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Abstract 24 

Alkaline igneous rocks are relatively rare in settings of tectonic convergence and little 25 

is known about their petrogenesis in these settings. This study aims to contribute to a 26 

better understanding of the formation of alkaline igneous rocks by an investigation of the 27 

Tezhsar volcano-intrusive alkaline ring complex (TAC) in the Armenian Lesser Caucasus, 28 

which is located between the converging Eurasian and Arabian plates. We present new 29 

petrological, geochemical and Sr-Nd isotope data for the TAC to constrain magma genesis 30 

and magma source characteristics. Moreover, we provide a new 40Ar/39Ar age of 41.0±0.5 31 

Ma on amphibole from a nepheline syenite that is integrated into the regional context of 32 

ongoing regional convergence and widespread magmatism.  33 

The TAC is spatially concentric and measures ~10 km in diameter representing the 34 

relatively shallow plumbing system of a major stratovolcano juxtaposed by ring faulting 35 

with its extrusive products. The plutonic units comprise syenites and nepheline syenites, 36 

whereas the extrusive units are dominated by trachytic-phonolitic rocks. The 37 

characteristic feature of the TAC is the development of pseudomorphs after leucite in all 38 

types of the volcanic, subvolcanic and intrusive alkaline rocks. 39 

Whole-rock major element data show a metaluminous (Alkalinity Index = 0-0.1), 40 

alkalic and silica-undersaturated (Feldspathoid Silica-Saturation Index <0) character of 41 

the TAC. The general trace element enrichment and strong fractionation of REEs (LaN/YbN 42 

up to 70) indicate a relatively enriched magma source and small degrees of partial melting. 43 

All TAC rocks show a negative Nb-Ta anomalies typical of subduction zone settings. The 44 

initial 87Sr/86Sr ratios (0.704-ͲǤͲͷȌ and positive ɂNd values ȋΪ͵ to +5) indicate an 45 

isotopically depleted upper mantle and lack of significant crustal influence, which in turn 46 

suggests the TAC magma has formed via differentiation from lithospheric mantle melts. 47 
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Regionally, the age of ~41 Ma places the TAC amid a Lesser Caucasian Eocene period 48 

of dominantly calc-alkaline magmatism. The TACǯs arc-like geochemical signatures are 49 

interpreted to result from prior subduction of the Tethyan slab beneath the Eurasian 50 

continental margin. The alkaline character, distinct from regional trends, is attributed to 51 

Neotethyan slab rollback causing extension and inducing small degrees of decompression 52 

melting of metasomatised lithospheric mantle. 53 

 54 

Keywords: Alkaline igneous rocks, ring complex, Armenia, geochemistry, 40Ar/39Ar 55 

dating, pseudoleucite  56 
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1. Introduction 57 

Studies of alkaline magmatism on the global scale have become a point of focus due 58 

to the significant role of alkaline magmatic rocks for ore exploration, in particular 59 

regarding prospecting for rare earth elements (REEs), niobium (Nb), tantalum (Ta) and 60 

zirconium (Zr) (e.g. Chakhmouradian and Zaitsev 2012). Many alkaline igneous rocks are 61 

found in rift-related intraplate settings (e.g. Gardar Province/Greenland, Upton et al. 62 

2003; Kola Alkaline Province/Russia, Downes et al. 2005; East African Rift, Woolley 63 

2001), but they also occur, albeit less frequently, in settings of plate convergence (Burke 64 

and Khan, 2006; Hou et al. 2006). Plate convergence includes collisional events that cause 65 

the welding of terranes into continental land and subsequent post-collisional episodes in 66 

which convergence continues (Bonin et al. 1998). The occurrence of magmas with alkaline 67 

affinities becomes more common only when the geodynamic context becomes entirely 68 

intraplate in a post-orogenic episode (Bonin et al. 1998). In complex collisional and post-69 

collisional settings, the timing of specific types of magmatism depends on the geotectonic 70 

geometries and the relative rates of crustal thickening and subsidiary subduction (Harris 71 

et al. 1986). Importantly, convergent movement between colliding plates will continue for 72 

30-50 Ma after the initial collision (Harris et al. 1986). On a global scale, deformed alkaline 73 

rocks and carbonatites (DARCs) may be used as indicators of where ancient oceans have 74 

opened and closed, and the presence of a variety of syenites, carbonatites and other 75 

alkaline igneous rocks found in proximity to older DARCs indicate the recycling of 76 

material from the underlying lithosphere based on the Wilson Cycle-type model (Burke 77 

and Khan 2006). Thus, investigating alkaline magmatism in convergent settings, e.g. in 78 

Tibet (Williams et al. 2004; Hou et al. 2006) and the Anatolian-Armenian-Iranian plateau 79 

(Jackson et al. 1995; Neill et al. 2015), has become as important as studies of rift-related 80 

settings to understand alkaline magma genesis. 81 
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The exact mechanisms responsible for magma generation in collisional tectonic 82 

settings remain enigmatic. Models include slab break-off (Keskin 2003; van Hunen and 83 

Allen 2011; Neill et al. 2015), large-scale delamination or thinning of the lithospheric 84 

mantle (Innocenti et al. 1982; Pearce et al. 1990) and small-scale lithospheric detachment 85 

driven by convection cells (Kaislaniemi et al. 2014; Neill et al. 2015). Moreover, the source 86 

of magmas in compressional regimes and their chemical impact on the crust remains 87 

disputed. Processes to generate primary magmas in collision zones may involve melting 88 

of thickened lithosphere due to breakdown of hydrous phases at the continental suture 89 

(Allen et al. 2013) and melting of deeply-subducted continental crust (Zhao et al. 2013). 90 

To explain the alkaline character of the erupted or plutonic igneous rocks, several genetic 91 

models and processes have been proposed: 92 

1. Low degrees of partial melting of metasomatized upper mantle (Bodeving et al. 93 

2017; Dawson 1987; Marks et al. 2008). 94 

2. Melting of crustal sources, which could be located in the lower crust and mafic in 95 

composition (Smith et al. 1988) or in the middle to upper crust and felsic in 96 

composition (Downes 1987; Fitton 1987).  97 

3. Fractional crystallization from alkali basalt parental magmas (Delong et al. 1975; 98 

Trumbull et al. 2003), with variable degrees of crustal assimilation (Fitton 1987; 99 

Jung et al. 2007; Lan et al. 2011). 100 

4. Fenitisation Ȃ a high temperature metasomatic alteration driven by alkali-rich 101 

fluids incrementally expelled from alkaline or carbonatitic melts (Sindern and 102 

Kramm 2000; Suikkanen and Rämö 2017). 103 

 104 

Armenia, landlocked between the Black Sea and the Caspian Sea, forms part of the 105 

Anatolian-Armenian-Iranian Plateau and is characterised by widespread Cenozoic 106 
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volcano-magmatic activity, starting in the Eocene at ~50 Ma and intermittently lasting 107 

into the Holocene and historical times (Karakhanian et al. 2002; Moritz et al. 2016; Fig. 108 

1a). Several studies focused on Quaternary volcanic cones on the Anatolian-Armenian-109 

Iranian plateau (Innocenti et al. 1982; Pearce et al. 1990; Keskin et al. 1998), including in 110 

the Armenian segments of the Lesser Caucasus mountain range (Karapetian et al. 2001; 111 

Karakhanian et al. 2002), and the Miocene/Pliocene magmatic evolution of the region 112 

(Dilek et al. 2010; Neill et al. 2013; Kheirkhah et al. 2015). However, investigating the 113 

much less studied Paleogene igneous rocks is important to gain a more complete 114 

understanding of the long-term magmatic and geodynamic evolution in this setting of 115 

continuing convergence and to improve our understanding of collision-driven continental 116 

magmatism and mantle dynamics (Dilek et al. 2010; van Hunen and Allen 2011; Moritz et 117 

al. 2016).  118 

In this study, we use a range of petrological and geochemical methods to describe and 119 

interpret the lithological variations of the Tezhsar volcano-intrusive alkaline ring 120 

complex (or Tezhsar Alkaline Complex - TAC) in Armenia. We provide a new 40Ar/39Ar 121 

age and expand on previous petrological and geochemical studies (Abovyan et al. 1981; 122 

Kogarko et al. 1995; Meliksetian 1971, 1989) with the aim to achieve a better 123 

understanding of TAC petrogenesis and to integrate that into a model of alkaline magma 124 

genesis within a setting of continuing plate convergence. We also highlight and discuss 125 

the occurrence of cm-sized pseudoleucites in the TAC. 126 

 127 

2. Geological history 128 

2.1 Regional tectonic setting 129 

The TAC, located about 55 km north of Yerevan in the Lesser Caucasus, has formed in 130 

the Eocene in a setting of general convergence between the Eurasian and Arabian plates 131 
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(Fig. 1a). This region was affected by two distinct collisional events and the emplacement 132 

of the alkaline magmas of the TAC is crucial to the understanding of the tectono-magmatic 133 

evolution of the region.  134 

The TAC is located on basement of the South Armenian Block (SAB), which is a 135 

microplate of Gondwanaland origin (Knipper and Khain 1980; Rolland 2017; Sosson et al. 136 

2010). Proterozoic metamorphic basement of the SAB is exposed in the Tsakhkunyats 137 

massif (Belov 1968; Aghamalyan 1998). Platform sedimentary cover of the SAB is 138 

presented by folded Late Devonian to the Late Triassic sedimentary formations 139 

(Arakelyan 1964; Aslanyan 1958). Ophiolites representing Jurassic oceanic crust were 140 

obducted onto the northern margin of the SAB in the Late Cretaceous (90-84 Ma; 141 

Rolland 2017). In the late Cretaceous to early Palaeogene (70-60 Ma), the SAB was 142 

welded to the southern margin of Eurasia as a result of the closure of the northern branch 143 

of the Neotethys and the termination of subduction (Rolland et al. 2009a, b; Moritz et al. 144 

2016). The collision is marked by the Sevan-Akera suture zone, which is part of the 145 

regional northern Neotethys suture (Hässig et al. 2013; Sosson et al. 2010). The closure 146 

of the northern Neotethys branch caused a subduction jump towards the south and the 147 

accretion of the SAB to the Eurasian margin resulted in formation of a Cretaceous-Eocene 148 

flysch basin that overlies the ophiolites (Rolland 2017). At present, the Sevan-Akera 149 

suture separates two tectonostratigraphic units, the Southern and Northern Tethyan 150 

Provinces, which outline the continental provinces pre-dating the closure of the Tethys 151 

Ocean (Fig. 1b; Adamia et al. 2011). The Sevan-Akera suture is located ~6 km northward 152 

of the TAC. The second stage of accretion involving collision of the Arabian margin to the 153 

SAB and the Tauride-Anatolian block caused the closure of the South Neotethys ocean 154 

along the Bitlis-Zagros suture. This closure occurred in late Eocene to early Oligocene 155 

times (40-25 Ma) based on geochronological and structural evidence (Agard et al. 2005; 156 
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Allen and Armstrong 2008; Rolland 2017). The convergence and collision between Arabia 157 

and Eurasia induced regional compression and shortening in the overriding (SAB-158 

Eurasia) continental lithosphere (Agard et al. 2011), the formation of the Anatolian-159 

Armenian-Iranian orogenic plateau (Sheth et al. 2015) and lateral ejection of the 160 

Anatolian and Iranian blocks, with the Armenian Highland (Lesser Caucasus and Eastern 161 

Anatolia) in the centre (Phillip et al. 1989). Protracted Cenozoic magmatism lasted from 162 

~49 Ma to ~21 Ma and marked the final stages of the Neothethyan subduction, the main 163 

Arabia-Eurasia collisions and subsequent post-collisional events, including emplacement 164 

of the syn-collisional granite-leucogranite plutons of the Lesser Caucasus (Meliksetian 165 

1989; Rezeau et al. 2017).   166 

To explain the Palaeogene magmatism of the entire region, Dilek et al. (2010) 167 

proposed the opening of an asthenospheric window beneath the arc mantle wedge and 168 

the collision zone. The presence of adakites of Early Eocene age in the Pontides 169 

interpreted as a result of slab window formation (Eyuboglu et al. 2011) supports this 170 

hypothesis. Lordkipanidze et al. (1989) and Sahakyan et al. (2016) consider a subduction-171 

modified upper mantle source for Lower-Middle Eocene volcanism and an increase of 172 

crustal input within the Late Eocene-Early Oligocene magmatic series of the Lesser 173 

Caucasus.  174 

Considering the age and location of the TAC (40Ar/39Ar of 41.0±0.5 Ma, this study; 175 

36.3-37.5 Ma, K-Ar, Baghdasaryan and Ghukasyan 1985; 36-39 Ma, K-Ar, Meliksetian 176 

1989), it formed in a plate convergence setting, in between two major collisional events 177 

that occurred in region Ȃ first at the northern edge of the SAB in the Late Cretaceous to 178 

Early Paleogene, and subsequently to the south of the SAB in the Late Eocene to Early 179 

Oligocene. The TAC can thus be described as post-collisional relative to the initial 180 

collisional event between the SAB and the Eurasian plate.  181 
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 182 

2.2 Geological setting of the Tezhsar Alkaline Complex  183 

The TAC is located on the Pambak ridge at the northern edge of the SAB within the 184 

Sevan-Shirak basin. To the south, the TAC is in contact with the Proterozoic metamorphic 185 

basement of the SAB across the Marmarik Fault. Presence of abundant xenoliths from the 186 

Tsakhkunyats basement, such as mica schists, confirms the affinity of the TAC to the SAB 187 

continental terrane. To the north, the TAC borders the Margahovit intrusion comprising 188 

porphyritic granosyenites. Country rocks exposed to the W-NW of the TAC comprise 189 

Upper Cretaceous clastic and carbonate strata and Mid-to-Late Eocene extrusive igneous 190 

rocks, which also outcrop to the E-SE. The Ulashik Fault cuts the TAC in SW-NE direction 191 

with horizontal left-lateral displacement of intrusive and volcanic units reaching 700 m.  192 

The TAC represents a ring complex that can be subdivided into several concentric 193 

units of both volcanic and plutonic rocks. Such classical ring complexes are quite rare 194 

(Johnson et al., 1999) and are of special interest considering their structural and 195 

volcanological evolution as well as petrological aspects. According to Meliksetian (1971), 196 

the TAC includes the following major units (Fig. 2): 197 

1. Outer cone sheets characterized by inward-dipping contacts  198 

2. Ring unit of volcanic alkaline rocks with a thickness up to 600 m characterised by 199 

its concentric structure and inward-dipping contacts (Outer Volcanic Unit, OVU) 200 

3. Central intrusive unit comprising syenites and nepheline syenites (Syenitic Unit, 201 

SYU) 202 

4. Ring dykes, circular bodies with sub-vertical contacts cutting both the volcanic and 203 

central intrusive units 204 

5. Resurgent volcanic unit, inside the central intrusive unit, formed by volcanic 205 

breccias, dykes and subvolcanic rocks (Central Volcanic Unit, CVU).  206 
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For the purpose of the geochemical investigation in this study, we use a simplified 207 

subdivision into Outer Volcanic Unit, Syenitic Unit and Central Volcanic Unit (Fig. 2). 208 

Based on a structural analysis including bedding attitudes of units and relationships 209 

between volcanic ring, cone sheets and central pluton, the presence of circular dykes and 210 

remains of a volcanic centre, most researchers, namely Kotlyar (1958), Bagdasaryan 211 

(1966) and Meliksetian (1971) concluded that the TAC formed via a caldera collapse and 212 

the volcanic ring was emplaced through collapse along concentric faults. The 213 

exceptionally large elliptical palaeocaldera structure of the TAC is ~13ᴘ6×ͳͳᴘ5 km in size 214 

and has an area of ~131 km2, comparable in dimensions to the Santorini caldera in the 215 

Aegean Sea. Such a ring morphology provides a unique insight into the roots of an 216 

alkaline volcano-plutonic complex. 217 

Beyond the petrogenetic and structural significance of the TAC, there is also a 218 

characteristic widespread development of pseudomorphs after leucite, which have been 219 

studied in detail by B. Meliksetian (1970, 1971, 1979, 1989) and Yagi and Gupta (1978). 220 

They feature in volcanic, subvolcanic and intrusive alkaline rocks and the largest crystals, 221 

reaching up to 8 cm in size (Fig. 3) are found in porphyry tinguaite dykes (Meliksetian 222 

1978; Yagi and Gupta 1978). Their crystallographic habit is either icositetrahedral (in 223 

volcanic rocks and dykes) or triakis octahedral (in intrusive syenites). In the Soviet 224 

petrological literature according to Zavaricky (1934), pseudomorphism after leucite is 225 

divided into two mineralogical and genetic typesǣ ǲPseudoleucitesǳ referring to leucite 226 

breakdown into nepheline and orthoclase, and ǲepileucitesǳ describing pseudomorphism 227 

after leucite composed of agglomerated orthoclase, muscovite, analcime, chlorite, calcite 228 

and zeolites. In the Western petrological literature, usually both types are referred to as 229 

pseudoleucites, and both types have been described in the TAC.  230 

 231 
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3. Field observations 232 

Field campaigns in the TAC were carried out in 2008, 2012 and 2015 in order to 233 

achieve two major aims: i) Help the completion of geological map (incl. GIS database) of 234 

the complex; ii) sampling the various lithologies of the TAC for petrological and 235 

geochemical investigations (Fig. 2). Sampling was focused on the three major units 236 

generalised for the purposes of this study: The Outer Volcanic Unit (OVU), the inner 237 

Syenitic Unit (SYU) and the Central Volcanic Unit (CVU) (Fig. 2), which have been 238 

juxtaposed by ring faulting. In total, 46 samples were collected and analysed, and one of 239 

those (sample 6-8-12 from the SYU) was used for 40Ar/39Ar age determination. Field 240 

relations demonstrate that the syenitic magmas of the SYU intruded into the OVU (Fig. 241 

3a). More localized and subordinate lithologies of the complex include syenitic pegmatites 242 

(Fig. 3b) and pseudoleucite-bearing phonolites (Fig. 3c-f).  243 

 244 

4. Petrography 245 

The pioneering works of Meliksetian (1989) identified >50 different mineral species 246 

in rocks of the TAC, including a variety of rare earth element (REE) and high field strength 247 

element (HFSE) bearing phases. In our study, we focus on the major rock-forming 248 

minerals in the three major rock units of the complex to provide a general overview of the 249 

lithologies.  250 

The volcanic rocks of the Outer Volcanic Unit (OVU) are typically porphyritic with an 251 

aphanitic groundmass. Major minerals are plagioclase + clinopyroxene + amphibole + 252 

biotite + alkali feldspar + Fe-Ti oxides ± nepheline, and apatite and titanite are present as 253 

accessory phases. Plagioclase is euhedral to subhedral, weakly zoned and often shows 254 

sieve textures (Fig. 4a). Euhedral clinopyroxene phenocrysts are up to 2 mm in size and 255 

typically poikilitic. Volcanic breccias are observed occasionally, containing angular 256 
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fragments and xenoliths, the latter partly rich in quartz. Volumetrically small occurrences 257 

of altered pseudoleucite phonolites are present, where we found pseudomorphed leucite 258 

up to several cm in diameter. The deltoidal icositetrahedral crystal habit of the primary 259 

leucite is well preserved, but leucite has been completely replaced by secondary minerals. 260 

These are dominated by alkali feldspar and cancrinite-group minerals and comprise 261 

minor amounts of analcime. Other phases found in the pseudoleucite are clinopyroxene, 262 

biotite, apatite and calcite.   263 

The volcanic rocks of the Central Volcanic Unit (CVU) are generally porphyritic with 264 

a fine-grained matrix. They contain euhedral plagioclase + alkali feldspar + clinopyroxene 265 

+ amphibole + biotite + Fe-Ti oxides as major mineral phases. Some samples contain 266 

amphibole glomerocrysts and clinopyroxene overgrowing biotite (Fig. 4b). Rare 267 

pseudoleucite phonolites occur in this unit as well.  The samples of the CVU are often 268 

intensely altered.  269 

The Syenitic Unit (SYU) comprises equigranular, phaneritic, medium to coarse-270 

grained syenites and nepheline syenites (Fig. 4c-h). Several samples show a trachytoidal 271 

preferential alignment of feldspars. Major mineral phases are alkali feldspar + amphibole 272 

+ biotite + clinopyroxene + Fe-Ti oxides ± nepheline ± plagioclase. Garnet is rare but very 273 

prominent in the coarse grained (pegmatitic) rock varieties, where euhedral to subhedral 274 

brown garnet forms clusters with euhedral, black todark green amphibole. Accessory 275 

phases observed include zircon, titanite, fluorite, muscovite, apatite, calcite, sodalite and 276 

cancrinite. Subhedral alkali feldspar is typically the most abundant phase, frequently 277 

exhibiting significant alteration. Primary clinopyroxene commonly shows signs of 278 

incipient alteration to green amphibole. 279 

 280 

5. Analytical methods 281 
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Major and trace elements were analysed by standard X-ray fluorescence (XRF), 282 

inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively 283 

coupled plasma mass spectrometry (ICP-MS) methods. Detailed information about the 284 

analytical methods used is provided in the supplementary material. Systematic 285 

differences between analyses from different laboratories are not observed. If they exist, 286 

they are likely to be small relative to the compositional effects of the magmatic processes 287 

operating, and considered negligible for the overall interpretation of the dataset. 288 

Strontium (Sr) and neodymium (Nd) isotope analyses were performed at the School 289 

of Earth and Environment, University of Leeds. Conventional ion-exchange 290 

chromatographic techniques were applied and samples were analyzed on a Thermo 291 

Finnigan Triton multicollector mass spectrometer (see Halama et al. 2013 for details of 292 

the analytical protocol). Information about reference materials analysed as well as 293 

normalization and correction procedures applied is given in the supplementary material.  294 

40Ar/39Ar dating of amphibole from syenite sample 6-8-12 was performed using a CO2 295 

laser stepwise heating technique at the Institute of Earth and Environmental Science, 296 

Universität Potsdam. The analytical protocol follows established procedures and a brief 297 

summary about procedural aspects, standards used and corrections applied is provided 298 

in the supplementary material. Calculation of ages and errors was performed following 299 

Uto et al. (1997) using the total 40K decay constant of 5.543 x 10-10 a-1. 300 

 301 

6. Results 302 

6. 1. Rock classification and major element geochemistry 303 

The Total Alkali versus Silica (TAS) diagram was used to classify the volcanic rocks 304 

from the OVU and CVU (Fig. 5a). For the intrusive rocks of the SYU, we used the 305 

classification diagram of De La Roche et al. (1980; Fig. 5b). Whole rock geochemical 306 
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analyses are presented in Table 1. All volcanic rocks of the TAC are classified as alkaline 307 

in the TAS diagram (Fig. 5a). Rocks of the OVU cover a wide compositional range from 308 

basaltic trachyandesite to phonotephrite, tephriphonolite and phonolite. The 309 

compositional range of the CVU rocks is more restricted, comprising trachyandesites and 310 

trachytes. The plutonic rocks of the SYU are classified as nepheline syenites and syenites 311 

based on the R1 and R2 parameters (Fig. 5b), which generally agrees with the 312 

petrographic observations.  313 

A further geochemical classification was carried out using various geochemical 314 

indices (Table 1) that allow an evaluation of petrogenetic relationships (Shand 1947; 315 

Frost et al. 2001; Frost and Frost 2008). The majority of the Tezhsar rocks are ferroan, 316 

alkalic, metaluminous and silica-undersaturated. The Alkalinity Index (AI; AI = Al-(K+Na) 317 

on a molecular basis) typically varies between 0 and 0.1, indicating that peralkaline rocks 318 

(AI<0) are largely absent at the TAC. Values for the feldspathoid silica-saturation index 319 

(FSSI; normative Q-[Lc+2(Ne+Kp)]/100, where Q = quartz, Lc = leucite, Ne = nepheline 320 

and Kp = Kaliophilite) mostly range from -0.6 to 0. The negative FSSI values demonstrate 321 

that the rocks are generally silica-undersaturated. Diagrams using the aluminium-322 

saturation index (ASI; molecular Al/(Ca-1.67P+Na+K) and the modified alkali-lime index 323 

(MALI; Na2O+K2O-CaO) classification demonstrate the predominantly metaluminous and 324 

alkalic nature of the TAC rocks (Fig. 5c, d). Peraluminous compositions (ASI>1) are very 325 

rare. Compared to the restricted compositions of SYU and CVU, the OVU shows the largest 326 

variations in A/NK ratios.  327 

Harker diagrams show a relatively smooth decrease of MgO, total FeO (FeOT) and CaO 328 

with increasing SiO2 contents (Fig. 6a-c). MgO contents are below 3 wt% for OVU rocks 329 

and SYU and CVU rocks have less than 1wt% MgO, demonstrating their highly evolved 330 
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character and suggesting substantial fractionation of mafic minerals prior to 331 

crystallisation. 332 

 333 

6.2. Trace element geochemistry 334 

Whole-rock trace element concentrations in the TAC are variable and show some 335 

significant enrichment in Sr (up to ~5000 ppm), Ba (up to ~4000 ppm), Zr (up to ~1000 336 

ppm) and ᎂREE (up to ~1200 ppm), which is typical for alkaline igneous rocks 337 

(Chakhmouradian and Zaitsev 2012). Incompatible trace elements such as Th and Zr 338 

show pronounced enrichment with increasing silica, in particular evident for SYU and 339 

CVU rocks (Fig. 6d, e). In contrast, Sr contents remain relatively constant for intermediate 340 

rocks with <58 wt% SiO2 and diminishing at higher silica contents (Fig. 6f). A chondrite-341 

normalised REE diagram (Fig. 7a) shows that both the volcanic and plutonic rocks of the 342 

TAC are characterised by a strong fractionation between LREE and HREE with La(N)/Yb(N) 343 

ratios predominantly around 10-40 but reaching values as high as 70. Absolute amounts 344 

of LREE are generally higher in the SYU (~200-1000 x chondrite) compared to the OVU 345 

and CVU (~40-500 x chondrite). Europium anomalies, defined as Eu/Eu*=
ா௨ಿξሺୗ୫ಿൈୋୢಿሻ, are 346 

moderately negative in the volcanic units OVU (0.80 Ȃ 1.08) and CVU (0.68 - 0.91). The 347 

majority of the SYU rocks have more pronounced negative Eu anomalies with Eu/Eu* 348 

values between 0.44 and 0.97 (Fig. 7a). On primitive mantle-normalised trace element 349 

diagrams (Fig. 7b-d), negative anomalies for Nb, Ta and Ti are the most prominent 350 

features in all three units. In contrast, a strong relative enrichment of Th and U compared 351 

to Rb and Ba is only significant in the SYU and CVU, but not discernible in the OVU.  352 

 353 

6.3 Sr and Nd isotopes 354 

Initial Sr and Nd isotope ratios of volcanic and plutonic rocks from the TAC, 355 
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recalculated to an age of 41 Ma, range from 0.7040 to 0.7052 and 0.51274 to 0.51283, 356 

respectively (Table 1). 19 of 20 samples fall within the range 0.7040 to 0.7044 for the 357 

initial 87Sr/86Sr ratio. The Nd isotopic compositions correspond to positive ɂNd values 358 

between +3.0 and +4.8 (Table 1).  359 

 360 

6.4 40Ar/39Ar geochronology 361 

One syenite sample (sample number 6-8-12) was dated by 40Ar/39Ar step heating. The 362 

total gas age is 42.1 ± 0.5 Ma (Fig. 8; Table 2). We use the following criteria outlined by 363 

Fleck et al. (1977) for defining a plateau age: (1) The plateau includes at least 50% of the 364 

total 39Ar released, (2) the ages of two contiguous steps in the plateau agree within 2s 365 

error, excluding the J value error, (3) the plateau consists of three steps or more, and (4) 366 

each degassing step contributing to the plateau contains >3% of the total 39Ar released. 367 

For the syenite sample 6-8-12, five plateau steps constituting 98.88% of the total 39Ar 368 

released can thus be used to define a plateau age of 41.0 ± 0.5 Ma (Fig. 8; Table 2). Using 369 

the plateau steps only, a normal isochron age of 41.3 ± 2.5 Ma with a 40Ar/36Ar intercept 370 

at 281 ± 58 is obtained. The corresponding inverse isochron yields an age of 41.2 ± 2.1 Ma 371 

with (40Ar/36Ar)i = 289 ± 57. The good agreement between the three ages underlines the 372 

reliability of the age determination, with the plateau age of 41.0 ± 0.5 Ma representing the 373 

most precise and hence preferred age. 374 

 375 

7. Discussion 376 

7.1 Comparison with regional magmatic signatures 377 

The alkaline and highly evolved nature of the TAC rocks makes them distinct from 378 

volcanic rocks outcropping in Armenia, which are typically transitional between alkaline 379 

and subalkaline. This includes the trachybasaltic to trachyandesitic Pliocene-Quaternary 380 
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rocks from northern Armenia (Neill et al. 2013, 2015), as well as rocks from the large 381 

polygenetic Aragats volcano (Connor et al., 2011) and from the Gegham, Vardenis and 382 

Syunik Volcanic Highlands in South Armenia (Karapetian et al. 2001; Sugden et al. 383 

submitted). A comparison with data for regionally related Miocene to Quaternary 384 

Armenian igneous rocks from the Yerevan and Shirak regions (Neill et al. 2015) reveals a 385 

general enrichment of the TAC rocks in almost all moderately to highly incompatible trace 386 

elements (Fig. 7b-d). Key features, such as negative Nb-Ta and Ti anomalies and a relative 387 

enrichment of LREE compared to HREE, are similar. Isotopically, the TAC rocks, which 388 

plot on the Sr-Nd mantle array, overlap with plutonic rocks from the Meghri-Ordubad 389 

pluton and with other Miocene to Quaternary volcanic rocks from Armenia (Fig. 9). 390 

Quaternary volcanic rocks from Aragats (Lebedev et al. 2007; Connor et al. 2011) and the 391 

Gegham Ridge (Lebedev et al. 2013) also overlap in their Sr-Nd isotopic compositions. 392 

This comparison reveals that there is a broad Sr-Nd isotopic homogeneity across a large 393 

area of the Armenian highlands from the Eocene to the Quaternary, indicating that similar 394 

source regions are involved in magma genesis. Broadly contemporary (47-40 Ma) post-395 

collisional magmatic rocks from the Eastern Pontides (NE Turkey), which are 396 

characterized by tholeiitic/calc-alkaline affinities enriched in LILE with pronounced 397 depletions in (FSEǡ also overlap in their isotopic composition ȋAydınçakır Ƭ Şen ʹͲͳ͵ȌǤ 398 

In contrast, extending the comparison to Eocene magmatic rocks in NW Iran reveals that 399 

post-collisional granites and syenites from the Sanandaj-Sirjan Zone and granitoids from 400 

the Urumieh-Dokhtar magmatic arc extend to significantly more radiogenic Sr-Nd isotope 401 

compositions (Fig. 9). 402 

 403 

7.2. Magma differentiation and magma source geochemistry  404 

Both volcanic and plutonic rocks of the TAC are evolved and only a few samples are 405 
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of intermediate composition (Fig. 5a, b). The influence of mixing, fractional crystallization 406 

and batch partial melting on the bulk geochemical composition of the rocks can be 407 

evaluated using incompatible trace elements with different bulk solid/liquid partition 408 

coefficients (Schiano et al. 2010). In the Rb/Nd vs. Rb diagram (Fig. 10a), the near-409 

horizontal trend for the majority of data points emphasizes the dominant role of fractional 410 

crystallization, whereas mixing and differences in batch partial melting would yield 411 

positive correlations (Schiano et al. 2010). This interpretation is supported by a curved 412 

overall trend in the Rb vs. Rb/V diagram (Fig. 10b), which is consistent with fractional 413 

crystallisation or mixing, but not with different degrees of partial melting (Schiano et al. 414 

2010). Moreover, the coherent trend of the Rb/Ba vs. Ba diagram (Fig. 10c) reflects 415 

feldspar fractionation and does not indicate any significant effects of hydrothermal 416 

alteration. A major role of role of crustal contamination processes can also be excluded 417 

based on the unradiogenic initial 87Sr/86Sr isotope ratios that remain relatively constant 418 

with increasing silica (Fig. 10d). Crustal contamination typically leads to an coupled 419 

increase in (87Sr/86Sr)i and SiO2, which is not observed for the TAC. The only sample with 420 

an elevated (87Sr/86Sr)i ratio (2-7-09) has a high Rb/Sr ratio of ~8 and might be affected 421 

by a larger uncertainty in recalculation of the initial value and/or post-magmatic Rb or Sr 422 

mobilization. There is also no indication of limestone assimilation, which would lead to a 423 

significant enrichment in CaO (Fig. 6c). 424 

Olivine is conspicuously absent in all TAC rocks, but the low MgO contents and the 425 

highly evolved character point to preceding fractionation of mafic minerals (Fig. 6). The 426 

decrease in CaO/Al2O3 coupled with increasing FeOt/MgO ratios, Eu anomalies that 427 

become more negative with increasing degree of differentiation, and decreasing Sr 428 

contents and Dy/Yb ratios with increasing SiO2 suggest a significant role of 429 

amphibole/clinopyroxene and plagioclase fractionation whereas garnet fractionation 430 
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was insignificant (Fig. 11a-c). Typically, the OVU rocks are more primitive than both CVU 431 

and SYU rocks. OVU rocks even retain Eu/Eu* values close to 1, pointing to lack of 432 

significant plagioclase fractionation (Fig. 11b).  433 

The pronounced depletions in HFSE (Nb, Ta, and Ti) in all TAC rocks emphasizes the 434 

influence of subduction processes on the mantle source (Fig. 7). Similar negative HFSE 435 

anomalies have been observed in alkaline rocks of the Longbaoshan Complex, North China 436 

Craton (Lan et al. 2011) and carbonatites from east Tibet in the Himalayan collision zone 437 

(Hou et al. 2006) and were attributed to subduction processes influencing the magma 438 

source regions prior to continental collision. In addition, various trace element indicators 439 

for source enrichment processes support the notion that the OVU and the CVU are 440 

geochemically distinct (Fig. 11d-f). The OVU shows elevated Sm/Yb and Ba/La ratios, as 441 

well as relatively low La/Sm and Th/Yb ratios compared to the CVU (Fig. 11d-f). 442 

Collectively, these geochemical features of the OVU are interpreted as a signature of 443 

moderate fluid enrichment via slab dehydration inherited from earlier subduction events. 444 

Both CVU and OVU rocks share high Ba/Nb ratios, similar to arc volcanic rocks in general 445 

(Fig. 12a). There is little overlap between the two groups as OVU rocks are additionally 446 

characterized by, on average, higher La/Nb ratios and Ba/Nb ratios >100, suggesting a 447 

temporal evolution towards a decreasing subduction influence from the early OVU to the 448 

late stage CVU. The more scattered trend towards lower Ba/Nb ratios in the syenites and 449 

nepheline syenites is likely a result of progressive alkali feldspar fractionation and should 450 

not be considered as the parental magma signature. The felsic plutonic rocks from the SYU 451 

tend to exhibit a larger geochemical variability when compared with the volcanic rocks, 452 

which is likely related to the fact that some show cumulate textures and may not 453 

represent melt compositions. The CVU, in contrast, has compositions that are more tightly 454 

clustered, with a faint indication of source enrichment from subducted sediments. 455 
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Mechanisms of enrichment of the mantle source can be distinguished using [Hf/Sm]N and 456 

[Ta/La]N ratios (Fig. 12b), where TAC rocks are characterized by a subduction 457 

metasomatism signature, clearly distinct from  carbonatitic metasomatism.  458 

Sr-Nd isotopic compositions are broadly overlapping with Eocene to Pliocene 459 

magmas from the Meghri-Ordubad pluton and Pliocene to Quaternary volcanism in 460 

central and northern Armenia, pointing to only minor spatial variations in the respective 461 

mantle source regions (Fig. 10). The source of the TAC magmas is dominated by a depleted 462 

mantle component and crustal contamination is essentially absent, as all of the possible 463 

crustal contaminants would greatly enhance the radiogenic isotope signatures of the 464 

magmas, which is not the case. Silica-undersaturated alkaline rocks commonly have 465 

isotopic compositions that suggest a magma source in the mantle (Dunworth and Bell 466 

2001; Kramm and Kogarko 1994). For instance, nepheline syenites from the Gardar 467 

Province (Greenland) show Nd isotopic compositions typical for mantle-derived rocks 468 

without any significant crustal assimilation (Halama et al. 2005; Marks et al. 2004). 469 

Therefore, evolved silica-undersaturated rocks are interpreted as products of 470 

differentiation from more primitive nephelinitic, basanitic or alkali basaltic magmas 471 

derived from the upper mantle (Kramm and Kogarko 1994; Trumbull et al. 2003). 472 

Basanitic volcanism is common to the south of TAC in the Syunik Volcanic Highland 473 

(Sugden et al. submitted) near the Armenia-Azerbaijan-Iran border region.  474 

The trace element evidence for a subduction modifications and the Sr-Nd isotopic 475 

evidence for previous melt extraction suggest that the TAC magmas are predominantly 476 

derived by low degrees of partial melting from a lithospheric mantle source which has 477 

been affected by pre-Eocene subduction i.e., prior to post-collisional melt generation. This 478 

magma generation model is also the preferred model for volcanism in East Anatolia 479 

(Keskin 2003), and similar geochemical features in volcanic rocks from the Eastern 480 
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Pontides (Artvin Province) contemporary (47-40 Ma) to emplacement of the TAC were 481 

also interpreted to be derived from a mantle source that had experienced metasomatism 482 

by slab-derived fluids ȋAydınçakır Ƭ Şen ʹͲͳ͵Ȍ. Post-collisional magmatic processes are 483 

commonly affected by prior subduction processes and LILE-enriched mantle sources are 484 

characteristic for these rocks (Bonin et al. 1998), typically resulting in calc-alkaline 485 

magmatic suites (Harris et al. 1986). The TAC represents an unusual case insofar as the 486 

post-collisional magmatic rocks are alkaline in character but also derive from a 487 

subduction-modified mantle source. 488 

 489 

7.3. The age of the Tezhsar Alkaline Complex in a regional context 490 

The mid-Eocene age of 41.0 ± 0.5 Ma falls into a time of widespread magmatism in the 491 

Lesser Caucasus region, which lasted from ~49 to ~38 Ma and comprised the 492 

emplacement of alkaline and nepheline-bearing gabbros, monzonites and syenites as well 493 

as gabbro-diorite-granodiorite-syenogranite complexes and granites (Ghukasyan et al. 494 

2006; Melkonyan et al. 2008; Moritz et al. 2016). The magmatic activity was accompanied 495 

by porphyry-type Cu-Mo mineralization that was dated at 44-40 Ma by Re-Os analyses of 496 

molybdenite (Moritz et al. 2016). Slightly younger alkaline magmatism is represented by 497 

the Bunduk alkaline complex (38-32 Ma) located ~15 km northeast of the TAC (Abovyan 498 

et al., 1981; Meliksetian, 1989). This pluton intrudes the Middle-Late Eocene volcanic 499 

suite of the Bazum ridge and the Bazum gabbro-granitoid intrusive complex, exhibiting 500 

an elongate morphology, parallel to the segment of Pambak-Sevan fault.  501 

Regionally, broadly contemporaneous magmatic activity is also recorded in the 502 

Talysh mountain range (Azerbaijan/Iran) at around 41-38 Ma (Vincent et al. 2005), in the 503 

Eastern Pontides (Turkey) at ~46-40 Ma ȋAydınçakır and Şen ʹͲͳ͵) and in western 504 

Georgia at ~47-41 Ma (Lebedev et al. 2009). Further to the SE in the Zagros orogen, ~41 505 
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Ma old granites and syenites occur in the Piranshahr massif (Mazhari et al. 2009) and ~40 506 

Ma granitoids in the Urumieh-Dokhtar arc (Kazemi et al. 2018). The peak of subduction-507 

related magmatism in Iran is also close to 40 Ma (Allen and Armstrong 2008), and a 508 

magmatic flare-up lasting ~18 million years from 55 to 37 Ma has been postulated in the 509 

Urumieh-Dokhtar belt and the Alborz Mountains in Iran (Verdel et al. 2011). Throughout 510 

the Eocene, the plate convergence between the Arabian and Eurasian plates was 511 

proceeding at rates of 2-3 cm/year (McQuarrie et al. 2003). Following the initiation of the 512 

Arabia-Eurasia collision, arc magmatism declined in the Late Eocene (Allen and 513 

Armstrong 2008). However, convergence was relatively rapid throughout Eocene-514 

Oligocene time, and only slowed since Early Miocene (Rosenbaum et al. 2002).  515 

The age of the TAC falls within this period of extensive magmatism during 516 

convergence between the Arabian and Eurasian plates, and its geochemical 517 

characteristics demonstrate a subduction-related origin. This subduction signature is 518 

inherited from prior northward subduction of the Neotethys ocean underneath the 519 

Eurasian margin, leading to a preconditioning of the mantle (Verdel et al. 2011). Typical 520 

calc-alkaline, subduction-related Eocene magmatism typical for active arc environments 521 

is preserved in the oldest granitoids (49-44 Ma) of the Meghri-Ordubad pluton (Moritz et 522 

al. 2016). The Lesser Caucasus experienced extension and crustal thinning at around 40 523 

Ma causing decompression melting of the hydrated, subduction-influenced lithospheric 524 

mantle (Verdel et al. 2011), which imparted its geochemical signature onto the TAC 525 

magmas. Middle Eocene (ca. 49Ȃ40 Ma) extension, accompanied by magmatism, also 526 

occurred in Iran (Ballato et al. 2011). The extension-related magmatism in an overall 527 

setting of convergence (Rosenbaum et al. 2002) is caused by the rollback of the Neotethys 528 

slab (Vincent et al. 2005; Verdel et al. 2011). 529 
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The oldest rocks at TAC in the OVU show some geochemical characteristics 530 

reminiscent of a dehydration fluid signature in arc magmatic rocks (high Ba/Nb, Ba/La 531 

ratios; Figs. 7 and 11e, f). A clear arc signature, most evident in the pronounced negative 532 

Nb-Ta anomalies, is present in all of the TAC rocks, similar to the Meghri-Ordubad pluton 533 

at the Armenia-Iran border. However, the TAC rock compositions are distinct as they are 534 

not calc-alkaline but alkaline (Fig. 5) with a pronounced enrichment in incompatible trace 535 

elements (e.g. up to 5000 ppm Sr and typically 100-500 ppm Rb compared to <1000 ppm 536 

Sr and 10-200 ppm Rb in rocks from Meghri). This geochemical character is not due to 537 

long-lived differences in the mantle source compared to Meghri-Ordubad pluton since the 538 

Sr-Nd isotopic characteristics are similar (Fig. 9). Instead, smaller degrees of melting 539 

and/or a metasomatic enrichment episode(s) immediately prior to magma generation 540 

have to be invoked. The very pronounced subduction signature in the TAC supports the 541 

predominant melting of hydrated and HFSE-depleted lithospheric mantle, with 542 

subordinate contributions from upwelling astenospheric mantle (Verdel et al. 2011). The 543 

occurrence of these alkaline rocks in a general setting of convergence is unusual, but can 544 

be attributed to periods of localized extension in the Lesser Caucasus. The overall 545 

convergence throughout Eocene and Oligocene is well established based on kinematic 546 

data and modelling (Rosenbaum et al. 2002), but if the lithospheric structures allowed 547 

ascent of mantle-derived magmas via localized faulting and/or rift tectonics alkaline 548 

magmatism can develop even in collision zones (Harris et al. 1986). Development of an 549 

extensional regime along this sector of Lesser Caucasus was previously suggested to 550 

explain the alkaline character of Paleogene magmatic rocks, particularly those within 551 

Armenia (Kogarko et al., 1995).  552 

 553 

7.4. Petrogenesis of pseudoleucite phonolites 554 
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Based on optical microscopy and geochemical analyses including XRD, 6 types of 555 ǲepileucitesǳ and ͷ types of pseudoleucites were distinguished by their mineral 556 

associations, host rocks and crystallographic habit (Meliksetian 1971, ͳͻͺȌǤ ǲEpileucitesǳ 557 

are considered to be a result of post-magmatic hydrothermal alterations, whereas 558 

pseudoleucites are considered to be a result of disintegration of metastable K-Na leucite 559 

into mixture of orthoclase and nepheline under subsolidus conditions (T=600°C) in late 560 

magmatic stage (Meliksetian 1978; Gittins et al. 1980). Yagi and Gupta (1978) mention 561 

that the K2O/Na2O ratio of 4.3 in pseudoleucites of porphyry tinguaite dykes of TAC is the 562 

highest among those studied worldwide highlighting the importance of resolving 563 complexǯs evolutionary story to better understand the conditions of pseudoleucite 564 

paragenesis. 565 

The investigated leucite pseudomorphs occur in a phonolite (Fig. 3c-f). Relicts of 566 

primary leucite are lacking, and they are generally rarely observed in leucite 567 

pseudomorphs. The leucite pseudomorphs mainly consist of alkali feldspar but do not 568 

contain nepheline, instead comprising abundant cancrinite (Fig. 13b-c). Different theories 569 

about the genesis of leucite pseudomorphs were put forward (see Edgar, 1984, and 570 

references therein), including (1) subsolidus breakdown of leucite to orthoclase and 571 

nepheline, (2) reaction of leucite with a Na-rich liquid and (3) alkali ion exchange 572 

reactions between leucites and Na-rich glass or fluid. We will briefly discuss these 573 

theories in relation to the leucite pseudomorphs in the phonolite.  574 

Subsolidus breakdown of common K-rich leucite would produce alkali feldspar and 575 

kalsilite, hence a process to cause relative enrichment of Na is required to explain the 576 

occurrence of Na-bearing phases in pseudoleucites. Leucite solid solutions with up to 40 577 

wt.% NaAlSi2O6 were produced experimentally, and these experienced subsequent 578 

breakdown into nepheline and alkali feldspar (Fudali 1963). However, natural leucite 579 



 25 

does not contain excess amount of sodium to form this type of intergrowth on 580 

decomposition (Viladkar 2010). The mineralogy of the leucite pseudomorph, comprising 581 

abundant Na-bearing phases such as cancrinite and analcime (Fig. 13b-c), suggest that 582 

they are derived from a Na-rich precursor phase. Hence, subsolidus breakdown of natural 583 

K-rich leucite alone cannot explain their occurrence, but formation of a metastable Na-584 

rich leucite before breakdown might be possible (Taylor and MacKenzie 1975). 585 

The pseudoleucite reaction is a reaction of leucite with a Na-rich magma to form alkali 586 

feldspar and nepheline in the system NaAlSiO4 Ȃ KAlSiO4 Ȃ SiO2 (Bowen and Ellestad 1937; 587 

Edgar 1984). This reaction terminates the leucite stability field and leucite disappears by 588 

reaction with the magma (Bowen and Ellestad 1937). The TAC leucite pseudomorphs, 589 

however, are characterized by a well-preserved deltoidal icositetrahedral crystal habit, 590 

reflecting the external shape of the precursor phase. It is difficult to envisage this reaction 591 

to fully replace primary leucite without modifying the morphology of the leucites (Taylor 592 

and MacKenzie 1975), which is so beautifully preserved (Fig. 3). Moreover, various minor 593 

mineral phases that contain additional elements occur within the pseudomorphs. Some 594 

of these (e.g. clinopyroxene, apatite) may be explained as primary magmatic inclusions, 595 

but others (analcime, calcite) texturally appear as secondary phases (Fig. 13b-c). This 596 

suggests that explaining the genesis of the leucite pseudomorphs based on the phase 597 

relations in this petrogenetic system is an oversimplification (Edgar 1984).  598 

Alkali ion exchange reactions between leucites and Na-rich glass or fluid was 599 

proposed as mechanism to produce pseudomorphs after leucite that are similar in 600 

composition to natural pseudoleucites (Taylor and MacKenzie 1975). Fluid-induced 601 

reactions would facilitate the increase in Na content and formation of Na-dominated 602 

phases, such as cancrinite and analcime in TAC. Cancrinite is assumed to replace 603 

nepheline due to a reaction between nepheline and volatile-rich melts or fluids, a common 604 
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late magmaticȂ hydrothermal process (Martins et al. 2017). A reaction with fluids was 605 

also used to explain pseudoleucite with intergrowth of alkali feldspar, sericite and 606 

cancrinite from the Gardar Province, Greenland (Hesselbo 1986) and the replacement of 607 

nepheline by analcime, cancrinite, sodalite and muscovite in pseudoleucite from India 608 

(Viladkar 2010). Cancrinite is also an important constituent of the pseudoleucite 609 

phenocrysts from Spotted Fawn Creek (Yukon Territory, Canada), where also garnet, 610 

biotite, calcite, muscovite and plagioclase occur as inclusions within pseudoleucite 611 

(Tempelman-Kluit 1969). Removal of K, addition of Na and water was attributed to the 612 

entry of a fluid phase to permit the chemical exchange (Tempelman-Kluit 1969). The 613 

presence of cancrinite in the TAC leucite pseudomorphs bears evidence for interaction 614 

with a H2O-CO2-bearing fluid, possibly with minor amounts of S and Cl, as the general 615 

formula for cancrinite is (Na,Ca,K)6Ȃ8Al6ȂxSi6+xO24(CO3,SO4,Cl,OH)1-2·nH2O with x << 1 and 616 

n = 1Ȃ5 (Martins et al. 2017) illustrates. Given the scarcity of analcime in the TAC 617 

pseudoleucites, a conversion of primary leucites into analcime via reaction with Na-rich 618 

fluids as proposed for pseudoleucites from a phonolite dyke in Bohemia (Pivec et al. 2004) 619 

seems unlikely. The texture of the TAC leucite pseudomorphs pseudoleucites has 620 resemblance to a ǲpalisade textureǳǡ in which orthoclase laths near the margins of the 621 

pseudomorphs are oriented at right angles to the crystal boundaries (Tempelman-Kluit 622 

1969). These textures can be interpreted to form by subsolidus reactions in response to 623 

increasing fluid pressure when pervasive fluids come in contact with the leucite (Hesselbo 624 

1986). All these lines of evidence point to a late/post-magmatic hydrothermal alteration 625 

for the formation of the leucite pseudomorphs in the investigated phonolite, and they can 626 be referred to as ǲepileucitesǳǤ Complementary evidence for fluid-rich conditions during 627 

the late to post-magmatic evolution of the TAC are the presence of pegmatites and the 628 

widespread alteration in the CVU rocks. 629 
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 630 

8. Conclusions 631 

 A combination of small degrees of partial melting and pre-conditioning of the 632 

mantle source by slab dehydration and subsequent metasomatic processes can 633 

explain the alkaline, subduction-influenced geochemical character of the TAC. 634 

 The Sr-Nd isotopic data demonstrate a mantle source with negligible crustal 635 

influence. There is a broad isotopic overlap with Eocene to Quaternary magmatism 636 

in other regions of Armenia, suggesting the regional presence of isotopically 637 

similar mantle source regions. 638 

 The emplacement of the syenitic units of the TAC was dated by 40Ar/39Ar at 41.0 ± 639 

0.5 Ma. The emplacement of the TAC can thus be linked to a previously proposed 640 

model of Eocene Neotethyan slab rollback driving decompression melting and 641 

extension-related magmatism in Iran and Azerbaijan within a tectonic setting of 642 

general convergence between the Arabian and Eurasian plates. 643 

 The formation of leucite pseudomorphs is related to initial leucite crystallization 644 

from an evolved, silica-undersaturated magma followed by subsolidus breakdown 645 

and interaction with a late to post-magmatic fluid. The magmatic-hydrothermal 646 

fluid percolating through the rocks caused alteration of nepheline into cancrinite 647 

and amphibolitisation of clinopyroxenes. This fluid overprint may be responsible 648 

for the plethora of REE-bearing phases described previously within the TAC and 649 

hence be a crucial factor in the (re)distribution of rare elements in alkaline igneous 650 

rocks.    651 

 652 
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Figure captions 1161 

 1162 

Figure 1 Ȃ (a) Geotectonic framework of the Caucasus region showing major 1163 

tectonostratigraphic provinces, associated terranes and the location of Tezhsar Alkaline 1164 

Complex (star) about 50 km north of Yerevan (modified after Adamia et al., 2011, and 1165 

Rezeau et al., 2017). (b) Palaeogeographical reconstruction of the Eurasian-Arabian 1166 

collision in the Ypresian (52Ma) just before formation of TAC (modified after Mederer et 1167 

al., 2013). SAB Ȃ South Armenian Block, SAS Ȃ Sevan-Akera Suture, BZS Ȃ Bitlis-Zagros 1168 

Suture, TAB ȂTauride-Anatolian Block, NTP Ȃ  Northern Tethyan Province, STP Ȃ Southern 1169 

Tethyan Province. 1170 

 1171 

Figure 2 Ȃ Geological map of the Tezhsar Alkaline Complex. The inset show a simplified 1172 

subdivision of the TAC which is used for the geochemical diagrams of this study. 1173 

 1174 

Figure 3 Ȃ Field relations (a, b) and hand specimen photographs (c, d) of the TAC. (a) 1175 

Light coloured syenite intruding into dark grey volcanic rocks of the Outer Volcanic Unit. 1176 

(b) Coarse-grained nepheline syenite pegmatite comprising dark patches of garnet and 1177 

amphibole. (c) Phonolite handspecimen with idiomorphic leucite pseudomorphs 1178 

reaching up to 2 cm in diameter. (d) Polished surface of a pseudoleucite phonolite. (e, f) 1179 

Hand specimen of pseudoleucite megacrysts (up to ~8cm in diameter) as deltoidal 1180 

icositetrahedra found in TAC phonolites. Samples are from old collections of B. 1181 

Meliksetian and Z. Chibukhcyan. 1182 

 1183 

Figure 4 Ȃ Photomicrographs illustrating characteristic features of rocks from the TAC in 1184 

plane polarized (PPL) and cross-polarized (XPL) light. (a) Plagioclase (Pl) phenocrysts in 1185 
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feldspathic matrix of a basaltic trachyandesite, OVU (XPL). (b) Biotite (Bt) surrounded by 1186 

clinopyroxene (Cpx) with accessory apatite (Ap) in trachyte, CVU (PPL). (c) 1187 

Clinopyroxene and titanite (Ttn) in nepheline syenite, SYU (PPL). (d) Amphibole (Amp) in 1188 

syenite, SYU (PPL). (e) Sodalite (Sdl) and nepheline (Nph) in nepheline syenite, SYU (PPL). 1189 

(f) Amphibolitization of clinopyroxene in syenite, SYU (PPL) (g) Garnet (Grt) in syenite 1190 

with inclusions of alkali feldspar, SYU (PPL) (h) Garnet-amphibole cluster with alkali 1191 

feldspar and nepheline in pegmatitic nepheline syenite, SYU (PPL). 1192 

 1193 

Figure 5 Ȃ (a) Total Alkali-Silica (TAS) classification diagram of the volcanic units (OVU 1194 

and CVU) of the TAC. Alkaline-subalkaline division from Irvine & Baragar (1971). (b) R1-1195 

R2 classification diagram (from De La Roche et al., 1980) of the intrusive SYU unit of the 1196 

TAC. (c) A/NK vs A/CNK diagram (after Shand, 1947) based on the molecular proportions 1197 

of Al (A), Na (N), K (K) and Ca (C), showing that the rocks of the TAC can largely be 1198 

classified as metaluminous. (d) Modified Alkali-Lime Index (MALI, after Frost and Frost, 1199 

2008) plotted as a function of SiO2 content for the TAC rocks that are generally alkalic in 1200 

composition. Comparative data for Eocene magmatic rocks from the Talysh mountains, 1201 

Azerbaijan (Vincent et al., 2005 Ȃ pink diamonds) and Pliocene-Quaternary volcanic rocks 1202 

from central and northern Armenia (Neill et al., 2013, 2015 Ȃ orange field). 1203 

 1204 

Figure 6 Ȃ Harker diagrams of the TAC samples for selected major (a-c) and trace (d-f) 1205 

elements. The limestone assimilation trend in (c) was calculated after Costa et al. (2013) 1206 

using limestone composition WGZ-3 from Zhang et al. (2017). All symbols as in Fig. 5.  1207 

 1208 

Figure 7 Ȃ (a) Chondrite-normalised REE diagram highlighting more pronounced LREE 1209 

fractionation and negative Eu anomalies within the SYU relative to the volcanic units of 1210 
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the TAC. Normalisation values from Boynton et al. (1984). (b-d) Mantle-normalised trace 1211 

element diagrams of rocks from the TAC; (b) Ȃ OVU, (c) Ȃ SYU, (d) Ȃ CVU.  Normalisation 1212 

values after McDonough & Sun, 1995. Comparative data from Neill et al. (2015) for 1213 

Pliocene-Quaternary volcanic rocks from central and northern Armenia. 1214 

 1215 

Figure 8 Ȃ 40Ar/39Ar age spectrum plot for the amphibole separate from syenite sample 1216 

6-8-12. 1217 

 1218 

Figure 9 Ȃ Sr-Nd isotope diagram of the TAC data (red squares) in comparison to other 1219 

Eocene-Quaternary igneous rocks in the Lesser Caucasus and adjacent regions. The 1220 

mantle array is from Lebedev et al. (2007) after DePaolo & Wasserburg (1979). Data 1221 

sources: (I) Ȃ Moritz et al. (2017); (II) Ȃ Aydınçakçır Ƭ Şenǡ (2013); (III) Ȃ Kazemi et al. 1222 

(2018); (IV) Ȃ Mazhari et al. (2009); (V) Ȃ Connor et al. (2011); (VI) Ȃ Kheirkhah et al. 1223 

(2009); (VII) Ȃ Neill et al. (2013; 2015) . Literature data were recalculated using the 87Rb 1224 

decay constant of 1.3972 x 10-11 a-1. 1225 

 1226 

Figure 10 Ȃ TAC samples plotted in various diagrams to evaluate effects of distinct 1227 

magmatic processes. (a) Rb/Nd vs. Rb diagram (after Schiano et al. 2010) where 1228 

horizontal trends reflect fractional crystallization and positive correlations can be caused 1229 

by mixing or batch partial melting. (b) Rb vs. Rb/V diagram (after Schiano et al. 2010) 1230 

where curved trends, as observed for the TAC rocks, reflect fractional crystallisation or 1231 

mixing. (c) Rb/Ba vs. Ba diagram exhibiting a smooth trend indicative of feldspar 1232 

fractionation. (d) Initial 87Sr/86Sr isotope ratios of the TAC samples plotted against SiO2 1233 

content. All samples except one plot in a very narrow range of (87Sr/86Sr)i ratios and there 1234 

is no clear trend with increasing SiO2 content. The sample with the elevated (87Sr/86Sr)i 1235 
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ratio (2-7-09) has a high Rb/Sr ratio of ~8 and might be affected by post-magmatic Rb 1236 

and/or Sr mobilization and a larger uncertainty in recalculation. 1237 

 1238 

Figure 11 Ȃ Major and trace element indicators for fractionation and source enrichment 1239 

processes. (a) CaO/Al2O3 vs FeOt/MgO diagram showing fractionation trends for 1240 

plagioclase, olivine and amphibole(am)/clinopyroxene(cpx) after Moritz et al. (2016). (b) 1241 

Eu/Eu* vs SiO2 diagram depicting negative Eu anomalies in SYU and CVU samples, 1242 

indicating plagioclase fractionation. (c) Dy/Yb vs SiO2 diagram with fractionation trends 1243 

for garnet and amphibole after Davidson et al. (2007). (d) La/Sm vs Sm/Yb diagram with 1244 

approximate mineral stability thresholds of in mantle melt residues after Mamani et al. 1245 

(2010). Note the distinct signatures for the two volcanic units of TAC. (e) Ba vs Nb/Y 1246 

diagram displaying trends for fluid enrichment due to slab dehydration and mantle-1247 

derived melt enrichments after Kepehinskas et al. (1997). Slab fluid enrichment is 1248 

prominent in the OVU rocks. (f) Th/Yb vs Ba/La diagram with trends for enrichment from 1249 

subducted slab sediments and slab fluids from Woodhead et al. (2001). Elevated Ba/La 1250 

ratios in OVU rocks suggest source enrichment via slab fluids. 1251 

 1252 

Figure 12 Ȃ Trace element ratio diagrams of TAC rocks. (a) Ba/Nb vs La/Nb. Alkali 1253 

feldspar fractionation trend highlighted as a result of Ba depletion. Field boundaries after 1254 

Jahn et al. (1999). (b) (Ta/La)N vs (Hf/Sm)N. Influence of subduction metasomatism is 1255 

suggested by strongly decreasing (Ta/La)N ratios. Field boundaries after La Flèche et al. 1256 

(1998). Comparative data for Eocene magmatic rocks from the Talysh mountains, 1257 

Azerbaijan (Vincent et al., 2005 Ȃ pink diamonds) and Pliocene-Quaternary volcanic rocks 1258 

from central and northern Armenia (Neill et al., 2013, 2015 Ȃ orange field).  1259 

 1260 
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Figure 13 Ȃ Pseudoleucite from the OVU of the Tezhsar Complex. (a) Scanned thin section 1261 

image of a single pseudoleucite crystal. (b,c) Back-scattered electron images of (b) the 1262 

boundary between matrix and pseudoleucite and (c) the interior of the pseudoleucite. 1263 

Note the presence of cancrinite (Ccn) and analcime (Anl), other mineral abbreviations as 1264 

in Figure 4.  1265 

 1266 
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Table 1: Whole-rock geochemical data for samples from the Tezhsar Alkaline Complex

Lithological Unit OVU OVU OVU OVU OVU OVU OVU OVU OVU OVU OVU OVU OVU SYU SYU SYU SYU SYU SYU SYU SYU SYU SYU SYU SYU

Sample # 1-2-15 3-1-15 3-2-15 3-3-15 6-1-12 6-2-12 10-43-08 10-44-08 2-8-09 2-11-09 2-12-09 2-13-09 3-2-09 1-4-15 2-1-15 2-8b-15 2-11-15 3-5-15 6-3-12 6-4-12 6-5-12 6-8-12 6-9-12 6-10-12 10-45-08

Field Reference 27 42 43 44 18 19 8 9 2 5 6 7 11 29 30 37 40 46 20 21 22 24 25 26 10

Analysed at BV BV BV BV P P RHL RHL RHL RHL RHL RHL RHL BV BV BV BV BV P P P P P P RHL

Easting 44.58448 44.57898 44.57822 44.57707 44.53700 44.53700 44.58325 44.58325 44.59320 44.59755 44.59755 44.59862 44.62817 44.58339 44.58454 44.58279 44.59697 44.57256 44.56770 44.56770 44.57538 44.59230 44.57735 44.58232 44.58325

Northing 40.71049 40.72075 40.72034 40.71685 40.66112 40.66112 40.63900 40.63900 40.63365 40.64063 40.64063 40.64185 40.65332 40.70836 40.70469 40.68375 40.69765 40.71180 40.68247 40.68247 40.68107 40.67115 40.69195 40.68042 40.63900

SiO2 52.92 52.65 51.24 55.57 55.89 56.98 53.90 56.58 56.81 54.78 57.93 59.08 52.13 59.22 60.10 63.15 57.39 56.26 60.86 62.41 59.94 56.89 64.47 59.64 58.66

TiO2 0.60 0.45 0.59 0.46 0.54 0.50 0.57 0.43 0.54 0.30 0.43 0.48 0.74 0.73 0.46 0.36 0.38 0.35 0.37 0.40 0.36 0.40 0.36 0.57 0.82

Al2O3 21.48 20.29 18.24 19.09 20.12 20.66 19.95 20.26 19.91 21.73 19.72 20.61 20.75 19.03 19.35 17.98 19.90 20.72 19.26 18.42 18.56 19.29 17.81 19.24 20.07

Fe2O3* 1.64 1.02 1.70 1.22 1.36 0.96 1.66 1.32 1.72 0.63 1.32 1.30 2.60 0.88 0.84 0.77 0.77 0.74 0.86 0.65 0.94 1.05 0.65 0.89 1.07

FeO* 3.45 2.15 3.57 2.57 2.86 2.02 3.49 2.78 3.61 1.33 2.77 2.72 5.45 1.85 1.77 1.62 1.62 1.56 1.81 1.37 1.98 2.20 1.35 1.87 2.25

MnO 0.17 0.22 0.17 0.22 0.14 0.11 0.19 0.20 0.15 0.13 0.11 0.19 0.23 0.22 0.16 0.16 0.15 0.14 0.16 0.12 0.22 0.17 0.07 0.14 0.19

MgO 2.00 0.47 2.80 0.93 0.58 0.44 1.21 0.96 1.83 0.21 0.79 0.77 2.62 0.38 0.35 0.34 0.33 0.45 0.44 0.20 0.59 0.87 0.12 0.40 0.62

CaO 7.76 3.17 5.37 3.57 1.70 2.11 4.43 2.55 4.29 1.72 2.73 2.36 6.71 1.84 1.87 1.24 2.67 2.24 1.80 1.19 2.22 3.13 0.47 2.49 2.02

Na2O 4.32 4.03 3.93 5.34 5.30 2.01 5.26 4.41 6.07 5.88 5.36 1.90 2.90 4.42 5.66 6.49 5.28 3.59 5.25 4.21 4.86 5.15 6.47 4.76 4.68

K2O 3.38 10.00 5.46 7.06 7.88 10.73 6.23 8.32 4.65 10.16 6.49 10.52 5.28 8.80 7.83 5.97 7.02 10.67 6.55 8.82 7.10 6.55 6.33 7.39 8.82

P2O5 0.45 0.09 0.41 0.31 0.21 0.17 0.30 0.17 0.36 0.05 0.21 0.14 0.54 0.05 0.05 0.09 0.04 0.07 0.09 0.04 0.13 0.20 0.03 0.06 0.06

LOI 0.92 3.88 4.98 2.70 1.73 1.73 4.19 3.11 1.22 2.98 2.78 1.56 0.85 1.63 1.21 0.72 3.23 2.45 1.50 1.28 2.01 3.08 1.12 1.59 0.99

SUM 99.09 98.42 98.46 99.04 98.31 98.42 101.39 101.09 101.17 99.91 100.65 101.62 100.80 99.05 99.65 98.89 98.78 99.24 98.95 99.10 98.91 98.99 99.25 99.04 100.25

Ba 1060 3010 1340 1760 1570 3710 1510 991 1140 460 1110 3940 932 60 144 472 72 272 655 481 1030 891 87 150 208

Co 30.1 17.1 24.9 21 na na 9.08 6.34 9.23 3.43 6.23 7.35 18.1 13.1 12.7 30.2 77.2 13.1 na na na na na na 7.4

Cr bdl bdl bdl bdl 23 10 2.81 3 2.28 1.65 2.89 3.96 26 bdl bdl bdl bdl bdl 21 bdl 12 14 12 bdl 3

Cs 2.1 3 0.9 2.9 na na 6.47 5.63 1.79 3.78 1.34 1.7 5.88 4.8 3.4 4.3 4.7 9.8 na na na na na na 2.23

Ga 18 15.7 15.3 16.4 15 17 na na na na na na na 18.7 20.9 21.7 19.5 14.2 19 20 19 20 23 19 na

Hf 2.9 5.1 2.8 4.5 23 10 3.01 11 2.06 3.03 3.24 3.01 2.14 11 11.7 22.4 11 3.4 21 bdl 12 14 12 bdl 6.27

Nb 6.8 18.6 6.6 11.5 12 13 10.5 12.3 8.63 19.2 10.5 11.4 6.95 75.1 61.7 49.5 45.9 16.2 41 59 32 31 45 56 55

Rb 83.2 243 102 191 204 160 157 190 110 321 137 193 186 233 235 261 247 452 251 305 257 197 303 236 175

Sc bdl bdl bdl bdl 2.9 1.9 3.45 2.19 5.73 0.297 2.75 1.85 13.1 bdl bdl bdl bdl bdl 1.7 1.3 3.7 4.2 2.9 2.1 1.64

Sn 1 bdl bdl bdl na na na na na na na na na 2 2 2 1 bdl na na na na na na na

Sr 1410 4260 1460 1380 2850 4820 2010 1830 1290 956 1230 3520 1280 885 330 384 2300 959 757 1030 1280 1710 42 1480 817

Ta 0.4 0.9 0.4 0.6 na na 0.445 3.28 0.543 0.815 0.448 0.474 0.286 3.7 3.1 2.1 2.6 0.9 na na na na na na 3.58

Th 8.6 20.9 9 15.7 na na 10.8 14.7 7.56 18.4 11.6 11.7 7.08 113 124 75.3 77.5 11.6 na na na na na na 26.6

U 2.9 6.9 2.7 7 na na 3.43 5.21 4.07 6.57 4.53 3.64 3.16 9.7 16.7 19.3 15.5 2.6 na na na na na na 5.71

V 155 202 212 152 162 145 169 124 160 52.6 112 138 250 84 68 55 63 84 67 55 84 106 35 79 109

Zr 126 271 126 201 263 344 153 189 148 204 166 180 123 494 527 1080 629 168 737 1110 547 549 471 547 304

Y 20.7 39 20.8 33 22 21 28.4 28.7 24.9 26.4 26.3 29.6 23.6 68.7 53 50.3 38 20.8 38 41 29 26 44 31 66

La 36.7 114 42.9 77.8 70 63 72.5 72.9 53.5 80.2 61.2 79.1 45.6 319 244 167 161 81 140 81 71 104 204 75 186

Ce 67.8 199 76.1 138 127 120 125 124 89.9 130 104 135 79.1 558 396 247 264 135 204 224 142 175 328 174 354

Pr 8 22.1 9.1 15.6 14 13 14 13.6 10.2 13.4 11.7 14.8 9.58 59.6 38.5 24.4 26.7 15 23 26 15 17 28 18 39.3

Nd 31.3 78.3 35 58.1 56 54 56.2 53.1 41.1 48.5 46.1 59.5 40 190 117 72.6 84.4 52.4 85 103 61 69 113 70 155

Sm 6 13.5 6.5 10.7 9.3 8.8 10.3 9.7 7.92 8.67 8.49 11.3 8.19 27.2 16.6 10.7 12.5 8.1 13 18 10 10 15 11 28.1

Eu 1.9 3.9 2.1 3.1 2.4 2.8 3.1 2.74 2.33 1.97 2.32 4.47 2.26 3.8 2.2 1.4 1.9 2.3 1.5 2.2 1.9 1.9 0.2 1.6 4.77

Gd 5.2 10.9 5.9 8.8 7.3 7.1 7.58 7.16 5.79 6.48 6.05 7.94 5.82 20.2 12.8 8.2 9.7 6.2 9.5 13 7.7 7.7 11 8 19.7

Tb 0.7 1.4 0.7 1.1 0.94 0.7 1.17 1.19 0.934 1.05 0.988 1.26 0.959 2.6 1.7 1.2 1.3 0.8 1.3 2.1 1.1 1.1 1.8 1.1 2.97

Dy 3.8 7.4 4.1 5.8 5 4.9 4.86 4.93 4.21 4.46 4.34 5.35 4.14 13.7 9.7 7.2 7.4 4 7.5 9.6 5.8 5.6 8.4 6 11.9

Ho 0.7 1.2 0.7 1.1 0.78 0.77 0.895 0.949 0.795 0.821 0.829 0.932 0.773 2.3 1.8 1.4 1.3 0.7 1.5 1.6 1.1 0.94 1.5 1.2 1.98

Er 2.2 3.2 1.9 3 2.2 2.1 2.37 2.43 2.22 2.21 2.35 2.41 2.08 6.1 5.1 4.8 3.7 1.9 3.9 4.2 3 2.6 4.4 3.2 4.88

Tm 0.3 0.5 0.3 0.4 0.36 0.35 0.373 0.457 0.368 0.355 0.389 0.385 0.338 0.8 0.7 0.8 0.6 0.2 0.66 0.68 0.52 0.45 0.75 0.53 0.72

Yb 2.1 2.8 1.9 2.8 2 1.8 2.38 2.56 2.35 2.21 2.52 2.37 2.08 4.3 4.5 6 3.6 1.6 4 3.5 3 2.6 4.6 3.3 4.22

Lu 0.3 0.4 0.3 0.4 0.3 0.27 0.38 0.456 0.4 0.344 0.409 0.38 0.358 0.6 0.6 1 0.5 0.2 0.59 0.45 0.45 0.38 0.57 0.48 0.59

Mo 0.8 0.2 0.5 1.1 na na 1.11 0.939 1.69 1.08 1.1 2.11 2.21 0.3 1.2 0.6 1.9 0.3 na na na na na na 1.01

Cu 165 2.3 117 6.1 na na 23.8 11.9 24.3 6.77 91.1 29.6 100 7.4 41.3 8.3 45.8 15 na na na na na na 7.98

Li na na na na na na 18.4 19.3 22.5 24.9 12.8 21.5 10.8 na na na na na na na na na na na 29.8

Pb 18.7 12 3.4 25.3 109 55 na na na na na na na 13.1 4.7 18.4 22.4 1.7 97 63 110 83 49 80 na

Zn 83 86 72 97 na na 89.2 96.2 73.6 72.2 67.9 95.7 120 48 13 65 34 17 na na na na na na 92.9

Ni 1.5 0.2 10.6 0.2 na na 1.4 2.35 0.562 1.52 1.27 3.48 13.6 0.1 0.4 0.5 0.5 0.2 na na na na na na 4.56
87

Sr/
86

Sr (measured) 0.704071 0.704002 0.704096 0.704139 0.704111 0.704660 0.704470 0.704057 0.704195 0.704341 0.704205 0.704647 0.704364
87

Sr/
86

Sr (initial) 0.70395 0.70395 0.70397 0.70397 0.70397 0.70410 0.70429 0.70397 0.70395 0.70401 0.70401 0.70438 0.70401
143

Nd/
144

Nd (measured) 0.512859 0.512770 0.512851 0.512849
143

Nd/
144

Nd (initial) 0.512829 0.512741 0.512820 0.512820፴Nd 4.8 3.0 4.6 4.6

Alkalinity Index (AI) 0.105 0.028 0.058 0.026 0.028 0.056 0.044 0.037 0.046 0.007 0.037 0.056 0.099 0.022 0.015 0.026 0.028 0.032 0.035 0.019 0.028 0.037 0.003 0.033 0.025

FSSI -0.05 -0.38 -0.12 -0.23 -0.22 -0.02 -0.24 -0.17 -0.15 -0.51 -0.11 0.37 -0.03 -0.1 -0.16 -0.03 -0.38 -0.25 0 0.79 -0.02 -0.12 1.12 -0.05 -0.17

* Fe2O3 and FeO contents were calculated based on a Fe
3+

/FeTotal ratio of 0.3.

Abbreviations: BV = Bureau Veritas, P = Potsdam, RHL = Royal Holloway London, K = Kiel; na = not analysed; bdl = below detection limit



SYU SYU SYU SYU SYU CVU CVU CVU CVU CVU CVU CVU

2-7-09 2-9-09 3-3-09 3-5-09 3-6-09 2-3-15 2-4-15 2-6-15 2-7-15 2-8a-15 3-7-09 3-8-09

1 3 12 14 15 32 33 35 36 37 16 17

RHL RHL K RHL K BV BV BV BV BV RHL RHL

44.59320 44.59835 44.62075 44.61660 44.61053 44.58697 44.58697 44.58893 44.58929 44.58279 44.60143 44.60703

40.63365 40.63848 40.65353 40.66855 40.67683 40.69464 40.69464 40.69384 40.69375 40.69033 40.67552 40.67572

56.21 51.44 55.14 58.89 60.17 59.14 57.81 55.77 63.47 61.08 60.21 61.49

0.11 0.47 0.36 0.44 0.37 0.37 0.36 0.43 0.32 0.34 0.34 0.36

22.61 20.65 21.91 20.96 19.05 20.13 19.49 21.71 19.61 18.56 20.00 19.63

0.72 1.48 0.65 0.96 0.77 0.99 0.97 0.82 0.53 0.99 1.03 0.95

1.52 3.10 1.37 2.02 1.62 2.07 2.04 1.72 1.11 2.08 2.16 2.00

0.28 0.18 0.22 0.12 0.17 0.18 0.17 0.20 0.05 0.18 0.17 0.16

0.04 0.91 0.16 0.29 0.46 0.70 0.75 0.45 0.27 0.63 0.52 0.42

1.49 4.03 2.13 2.24 2.26 1.85 3.04 3.24 0.17 2.71 2.38 1.92

9.51 4.68 7.63 4.83 5.48 4.95 5.34 7.04 5.91 6.70 6.27 6.25

6.52 9.73 7.94 7.45 6.79 6.97 6.35 3.63 7.57 4.56 6.53 6.79

0.01 0.20 0.03 0.06 0.08 0.15 0.13 0.08 0.04 0.12 0.08 0.07

1.77 2.44 1.15 2.66 1.44 1.84 2.06 4.32 0.88 0.79 1.19 na

100.79 99.31 98.69 100.92 98.66 99.34 98.51 99.41 99.93 98.74 100.88 100.04

9.31 4490 na 170 530 909 906 787 201 1430 546 388

1.55 7.96 na 5.61 na 20.9 43.1 11.3 12.8 4.6 4.81 4.3

2.98 2.55 na 4.24 na bdl bdl bdl bdl bdl 8.56 11.7

5.56 2.92 na 6.38 na 5 5.8 1.3 1.1 5 7.36 6.59

na na na na na 20.2 20.5 19 22.6 19 na na

10.9 4.2 na 11.1 na 11.2 11.5 4.5 16.4 11.6 13.2 10.5

8.2 18 na 54.4 na 31.5 33.6 19.6 43.2 31 41.8 36.4

407 227 na 226 203 227 205 169 251 183 249 232

0.759 1.04 na 1.04 na na na na na na na na

na na na na na 1 1 bdl 2 1 bdl bdl

50.6 5270 na 573 506 861 1990 984 515 1480 855 403

0.00647 0.752 na 3.12 na 1.4 1.5 0.9 1.8 1 1.71 1.67

31.1 15.4 na 85.5 na 45.4 48.9 24.1 109 60.4 59.6 45.4

10.4 5.73 na 12.7 na 12.1 17.6 3.6 19.9 19.1 19.7 14.6

14.1 230 na 71.9 na 90 89 201 242 82 71.3 66.4

856 273 na 677 na 568 612 284 810 487 723 575

12.3 38.1 na 34.3 na 31.9 31.3 53.9 19 28.4 37.4 37.3

169 96.7 na 191 138 137 114 181 57.3 94.1 133 121

187 171 na 285 220 184 177 246 79 150 204 195

12 18.6 na 25.5 21.4 19.1 17 29.8 11.3 14.5 18.4 18.6

26.3 74.5 na 85 68.1 61.3 55.1 102 36.2 47 62.9 66.6

2.35 14.5 na 13.2 10.8 8.9 8.2 16.1 6.2 7 10.3 11.4

0.338 5.16 na 2.14 2.09 2.1 1.9 4.5 1.1 1.7 2.05 2.22

3.22 10.6 an 10.4 8.85 7 6.5 14 4.1 5.5 8.09 8.73

0.295 1.7 na 1.45 1.18 0.9 0.9 1.7 0.6 0.8 1.25 1.31

1.17 7.04 na 5.91 6.23 5.2 5 9.1 3.5 4.4 5.49 5.81

0.291 1.19 na 1.06 1.17 1 0.9 1.5 0.6 0.8 1.06 1.08

1.1 2.94 na 2.86 3.25 2.8 2.9 4.1 2.2 2.6 3.08 3.02

0.229 0.434 na 0.454 0.488 0.4 0.5 0.6 0.4 0.4 0.561 0.529

1.67 2.64 na 2.73 3.33 3.1 3.2 3.7 2.9 3.1 3.93 3.61

0.365 0.398 na 0.403 0.479 0.5 0.5 0.5 0.5 0.5 0.621 0.582

1.11 1.6 na 1.72 na 0.6 3.7 1.2 2.2 0.3 1.44 2.59

2.33 20.7 na 70.4 na 32 21.1 19 3.2 17.9 29.5 18

66.3 17.7 na 20.9 na na na na na na 25 38.5

na na na na na 20.5 25.2 4.2 20.4 13.7 na na

181 104 na 77.3 85 60 51 61 55 37 100 88.7

0.796 2.87 na 3.33 16 2.3 0.6 0.5 0.6 0.6 0.881 1.7

0.718557 0.704075 0.706855 0.704695 0.704873 0.704519 0.704987

0.70520 0.70400 0.70424 0.70404 0.70414 0.70404 0.70403

0.512837

0.512813

4.4

-0.003 0.021 0.005 0.047 0.025 0.044 0.038 0.061 0.017 0.026 0.023 0.017

-0.63 -0.55 -0.55 -0.07 -0.07 -0.02 -0.11 -0.16 -0.01 -0.03 -0.16 -0.13



Table 2: Argon isotopic data for an amphibole separate of syenite sample 6-8-12. 

TZ-6-8-12 Laboratory ID: C15038 Irradiation ID: PO-2         

       40Ar/39Ar      37Ar/39Ar      36Ar/39Ar K/Ca 40Ar* 39ArK            40Ar*/39ArK  Age ± 1s 

J=0.0009720                    (×10-3)   (%) fraction (%)       (Ma)     

Laser output                   

1.8% 1397 ± 251 7.4 ± 137 3703 ± 710.85 0.08 21.73 0.13 305 ± 98 469 ± 132 

2.0% 1385 ± 938 141 ± 566 4558 ± 3110 0.00 3.54 0.03 54 ± 147 93 ± 245 

2.4% 352 ± 60 6 ± 149 919 ± 203 0.10 22.92 0.14 81 ± 44 137 ± 71 

2.8% 77 ± 3 39 ± 15 141 ± 33 0.01 49.59 0.82 39 ± 10 67 ± 17 

3.1% 37.0 ± 0.4 7 ± 4 42 ± 5 0.09 67.55 4.85 25.1 ± 1.4 44 ± 2 

3.3% 29.79 ± 0.16 6 ± 2 20 ± 3 0.10 81.79 13.29 24.5 ± 0.9 42.4 ± 1.5 

3.5% 29.80 ± 0.14 1.6 ± 1.7 18.7 ± 1.7 0.37 81.82 21.93 24.4 ± 0.5 42.3 ± 0.9 

3.7% 30.8 ± 0.2 2.4 ± 0.6 26.9 ± 1.0 0.25 74.79 46.26 23.1 ± 0.4 40.0 ± 0.6 

3.9% 31.1 ± 0.4 2.4 ± 1.9 27 ± 3 0.25 74.67 12.56 23.3 ± 0.9 40.4 ± 1.5 

                   

           Total gas age 42.05 ± 0.52 

           Plateau age (step 5-9: 98.8% of total 39Ar) 40.96 ± 0.46 

           Normal isochron age (step 5 to 9) 41.32 ± 2.51 

           Inverse isochron age (step 5 to 9) 41.25 ± 2.11 
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Supplementary material 

 

Whole rock major and trace element analyses 

1. Royal Holloway University, London, UK 

Fourteen samples were analysed by inductively coupled plasma atomic emission 

spectrometry (ICP-AES) for major elements and some high abundance trace elements (Sr, Zr, 

Cr, Sc, Zn, Co, Li, V, Be and Ni) and by inductively coupled plasma mass spectrometry (ICP-MS) 

for low abundance trace elements (Rb, Nb, Y, Mo, Cs, Ba, Hf, Ta, Tl, Pb, Th, U, and all REE) using 

a Perkin Elmer instrument.  The analytical work followed the methodology described by 

Walsh et al. (1981) and Garbe-Schönberg (1993), respectively. The relative standard 

deviation (RSD) typically was ζ ʹ Ψ for major elements and ζ ͷΨ for minor and trace elements.  

2. Institute of Geosciences, Kiel University, Germany 

Three samples were analysed by X-ray fluorescence (XRF) on fused glass discs using a 

Philips PW1480 XRF spectrometer for major elements and by ICP-MS using an Agilent 7500c 

instrument for trace elements. For major element oxides, the RSD is ζ1.3 % based on multiple 

analyses of reference material BHVO-1. The RSD for trace elements is generally ζ2 % based 

on multiple analyses of one sample solution. Details about sample preparation and instrument 

calibration are given in Garbe-Schönberg (1993) and John et al. (2008), and representative 

data for precision and accuracy during the course of this study are provided by Laeger et al. 

(2013). 

3. GeoForschungsZentrum (GFZ) Potsdam and Potsdam University, Germany 

Nine samples were analysed for major and some trace elements (Ba, Cr, Ga, Nb, Ni, Rb, Sr, 

V, Y, Zn and Zr) by XRF using a Siemens SRS303-AS XRF spectrometer at the GFZ and for REE 

by ICP-AES using a Varian Vista MPX instrument following the methods described by Zuleger 

and Erzinger (1998). RSD values are in the range of 1-3% for major oxides and ζ 5% for trace 

elements and REE (Moazzen and Oberhänsli, 2008; Hadj Zobir et al., 2014).  
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4. AcmeLabs, Bureau Veritas Minerals, Vancouver, Canada 

Fifteen samples were analysed for major elements by XRF using a Panalytical Axios Max 

instrument and by ELAN 9000 ICP-MS for trace elements and REE. The RSD is <1.2% for major 

oxides based on the analyses of SY-4(D) diorite gneiss and OREAS72B VMS ore standards, 

while for trace elements and REEs the RSD was <3.8%. 

 

Strontium (Sr) and neodymium (Nd) isotope analyses 

Strontium (Sr) and neodymium (Nd) isotope analyses were performed on a Thermo 

Finnigan Triton multicollector mass spectrometer at the School of Earth and Environment, 

University of Leeds.  About 30 to 60 mg of powdered whole-rock material (same was used for 

the major and trace element work) was dissolved in concentrated ultra-clean HF-HNO3-HCl 

acids and Sr and Nd were extracted from the unspiked solutions by conventional ion-exchange 

chromatographic techniques (see Halama et al. 2013 for details of the analytical protocol). 

87Sr/86Sr and 143Nd/144Nd ratios were normalized for mass fractionation to 86Sr/88Sr = 0.1194 

and 146Nd/144Nd = 0.7219. The average 87Sr/86Sr obtained from replicate measurements of 

NIST SRM-987 during this study was 0.710254 and all data were corrected for the offset from 

the generally accepted value 0.710250 (McArthur et al. 2000). Similarly, Nd isotope data were 

corrected for the offset from the LaJolla reference material (143Nd/144Nd = 0.511853; Weis et 

al. 2005). Initial 87Sr/86Sr isotope ratios were calculated using the 87Rb decay constant 1.3972 

x 10-11 a-1 ȋVilla et alǤ ʹͲͳͷȌǤ For the calculations of the ɂNd valuesǡ the following parameters 
were used: 147Sm decay constant ɉ α ǤͷͶ x ͳͲ-12 a-1, present-day (143Nd/144Nd)CHUR = 0.512638, 

(147Sm/144Nd)CHUR = 0.1966. 

 

40Ar/39Ar dating 

About 1 mg of amphibole from syenite sample 6-8-12 was used for 40Ar/39Ar analysis by 

the CO2 laser stepwise heating technique at the Institute of Earth and Environmental Science, 
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Universität Potsdam. For details of the analytical protocol see Wilke et al. (2010) and Halama 

et al. (2014). Mineral grains were obtained by crushing, sieving and selecting the size fraction 

between 250-500 µm mesh size for magnetic separation and finally by hand-picking under 

the binocular. Separated amphiboles were cleaned ultrasonically in 10% HNO3 for 15 minutes 

and then washed in de-ionized water and dried. Samples, the Fish Canyon Tuff sanidine age 

standard, prepared by the Geological Survey of Japan (27.5 Ma: Uto et al., 1997; Ishizuka, 

1998) and salts of K2SO4 and CaF2 were irradiated at the Oregon State TRIGA Reactor for 4 

hours under a neutron flux of 2.5x1013 n cm-2 s-1. Argon isotope ratios of the gas from the 

samples were analyzed by stepwise heating until total fusion using a New Wave Research 

DualWave laser ablation system comprising a 50W CO2 continuous laser with 10.6 m 

wavelength. The extracted gas is purified in the ultra-high vacuum line via SAES getter pumps 

and a cold trap for 10 min. The high sensitivity Micromass 5400 noble gas mass spectrometer 

used for Ar isotopic analysis is equipped with an electron multiplier pulse counting system 

for analyzing small amounts of Ar. Raw data were corrected for procedural blank 

contributions, mass discrimination by analysis of atmospheric Ar, interferences of Ar isotopes 

derived from Ca and K and decay of radiogenic 37Ar and 39Ar isotopes produced by irradiation. 

Calculation of ages and errors was performed following Uto et al. (1997) using the total 40K 

decay constant of 5.543 x 10-10 a-1 (Steiger and Jäger, 1977) as well as decay constants of 1.978 

x 10-2 d-1 for 37Ar and 2.58 x 10-3 a-1 for 39Ar.  
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