 289.405) 4.515 (4.336, 4.694) 23.845 (22.901, 24.790)
128 361.356 (347.044, 375.667) 2.903 (2.788, 3.018) 19.857 (19.070, 20.643)
256 555.880 (533.864, 577.896) 2.220 (2.132, 2.308) 15.836 (15.209, 16.463)
512 579.125 (556.188, 602.061) 1.151 (1.106, 1.197) 7.332 (7.041, 7.622)
1024 213.647 (205.185, 222.109) 0.210 (0.201, 0.218) 2.148 (2.063, 2.233)

Table B.3: Perceived MPI, e↵ective MPI and e↵ective POSIX bandwidths for
FLASH-IO through HDF-5 on Minerva, Sierra and BG/P.

131

Numeric Data for Perceived and E↵ective Bandwidth

Perceived MPI E↵ective MPI E↵ective POSIX
Cores B/W 95% CI B/W 95% CI B/W 95% CI

Minerva

1 680.528 (645.412, 715.643) 680.528 (645.412, 715.643) 1134.095 (1041.052, 1227.139)
4 375.478 (333.395, 417.561) 94.264 (83.570, 104.958) 605.905 (499.718, 712.092)
16 252.887 (203.750, 302.025) 15.883 (12.795, 18.972) 218.024 (170.025, 266.023)
64 233.456 (214.638, 252.275) 3.651 (3.356, 3.946) 80.091 (71.018, 89.163)
256 173.696 (163.691, 183.700) 0.678 (0.639, 0.718) 19.049 (17.748, 20.349)

Sierra

1 220.643 (210.264, 231.022) 220.643 (210.264, 231.022) 235.509 (222.126, 248.892)
4 210.142 (191.608, 228.675) 52.576 (47.922, 57.229) 294.799 (265.016, 324.582)
16 212.486 (164.552, 260.420) 13.346 (10.324, 16.368) 155.754 (123.069, 188.439)
64 126.102 (120.729, 131.474) 1.970 (1.887, 2.054) 41.970 (38.573, 45.368)
256 115.191 (107.091, 123.291) 0.450 (0.418, 0.482) 7.977 (7.511, 8.443)
1024 96.632 (88.439, 104.825) 0.094 (0.086, 0.102) 1.555 (1.443, 1.667)

BG/P

16 84.149 (80.816, 87.482) 5.373 (5.161, 5.586) 132.102 (126.870, 137.334)
64 151.457 (145.458, 157.455) 2.877 (2.763, 2.991) 49.056 (47.113, 50.999)
256 278.103 (267.089, 289.118) 8.578 (8.238, 8.917) 21.102 (20.266, 21.938)
1024 504.126 (484.160, 524.092) 3.447 (3.310, 3.583) 8.746 (8.400, 9.093)

Table B.4: Perceived MPI, e↵ective MPI and e↵ective POSIX bandwidths for
BT class C on Minerva, Sierra and BG/P.

Perceived MPI E↵ective MPI E↵ective POSIX
Cores B/W 95% CI B/W 95% CI B/W 95% CI

Minerva

16 304.569 (198.904, 410.234) 19.044 (12.338, 25.750) 444.626 (394.055, 495.197)
64 437.006 (431.559, 442.452) 6.830 (6.745, 6.916) 167.190 (153.586, 180.794)
256 382.567 (364.322, 400.813) 1.494 (1.423, 1.565) 47.438 (43.525, 51.351)

Sierra

16 155.918 (146.865, 164.971) 9.760 (8.629, 10.892) 122.848 (116.058, 129.637)
64 135.191 (127.960, 142.422) 2.113 (2.000, 2.226) 59.092 (53.286, 64.898)
256 141.174 (136.546, 145.803) 0.551 (0.533, 0.570) 13.832 (13.603, 14.061)
1024 133.270 (130.813, 135.728) 0.130 (0.128, 0.133) 2.874 (2.698, 3.049)
4096 118.793 (109.880, 127.705) 0.029 (0.027, 0.031) 0.585 (0.543, 0.628)

Table B.5: Perceived MPI, e↵ective MPI and e↵ective POSIX bandwidths for
BT class D on Minerva and Sierra.

132

APPENDIX C
FLASH-IO Analysis and Optimisation Data

12 24 48 96 192 384

Data Written (MB) 2460.540 4921.067 9842.121 19684.229 39368.445 78736.878
MPI File write() calls 373 733 1453 2893 5773 11533
POSIX write() calls 5173 10333 20653 41293 82573 165133
POSIX read() calls 5088 10176 20352 40704 81408 162816
Locks requested 5088 10176 20352 40704 81408 162816

MPI write time (s) 623.911 2929.945 8320.767 31598.843 95974.556 384706.897
POSIX write time (s) 218.345 1550.154 5467.534 21533.644 68600.040 274331.768
POSIX read time (s) 220.656 885.581 2474.529 9005.330 26156.646 108415.408

Lock time (s) 183.823 485.925 374.036 1050.601 1199.257 1922.617
Unlock time (s) 0.100 6.292 0.861 1.698 3.439 6.732

Table C.1: MPI and POSIX function statistics for FLASH-IO on Minerva.

12 24 48 96

Data Written (MB) 2460.540 4921.067 9842.121 19684.229
MPI File write() calls 373 743 1453 2893
POSIX write() calls 5173 10333 20653 41293
POSIX read() calls 5088 10176 20352 40704
Locks requested 5088 10176 20352 40704

MPI write time (s) 232.368 905.980 3190.456 14248.187
POSIX write time (s) 2460.540 4921.067 9842.121 19684.229
POSIX read time (s) 2118.813 4491.588 9108.378 18388.578

Lock time (s) 2.492 5.993 12.581 26.313
Unlock time (s) 2.486 5.953 11.853 21.604

Table C.2: MPI and POSIX function statistics for FLASH-IO on Sierra 12 to
96 cores.

192 384 768 1536

Data Written (MB) 39368.445 78736.878 157473.742 314947.472
MPI File write() calls 7633 15203 27112 46942
POSIX write() calls 82573 165133 330252 660492
POSIX read() calls 81408 162816 325632 651264
Locks requested 81408 162816 325632 651264

MPI write time (s) 57538.796 244006.624 918510.086 3777346.881
POSIX write time (s) 39368.445 78736.878 157473.742 314947.472
POSIX read time (s) 38071.639 75773.789 155339.023 313195.438

Lock time (s) 74.785 198.840 615.579 2409.944
Unlock time (s) 64.528 121.028 304.644 1057.103

Table C.3: MPI and POSIX function statistics for FLASH-IO on Sierra 192 to
1536 cores.

133

FLASH-IO Analysis and Optimisation Data

32 64 128 256 512 1024

Data Written (MB) 6558.887 13120.292 26243.103 52488.725 104979.968 209962.454
MPI File write() calls 1011 1971 3891 7731 15411 30771
POSIX write() calls 1971 3891 7731 15411 30771 61491
POSIX read() calls 0 0 0 0 0 0
Locks requested 1971 3891 7731 15411 30771 61491

MPI write time (s) 1163.928 2905.728 9039.741 23642.281 91188.504 1001093.819
POSIX write time (s) 226.287 550.226 1321.619 3314.475 14318.643 97742.674
POSIX read time (s) 0.000 0.000 0.000 0.000 0.000 0.000

Lock time (s) 24.593 47.661 103.852 136.110 251.895 1012.799
Unlock time (s) 3.877 8.003 17.224 22.775 27.985 49.410

Table C.4: MPI and POSIX function statistics for FLASH-IO on BG/P.

Original DS o↵ DS o↵, CB on
Cores B/W 95% CI B/W 95% CI B/W 95% CI

Minerva

12 119.725 (115.730, 123.720) 259.342 (251.667, 267.017) 231.090 (187.192, 274.989)
24 126.640 (110.132, 143.148) 248.891 (217.405, 280.377) 262.451 (252.218, 272.684)
48 129.594 (120.512, 138.676) 260.645 (244.414, 276.876) 283.877 (271.360, 296.393)
96 141.710 (138.635, 144.785) 266.396 (241.769, 291.023) 302.803 (289.431, 316.174)
192 141.796 (130.662, 152.930) 265.169 (254.324, 276.014) 309.424 (287.468, 331.380)
384 137.442 (133.356, 141.528) 268.473 (256.129, 280.816) 310.508 (302.516, 318.501)

Sierra

12 268.676 (238.434, 298.918) 352.054 (330.295, 373.813) 334.271 (320.138, 348.404)
24 199.376 (175.188, 223.564) 276.024 (258.802, 293.246) 344.338 (316.827, 371.849)
48 222.221 (220.018, 224.423) 318.886 (306.690, 331.081) 404.295 (385.334, 423.256)
96 240.606 (217.310, 263.902) 362.012 (336.092, 387.932) 471.701 (448.554, 494.848)
192 298.036 (291.031, 305.040) 467.650 (436.188, 499.112) 549.125 (523.263, 574.986)
384 275.910 (261.112, 290.708) 501.472 (463.454, 539.490) 448.509 (427.101, 469.917)

Table C.5: FLASH-IO performance on Minerva and Sierra with collective bu↵er-
ing and data sieving optimisation options.

134

APPENDIXD
LDPLFS Source Code Examples

ssize_t write(int fd , const void *buf , size_t count) {
ssize_t ret;

// check if fd is a plfs file or a normal file

if (plfs_files.find(fd) != plfs_files.end ()) {
// if the file is a plfs file ,

// find its current virtual offset

off_t offset = lseek(fd, 0, SEEK_CUR);
// perform plfs write operation

ret = plfs_write(plfs_files.find(fd)->second ->fd ,
(const char *) buf , count , offset , getpid ());

// update the virtual offset

lseek(fd , ret , SEEK_CUR);
} else {

// perform a standard write on a normal file

ret = __real_write(fd , buf , count);
}
return ret;

}

Listing D.1: Source code for the write() function in LDPLFS.

int close(int fd) {
// check if fd is a plfs file or not

if (plfs_files.find(fd) != plfs_files.end ()) {
// only close the PLFS file if fd hasn’t been duplicated

if (! isDuplicated(fd)) {
// close the file and remove it from the book keeping

plfs_close(plfs_files.find(fd)->second ->fd, getpid(),
getuid(), plfs_files.find(fd)->second ->mode ,
NULL);

delete plfs_files.find(fd)->second ->path;
delete plfs_files.find(fd)->second;

}
// remove fd from book keeping

plfs_files.erase(fd);
}
// close either a real file or the ‘virtual file’

int ret = __real_close(fd);
return ret;

}

Listing D.2: Source code the close() function in LDPLFS.

135

LDPLFS Source Code Examples

int open(const char *path , int flags , ...) {
int ret;
char *cpath = resolvePath(path);

// determine if the path given is in a plfs mount

if (is_plfs_path(cpath)) {
mode_t mode;

if ((flags & O_CREAT) == O_CREAT) {
va_list argf;
va_start(argf , flags);
mode = va_arg(argf , mode_t);
va_end(argf);

} else {
int m = plfs_mode(cpath , &mode);

}

// create a plfs file pointer

plfs_file *tmp = new plfs_file ();

// open the given file using the plfs open command

int err = plfs_open (&(tmp ->fd), cpath ,
flags , getpid(), mode , NULL);

// in the event of an error , set errno correctly.

if (err != 0) {
errno = -err; // invert errorcode correctly.

ret = -1;
delete tmp;

} else {
// create a tmp file to store seek information

ret = fileno(__real_tmpfile ());

tmp ->path = new std:: string(cpath);
tmp ->mode = flags;

// add the pairing to a hash table

plfs_files.insert(
std::pair <int , plfs_file *>(ret , tmp));

}
} else {

// treat as a standard file

if ((flags & O_CREAT) == O_CREAT) {
va_list argf;
va_start(argf , flags);
mode_t mode = va_arg(argf , mode_t);
va_end(argf);
ret = __real_open(path , flags , mode);

} else {
ret = __real_open(path , flags);

}
}

free(cpath);

return ret;
}

Listing D.3: Source code for the open() function in LDPLFS.

136

APPENDIX E
LDPLFS Numeric Data

ad ufs PLFS
Nodes B/W 95% CI B/W 95% CI

Read

FUSE 132.702 (122.900, 142.503)
1 174.153 (153.315, 194.991) ad plfs 184.471 (169.849, 199.094)

LDPLFS 170.047 (149.238, 190.856)

FUSE 173.380 (160.506, 186.254)
2 180.987 (176.741, 185.234) ad plfs 194.687 (179.015, 210.360)

LDPLFS 193.223 (172.575, 213.871)

FUSE 205.273 (195.698, 214.848)
4 200.636 (194.517, 206.756) ad plfs 216.168 (209.079, 223.257)

LDPLFS 209.455 (202.026, 216.884)

FUSE 216.165 (212.248, 220.083)
8 204.591 (199.800, 209.381) ad plfs 216.047 (212.250, 219.845)

LDPLFS 218.693 (215.405, 221.981)

FUSE 200.321 (176.539, 224.103)
16 197.569 (179.152, 215.987) ad plfs 204.896 (182.338, 227.453)

LDPLFS 217.068 (215.258, 218.878)

FUSE 193.445 (176.928, 209.962)
32 200.377 (188.224, 212.531) ad plfs 195.587 (179.690, 211.485)

LDPLFS 208.442 (192.302, 224.583)

FUSE 202.738 (198.525, 206.951)
64 192.005 (185.070, 198.940) ad plfs 201.505 (192.903, 210.107)

LDPLFS 215.595 (213.859, 217.331)

Write

FUSE 62.947 (58.815, 67.079)
1 115.951 (104.492, 127.410) ad plfs 138.206 (117.090, 159.322)

LDPLFS 106.517 (70.634, 142.399)

FUSE 91.774 (64.647, 118.901)
2 131.026 (103.939, 158.114) ad plfs 148.143 (138.184, 158.103)

LDPLFS 155.341 (136.122, 174.559)

FUSE 108.932 (103.186, 114.677)
4 123.323 (96.784, 149.862) ad plfs 131.954 (126.243, 137.666)

LDPLFS 136.569 (131.707, 141.431)

FUSE 124.776 (98.018, 151.533)
8 153.378 (127.400, 179.357) ad plfs 176.427 (169.889, 182.965)

LDPLFS 153.583 (125.570, 181.596)

FUSE 139.542 (122.410, 156.675)
16 167.082 (162.040, 172.124) ad plfs 184.252 (178.311, 190.192)

LDPLFS 159.486 (138.883, 180.088)

FUSE 137.018 (127.210, 146.826)
32 145.436 (136.966, 153.907) ad plfs 183.427 (178.636, 188.219)

LDPLFS 173.023 (161.362, 184.684)

FUSE 122.871 (120.504, 125.237)
64 154.127 (141.509, 166.745) ad plfs 186.549 (181.085, 192.013)

LDPLFS 190.150 (186.756, 193.544)

Table E.1: Read and write performance of PLFS through FUSE, the ad plfs
MPI-IO driver and LDPLFS compared to the standard ad ufs MPI-IO driver
on Minerva, using 1 core per node.

137

LDPLFS Numeric Data

ad ufs PLFS
Nodes B/W 95% CI B/W 95% CI

Read

FUSE 51.996 (50.600, 53.393)
1 76.458 (69.306, 83.609) ad plfs 169.281 (161.425, 177.137)

LDPLFS 178.569 (172.671, 184.466)

FUSE 79.251 (76.315, 82.188)
2 112.283 (105.157, 119.410) ad plfs 205.034 (197.616, 212.453)

LDPLFS 207.050 (192.733, 221.367)

FUSE 118.506 (112.562, 124.450)
4 140.725 (136.685, 144.765) ad plfs 216.213 (212.995, 219.431)

LDPLFS 213.887 (208.873, 218.900)

FUSE 156.072 (151.289, 160.855)
8 151.341 (144.449, 158.233) ad plfs 215.321 (211.779, 218.864)

LDPLFS 219.013 (217.735, 220.290)

FUSE 182.058 (180.030, 184.087)
16 164.695 (156.390, 172.999) ad plfs 213.500 (205.120, 221.881)

LDPLFS 214.439 (211.739, 217.139)

FUSE 191.395 (182.814, 199.976)
32 160.321 (145.501, 175.140) ad plfs 218.613 (217.969, 219.256)

LDPLFS 218.425 (216.898, 219.953)

FUSE 193.368 (182.256, 204.480)
64 173.786 (163.189, 184.383) ad plfs 219.345 (216.882, 221.809)

LDPLFS 217.369 (215.761, 218.977)

Write

FUSE 59.829 (56.688, 62.971)
1 58.826 (43.887, 73.766) ad plfs 131.404 (117.308, 145.500)

LDPLFS 100.627 (91.149, 110.104)

FUSE 69.101 (65.868, 72.335)
2 51.981 (42.369, 61.594) ad plfs 91.449 (77.016, 105.882)

LDPLFS 92.688 (89.200, 96.177)

FUSE 86.946 (84.810, 89.081)
4 75.159 (68.094, 82.225) ad plfs 109.437 (100.339, 118.535)

LDPLFS 103.375 (94.687, 112.063)

FUSE 105.507 (102.064, 108.949)
8 82.866 (76.931, 88.801) ad plfs 133.665 (125.743, 141.587)

LDPLFS 125.284 (122.299, 128.269)

FUSE 113.819 (112.163, 115.475)
16 131.388 (123.676, 139.099) ad plfs 163.389 (157.067, 169.711)

LDPLFS 140.184 (138.104, 142.263)

FUSE 113.880 (107.410, 120.351)
32 128.644 (104.467, 152.821) ad plfs 174.800 (161.922, 187.679)

LDPLFS 158.293 (156.781, 159.805)

FUSE 90.344 (88.655, 92.033)
64 160.263 (151.144, 169.382) ad plfs 184.219 (171.440, 196.998)

LDPLFS 163.318 (161.144, 165.492)

Table E.2: Read and write performance of PLFS through FUSE, the ad plfs
MPI-IO driver and LDPLFS compared to the standard ad ufs MPI-IO driver
on Minerva, using 2 cores per node.

138

LDPLFS Numeric Data

ad ufs PLFS
Nodes B/W 95% CI B/W 95% CI

Read

FUSE 72.647 (68.509, 76.785)
1 87.556 (74.016, 101.097) ad plfs 159.387 (150.973, 167.800)

LDPLFS 132.534 (98.890, 166.178)

FUSE 113.900 (110.046, 117.754)
2 110.367 (99.314, 121.420) ad plfs 185.589 (163.692, 207.486)

LDPLFS 174.380 (146.030, 202.730)

FUSE 151.274 (141.944, 160.604)
4 131.679 (115.139, 148.218) ad plfs 209.524 (202.633, 216.416)

LDPLFS 186.016 (166.381, 205.652)

FUSE 115.713 (112.006, 119.420)
8 149.701 (139.861, 159.542) ad plfs 212.314 (206.274, 218.354)

LDPLFS 189.479 (170.760, 208.198)

FUSE 175.760 (171.247, 180.272)
16 163.049 (156.890, 169.208) ad plfs 210.180 (204.446, 215.914)

LDPLFS 202.981 (192.125, 213.837)

FUSE 165.813 (153.764, 177.862)
32 171.889 (163.390, 180.387) ad plfs 209.694 (204.347, 215.040)

LDPLFS 198.946 (186.768, 211.124)

FUSE 167.750 (159.057, 176.444)
64 165.700 (147.207, 184.194) ad plfs 215.947 (212.615, 219.280)

LDPLFS 206.272 (199.712, 212.833)

Write

FUSE 58.888 (50.195, 67.580)
1 88.878 (79.106, 98.650) ad plfs 118.508 (98.583, 138.433)

LDPLFS 89.247 (66.860, 111.635)

FUSE 62.316 (60.470, 64.162)
2 101.847 (84.651, 119.043) ad plfs 132.943 (100.633, 165.253)

LDPLFS 99.963 (91.592, 108.333)

FUSE 60.640 (47.694, 73.586)
4 84.651 (77.047, 92.254) ad plfs 129.401 (116.887, 141.915)

LDPLFS 108.328 (98.829, 117.827)

FUSE 52.533 (48.067, 56.999)
8 82.580 (69.041, 96.118) ad plfs 146.761 (135.788, 157.733)

LDPLFS 131.950 (117.438, 146.461)

FUSE 76.339 (71.192, 81.485)
16 111.891 (104.910, 118.872) ad plfs 162.167 (153.775, 170.558)

LDPLFS 146.053 (134.681, 157.425)

FUSE 125.411 (122.552, 128.270)
32 122.804 (119.148, 126.461) ad plfs 159.126 (154.316, 163.937)

LDPLFS 147.484 (142.124, 152.844)

FUSE 104.973 (96.186, 113.760)
64 131.420 (125.213, 137.628) ad plfs 176.809 (169.651, 183.966)

LDPLFS 158.409 (155.963, 160.855)

Table E.3: Read and write performance of PLFS through FUSE, the ad plfs
MPI-IO driver and LDPLFS compared to the standard ad ufs MPI-IO driver
on Minerva, using 4 cores per node.

139

LDPLFS Numeric Data

ad ufs PLFS
Cores B/W 95% CI B/W 95% CI

4 317.570 (265.909, 369.231)
ad plfs 330.930 (330.028, 331.832)
LDPLFS 339.713 (313.237, 366.190)

16 449.537 (438.342, 460.731)
ad plfs 613.103 (565.199, 661.008)
LDPLFS 628.990 (586.299, 671.681)

64 390.245 (353.780, 426.710)
ad plfs 1653.827 (1546.650, 1761.004)
LDPLFS 1487.917 (1426.418, 1549.415)

256 327.010 (326.834, 327.186)
ad plfs 3722.670 (3527.516, 3917.824)
LDPLFS 2846.797 (2409.288, 3284.305)

1024 264.995 (255.185, 274.805)
ad plfs 3021.910 (1929.717, 4114.103)
LDPLFS 3074.595 (2388.605, 3760.585)

Table E.4: Write performance in BT class C for PLFS through the ad plfs
MPI-IO driver and LDPLFS compared to the standard ad ufs MPI-IO driver
on Sierra.

ad ufs PLFS
Cores B/W 95% CI B/W 95% CI

64 321.480 (180.948, 462.012)
ad plfs 1348.010 (1280.434, 1415.586)
LDPLFS 1155.093 (996.537, 1313.650)

256 449.895 (390.521, 509.269)
ad plfs 2876.855 (2711.829, 3041.881)
LDPLFS 2211.220 (2085.182, 2337.258)

1024 251.987 (239.848, 264.125)
ad plfs 264.223 (228.386, 300.060)
LDPLFS 231.193 (160.736, 301.651)

4096 284.315 (273.173, 295.457)
ad plfs 1565.760 (1554.471, 1577.049)
LDPLFS 1548.845 (1526.982, 1570.708)

Table E.5: Write performance in BT class D for PLFS through the ad plfs
MPI-IO driver and LDPLFS compared to the standard ad ufs MPI-IO driver
on Sierra.

ad ufs PLFS
Nodes B/W 95% CI B/W 95% CI

1 332.150 (323.457, 340.842)
ad plfs 282.513 (272.341, 292.685)
LDPLFS 308.306 (293.990, 322.622)

2 234.704 (207.942, 261.466)
ad plfs 677.992 (658.070, 697.913)
LDPLFS 563.059 (540.204, 585.914)

4 323.962 (280.407, 367.516)
ad plfs 1073.471 (1032.116, 1114.825)
LDPLFS 1023.501 (965.397, 1081.605)

8 382.921 (368.875, 396.967)
ad plfs 1468.949 (1405.361, 1532.538)
LDPLFS 1458.562 (1375.307, 1541.817)

16 406.641 (374.487, 438.794)
ad plfs 1642.854 (1548.991, 1736.718)
LDPLFS 1632.436 (1575.404, 1689.467)

32 439.282 (422.463, 456.102)
ad plfs 1284.342 (1238.790, 1329.894)
LDPLFS 1224.472 (1192.328, 1256.616)

64 464.171 (427.776, 500.566)
ad plfs 709.821 (698.345, 721.296)
LDPLFS 714.732 (707.204, 722.260)

128 477.430 (465.562, 489.298)
ad plfs 201.701 (95.634, 307.769)
LDPLFS 378.024 (365.059, 390.988)

256 518.736 (485.697, 551.776)
ad plfs 183.701 (130.657, 236.746)
LDPLFS 204.371 (195.527, 213.215)

Table E.6: Write performance in FLASH-IO for PLFS through the ad plfs
MPI-IO driver and LDPLFS compared to the standard ad ufs MPI-IO driver
on Sierra.

140

APPENDIX F
Optimality Search Numeric Data

Stripe Stripe Count
Size (MB) 1 2 4 8 16 32 64 128 160

1 242.20 313.02 562.23 972.19 1202.30 1932.38 2910.96 4071.30 4074.45
2 216.35 318.84 544.99 936.85 1365.31 2343.35 3899.43 5310.18 6009.99
4 212.47 278.69 591.76 1016.44 1620.91 2916.30 4280.74 5852.94 7956.12
8 222.50 307.35 607.45 1011.24 1786.70 3318.84 4696.76 7106.03 9467.26
16 215.28 347.28 539.68 1135.96 2155.92 3899.88 6152.11 8684.13 11285.07
32 192.90 284.25 654.65 1339.34 2407.39 4051.20 6745.11 11288.24 13884.42
64 216.00 398.92 764.62 1522.98 3057.95 4079.76 7770.03 13621.08 14768.08
128 229.82 387.00 767.69 1492.31 2993.44 4063.87 7114.70 13799.54 15609.38
256 192.05 394.92 808.21 1554.25 3006.16 4250.09 8005.93 13519.03 14753.50

Table F.1: Numerical data for Figure 6.2, displaying bandwidth achieved by
IOR on 1,024 cores, while varying Lustre stripe size and stripe count.

Achieved Ideal
Tasks B/W 95% CI B/W 95% CI

1 211.265 (156.310, 266.220) 211.265 (156.310, 266.220)
2 90.777 (76.506, 105.049) 105.632 (78.155, 133.110)
3 84.758 (64.103, 105.413) 70.422 (52.103, 88.740)
4 54.092 (43.168, 65.017) 52.816 (39.077, 66.555)
5 42.952 (35.381, 50.523) 42.253 (31.262, 53.244)
6 36.591 (30.655, 42.528) 35.211 (26.052, 44.370)
7 29.626 (21.640, 37.611) 30.181 (22.330, 38.031)
8 25.393 (24.602, 26.184) 26.408 (19.539, 33.277)
9 21.458 (18.787, 24.129) 23.474 (17.368, 29.580)
10 17.964 (16.566, 19.362) 21.126 (15.631, 26.622)
11 16.608 (15.237, 17.978) 19.206 (14.210, 24.202)
12 15.939 (13.847, 18.030) 17.605 (13.026, 22.185)
13 14.231 (12.610, 15.852) 16.251 (12.024, 20.478)
14 13.299 (12.245, 14.352) 15.090 (11.165, 19.016)
15 12.768 (11.977, 13.559) 14.084 (10.421, 17.748)
16 10.048 (9.446, 10.650) 13.204 (9.769, 16.639)

Table F.2: Numerical data for Figure 6.3, displaying bandwidth per task under
contention, along with the idealised values.

141

APPENDIX G
PLFS Performance and Stripe Collision Data

Experiment
Collisions 1 2 3 4 5

0 32 32 32 32 32

Dinuse 32 32 32 32 32
Dload 1.00 1.00 1.00 1.00 1.00
BW (MB/s) 424.67 802.4 1175.22 259.56 1102.96

Table G.1: Stripe collision statistics for PLFS backend directory running with
16 cores.

Experiment
Collisions 1 2 3 4 5

0 60 52 57 64 57
1 2 6 2 0 2
2 0 0 1 0 1

Dinuse 62 58 60 64 60
Dload 1.03 1.10 1.07 1.0 1.07
BW (MB/s) 1052.73 562.23 640.72 736.52 644.43

Table G.2: Stripe collision statistics for PLFS backend directory running with
32 cores.

Experiment
Collisions 1 2 3 4 5

0 85 85 101 94 95
1 20 17 12 14 15
2 1 3 1 2 1

Dinuse 106 105 114 110 111
Dload 1.21 1.22 1.12 1.16 1.15
BW (MB/s) 1158.81 2067.78 948.45 3903.84 804.60

Table G.3: Stripe collision statistics for PLFS backend directory running with
64 cores.

142

PLFS Performance and Stripe Collision Data

Experiment
Collisions 1 2 3 4 5

0 155 162 166 153 147
1 40 36 36 41 47
2 7 6 6 7 5
3 0 1 0 0 0

Dinuse 202 205 208 201 199
Dload 1.27 1.25 1.23 1.27 1.29
BW (MB/s) 6799.10 1555.19 1894.95 1904.80 6919.04

Table G.4: Stripe collision statistics for PLFS backend directory running with
128 cores.

Experiment
Collisions 1 2 3 4 5

0 192 192 180 175 183
1 110 101 92 99 102
2 18 29 35 37 32
3 9 5 7 7 6
4 2 1 3 0 1
5 0 1 0 0 0

Dinuse 331 329 317 318 324
Dload 1.55 1.56 1.62 1.61 1.58
BW (MB/s) 5403.23 9726.24 5635.64 11539.40 3329.90

Table G.5: Stripe collision statistics for PLFS backend directory running with
256 cores.

Experiment
Collisions 1 2 3 4 5

0 121 135 122 116 129
1 134 126 134 129 133
2 97 88 85 94 82
3 49 55 56 45 54
4 21 22 21 20 28
5 6 6 6 12 2
6 1 1 2 1 1
7 0 0 0 0 1
8 0 0 0 1 0

Dinuse 429 433 426 418 430
Dload 2.39 2.36 2.40 2.45 2.38
BW (MB/s) 12062.68 10469.38 10234.97 9768.07 11081.99

Table G.6: Stripe collision statistics for PLFS backend directory running with
512 cores.

143

PLFS Performance and Stripe Collision Data

Experiment
Collisions 1 2 3 4 5

0 32 33 35 36 24
1 53 61 64 59 62
2 97 82 75 80 95
3 90 92 98 84 103
4 82 77 80 76 71
5 53 64 62 59 62
6 34 34 27 40 26
7 20 12 16 27 19
8 9 8 12 3 9
9 3 6 6 5 5
10 2 4 1 1 1

Dinuse 475 473 476 470 477
Dload 4.31 4.33 4.30 4.36 4.29
BW (MB/s) 8524.22 8610.75 8754.29 8536.84 8449.57

Table G.7: Stripe collision statistics for PLFS backend directory running with
1,024 cores.

Experiment
Collisions 1 2 3 4 5

0 1 2 0 1 1
1 8 6 4 3 2
2 13 5 6 8 7
3 21 18 18 17 24
4 35 39 40 33 42
5 52 58 50 46 57
6 66 66 62 55 66
7 46 54 66 86 64
8 57 65 71 79 56
9 55 48 52 47 41
10 46 38 36 54 34
11 27 30 25 18 28
12 27 22 28 9 22
13 11 15 14 7 22
14 8 6 7 8 7
15 2 7 1 3 0
16 2 1 0 1 2
17 2 0 0 3 4
18 1 0 0 2 1

Dinuse 480 480 480 480 480
Dload 8.53 8.53 8.53 8.53 8.53
BW (MB/s) 5794.14 5585.98 5800.88 5592.34 5708.71

Table G.8: Stripe collision statistics for PLFS backend directory running with
2,048 cores.

ad lustre ad plfs
Cores B/W 95% CI B/W 95% CI

16 403.748 (390.728, 416.768) 752.962 (398.413, 1107.511)
32 404.714 (393.092, 416.336) 727.326 (558.951, 895.701)
64 857.348 (832.819, 881.877) 1776.696 (648.889, 2904.503)
128 1987.512 (1908.244, 2066.780) 3814.616 (1375.185, 6254.047)
256 4354.983 (4288.692, 4421.273) 7126.882 (4159.661, 10094.103)
512 8985.136 (8777.611, 9192.661) 10723.418 (9947.064, 11499.772)
1024 13859.578 (12582.684, 15136.472) 8575.134 (8474.058, 8676.210)
2048 16200.156 (15441.574, 16958.738) 5696.410 (5604.855, 5787.965)
4096 16917.112 (16291.584, 17542.640) 3069.054 (3052.824, 3085.284)

Table G.9: Numeric data for Figure 6.6, showing the performance of IOR
through Lustre and PLFS.

144

	WRAP_THESIS_Wright_2014.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

	Thesis.pdf
	Abstract
	Dedication
	Acknowledgements
	Declarations
	Sponsorship and Grants
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Contributions
	Thesis Overview

	Performance Analysis and Engineering
	Parallel Computation
	I/O in Parallel Computing
	Issues in Parallel I/O
	Parallel File Systems
	Parallel I/O Middleware

	Performance Engineering Methodologies
	Benchmarking
	System Monitoring and Profiling
	Analytical Modelling
	Simulation-based Modelling

	Summary

	Hardware and Software Overview
	Hard Disk Drive
	Disk Drive Mechanics
	Data Layout
	Disk Controller
	Redundant Array of Independent Disks

	File Systems
	The Extended File System
	The Sun Network File System

	Distributed File Systems
	The Lustre File System
	IBM's General Parallel File System
	The Parallel Log-structured File System

	Computing Platforms
	Input/Output Benchmarking Applications
	Summary

	I/O Tracing and Application Optimisation
	The RIOT I/O Toolkit
	Feasibility Study

	File System Analysis
	Distributed File Systems – Lustre and GPFS

	Middleware Analysis and Optimisation
	Summary

	Analysis and Rapid Deployment of the Parallel Log-Structured File System
	Analysis of PLFS
	Rapid Deployment of PLFS
	Performance Analysis

	Summary

	Parallel File System Performance Under Contention
	Effective Use of Uncontended Parallel File Systems
	Quantifying the Performance of Contended File Systems
	Performance Comparison: Lustre vs. PLFS
	Summary

	Discussion and Conclusions
	Limitations
	Future Work
	The Road to Exascale

	Bibliography
	Appendices
	RIOT Feasibility Study – Additional Results
	Numeric Data for Perceived and Effective Bandwidth
	FLASH-IO Analysis and Optimisation Data
	LDPLFS Source Code Examples
	LDPLFS Numeric Data
	Optimality Search Numeric Data
	PLFS Performance and Stripe Collision Data

