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Abstract

Concurrent Kleene algebras support equational reasoning about computing systems with concur-

rent behaviours. Their natural semantics is given by series(-parallel) rational pomset languages,

a standard true concurrency semantics, which is often associated with processes of Petri nets.

We use constructions on Petri nets to provide two decision procedures for such pomset languages

motivated by the equational and the refinement theory of concurrent Kleene algebra. The contri-

bution to the first problem lies in a much simpler algorithm and an ExpSpace complexity bound.

Decidability of the second, more interesting problem is new and, in fact, ExpSpace-complete.
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1 Introduction

Kleene algebras axiomatise the equational theory of rational expressions. Their canonical

models are rational languages and their equational theories correspond to rational expression

equivalence [12, 11, 1, 2]. Deciding identities in Kleene algebras is therefore PSpace-

complete [17] by standard automata constructions. Variants of Kleene algebras provide

simple algebraic semantics for while-programs, and, in particular, decision procedures for

these.

Pomset languages [6], on the other hand, are a widely studied model of true concurrency

in which words are generalised from linear orders to partial ones. Recent applications can

be found, for instance, in weak memory model verification [9]. Algebras for pomsets have

been proposed first by Gischer [5] and more recently, as concurrent Kleene algebra (CKA),

by Hoare et al. [8], with the aim of extending the pleasant properties of Kleene algebras into

concurrency. Yet much less is known about their structure.

Formally, CKAs are structures (K, +, ·, ‖,⋆ ,(⋆) , 0, 1) that consist of a Kleene algebra

(K, +, ·,⋆ , 0, 1) and a commutative Kleene algebra (K, +, ‖,(⋆) , 0, 1), and satisfy the weak

interchange law defined below. Commutative Kleene algebras axiomatise rational commutat-

ive expression equivalence, which is decidable [4] and coNExp-complete [7]. In applications

of CKA, the elements of K are typically actions of a system: The operation + models

nondeterministic choices, · and ‖ sequential and parallel compositions, 1 the ineffective action,

and 0 the abortive one. The sequential star ⋆ models the finite sequential iteration of actions
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in terms of a least fixpoint, the parallel star (⋆) their finite parallel iteration. It can be

interpreted as the unbounded spawning of parallel processes.

Closed terms in the language of Kleene algebra correspond to rational expressions; their

interpretation as word languages is standard. The extension to parallelism, hence to action-

labelled partial orders and pomsets, is best explained by example. The expression (a · b) ‖ c,

for instance, is represented by the first of the following pomsets.

a b

c

a b

d d

a b

d d

Execution time—the order of the poset—is indicated by lines proceeding from left to

right in this implicitly directed graph. Sequential composition thus orders actions, whereas

parallel composition leaves them unordered. By analogy to word languages, expressions

involving + or the stars require interpretations by sets of pomsets, that is, pomset languages.

The expression (a · b) ‖ (c + (d · d)), for instance, denotes the language formed by the first

two of the pomsets above. The third of the above pomsets is denoted by (a ‖ d) · (b ‖ d). It is

obviously “more sequential” than the pomset to its left, which is denoted by (a · b) ‖ (d · d). A

corresponding refinement order, which compares degrees of sequentiality, has been defined on

pomsets (as the smoother-than relation) by Grabowski [6]. It is isomorphic to the inclusion

order on refinement-closed pomset languages and induces a (refinement) order on CKA

expressions. Gischer [5] has shown that this order is characterised precisely by the inequality

(a ‖ c) ·(b ‖ d) ≤ (a ·b) ‖ (c ·d) on CKA expressions (without the stars). This weak interchange

law is also one of the standard CKA axioms.

Pomset languages are typically infinite when expressions contain stars. In addition, the

width of individual pomsets can be unbounded when parallel stars occur; this star is therefore

often omitted [15]. Furthermore, CKA expressions generate subclasses of pomset languages.

Those generated by expressions over the full CKA signature are called series-parallel-rational

(spr-languages), those generated by using a signature without the parallel star are called

series-rational (sr-languages). Expressions are named accordingly. All pomsets occurring in

spr- or sr-languages, which are built inductively from singleton pomsets by sequential and

parallel compositions, are series-parallel or, equivalently, free of N-shape subpomsets [19, 6].

Equivalence of spr-expressions, as induced by spr-language identity, is decidable and can

be axiomatised by any set of axioms for Kleene algebras plus those for commutative Kleene

algebras [13], but a reasonable upper complexity bound has not been established. In the

context of CKA with the interchange axiom, completeness or decidability of the refinement

of spr-expressions, or even sr-expressions, as induced by inclusion of refinement-closed spr- or

sr-languages, remains open. These questions are of obvious interest for comparing concurrent

systems with respect to their degree of sequentiality or linearisability

Our first contribution consists in a simple new algorithm and a first complexity bound

for sr-expression equivalence. First, using a construction similar to Thompson’s [18] and

Grabowski’s [6], we show that every sr-language is the pomset trace language of a safe

labelled Petri net. Using a result by Jategaonkar and Meyer on pomset languages of Petri

nets [10], it then follows that sr-expression equivalence is in ExpSpace (Theorem 5).

Our second, more interesting contribution is a proof that sr-expression refinement is

ExpSpace-complete (Theorem 26). Note that sr-expression equivalence is sr-expression

refinement in both directions. This result requires comparing runs in Petri nets up-to

Grabowski’s refinement order, using the freedom provided by this formalism to reorder

transitions, and a schedule for constructing a comparison function in a canonical way.

Preservation of sequentiality or causality in this construction is somewhat intricate: it



P. Brunet, D. Pous, and G. Struth 28:3

requires tracking the history and relationships between loci (Section 5.2 and 5.3). The Petri

net approach seems natural once more due to the correspondence between nets and pomset

languages, and our previous construction. Hardness of sr-expression refinement follows from

a reduction from the equivalence problem for regular expressions with a shuffle operation [16],

using results by Grabowski that relate pomset and shuffle languages.

2 Preliminary definitions

2.1 Pomsets

We fix a finite alphabet Σ. A labelled poset is a triple 〈X, ≤, λ〉 where X is a finite carrier set,

≤ is a partial order on X and the map λ : X → Σ labels every element in X with a letter in

Σ. A (labelled poset) morphism is a function between labelled posets that preserves the order

and the labels. A pomset is an isomorphism class of labelled posets; it is a labelled poset

up-to bijective renaming of the elements in X. We represent pomsets as graphs that are

implicitly directed from left to right. The vertices, which are the elements of the pomset, are

labelled by λ; those edges that can be deduced by transitivity and reflexivity are omitted.

We define the following pomsets and operations on pomsets:

The empty pomset, denoted by P0, is defined as 〈∅, ∅, []〉 ([] denoting the empty function);

for a ∈ Σ, the singleton pomset Pa is 〈{•} , {〈•, •〉} , [• 7→ a]〉;

for pomsets P1 = 〈X1, ≤1, λ1〉 and P2 = 〈X2, ≤2, λ2〉 with X1 ∩ X2 = ∅; the parallel

product of P1 and P2 is the pomset obtained by putting them side by side:

P1 ‖ P2 , 〈X1 ∪ X2, ≤1 ∪ ≤2, λ1 ∪ λ2〉 ;

the sequential product of P1 and P2 is the pomset obtained by further declaring all

elements of P1 as smaller than those of P2:

P1; P2 , 〈X1 ∪ X2, ≤1 ∪ ≤2 ∪ X1 × X2, λ1 ∪ λ2〉 .

Pomset P1 refines P2, written P1 ⊑ P2, if there exists a bijective morphism ϕ : X2 → X1.

By definition, therefore,

∀x ∈ X2, λ1(ϕ(x)) = λ2(x), i.e., the bijection preserves labels; and

∀x, y ∈ X2, x ≤2 y ⇒ ϕ(x) ≤1 ϕ(y), i.e., the morphism preserves edges in P2.

The relation ⊑ is a partial order on pomsets. We write ⊑S for the downward closure of a

set S of pomsets with respect to it: ⊑S , {P | ∃Q : P ⊑ Q, Q ∈ S}. We then extend the

refinement order to a preorder on sets of pomsets: S ⊑ S′ , S ⊆ ⊑
S′. (This definition is

equivalent to S ⊑ S′ , ⊑S ⊆ ⊑
S′.)

2.2 Expressions and pomset languages

A series-rational expression, or more briefly expression, is a term derived from the following

syntax. The set of expressions over the alphabet Σ is written Rat‖ 〈Σ〉.

e, f ::= e + f | e · f | e ‖ f | e⋆ | 0 | 1 | a (a ∈ Σ)

The language of an expression is the set of pomsets defined inductively as follows:

J1K , {P0} Je·fK , {P ; Q | P ∈ JeK , Q ∈ JfK} Je ‖ fK , {P ‖ Q | P ∈ JeK , Q ∈ JfK} .

J0K , ∅ Je + fK , JeK ∪ JfK Je⋆K ,
⋃

n∈N

{P1; . . . ; Pn | ∀i ≤ n, Pi ∈ JeK} JaK , {Pa} .

CONCUR 2017
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Figure 1 Example of labelled safe Petri net.

A set of pomsets is called (series-)rational if it is the language of some expression. It is called

downward-closed rational if it is the downward-closure of a rational language.

Note that due to the structure of expressions, the pomsets we consider are always series-

parallel: they are built from trivial pomsets by using sequential and parallel compositions.

Valdes et al. proved that this property is equivalent to N-freeness [19, 6]: whenever there are

four distinct elements x, y, z, t such that x ≤ y, z ≤ y, and z ≤ t, then either z ≤ x, t ≤ y, or

x ≤ t.

x y

z t

In the present work we are interested in the following two decision problems.

◮ Definition 1. Given two expressions e, f , the problem biKA(e, f) asks if JeK ⊆ JfK.

◮ Definition 2. Given two expressions e, f , the problem CKA(e, f) asks if JeK ⊑ JfK.

The first problem, biKA(e, f), asks essentially about equivalence of the sr-expressions e and

f . As outlined in the introduction, axioms for Kleene algebras plus those for commutative

Kleene algebras (here in fact commutative idempotent semirings without a parallel star) are

complete w.r.t. this equivalence. The second one, CKA(e, f), asks whether e is a refinement

of f , which relates to CKA with the interchange law, yet again without a parallel star. We

conjecture that the aforementioned axioms together with weak interchange are complete for

this semantics, but this problem remains open, to the best of our knowledge.

2.3 Labelled safe Petri nets

We now define labelled safe Petri nets—the machines that we use to recognise rational pomset

languages. We write ℘+ (X) for the set of non-empty subsets of a set X.

A labelled Petri net is a tuple N = 〈P, T, pin, pfin〉 where:

P is a finite set of places;

T ⊆ ℘+ (P) × (Σ ∪ {τ})× ℘+ (P) is a set of labelled transitions;

p∈ ∈ P is the initial place;

pfin ∈ P is the final place.

If t = 〈P, x, P ′〉 is a transition, then P is its input set, written •t, x is its label, written ℓ (t),

and P ′ is its output set, written t•. Transitions labelled with τ are called silent; the others

are called visible. Without loss of generality, we may restrict ourselves to Petri nets where

all inputs and outputs of visible transitions are singleton sets. An example of such a Petri

net is displayed in Figure 1.

A configuration is a set of places. A transition t is enabled from a configuration C if
•t ⊆ C. Whenever t is enabled in C, then firing this transition leads to the configuration
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Figure 2 An accepting run of the Petri net in Figure 1.

C ′ , (C \ •t) ∪ t•, and we write C
t

−→N C ′. A run from C0 to Cn is a sequence t1; . . . ; tn

such that there exists configurations C1, . . . , Cn−1 such that

C0
t1−→N C1

t2−→N · · · Cn−1
tn−→N Cn .

We write C0
t1;...;tn

−−−−−→N Cn in this case. If C0 = {pin}, then the run is initial, if Cn = {pfin},

then it is final, and if both conditions hold, it is accepting. Finally, a configuration C is

reachable if some initial run ends in C.

Figure 2 shows an example of an accepting run. In this representation, columns of circular

nodes denote the successive configurations Ci. We draw the transition ti as a rectangular

node between Ci−1 and Ci, drawing directed edges from its inputs in Ci−1 to its node, and

to its outputs in Ci. The remaining places, those in Ci−1 \ •ti that happen again in Ci \ t•
i ,

are linked with dotted lines.

A Petri net is safe if (C \ •t) ∩ t• = ∅ holds for every reachable configuration C and every

transition t enabled in C. In other words, there is always at most one token in every place

of a safe Petri net. This justifies our use of sets rather than multisets for configurations a

posteriori: we shall only use safe Petri nets.

The transition automaton A (N ) of a Petri net N is a non-deterministic finite state

automaton over the alphabet of transitions of N ; its states are configurations of N (i.e.

subsets of P), its initial state is {pin}, its only final state is {pfin}, and its transitions are

the triples 〈C, t, C ′〉 such that C
t

−→N C ′. Writing L (B) for the usual word language of an

automaton B, the transition automaton is defined so that we have

L (A (N )) ,
{

t1 . . . tn

∣

∣

∣
{pin}

t1;...;tn

−−−−−→N {pfin}
}

.

2.4 Language of a Petri net

Let R = C0
t1;...;tn

−−−−−→N Cn be a run in a Petri net N . We define the immediate causality

relation →R ⊆ [1..n] × [1..n] as

i →R j , i < j ∧
(

∃p ∈ t•
i ∩ •tj : ∀k, i < k < j ⇒ p /∈ •tk

)

.

The causality relation ≤R is the reflexive transitive closure of →R. Intuitively, i ≤R j holds

if tj cannot be fired in a subrun of R without firing ti.

For each run one can define three kinds of traces [10]. For the run fromFigure 2, these

are shown in Figure 3.

The graph-trace G (R) of R is the graph 〈[1..n], →R〉.

The transition-pomset R is the pomset T (R) , 〈[1..n], ≤R, λR〉, where λR(i) , ℓ (ti).

The pomset-trace P (R), of R is the restriction of T (R) to the set {i | ℓ (ti) ∈ Σ} of visible

actions.

CONCUR 2017
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Figure 3 Graph-trace, transition-pomset, and pomset-trace of the run from Figure 2.

The pomset language of a Petri net N is the set JN K of pomset-traces of accepting runs in

N . Moreover, we call a run R is series-parallel if its graph-trace is series-parallel. Note that

this is strictly stronger than requiring that its pomset-trace be series-parallel.

The run in Figure 2 is series-parallel.

3 Reading a pomset in a Petri net

This section describes an operational way of reading and recognising pomsets with Petri nets,

as one might read and recognise a word with a finite state automaton. It is independent

from the rest of the paper, but might provide insight into the algorithm we develop below to

compare languages of nets. Indeed, the guiding intuition behind this algorithm will be to

read a net in another net.

Let N = 〈P, T, pin, pfin〉 be a safe labelled Petri net, P = 〈X, ≤, λ〉 a pomset, and

R = C0
t1−→ C1

t2−→ · · · Cn−1
tn−→ Cn a run in N . A reading of P in N along R is a sequence

〈ρ0, X0〉 , . . . , 〈ρn, Xn〉 such that:

1. for every 0 6 i 6 n, Xi ⊆ X and ρi is a map from Ci to ℘ (Xi);

2. for every 0 6 i < n,

a. if ℓ (ti+1) ∈ Σ, and if p0, p1 are respectively the input and output places of ti+1, there

is an element x ∈ ρi(p0) such that λ(x) = ℓ (ti+1) and:

Xi+1 = Xi \ {x} ; ρi+1(p) =

{

{y ∈ Xi+1 | x ≤ y} if p = p1

ρi+1(p) = ρi(p) \ {x} otherwise.

b. if ℓ (ti+1) = τ , then

Xi+1 = Xi; ρi+1(p) =

{

⋃

q∈•ti+1
ρi(q) if p ∈ t•

i+1

ρi(p) otherwise.

The reading is initial if C0 = {pin} and ρ0(pin) = X0 = X. The reading is final if Cn = {pfin}

and Xn = ∅. The reading is accepting if it is both initial and final. P is accepted by N if

there is an accepting reading of P in N . The language recognised by N is the set of pomsets

accepted by N . It should not be confused with the pomset language of N , as defined above.

◮ Remark. Notice that, if R is accepting, the existence of an accepting reading of P along R

can be tested by a simple history-independent non-deterministic algorithm. We start with

X0 = X and ρ0 = [pin 7→ X]. At step i + 1 we use condition 2b to compute ρi+1 and Xi+1 if

ti+1 is silent,. If ti+1 is visible and there is no x ∈ ρi(
•ti+1) such that λ(x) = ℓ (ti+1), then

we conclude that there are no readings of P along R. Otherwise, we non-deterministically

choose an appropriate x and use condition 2a to compute ρi+1 and Xi+1. If this yields

Xn = ∅ we have obtained an accepting reading, otherwise we can conclude that there are no

such readings.
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◮ Lemma 3. If R is accepting, there is an accepting reading of P along R if and only if

P ⊑ P (R).

Proof. See [3]. ◭

◮ Corollary 4. The language recognised by N is
⊑

JN K.

4 Rational Petri nets

This section shows that every rational pomset language is the pomset language of a (safe

labelled) Petri net. To this end, we recursively associate with every expression e a Petri net

N (e) such that JN (e)K = JeK. Moreover, all accepting runs of this Petri net turn out to be

series-parallel. The construction poses no difficulty; it is a simple adaptation of Thompson’s

construction for rational word languages [18], and an extension of a previous construction by

Grabowski [6] for safe Petri nets and pomset languages. We only present this construction

graphically here.

N (0) =

N (1) =

N (a) = a

N (e1 + e2) =

e1

e2

τ τ

τ τ

N (e1 ‖ e2) =

e1

e2

τ τ

N (e1 · e2) = e1 e2τ

N (e⋆) = eτ τ

τ

τ

This construction yields decidability of biKA in exponential space. Indeed we may build

the Petri nets N (e) and N (f) from the expressions e and f (these are linear in the size of e

and f) and use Jategaonkar and Meyer’s result [10] that testing containment of pomset-trace

languages of two Petri nets is an ExpSpace-complete problem.

◮ Theorem 5. The problem biKA lies in the class ExpSpace.

◮ Proposition 6. The language recognised by N (e) is
⊑

JeK.

Proof. By construction we have JN (e)K = JeK. We conclude using Corollary 4. ◭

5 Comparing Petri nets modulo refinement

Next we show how to compare Petri nets modulo refinement. Thanks to the previous

construction, this leads to decidability of the problem CKA. We fix two Petri nets N1 and

N2 for this section and the following one. Our goal is to check whether JN1K ⊑ JN2K, i.e.,

whether for each run R1 ∈ L (N1), there exists a corresponding run R2 ∈ L (N2) such that

P (R1) ⊑ P (R2).

The first difficulty is that we may have to reorder runs in N2: due to concurrency,

transitions might be triggered in different orders and still yield the same pomset.

CONCUR 2017
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5.1 Reordering runs

Let R = t1; . . . ; tn be a run from C0 to Cn. Let π be a permutation of [1..n]. The action of

π on R is defined as πR , tπ(1); . . . ; tπ(n). The permutation π is compatible with R if it is

order-preserving:

∀i, j, i ≤R j ⇒ π(i) 6 π(j).

◮ Lemma 7. If π is compatible with R, then C0
πR
−−→N Cn, G (R) = G (πR), and

i ≤R j ⇔ π(i) ≤πR π(j).

Proof. We can exchange two successive transitions that are not causally linked without

changing the graph (up-to isomorphism). We repeat this process until we obtain πR. ◭

Accordingly, we say that a run R′ is equivalent to a run R if R′ = πR for some compatible

permutation π.

Another important notion for the completeness of the method we propose is that of an

economical run: a run that fires its silent transitions as late as possible.

◮ Definition 8. A run t1; . . . ; tn is economical if for all i < j, if ti, . . . , tj−1 are silent

transitions and tj is a visible transition, then i ≤R j.

The run in Figure 2 is not economical: the fifth transition is a silent one, but it is not causally

related to the next transition, which is visible. We will see that it can be reordered into an

equivalent economical run (Proposition 10 and Example 11 below.)

Even more importantly when comparing two runs, we need to ensure that the visible

transitions are fired in the same order.

◮ Definition 9. Given a run R1 in N1 and a run R2 in N2 such that P (R1) ⊑ P (R2), we

say that R2 follows R1 if the subsumption is witnessed by a bijection ϕ such that for every

two visible indices i, j in R2 we have i < j ⇔ ϕ(i) < ϕ(j).

◮ Proposition 10. Let R1 and R2 be series-parallel runs in N1 and N2, respectively. If

P (R1) ⊑ P (R2) then there exists an economical and series-parallel run R′
2 in N2 that follows

R1 and is equivalent to R2.

◮ Example 11. Consider the run R2 from Figure 2 and the following run R1:

R1 : 0

1

2 2

3 3 3

4 4 4 4

5 5 5

6 7

8τ τ

a

b

d c

The pomset of R1 is P (R1) = Pa ‖ Pb ‖ (Pd; Pc), and we may check that P (R1) ⊑ P (R2).

To transform R2 into a run that is economical and follows R1, we must (1) exchange the

transitions labelled with c and d; and (2) delay the silent transition in the middle of R2 until

all visible transitions have been fired. Doing so, we get the following run R′
2, which follows

R1 and is equivalent to R2.

R′

2 : 0

1

2 2

3 3 3 3

4 4 4

5 5 5 5

6 6 6

7 7

8 8 8

9 9

10

11τ

a

b

c

τ

d

τ

τ
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5.2 Loci

In this more technical section, we define loci, as a way to lift the causality relation between

transitions to places in the successive configurations of the runs. Let R be a run, with

R = C0
t1−→ C1 · · · Cn−1

tn−→ Cn, T (R) = 〈[1..n], ≤R, λ〉. A locus denotes a pair 〈p, i〉 where

0 6 i 6 n and p ∈ Ci. In some sense, loci are places with a time index. In the previous

pictures those are the numbered circles: p is the number in the circle (the name of the place),

and i is the index of its column. Formally, the set of loci of the run R is
⋃

06i6n Ci × {i}.

We generate an equivalence relation ≈R on loci using the following rule:

p /∈ •ti ⇒ 〈p, i〉 ≈R 〈p, i − 1〉 .

Graphically, equivalent loci are linked with dotted lines. Equivalences classes with respect

to ≈R are thus places with a time interval, rather than a single index. The source of a locus

〈p, i〉 is the smallest index of its equivalence class:

src 〈p, i〉 , min {j 6 i | 〈p, i〉 ≈R 〈p, j〉} .

Now we define a preorder -R, generated by the following rules:

p, q ∈ •ti × t•
i ⇒ 〈p, i − 1〉 -R 〈q, i〉 , 〈p, i〉 ≈R 〈q, j〉 ⇒ 〈p, i〉 -R 〈q, j〉 .

Note that two loci in the same configuration are always incomparable. Finally, we inductively

define the set of indices of predecessors of a locus:

pred 〈p, 0〉 , ∅.

if p ∈ t•
i , then pred 〈p, i〉 , {i} ∪

⋃

q∈•ti
pred 〈q, i − 1〉.

if p /∈ t•
i , then pred 〈p, i〉 , pred 〈p, i − 1〉.

The set of visible predecessors of a locus, written vpred 〈p, i〉, is the subset of indices of visible

transitions in pred 〈p, i〉.

◮ Lemma 12. The following properties hold:

∀i, ∀p ∈ t•
i , pred 〈p, i〉 = {j | j ≤R i} , (1)

∀i, ∀p ∈ Ci, pred 〈p, i〉 = {j | j ≤R src 〈p, i〉} , (2)

∀i, j, p, q, 〈p, i〉 ≈R 〈q, j〉 ⇒ pred 〈p, i〉 = pred 〈q, j〉 , (3)

∀i, j, p, q, 〈p, i〉 -R 〈q, j〉 ⇒ pred 〈p, i〉 ⊆ pred 〈q, j〉 , (4)

∀i, j, p, ∀q ∈ t•
j , j ∈ vpred 〈p, i〉 ⇒ 〈q, j〉 -R 〈p, i〉 , (5)

∀i 6 j, ∃p ∈ Cj : i ∈ pred 〈p, j〉 . (6)

Notice that we managed to lift the causality relation ≤R to the level of loci: this lemma

implies that if i 6= j, p ∈ t•
i and q ∈ t•

j , then i ≤R j if and only if 〈p, i〉 -R 〈q, j〉.

5.3 Schedules

We compare runs using the following notion of schedule, where we interleave two runs in such

a way that they synchronise on visible transitions.

◮ Definition 13. Let R1 and R2 be two runs with Ri = Ci
0

ti

1−→ Ci
1 · · · Ci

ni−1

ti

ni−−→ Ci
ni

for

i ∈ {1, 2}. An N -schedule from R1 to R2 is a function η : [0..N ] → [0..n1] × [0..n2] such that

η(0) = 〈0, 0〉 and η(N) = 〈n1, n2〉;

if η(k) = 〈i, j〉, then either
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1. t1
i+1 is a silent transition and η(k + 1) = 〈i + 1, j〉, or

2. t2
j+1 is a silent transition and η(k + 1) = 〈i, j + 1〉, or

3. t1
i+1 and t2

j+1 are visible, ℓ
(

t1
i+1

)

= ℓ
(

t2
j+1

)

and η(k + 1) = 〈i + 1, j + 1〉.

Note that a schedule constructs a bijection between the visible transitions of R1 and those of

R2. Indeed, each of these transitions must be fired synchronously and agree on labels (case 3).

Furthermore, since a schedule starts with η(0) = 〈0, 0〉 and ends with η(N) = 〈n1, n2〉, every

transition in both runs must be fired. This means there is a label-preserving bijection ϕ,

called the bijection induced by η, from the visible transitions of R2 to those of R1 that satisfies

i < j if and only if ϕ(i) < ϕ(j).

The notion of schedule is still very weak: there are schedules from one run to another

whenever they have the same visible transitions, in the same order. Causality between those

transitions is not taken into account. We fix this with the following technical definition.

Intuitively, we keep track of the history and relationships between the loci of the configurations,

in order to ensure that the causality relation in the presumably smaller run R1 refines that

of R2.

◮ Definition 14. For each N -schedule we define the following sequence of binary relations

(≺k)k∈[0..N ], where ≺k ⊆ C1
i × C2

j when η(k) = 〈i, j〉, by induction:

≺0 = C1
0 × C2

0 ;

if η(k) = 〈i, j〉, then

1. if η(k + 1) = 〈i + 1, j〉, we set p ≺k+1 q ,

{

p ≺k q if p /∈ (t1
i+1)•,

∃p′ ∈
•
t1
i+1, p′ ≺k q otherwise.

2. if η(k + 1) = 〈i, j + 1〉, we set p ≺k+1 q ,

{

p ≺k q if q /∈ (t2
j+1)•,

∀q′ ∈
•
t2
j+1 : p ≺k q′ otherwise.

3. otherwise, let t1
i+1 = 〈{p0} , a, {p1}〉 and t2

j+1 = 〈{q0} , a, {q1}〉; we set

p ≺k+1 q ,

{

p0 ≺k q or (q = q1 and p0 ≺k q0) if p = p1

p ≺k q and q 6= q1 otherwise.

The schedule η is valid if for every visible index i in R2 we have p ≺k q for the unique k, p, q

such that η(k) = 〈ϕ(i), i〉, (t1
ϕ(i))

• = {p} and (t2
i )• = {q}.

◮ Example 15. Recall the runs R′
2 and R1 from Example 11. The following sequence is a

schedule from R1 to R′
2.

η = (0, 0); (1, 0); (1, 1); (2, 2); (3, 3); (4, 4); (5; 5); (6, 5); (6, 6); (6, 7); (6, 8)

We may then draw the two runs side by side according to this schedule:

R′

2 :

R1 :

00

1

2 2

3 3 3 3

4 4 4

5 5 5 5 5

6 6 6 6

7 7 7

8 8 8 8

9 9

10

11τ

a

b

c

τ

d

τ

τ

0

11

2 2 2

3 3 3 3

4 4 4 4

5 5 5

6 7

8 8 8 8τ τ

a

b

d c

From this schedule, we can compute the successive ≺k relations, and check that 4 ≺3 5,

5 ≺4 6, 6 ≺5 8, and 7 ≺6 7. Hence η is valid.
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◮ Remark. If η(k) = 〈i, j〉, η(k′) = 〈i′, j′〉, 〈p, i〉 ≈R1
〈p′, i′〉 and 〈q, j〉 ≈R2

〈q′, j′〉, then

p ≺k q if and only if p′ ≺k′ q′.

◮ Lemma 16. If η(k) = 〈i, j〉, then p ≺k q entails ϕ(vpred 〈q, j〉) ⊆ vpred 〈p, i〉.

The algorithm we define in the next section looks for valid schedules. The following

proposition establishes soundness of this strategy.

◮ Proposition 17. If there exists a valid schedule from R1 to R2, then P (R1) ⊑ P (R2).

Proof. The bijection ϕ induced by η works. Let i, j be visible indices in R2 such that i ≤R2
j.

We need to show that ϕ(i) ≤R1
ϕ(j). Take the unique k, p, q such that η(k) = 〈ϕ(j), j〉,

(t1
ϕ(j))

• = {p} and (t2
j)• = {q}. By Lemma 12.(1) we have i ∈ vpred 〈q, j〉. Since η is valid,

we have p ≺k q, and thus ϕ(vpred 〈q, j〉) ⊆ vpred 〈p, ϕ(j)〉 by Lemma 16. This means that

ϕ(i) ∈ vpred 〈p, ϕ(j)〉, and using Lemma 12.(1) again we obtain ϕ(i) ≤R1
ϕ(j). ◭

For completeness of the algorithm we need to exhibit valid schedules. Under appropriate

assumptions—see Proposition 19 below—the following canonical schedule η from R1 to R2

will work. We define it recursively. Intuitively, we schedule the silent transitions of R1 as

early as possible and those of R2 as late as possible:

η(0) = 〈0, 0〉;

if η(k) = 〈i, j〉 then

1. if t1
i+1 is silent, then η(k + 1) = 〈i + 1, j〉;

2. if t1
i+1 is visible and t2

j+1 is silent then η(k + 1) = 〈i, j + 1〉;

3. if t1
i+1 and t2

j+1 are visible, then η(k + 1) = 〈i + 1, j + 1〉.

We write ϕ for the bijection induced by η. The schedule from Example 15 is actually the

canonical schedule. The converse of Lemma 16 holds for the canonical schedule:

◮ Lemma 18. If R2 is series-parallel and economical, then, for every k with η(k) = 〈i, j〉,

if ϕ(vpred 〈q, j〉) ⊆ vpred 〈p, i〉, then p ≺k q.

◮ Proposition 19. If R1 and R2 are series-parallel, if P (R1) ⊑ P (R2), and if R2 is econom-

ical and follows R1 then the canonical schedule η from R1 to R2 is valid.

Proof. First note that since R2 follows R1, ϕ and the bijection witnessing P (R1) ⊑ P (R2)

must coincide. Let i be a visible index in R2, and let k, p, q such that η(k) = 〈ϕ(i), i〉,

(t1
ϕ(i))

• = {p} and (t2
i )• = {q}. We have to prove p ≺k q. By Lemma 18, it suffices to prove

the inclusion ϕ(vpred 〈q, i〉) ⊆ vpred 〈p, ϕ(i)〉, i.e., that for every j ∈ vpred 〈q, i〉, we have

ϕ(j) ∈ vpred 〈p, ϕ(i)〉. This is equivalent to checking that for every visible j, j ≤R2
i implies

ϕ(j) ≤R1
ϕ(i), which is true because ϕ is an order preserving bijection from the pomsets of

R2 to that of R1. ◭

Note that this lemma relies on the fact that R2 is series-parallel. Indeed, there can be

pairs of runs R1 and R2 satisfying P (R1) ⊑ P (R2), and R2 being economical and following

R1, but such that the canonical schedule is not valid.

5.4 Reduction to finite automata

Now that we have the notion of valid schedule, we use a technique similar to [10] to reduce the

problem of comparing Petri nets modulo subsumption to the comparison of plain automata.

For this end, we define the following automaton that aims at recognising those runs of N1

for which there exists a valid schedule to some run in N2.
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◮ Definition 20. The composite automaton N1 ≺ N2 is the nondeterministic finite state

automaton with epsilon-transitions 〈Q, T1, q0, F 〉 where:

the alphabet is the set of transitions of N1;

the set of states Q consists of triples 〈C1, C2, ≺〉 with C1 and C2 respectively configurations

of N1 and N2 and ≺ ⊆ C1 × C2;

the initial state q0 is the triple
〈{

p1
in

}

,
{

p2
in

}

,
{〈

p1
in, p2

in

〉}〉

;

final states are those triples of the shape
〈

{p1
fin}, {p2

fin}, _
〉

;

transitions are split into three kinds:

1. if t is a silent transition of N1, C1
t

−→N1
C ′

1, then from every state 〈C1, C2, ≺〉 there is

a transition labelled with t going to the state 〈C ′
1, C2, ≺′〉 with

p ≺′ q ⇔

{

p ≺ q if p /∈ t•,

∃p′ ∈ •t, p′ ≺ q otherwise.

2. if t is a silent transition of N2, C2
t

−→N2
C ′

2, then from every state 〈C1, C2, ≺〉 there is

an epsilon-transition going to the state 〈C1, C ′
2, ≺′〉 with

p ≺′ q ⇔

{

p ≺ q if q /∈ t•,

∀q′ ∈ •t, p ≺ q′ otherwise.

3. if t1 and t2 are visible transitions of N1 and N2 with the same label, inputs p0 and

q0 and outputs p1 and q1, if C1
t1−→N1

C ′
1 and C2

t2−→N2
C ′

2, then from every state

〈C1, C2, ≺〉 such that p0 ≺ q0, there is a transition labelled with t1 going to the state

〈C ′
1, C ′

2, ≺′〉 with

p ≺′ q ⇔

{

p0 ≺ q or q = q1 if p = p1,

p ≺ q and q 6= q1 otherwise.

By definition of this composite automaton, we have

◮ Lemma 21. The language of the automaton N1 ≺ N2 is the set of accepting runs R1 in

N1 such that there is an accepting run R2 in N2 and a valid schedule from R1 to R2.

Finally, we can reduce the comparison of Petri nets modulo subsumption to that of (word)

automata.

◮ Proposition 22. If the runs in N1 and those in N2 are all series-parallel, then L (A (N1)) ⊆

L (N1 ≺ N2) if and only if JN1K ⊑ JN2K.

Proof. Suppose L (A (N1)) ⊆ L (N1 ≺ N2) and let P ∈ JN1K. There exists R1 ∈ L (A (N1))

such that P = P (R1). By assumption we also have R1 ∈ L (N1 ≺ N2), which means, by

Lemma 21, that there is an accepting run R2 in N2 and a valid schedule η from R1 to R2.

Proposition 17 then tells us that P (R1) ⊑ P (R2), thus proving P ∈ ⊑
JN2K.

Conversely, assume that JN1K ⊑ JN2K. Let R1 ∈ L (A (N1)) be an accepting run in N1.

By assumption, there is an accepting run R2 in N2 such that P (R1) ⊑ P (R2). By hypothesis,

both R1 and R2 are series-parallel. By Proposition 10, there exists an economical series-

parallel run R′
2 that follows R1 and is equivalent to R2. Hence using Proposition 19, there is

a valid schedule from R1 to R′
2. With Lemma 21 we conclude that R1 ∈ L (N1 ≺ N2). ◭
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6 Decidability & Complexity of CKA

Putting together the results from Sections 4 and 5 yields the announced algorithm.

◮ Proposition 23. CKA lies in the class ExpSpace.

Proof. We build the Petri nets N (e) and N (f), and then the finite automata A (N (e)) and

N (e) ≺ N (f). By Proposition 22, to answer the original question, we simply need to test

these automata for language inclusion. It is well known that this requires polynomial space

with respect to the size of the automata.

Let n be the size of e and m the size of f (their number of symbols). The Petri nets

N (e) and N (f) are linear in the size of e and f , with at most 2n and 2m places. The

automaton A (N (e)) uses at most 22n states (recall these are sets of places). The automaton

N (e) ≺ N (f) uses at most 22n × 22m × 22n×2m states. Hence testing language equivalence of

these two automata will use an amount of space polynomial in 22n and 22n+2m+4nm, whence

the announced result. ◭

For the lower bound, we reduce the problem of universality of regular expressions with

shuffle [16] to the containment of downward-closed rational languages. We briefly recall the

former. Regular expressions with shuffle over the alphabet Σ are terms over the syntax

e, f ∈ Rat⋊⋉ 〈Σ〉 ::= e + f | e · f | e ⋊⋉ f | e⋆ | 0 | 1 | a (a ∈ Σ).

Given two words u and v over Σ, the shuffle product of u and v, written u ⋊⋉ v, is the

language of all words of the form u1v1u2v2 · · · ukvk; where u = u1 · · · uk, v = v1 · · · vk, and

the words ui, vi can be of arbitrary length (including the empty word).

The language of a regular expression with shuffle is defined recursively as follows.

J0K := ∅ J1K := {ε} JaK := {a} Je + fK := JeK ∪ JfK Je · fK := JeK · JfK

Je ⋊⋉ fK :=
⋃

u∈JeK, v∈JfK

u ⋊⋉ v Je⋆K :=
⋃

n∈N

{u1 . . . un | ∀i 6 n, ui ∈ JeK} .

◮ Theorem 24 (Mayer and Stockmeyer [16]). The problem of testing whether the language of

a regular expression with shuffle is equal to Σ⋆ is ExpSpace-complete.

The key observations for our reduction are due to Grabowski [6]: words are isomorphic to

totally ordered pomsets, and given two words u and v, the set of totally ordered pomsets in
⊑

Ju ‖ vK is isomorphic to the shuffle product of u and v.

Concretely, we associate a series-parallel expression ⌊e⌋ to any regular expression with

shuffle e by replacing every occurrence of ⋊⋉ with ‖. This encoding has the following property.

◮ Lemma 25. For every word w ∈ Σ⋆, we have w ∈ JeK if and only if w seen as a totally

ordered pomset is in
⊑

J⌊e⌋K.

Proof. By a simple induction on e, using the above observation for the shuffle case. (Each

subcase can be found in [6].) ◭

As a consequence, the language of e is Σ⋆ if and only if JΣ⋆K ⊑ J⌊e⌋K. We thus have a

linear encoding of the universality of regular expressions with shuffle into containment of

downward-closed rational languages, hence our final theorem.

◮ Theorem 26. The problem CKA is ExpSpace-complete.

An implementation of the algorithm is available at http://paul.brunet-zamansky.fr/cka.

html.
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7 Related work

Several constructions in the literature are similar to those presented in Section 4. Here we

list some of them, highlighting the differences between these developments and our own.

Lodaya and Weil introduced branching automata that recognise series-parallel rational

pomset languages [15], which include the series-rational languages we use here. These

automata impose a strong notion of bracketing (opening and closing τ -transitions must

match exactly), which we do not know how to handle when it comes to comparing automata.

This is why we used plain Petri nets instead.

Jategaonkar and Meyer presented a construction almost equivalent to ours [10], albeit

for different purposes: their goal was to obtain a lower complexity bound by a reduction

from the universality problem of regular languages with shuffle. The main differences in

the constructions are that we use an initial place instead of an initial marking, and that

we consider a unique final place while they have a distinguished final transition. These

differences mainly impact the star and parallel product constructs. Jategaonkar and Meyer’s

construction could in fact be adapted to obtain an alternative proof of Theorem 5. However,

their construction does not satisfy the structural constraints needed for the completeness

of the algorithm we develop in Section 5: the runs of the automata produced by their

construction are not always series-parallel.

Finally, a third construction that produces safe Petri nets from expressions was developed

by Lodaya [14]. It is, however, quite different from the present approach. In particular, it

requires initial and final markings, and it is not appropriate for a precise complexity analysis,

as it produces nets that are exponentially large with respect to input expressions.
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