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Summary Statement: 18 

Haemoglobin-less Antarctic icefish express a membrane-bound carbonic anhydrase that 19 

catalyses CO2 excretion at the gills, to compensate for the absence of the normal enzyme pool 20 

within red blood cells. 21 
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Abstract 22 

In all vertebrates studied to date, CO2 excretion depends on the enzyme carbonic 23 

anhydrase (CA) that catalyses the rapid conversion of HCO3
- to CO2 at the gas-exchange organs. 24 

The largest pool of CA is present within red blood cells (RBC) and, in some vertebrates, plasma-25 

accessible CA (paCA) isoforms participate in CO2 excretion. However, teleost fishes typically do 26 

not have paCA at the gills and CO2 excretion is reliant entirely on RBC CA; a strategy that is not 27 

possible in icefishes. As the result of a natural knockout, Antarctic icefishes (Channichthyidae) 28 

are the only known vertebrates that do not express haemoglobin (Hb) as adults, and largely lack 29 

RBC in the circulation (haematocrit < 1%). Previous work has indicated the presence of high 30 

levels of membrane-bound CA activity in the gills of icefishes, but without determining its 31 

cellular orientation. Thus, we hypothesised that icefishes express a membrane-bound CA isoform 32 

at the gill that is accessible to the blood plasma. The CA distribution was compared in the gills of 33 

two closely-related notothenioid species, one with Hb and RBCs (Notothenia rossii) and one 34 

without (Champsocephalus gunnari). Molecular, biochemical and immunohistochemical 35 

markers indicate high levels of a Ca4 isoform in the gills of the icefish (but not the red-blooded 36 

N. rossii), in a plasma-accessible location that is consistent with a role in CO2 excretion. Thus, in 37 

the absence of RBC CA, the icefish gill could exclusively provide the catalytic activity necessary 38 

for CO2 excretion; a pathway that is unlike that of any other vertebrate. 39 

  40 
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Introduction 41 

The first scientific investigation of an Antarctic icefish, less than a century ago (Ruud, 42 

1954), overthrew the common perception that haemoglobin (Hb) was a necessity to sustain 43 

vertebrate life. In fact, an entire family of teleosts, Channichthyidae within the suborder 44 

Notothenioidei (Perciformes) and comprising 16 species, do not express Hb as adults (Ruud, 45 

1954; Eastman, 1993) and largely lack red blood cells (RBC) in their circulation; residual 46 

haematocrit (Hct) is typically < 1% (Egginton, 1994). The implications for cardiovascular gas 47 

transport are tremendous. In the absence of Hb, icefish blood has a 10-fold lower O2-carrying 48 

capacity compared to red-blooded notothenioids (Holeton, 1970), and without RBCs icefish lack 49 

the important pool of carbonic anhydrase (CA) that facilitates CO2 transport and excretion in all 50 

vertebrates (Tufts and Perry, 1998). Those adaptations that address the dramatic impairment of 51 

O2 transport in icefishes are largely known (Hemmingsen and Douglas, 1970; Holeton, 1970; 52 

Hemmingsen and Douglas, 1972); however, those needed to resolve the associated problem of 53 

CO2 excretion are not. 54 

Most vertebrates transport the majority of CO2 that is produced in tissues as dissolved 55 

HCO3
- in the blood plasma. In this regard icefishes are no exception, as indicated by venous 56 

blood pH and PCO2 values (7.84 and 0.3 kPa in Chaenocephalus aceratus; Hemmingsen and 57 

Douglas, 1972) that are in line with those found in other fishes. Under these conditions, and due 58 

to the low apparent pK of the CO2-HCO3
- reaction of ~6.2 (Boutilier et al., 1984), blood plasma 59 

is an effective sink for CO2. While this greatly increases the capacitance for CO2 transport in 60 

blood (Tufts and Perry, 1998; Henry and Swenson, 2000), it also requires a rapid conversion of 61 

CO2 to HCO3
- at the tissues and the reverse reaction at the gills for CO2 excretion. However, the 62 

spontaneous rates of these reactions are slow relative to the residence time of blood at the 63 
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respiratory surfaces and tissue capillaries, and these rates further slow with decreasing 64 

temperature. At physiological temperatures in icefish, around -1.9°C (Littlepage, 1965), the 65 

halftime of spontaneous HCO3
- dehydration to CO2 is ~300 s (Kern, 1960; Heming, 1984) and 66 

thus exceeds the residence time of blood at the gills (~1-3 s) by two orders of magnitude 67 

(Cameron and Polhemus, 1974; Hughes et al., 1981). Based on the arterial-venous differences in 68 

PCO2 and pH in C. aceratus (Hemmingsen and Douglas, 1972), it can be estimated that in 69 

resting, normoxic icefish, about 68% of CO2 excretion must depend on HCO3
- dehydration at the 70 

gills, while the remainder is from physically dissolved CO2 in the plasma. During aerobic 71 

exercise, where blood pH is largely maintained, HCO3
- concentration may increase by 50% 72 

(Brauner et al., 2000) and the residence time at the gills will be reduced further, due to a higher 73 

cardiac output (Randall, 1982); an increase in cardiac output following exercise has recently 74 

been shown for C. aceratus (Joyce et al., 2018). Clearly, the uncatalysed rate of HCO3
- 75 

dehydration is simply not rapid enough to support CO2 excretion in any adult vertebrate, but in 76 

particular icefishes at these low temperatures. 77 

The rate limitation of CO2-HCO3
- reactions in the blood of vertebrates is largely 78 

alleviated by the catalytic activity of CA. The major CA pools are: i) RBC intracellular CA 79 

(Maren, 1967), and plasma HCO3
- has functional access to this CA pool via rapid Cl-/HCO3

- 80 

exchange across the RBC membrane (Romano and Passow, 1984); ii) soluble CA isoforms in the 81 

plasma (Henry et al., 1997b); and iii) plasma-accessible CA (paCA) isoforms that are anchored 82 

to the apical membranes of the endothelium (Henry and Swenson, 2000). At the tissue capillaries 83 

paCA is typically present and ensures a rapid conversion of CO2 to HCO3
- (Henry et al., 1997a). 84 

However, at the gas exchange surface, the contribution of different CA pools to CO2 excretion 85 

varies largely among the major vertebrate groups. On one end of the spectrum are the basal 86 
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hagfishes (Esbaugh et al., 2009) and Chondrichthyes (Gilmour et al., 2002; Gilmour et al., 2007) 87 

that rely on RBC CA, soluble CA in the plasma and paCA at the gills for CO2 excretion. All 88 

Euteleostomi lack soluble CA activity in the plasma, and thus most tetrapods rely on RBC CA, 89 

and to a lesser degree (< 10% of total CO2 excretion) on paCA at the gas exchange surface 90 

(Bidani et al., 1983; Zhu and Sly, 1990; Stabenau and Heming, 2003). And finally, teleost fishes 91 

have also lost paCA activity at the gills (for review see Harter and Brauner, 2017), and thus 92 

HCO3
- dehydration is shifted entirely into the RBC (1982; Wood et al., 1982; Desforges et al., 93 

2001; Desforges et al., 2002; for review see Perry and Gilmour, 2002), creating a strong coupling 94 

between O2 and CO2 transport; a hallmark of teleost gas exchange (Brauner and Randall, 1996). 95 

This strategy is clearly not available to icefishes, which are teleosts, but lack RBCs. Thus, with a 96 

clear need to catalyse HCO3
- dehydration, some other CA pool must be present in icefishes to 97 

compensate for the loss of RBC CA. 98 

Previous studies on gill homogenates from icefishes have provided biochemical evidence 99 

for a higher activity of membrane-associated CA when compared to red-blooded notothenioids 100 

(Feller et al., 1981; Maffia et al., 2001). Tufts et al. (2002) further characterised the branchial CA 101 

isoform distribution of notothenioids and found biochemical markers for the presence of a 102 

membrane-bound Ca4 isoform in the gills of an icefish species, but surprisingly, also in the gills 103 

of a red-blooded notothenioid. A critical detail, the cellular orientation of putatively paCA 104 

isoforms remains unexplored and therefore the potential involvement of a Ca4 isoform in CO2 105 

excretion remains unresolved for icefishes. Building on these previous findings, we hypothesised 106 

that icefishes express a membrane-bound CA isoform at the gill that is accessible to the blood 107 

plasma where it would catalyse CO2 excretion in the absence of RBC CA. To this end, 108 

biochemical, molecular and immunohistochemical techniques were used to compare the CA 109 
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isoform distribution in the gills of the icefish Champsocephalus gunnari and the red-blooded 110 

Notothenia rossii. The obtained results shed new light on a divergent strategy of CO2 excretion 111 

in icefishes, unlike that found in any other adult vertebrate. 112 
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Materials and Methods 113 

Sample collection 114 

Specimens of Notothenia rossii and Champsocephalus gunnari (average mass 115 

343.4±17.2 and 644.3±70.1 g, and length 38.8±0.7 and 37.7±1.1 cm) were captured using otter 116 

trawls or baited pot traps deployed from the U.S. ARSV Laurence M. Gould at Low Island (63° 117 

30’ S, 62° 37’ W) and North Dallmann Bay (63° 55’ S, 62° 43’ W), Antarctica. Animals were 118 

stunned by a sharp blow to the head. Blood was drawn from the caudal vein and mixed with 119 

3.2% sodium citrate (9:1 for N. rossii and 4:1 C. gunnari). All samples were centrifuged at 5,300 120 

x g for 10 min and plasma was decanted. Blood cells and plasma were frozen in liquid nitrogen 121 

and stored at -70°C. After blood sampling, animals were euthanised by severing the spinal cord 122 

and brain pithing. Gills and hearts were perfused with notothenioid Ringer (in mM: 260 NaCl, 123 

2.5 MgCl2, 5 KCl, 2.5 NaHCO3, 5 NaH2PO4, at pH 8.0) and tissues were frozen at -70°C or fixed 124 

in 10% buffered formalin for 24 h and then transferred to 70% EtOH. Fixed tissues were shipped 125 

on ice and frozen tissues were shipped on dry ice, to The University of British Columbia (UBC), 126 

in Vancouver. All samples were collected opportunistically and in strict compliance with the 127 

guidelines of The Institutional Animal Care and Use Committee (IACUC Protocol no. 14-L-004, 128 

Ohio University). 129 

Biochemical analysis of CA activity 130 

Approximately 2 g of gill lamellae were homogenised (Polytron PT1200, Luzern, 131 

Switzerland) in 8 mL of assay buffer on ice (in mM: 225 mannitol, 75 sucrose, 10 TRIS base, 132 

and adjusted to pH 7.4 with 10% phosphoric acid). Differential centrifugation was at 4°C 133 

according to (Henry, 1988; Henry et al., 1993): i) 800 x g for 20 min; ii) 8500 x g for 20 min 134 

(Allegra 64R, Beckman Coulter, Brea, CA); iii) 100 000 x g for 90 min (Beckman L8-70M) to 135 
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produce a microsomal pellet containing plasma membranes and a supernatant containing the 136 

cytosolic fraction. Pellets were re-suspended in 3 mL of assay buffer, by vortexing and mild 137 

sonication (5 W for 3 s). Protein concentration was measured spectrophotometrically at 595 nm 138 

using the Bradford assay (Sigma B6916, St. Louis, MO) and bovine serum albumin standards 139 

(BioRad Quickstart 5000206; Hercules, CA). 140 

The activity of CA in cellular fractions was measured using the electrometric ΔpH assay 141 

(Henry, 1991). Reactions were in 6 mL of assay buffer in a thermostatted vessel at 4°C using 100 142 

μL CO2 saturated water as a substrate. The reaction kinetics were assessed as the time for a 0.15 143 

unit pH change, with a GK2401C electrode and PHM84 meter (Radiometer, Copenhagen, 144 

Denmark). Uncatalysed reaction rates (without sample addition) were subtracted from the 145 

enzymatic rates and absolute enzyme catalytic rates were calculated from the buffer curve of the 146 

assay buffer over the tested pH range (determined in separate titrations). 147 

Membrane pellets were washed by an additional step of ultracentrifugation (100 000 x g 148 

for 90 min) and re-suspended in 3 mL of fresh buffer. Washed pellets were incubated with 1 I. U. 149 

phosphatidylinositol-specific phospholipase C (PI-PLC; Invitrogen P6466, Carlsbad, CA), an 150 

enzyme that cleaves the common glycosylphosphatidylinositol (GPI) membrane anchor, or with 151 

assay buffer as a control, for 90 min at 21°C. CA inhibition kinetics were assessed by: i) adding 152 

0.005% sodium dodecyl sulfate (SDS) to the assay buffer; ii) titrations with 0.6-6 nM 153 

acetazolamide (Az) according to (Easson and Stedman, 1936; Dixon, 1953); and iii) adding 100 154 

µL of plasma from either C. gunnari or N. rossii to the assay buffer. RBC lysates were produced 155 

from 50 µL packed RBCs from N. rossii, diluted 50-fold in distilled water and frozen in liquid 156 

nitrogen twice; CA activity was measured on 5 µL of lysate. 157 
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Plasma characteristics 158 

Plasma protein concentration was measured in both species as described above. In 159 

addition, Hb concentration in plasma samples from N. rossii was measured 160 

spectrophotometrically at 540 nm using the cyanomethaemoglobin method with human Hb 161 

dilutions as standards (Sigma H7379). The concentration of protein from Hb was then subtracted 162 

from total protein concentration measured in the plasma. The plasma non-bicarbonate buffer 163 

capacity (βplasma) was measured with an automated titrator (TIM865, Radiometer, Copenhagen, 164 

Denmark). Plasma aliquots of 200 µL were added to 4.5 mL of deionised water in a magnetically 165 

stirred glass titration vessel (4°C) that was continuously sparged with N2. All results represent 166 

upward titrations from pH 4 to 9 with 0.01 M NaOH. The plasma non-bicarbonate buffer 167 

capacity (βplasma) was calculated from the change in pH that corresponded to individual steps of 168 

base addition (10 µL) over the physiologically relevant pH range in notothenioids of pH 7.4 to 169 

8.2 (Acierno et al., 1997). βplasma was then calculated as the mean value over the tested pH range. 170 

Immunohistochemistry 171 

Localisation of Ca4 in the gills of C. gunnari and N. rossii was with a custom rabbit 172 

polyclonal antibody raised against rainbow trout (Oncorhynchus mykiss) Ca4, which has been 173 

described in detail (Gilmour et al., 2007) and has been successfully used in rainbow trout and 174 

spiny dogfish (Squalus acanthias). The antigenic sequence (TRRTLPDERLTPFTFTGY) 175 

corresponds to amino acids 57–74 of the rainbow trout Ca4 (GenBank AAR99330), which is 176 

73% conserved in N. corriceps. The immunohistochemical results were later replicated using a 177 

custom chicken polyclonal antibody raised against the Ca4 of three Chondrichthyes (Squalus 178 

acanthias, DQ092628.1; Rhincodon typus, XM_020514262.1; Callorhinchus milii, 179 

XP_007894777.1). The antigenic peptide sequence for S. acanthias Ca4 was 180 
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GSEHTIDGEQYPMELHIVH (aa125-144), and the sequence in the notothenioid Ca4 is 100% 181 

conserved. Other sections were immunolabeled with a rabbit anti-Ca2 antibody (ab191343, 182 

Abcam, Cambridge, UK); the cytosolic Ca2-like isoform in fishes was recently reclassified as 183 

Ca17 (Ferreira-Martins et al., 2016). Ca4 and Ca2 antibodies were tested by western blot 184 

analysis using cytosolic and microsomal fractions of gill homogenates from both species. 185 

Subsamples containing 20 µg of protein were separated by SDS-page using 10% polyacrylamide 186 

gels (with 4% stacking gel). Proteins were then wet-transferred onto 0.2 µm PVDF membranes 187 

(Immun Blot, BioRad), rinsed and air dried. Transfer was assessed using total protein staining 188 

with 0.5% Ponceau S in 1% acetic acid and then imaged. Blots were rinsed with TTBS (Tris 189 

Buffered Saline with 0.05% tween 20, pH 7.4) and blocked with 5% blotto in TTBS overnight at 190 

4°C. Thereafter, one membrane was probed with a 1:1,000 dilution of the rtCa4 and the other 191 

with a 1:2,500 dilution of the Ca2 antibody, overnight at room temperature on a rotisserie (Lab 192 

QuakeII, Thermo). Protein size was determined using a Precision Plus Protein Dual Color ladder 193 

(BioRad 1610374). All membranes were rinsed three times with TTBS and incubated with a 194 

1:25,000 dilution of a goat anti-rabbit secondary antibody conjugated to horseradish peroxidase 195 

(HRP; Genscript Piscataway, NJ), for 1 h at room temperature. Finally membranes were rinsed 196 

with TTBS and proteins were visualised using a chemiluminescent HRP substrate (Clarity, 197 

BioRad). Images were acquired using the Azure C300 imaging system and provided software 198 

(Azure Biosystems, Dublin, CA). 199 

To localise Ca4 and Ca17 in the gills, fixed tissues were stepwise dehydrated in EtOH, 200 

cleared in xylene and embedded in paraffin. Thin sections (5 µm) were cut on a microtome 201 

(Leica RM2500, Wetzlar, Germany) and mounted on aminopropylsilane (APS) coated 202 

microscope slides. A hydrophobic barrier (SuperPAP, Sigma) was created around the sections 203 
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that were incubated in a blocking buffer (BLØK, Millipore, Burlington, MA) for 15 min. 204 

Incubation with the primary antibody (rtCa4 or Ca2, 1:200) in blocking buffer was overnight at 205 

4°C in a humidified chamber. Negative controls were incubated with blocking buffer alone, or 206 

with normal rabbit serum. Detection of the primary antibody was done with a goat anti-rabbit 207 

IgG conjugated to Alexa 488 (Jackson Immunoresearch, West Grove, PA). Sections were then 208 

rinsed three times with 0.1 M phosphate buffered saline (PBS) for 5, 10 and 15 min and 209 

incubated with secondary antibody in a humidified chamber for 1 h, at 37°C. DAPI was added to 210 

the second wash step to visualise cell nuclei. Coverslips were mounted with 1:1 PBS glycerol 211 

containing 0.1% NaN3 and imaging was done with a fluorescence photomicroscope (Leica 212 

DM5500; Orca Flash 4, Hamamatsu, Japan). 213 

Sequencing and expression of ca4 214 

Total RNA was extracted from approximately 100 mg of gill and ventricle tissue in 1 mL 215 

of Trizol, following the manufacturer’s protocol (Invitrogen 15596018, Carlsbad, CA). 216 

Ventricles were used as a control tissue, in which the presence of Ca4 has been confirmed in 217 

several teleost species (Georgalis et al., 2006; Alderman et al., 2016). Tissues were homogenised 218 

with a Bullet Blender 24 with ~10 zirconium oxide beads (Next Advance, Averill Park, NY). 219 

The resulting RNA samples were treated with DNAse I (Thermo Scientific EN0521, Waltham, 220 

MA). RNA concentrations were measured using a nanodrop ND-2000 spectrophotometer 221 

(Thermo Scientific). First strand cDNA was synthesised from 2 µg of RNA using a high capacity 222 

reverse transcription kit (Applied Biosystems 4368814, Foster City, CA) and the cDNA product 223 

was diluted three-fold with molecular grade DEPC treated deionised water (Invitrogen 46-2224). 224 

Degenerate PCR primers were designed by aligning available fish ca4 sequences using 225 

the Clustal Omega web service (http://www.clustal.org), and identifying conserved sections 226 
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among the sequences (primer sequences were F 5’-GGA GAG CAG TAY CCC ATG G-3’ and 227 

R 5’-TGG GCT TCT CAA ACA MRG TCC-3’). PCR products (40 cycles; 94°C for 2 min, 228 

94°C for 30 s, 72°C for 1 min) were purified on a 1% agarose gel with a 1 kb ladder. Sections of 229 

the gel containing the 323 bp PCR product were cut out of the gel and purified using a GeneJet 230 

gel extraction kit (Thermo Scientific K0691). Purified PCR products were ligated into Topo2.1 231 

plasmids and transformed in One-Shot Topo10 competent cells (Invitrogen C404010) following 232 

the manufacturer’s protocol. Plasmids were extracted from ten different bacterial colonies with a 233 

GeneJet MiniPrep plasmid kit (Thermo Scientific K0503). Purified plasmids were sequenced at 234 

the UBC Nucleic Acid and Protein Service core facility (NAPS, Vancouver, Canada). 235 

Primers for real-time quantitative PCR (RT-qPCR) analysis were designed by aligning 236 

the obtained partial coding sequences (CDS) for C. gunnari ca4a with the N. corriceps ca4a-like 237 

mRNA sequence (XM_010775657.1). The generated primers were used on gill and ventricle 238 

tissues of both species (primer sequences were F 5’-GGG AAG CAG AGA AGT GTT GC -3’ 239 

and R 5’-TTT CAG ACG CAG AGG GAG TT-3’). Primers for the ef1α control gene were those 240 

reported by Urschel and O’Brien (2008), designed for three notothenioid species, and all results 241 

are reported relative to the expression of ef1α. RT-qPCR amplifications were with the SybrGreen 242 

kit (Applied Biosystems 4309155) on a Biorad CFX96 RT-PCR Detection System (Hercules, 243 

CA) with the following cycling conditions: 40 cycles, 95°C for 10 min, 95°C for 15 s, 55°C for 1 244 

min; melt curve over 65-95°C at 0.5°C s-1. No-amplification controls (no reverse transcriptase in 245 

the cDNA synthesis reaction) were run for each sample and showed no detectable amplification. 246 

Standard curves were run on each plate by serially diluting (1:5) pooled sample cDNA with 247 

molecular grade water in five steps. Primer pair efficiencies were within 100-120% and R2 > 0.99 248 

for all samples. To confirm the identity of the amplified products, RT-qPCR products were 249 



14 

processed with a GeneJet PCR purification kit (Thermo Scientific K0701). The purified RT-250 

qPCR products were cloned and plasmids were extracted as described above. Purified plasmids 251 

from ten colonies were sequenced using M13 forward and reverse primers (UBC NAPS). 252 

Data analysis and statistics 253 

All data were analysed in RStudio v1.1.383 (RStudioTeam, 2016) with R v3.4.1 254 

(RCoreTeam, 2017) and figures were generated with the ggplot2 v.2.2.1 package (Wickham, 255 

2009). Normality of distribution was tested with the Shapiro-Wilk test (P < 0.05) and by visually 256 

confirming the distribution of the residuals in quantile-quantile (q-q) plots (for dependent 257 

samples t-tests, normality was tested on the differences between dependent scores). 258 

Homogeneity of variances was tested with the Levene’s test (P < 0.05). To assess the CA 259 

inhibition kinetics of Az, titrations were carried out according to Dixon (1953) and the inhibition 260 

constant ki was calculated as the slope of: 261 

 262 

��

�
�

��

1 � �
� �� 

 263 

where I0 is the concentration of inhibitor, E0 is the concentration of free enzyme and i is the 264 

fractional inhibition of enzyme activity at a given inhibitor concentration (Easson and Stedman, 265 

1936). The effects of SDS and plasma on CA activity were tested with a dependent samples t-test 266 

against control measurements without these inhibitors, and the results are expressed as % 267 

inhibition. The effects of washing and Az on CA activity were tested using dependent samples t-268 

tests, and an independent samples t-test for the effect of PI-PLC (due to an imbalance in 269 

replicates). Differences in relative gene expression between tissues, and plasma protein 270 

concentration between species, were tested using an independent samples t-test (P < 0.05). 271 
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Differences in plasma buffering capacity between species were tested by linear regression 272 

analysis, and analysis of variance on the combined regression model (ANOVA, P < 0.05). All 273 

data are presented as means±s.e.m., with N = 6 unless indicated otherwise. 274 
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Results 275 

Immunohistochemistry 276 

The results for the immunohistochemical localisation of Ca4 and Ca17 protein in the gills 277 

of C. gunnari and N. rossii are shown in Figure 1. In C. gunnari, reactivity for Ca4 protein was 278 

observed as a clear ring, lining the entire blood space of the secondary lamellae (marked with *). 279 

This staining pattern was associated with the apical membrane of pillar cells and the basolateral 280 

membrane of lamellar epithelial cells (panel a). In contrast, in N. rossii, reactivity for the Ca4 281 

antibody was a diffuse staining pattern associated with the intracellular space of lamellar pillar 282 

cells and epithelial cells and absent from the lamellar blood space (panel b). Nonetheless, 283 

reactivity for the cytosolic Ca2 antibody showed a similar pattern for both species, with staining 284 

confined to the cytosol of all lamellar cell types and RBCs that remained in un-perfused areas 285 

within the lamellae (marked with * in panels c and d). The specificity of the antibodies was 286 

confirmed by the western blotting results. Probing of immunoblots from C. gunnari microsomal 287 

pellets with the Ca4 antibody revealed one band at ~37.5 kDa that was not observed in the pellets 288 

of N. rossii or the supernatants of either species. The Ca2 antibody showed immunoreactivity 289 

against a band at ~25 kDa in the cytosolic fractions from both species, but not in the pellets. 290 

Gene expression 291 

Homology cloning yielded a CDS for C. gunnari ca4a of 323 bp (uploaded to Genbank: 292 

MG561387) that was blasted against the stickleback (Gasterosteus aculeatus) and cod (Gadus 293 

morhua) genomes from the Ensembl genome browser (http://www.ensembl.org). BLAST results 294 

returned a ~90% sequence homology with the ca4a gene in both stickleback and cod (E-values 295 

were 1e-29 and 4e-9, respectively). The CDS of C. gunnari codes for a deduced protein of 103 296 
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amino acids, most closely resembling Ca4 and sharing 95% identity with N. corriceps Ca4 297 

(XM_010775657.1) and 67% with O. mykiss Ca4 (XP_021479942.1). 298 

Control gene expression of ef1α did not differ between ventricles and gills of C. gunnari 299 

(P = 0.338) or N. rossii (P = 0.203), and the expression of ca4a is reported relative to that of the 300 

control gene in Figure 2. The relative expression of ca4a mRNA in the gills of C. gunnari was 301 

not different from that of the ventricle (P = 0.610), a tissue in which ca4 expression has been 302 

reported in other teleosts (Georgalis et al., 2006; Alderman et al., 2016), and expression values 303 

were comparable to the expression of the control gene. Likewise, in the ventricle of N. rossii, 304 

ca4a was expressed at levels comparable to the control gene; however, expression in the gills 305 

was significantly lower compared to the ventricle (P = 0.044). 306 

Biochemical analysis of CA activity 307 

All cellular fractions obtained by differential centrifugation of gill homogenates showed 308 

significant CA activity. In both species, CA activity was highest in the supernatant containing the 309 

cytosolic fraction, compared to microsomal pellets that contain plasma membranes, and averaged 310 

over species values were 529 ± 50 and 99 ± 28 µmol H+ mg-1 min-1, respectively. The effects of 311 

washing on microsomal CA activity for both notothenioids are shown in Figure 3. Washing 312 

significantly increased CA activity in pellets of C. gunnari (when expressed per unit protein), 313 

from 17 ± 1 to 109 ± 9 µmol H+ mg-1 min-1 (P < 0.001). Whereas washing significantly 314 

decreased CA activity in pellets of N. rossi, from 181 ± 27 to 31 ± 2 µmol H+ mg-1 min-1 (P = 315 

0.002). However, washing significantly reduced total CA activity in both species (when 316 

expressed per volume of fraction) from 244 ± 17 to 149 ± 11 µmol H+ mL-1 min-1 in C. gunnari 317 

(P < 0.001), and from 453 ± 69 to 94 ± 9 µmol H+ mL-1 min-1 in N rossii (P = 0.003). 318 
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To assess whether microsomal CA isoforms were membrane-bound by a GPI anchor, 319 

membrane pellets were incubated at 21°C for 90 min, in the absence (Ctrl) or presence or of PI-320 

PLC. In the Ctrl incubations of both species, CA activities per unit of protein were reduced by 321 

about half compared to initial values (67 ± 9 and 15 ± 1 2 µmol H+ mg-1 min-1 for C. gunnari and 322 

N. rossii, respectively). The effects of PI-PLC on microsomal CA activity of both notothenioids 323 

are shown in Figure 4. Treatment of C. gunnari pellets with PI-PLC significantly decreased CA 324 

activity compared to Ctrl values, to 20 ± 1.5 µmol H+ mg-1 min-1 (P = 0.031), and a 325 

corresponding increase was observed in the CA activity of the supernatant (P = 0.002). Likewise, 326 

a significant effect of PI-PLC was detected on CA activity in pellets of N. rossii that decreased to 327 

10 ± 1 µmol H+ mg-1 min-1 (P < 0.001); however, no significant change in CA activity was 328 

observed in the supernatant (P = 0.450). 329 

Figure 5 shows the inhibitory effect of SDS, a surfactant, on the CA activity in cellular 330 

fractions of both notothenioids. In the pellets of C. gunnari, CA activity was unaffected by SDS 331 

(0.7 ± 2.5% inhibition; P = 0.813), whereas CA activity in the supernatant was significantly 332 

inhibited by 55.1 ± 6.6% (P = 0.003). In contrast, in N. rossii, SDS significantly inhibited CA 333 

activity in the pellets by 38.5 ± 4.4% (P = 0.003), and in the supernatant by 44.8 ± 3.9% (P = 334 

0.001). In addition, titrations with increasing concentrations of Az resulted in inhibition 335 

constants (ki) that were significantly different (P = 0.032) between CA isoforms derived from 336 

microsomal pellets or supernatants of C. gunnari gills; and the average ki were 0.74 ± 0.11 and 337 

1.18 ± 0.13 nM, respectively. 338 

As expected, RBC lysates from N. rossii had a high CA activity of, on average, 39 ± 1 339 

µmol H+ mg-1 min-1 (despite the high non-CA protein content of this fraction) and the inhibitory 340 

effects of 100 µL of plasma from either species are shown in Figure 6. The addition of plasma 341 
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from N. rossii significantly inhibited CA activity in the RBC lysate, by 92.3 ± 2.8% (P < 0.001). 342 

Likewise, the addition of plasma from C. gunnari significantly inhibited CA activity in the RBC 343 

lysates of N. rossii, by 81.7 ± 3.7% (P < 0.001). However, the CA activity in microsomal pellets 344 

of C. gunnari gills was unaffected in the presence of endogenous plasma (0.9 ± 1.1% inhibition; 345 

P = 0.809); whereas, CA activity in pellets of N. rossii was significantly inhibited in the presence 346 

of endogenous plasma, by 77.2 ± 4.3% (P < 0.001). In both species, CA activity in the 347 

supernatant was significantly inhibited by the addition of endogenous plasma; by 73.1 ± 6.3% in 348 

C. gunnari (P < 0.001) and by 90.2 ± 3.5% in N. rossii (P < 0.001). 349 

Plasma characteristics 350 

Plasma protein concentration was significantly higher (P = 0.001) in C. gunnari 351 

compared to N. rossii (18.3 ± 1.4 and 10.8 ± 0.3 mg mL-1, respectively). Figure 7 shows βplasma 352 

for both notothenioids over the physiological pH range. A significant species effect in the 353 

regression analysis indicated that βplasma of C. gunnari was significantly (P < 0.001) higher than 354 

that of N. rossii, and average values were 5.19 ± 0.26 and 4.32 ± 0.15 mmol L pH-1, respectively. 355 

Plasma protein concentrations in N. rossii were corrected for Hb protein from RBC lysis. Hb 356 

concentration was typically low in all samples and close to the detection limit of the assay (25 µg 357 

mL-1). However, a single sample had an elevated Hb concentration of 5.49 mg mL-1, and this 358 

sample was excluded from the analysis of βplasma (open symbols in Fig. 7). 359 
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Discussion 360 

Taking advantage of the natural Hb-knockout model provided by Antarctic icefishes, we 361 

tested the hypothesis that, in the absence of RBC CA, icefish gills express a paCA isoform that 362 

can provide the catalytic activity necessary for CO2 excretion. To determine the cellular 363 

orientation of the putatively plasma-accessible Ca4 isoform in the gills of notothenioids (Tufts et 364 

al., 2002), gill sections of the icefish C. gunnari and the red-blooded N. rossii were immuno-365 

labelled with an antibody raised against rainbow trout Ca4 (Gilmour et al., 2007). In gills of C. 366 

gunnari, a clear immunohistochemical signal (Fig. 1a) placed Ca4 protein in association with the 367 

apical plasma membranes of pillar cells and the basolateral membrane of some lamellar 368 

epithelial cells. Thus, Ca4 appears to line the entire lamellar blood space (marked with *), a 369 

pattern that is consistent with a plasma-accessible orientation of the enzyme, and which has not 370 

been observed previously in a teleost. A similar pattern has been described in the gills of dogfish, 371 

an elasmobranch (Gilmour et al., 2007), where the presence of Ca4 has been linked to functional 372 

measurements that infer a role of the enzyme in CO2 excretion (Gilmour et al., 2001). Western 373 

analysis revealed a Ca4 protein of ~37.5 kDa in C. gunnari that matches closely the size of 374 

dogfish Ca4, of ~40 kDa (Gilmour et al., 2007). Our immunohistochemical finding was 375 

corroborated by the pattern of gene expression in the gills of C. gunnari, where expression of 376 

ca4a was detected at high levels, comparable to those in the ventricle (Fig. 2). This is unlike the 377 

situation in other teleosts, such as rainbow trout, where ca4 is expressed in the ventricle but not 378 

in the gills (Georgalis et al., 2006). Surprisingly, the gills of N. rossii also showed detectable 379 

expression of ca4a, albeit at a significantly lower level compared to those in the ventricle (Fig. 380 

2), and without a corresponding immunohistochemical signal. Reactivity for the Ca4 antibody 381 

was clearly absent in the lamellar blood space of N. rossii (marked with *; Fig. 1b), but some 382 
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intracellular reactivity was detected. These immunohistochemical results were later confirmed 383 

using a second antibody, raised against Ca4 in three Chondrichthyes, for which the antigenic 384 

peptide sequence of the notothenioid Ca4 was 100% conserved (data not shown). It is possible 385 

that the low expression of ca4a mRNA in gills of N. rossii is translated into a small pool of 386 

protein that is anchored to intracellular membranes and does not undergo the post-translational 387 

modifications required for export to a plasma-accessible location (Waheed et al., 1996). This 388 

issue was clarified by the biochemical characterisation of this CA pool as follows. 389 

To characterise the CA-isoform distribution in gills of C. gunnari and N. rossii, gill 390 

homogenates were fractionated by differential centrifugation and CA activity was measured in 391 

the supernatant, comprising the cytosolic fraction, and in microsomal pellets that contain plasma 392 

membranes. In both species CA activity was highest in the supernatant, compared to microsomal 393 

pellets (averaged over species 529±50 and 99±28 µmol H+ mg-1 min-1, respectively). This result 394 

is in line with immunohistochemical data showing reactivity for a soluble Ca17 protein in the 395 

gills of both species that is clearly confined to the cytosol of both pillar- and lamellar epithelial 396 

cells, although more abundant in the latter (Fig. 1c and d). This prevalence of cytosolic over 397 

membrane-associated CA activity is consistent with previous findings on the CA isoform 398 

distribution in the gills of notothenioids (Maffia et al., 2001) and other fish species (Harter and 399 

Brauner, 2017) and highlights the importance of this CA pool for iono- and acid-base regulation 400 

and the sensing of CO2 and pH in neuro-epithelial cells (for review see Gilmour, 2012). 401 

However, this soluble cytoplasmic CA is not plasma-accessible and thus cannot participate in 402 

plasma HCO3
- dehydration and CO2 excretion. 403 

Membrane-bound Ca4 isoforms were identified by using four common biochemical 404 

markers: i) resistance to washing of microsomal pellets, ii) liberation of CA by PI-PLC, iii) 405 



22 

resistance to SDS and iv) resistance to plasma CA inhibitors. Washing significantly reduced the 406 

CA activity in the pellets of N. rossii, but, when expressed per unit of protein, washing increased 407 

CA activity in the pellets of C. gunnari (Fig. 3). This was likely due to the washout of non-CA 408 

proteins from the microsomal fraction, and washing significantly reduced total CA activity in the 409 

pellets of both species. Importantly, after washing, the pellets of C. gunnari retained a three-fold 410 

higher CA activity, compared to N. rossii (109±9 and 31±2 µmol H+ mg-1 min-1, respectively). 411 

PI-PLC treatment significantly reduced CA activity in the microsomal pellet of C. gunnari, 412 

releasing CA activity into the supernatant (Fig. 4); this is a clear indication for the presence of a 413 

GPI membrane-bound Ca4 and/or Ca15 isoform in the icefish. A statistically significant, but 414 

numerically small effect of PI-PLC was also detected on CA activity in the pellets of N. rossii, 415 

however, without a corresponding increase in supernatant CA activity. This is in line with the 416 

data of Tufts et al. (2002), who found a significant effect of PI-PLC on CA activity in 417 

microsomal pellets of C. aceratus and N. coriiceps, while other studies have found no effect of 418 

PI-PLC in non-notothenioid teleosts (Gilmour et al., 2001; Gilmour et al., 2002). In combination, 419 

these results corroborate the finding of a CA isoform that is linked to membranes by a GPI 420 

anchor in the gills of the icefishes C. gunnari and C. aceratus, and provide equivocal indications 421 

for the presence of a similar, but perhaps less abundant, isoform in red-blooded notothenioids, 422 

that may be restricted to intracellular membranes or may be associated with epithelial cells; and 423 

thus, is membrane-associated, but not plasma-accessible. 424 

To further determine whether the observed CA activity in the gills of C. gunnari was 425 

derived from Ca4 protein, microsomal pellets were treated with SDS. Mammalian studies show 426 

that CA4 isoforms have two additional disulfide bonds that stabilise the enzyme against 427 

denaturation by SDS (Waheed et al., 1996) and thus, SDS-resistant CA activity is often 428 
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described as Ca4-like in fishes and other non-mammalian vertebrates (Gervais and Tufts, 1998; 429 

Gilmour et al., 2002; Stabenau and Heming, 2003; Gilmour et al., 2007; Esbaugh et al., 2009). 430 

CA activity in the pellet of C. gunnari was unaffected by SDS (Fig. 5), while CA activity was 431 

significantly reduced in pellets of N. rossii (by 38.5±4.4%). As expected, cytosolic CA activity 432 

in the supernatant of C. gunnari and N. rossii, which are typically SDS-sensitive, soluble CA 433 

isoforms, was significantly reduced in the presence of SDS (by 55.1±6.6 and 44.8±3.9%, 434 

respectively). These findings corroborate previous data that indicate Ca4-like enzyme activity in 435 

gill membranes of the icefish C. aceratus, but not in those of N. coriiceps or in the supernatants 436 

of either species (Tufts et al., 2002). 437 

The inhibition characteristics for Az, a common sulfonamide CA inhibitor are well 438 

studied in mammals and allow further differentiation among CA isoforms (Baird et al., 1997). 439 

Tufts et al. (2002) found no difference between the inhibition constant (ki) for Az in pellets and 440 

supernatants of C. aceratus, indicating similar CA isoforms in both fractions. However, here, in 441 

C. gunnari, the ki for Az was 0.74±0.11 nM in gill microsomal pellets, compared to 1.18±0.13 442 

nM in the supernatant; a significant difference, indicating that different CA isoforms are present 443 

in the two fractions. The discrepancy with previous data may indicate the presence of two 444 

isoforms with similar ki in C. aceratus, or perhaps that a low number of replicates in the earlier 445 

study (N = 4; Tufts et al., 2002), was insufficient to resolve the small numerical difference 446 

observed here. 447 

An intriguing finding was the discovery of a CA inhibitor in the plasma of the icefish, C. 448 

gunnari. In fact, the CA activity in RBC lysates from N. rossii was significantly reduced in the 449 

presence of 100 µl of plasma from either N. rossii (by 92.3±2.8%; Fig. 6) or C. gunnari (by 450 

81.7±3.7%), providing strong evidence that both species possess a CA inhibitor in their plasma. 451 
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The putative role of plasma CA inhibitors is to either inactivate or recycle CA from RBC lysis 452 

(Henry and Heming, 1998), but neither role would be relevant for icefishes that largely lack 453 

RBCs. A plasma CA inhibitor has also been described in the icefish C. aceratus (Tufts et al., 454 

2002) and because the phylogenetic distance between C. aceratus and C. gunnari spans nearly 455 

the entire clade of Channichthyidae (Near et al., 2003) it is plausible that plasma inhibitors of CA 456 

are present in all icefishes. Whether the plasma CA inhibitor in icefishes is an evolutionary relic 457 

from a red-blooded ancestry, or whether its role should include the scavenging of cytoplasmic 458 

CA shed by the lysis of other cell types, remains unclear. Regardless, the presence of an 459 

endogenous plasma CA inhibitor can be used as a powerful diagnostic for Ca4 that, in mammals, 460 

is largely unaffected by the inhibitor, and this safeguards its function in plasma-accessible 461 

locations (Hill, 1986; Heming et al., 1993). A critical finding, thus, was that CA activity in 462 

pellets of C. gunnari was unaffected by the presence of endogenous plasma (Fig. 6), whereas CA 463 

activity in pellets of N. rossii was significantly inhibited by 77.2±4.3%. Further, the supernatant 464 

of both species was significantly inhibited by plasma addition (in C. gunnari by 73.1±6.3% and 465 

in N. rossii by 90.2±3.5%). Thus, CA activity in membranes of C. gunnari displays Ca4-like 466 

characteristics that are not seen in membranes of N. rossii or in those fractions containing soluble 467 

CA isoforms. 468 

Four biochemical criteria are commonly used to characterise membrane-bound Ca4: i) 469 

resistance to washing of pellets, ii) liberation by PI-PLC, iii) resistance to SDS and iv) resistance 470 

to plasma CA inhibitors. CA activity in the pellets of C. gunnari conformed to all four criteria 471 

and this was supported by the expression of ca4a mRNA at the gills and the 472 

immunohistochemical detection of Ca4 protein of the predicted size, in a subcellular location that 473 

indicates a plasma-accessible orientation. CA activity in the pellets of N. rossii was largely 474 
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removed by washing and inhibited by SDS. A significant effect of PI-PLC and low levels of 475 

ca4a expression may indicate the presence of some Ca4 protein that appears to be localised to 476 

intracellular membranes. Regardless of the isoform identity, the fact that microsomal CA activity 477 

in N. rossii was susceptible to the plasma CA inhibitor prohibits this CA pool from participating 478 

in HCO3
- dehydration in the plasma. In combination, these data support the hypothesis that C. 479 

gunnari possess plasma-accessible Ca4 at the gills that should catalyse CO2 excretion, while gills 480 

of N. rossii appear to lack a CA pool that could participate in this role. Thus, in the absence of 481 

RBC CA, icefish may be the only adult vertebrate in which CO2 excretion is driven exclusively 482 

by the paCA activity provided by the gill. 483 

Why most other teleosts lack paCA activity at the gills, despite its potential benefit for 484 

CO2 excretion is still debated. One powerful argument relates to the evolution of highly pH-485 

sensitive Hbs that required the active regulation of RBC intracellular pH to safeguard branchial 486 

O2 uptake during a blood acidosis (Nikinmaa et al., 1984; Berenbrink et al., 2005); this 487 

protective mechanism requires an absence of CA activity in the plasma (Jacobs and Stewart, 488 

1942; Motais et al., 1989; Rummer and Brauner, 2011). If the presence of paCA at the teleost gill 489 

was functionally constrained by the characteristics of teleost Hb and RBC function, perhaps 490 

these constraints were released in icefishes, which lack both. Assessing the presence of paCA in 491 

the gills of the closest red-blooded relatives of the Channichthyidae (the Bathydraconidae; Near 492 

et al., 2004) and confirming the absence of paCA in other notothenioid families, would 493 

strengthen the functional link between the loss of Hb and the expression of paCA. In addition, 494 

teleost plasma is an unfavourable medium to support high CA activities, mainly due to its low 495 

buffer capacity (βplasma), as HCO3
- dehydration requires equimolar amounts of H+ (Bidani and 496 

Heming, 1991; Gilmour et al., 2002; Szebedinszky and Gilmour, 2002). In the presence of RBCs 497 
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with fast Cl-/HCO3
- exchange, an abundant pool of CA and buffers on Hb, paCA activity may be 498 

largely inconsequential for CO2 excretion in teleosts (Desforges et al., 2001). Notably, it is those 499 

fishes with the highest βplasma that also have paCA activity; conditions that, to varying degrees, 500 

contribute to CO2 excretion in Squalus acanthias (Lenfant and Johansen, 1966; Graham et al., 501 

1990; Gilmour et al., 2001) and Eptatretus stoutii (Esbaugh et al., 2009). 502 

The βplasma in C. gunnari was 5.19±0.26 mmol L pH-1 and significantly higher compared 503 

to that in N. rossii, of 4.32±0.15 mmol L pH-1 (Fig. 7). Previous studies that measured βplasma in 504 

other icefish species over the same pH range reported 3.4±0.2 mmol L pH-1 in Pagetopsis 505 

macropterus (Wells et al., 1988) and 9.7±0.9 mM L pH-1 in Chionodraco hamatus (Acierno et 506 

al., 1997). While these values vary largely between studies and species, the βplasma reported here 507 

exceed, by about two-fold, typical teleost values (2-3 mmol L pH-1; Tufts and Perry, 1998), 508 

perhaps with the exception of some catfishes (Cameron and Kormanik, 1982; Szebedinszky and 509 

Gilmour, 2002). Plasma proteins in Channichthys rhinoceratus, another icefish, are rich in 510 

imidazole-based histidines, a residue capable of reversibly binding H+, which likely contribute to 511 

the high βplasma in this species (Feller et al., 1994). Similarly, histidine-rich proteins (in this case 512 

albumins) appear to underlie the unusually high βplasma in Ameiurus nebulosus, a catfish 513 

(Szebedinszky and Gilmour, 2002). And in fact, plasma protein concentration in C. gunnari was 514 

18.3±1.4 mg mL-1 and significantly higher compared to that in N. rossii, of 10.8±0.3 mg mL-1; a 515 

finding that may correlate with the higher βplasma in the icefish. The protein concentration in N. 516 

rossii plasma conforms with the range typically reported in teleosts (Acierno et al., 1997), 517 

however values in C. gunnari are lower compared to other icefishes studied (Egginton, 1994; 518 

Acierno et al., 1997; Feller and Gerday, 1997); the reason for this discrepancy is unknown. 519 
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Due to the large blood volume of icefishes, about 7.6% of body weight (Hemmingsen and 520 

Douglas, 1970) compared to 2-3% in other teleosts (Thorson, 1961; Houston and DeWilde, 521 

1969), and their low Hct (< 1% compared to > 25% in other teleosts; Holeton, 1970), the total 522 

volume of plasma in icefishes is at least three-times higher than in most teleosts (Feller et al., 523 

1994). The plasma of red-blooded teleosts contributes 20-40% to whole blood buffer capacity, 524 

typically < 10 mmol L pH-1, which is largely determined by the buffer capacity of Hb (Wood et 525 

al., 1982; Tufts and Perry, 1998; Gilmour et al., 2002; Szebedinszky and Gilmour, 2002). 526 

Although the measured βplasma in C. gunnari is only half that of typical teleost whole blood, this 527 

is clearly overcompensated by the three-fold higher plasma volume of icefishes. Thus, per unit of 528 

animal mass, icefishes have a greater capacity to buffer metabolically produced H+ in their blood 529 

compared to most teleosts, despite lacking Hb. In combination with a low metabolic rate 530 

(Hemmingsen et al., 1969), hence a lower release of CO2 and H+ to the plasma, βplasma in 531 

icefishes would seem adequate to sustain arterial-venous pH homeostasis and HCO3
- dehydration 532 

(and this is supported by experimental data; Hemmingsen and Douglas, 1972), which is 533 

catalysed by the paCa4 isoform at the gill. 534 

The evolutionary time-course over which RBCs were lost from the circulation in the 535 

common ancestor of Channichthyidae, and whether this coincided with the loss of 536 

transcriptionally active Hb genes, is presently unknown. However, Hb is the largest H+ buffer 537 

within the RBC cytosol (in teleosts largely through the Bohr-Haldane effect) and the absence of 538 

Hb will have severely restricted the functional significance of RBC CA. Thus, the time-course 539 

over which icefishes had to acquire paCA at the gill, to compensate for the reduction of RBC CA 540 

function, may have corresponded closely to the loss of Hb. The molecular mechanism by which 541 

icefishes catalyse HCO3
- dehydration in the plasma is analogous to that in all other non-teleost 542 
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vertebrates, where CA4 is GPI-anchored to the apical membrane at the gas exchange organs. 543 

Therefore, it seems likely that paCA was never “lost” at the teleost gill, but functional constraints 544 

related to the pH-sensitivity of teleost Hb prevented a significant expression of the trait, until the 545 

loss of Hb in icefishes simultaneously released functional constrains and created a need to 546 

catalyse HCO3
- dehydration in the plasma. Possible scenarios may include: i) natural selection 547 

favoured phenotypes with higher paCA activity at the gill, which requires that there was standing 548 

variation in this trait in the common ancestor of Channichthyidae; ii) phenotypic plasticity 549 

induced an up-regulation of ca4a gene expression at the icefish gill, which may be supported by 550 

the presence of the transcript in N. rossii; or iii) neoteny allowed for branchial paCA to be 551 

retained throughout icefish ontogeny, a mechanism that underlies other adult characters in 552 

notothenioids (Montgomery and Clements, 2000), and which would place branchial paCA as an 553 

embryonic trait in teleosts; a scenario that could be tested experimentally. 554 

In conclusion, the natural knockout of Hb in Antarctic icefishes had profound 555 

consequences for cardiovascular O2 transport and resulted in fascinating adaptations that 556 

compensate for the reduction in O2-carrying capacity of the blood. In addition, results from the 557 

present study show that the reduction of RBCs and the associated loss of CA catalytic activity in 558 

the blood of icefishes led to a divergent strategy of CO2 excretion. While paCA is functionally 559 

absent at the gills of teleosts, icefishes may have re-acquired this trait, and unlike the situation in 560 

any other vertebrate studied to date, in icefishes, the CA catalytic activity required for CO2 561 

excretion is provided exclusively by the gills. Therefore, the study of Antarctic icefishes may 562 

reveal a previously unidentified evolutionary plasticity in the vertebrate CO2 excretion pathway 563 

and perhaps provide a framework to address more general questions on the evolutionary 564 

dynamics of vertebrate gas exchange. 565 
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Figure Legends 785 

Figure 1 Immunohistochemical localisation of membrane-bound Ca4 and cytosolic Ca17 786 

protein in the gills of the icefish C. gunnari and the red-blooded N. rossii. All CA antibodies 787 

were labelled with a green secondary antibody and nuclei were stained blue with DAPI (4’,6’-788 

diamidino-2-phenylindole). In C. gunnari, immunoreactivity for Ca4 resulted in a circular 789 

staining pattern associated with the apical membrane of pillar cells, lining the entire lamellar 790 

blood space (marked with * in panel a), consistent with a plasma-accessible orientation of the 791 

enzyme (white scale bar = 25 µm). No immunoreactivity for Ca4 was detected in the lamellar 792 

blood space of N. rossii gills (marked with * in panel b), but some intracellular reactivity was 793 

detected that does not appear to be plasma-accessible. Ca17 protein was detected in the cytosol 794 

of pillar and epithelial cells of both notothenioid species (panels c and d). The lower panel (e) 795 

shows representative western blots for crude gill homogenates (H), supernatants (S, cytosolic 796 

fraction) and pellets (P, membranes fraction), obtained by differential centrifugation from two 797 

individuals of C. gunnari and N. rossii, respectively. Probing with the Ca4 antibody produced a 798 

strong band at ~37.5 kDa in the pellets of C. gunnari that was not observed in the supernatants or 799 

in any fraction of N. rossii. Probing for Ca17 protein produced bands at ~25 kDa in the 800 

supernatants but not the pellets, of both species. 801 

 802 

Figure 2 Relative expression of ca4a mRNA in ventricle and gill homogenates of N. 803 

rossii and C. gunnari. Measurements were by real-time quantitative PCR (RT-qPCR) and all 804 

expression levels are standardised to that of ef1α. Differences in relative gene expression 805 

between tissues, were assessed with independent t-tests within species (N = 5, except for C. 806 
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gunnari ventricle where N = 2; P < 0.05) and are indicated as: P < 0.05*; 0.01**; 0.001***; or 807 

“ns” for non-significant. All data are mean±s.e.m.. 808 

 809 

Figure 3 Carbonic anhydrase (CA) activity (µmol H+ mg protein-1 min-1) in the 810 

microsomal fraction of gill homogenates from the icefish C. gunnari and the red-blooded N. 811 

rossii. Membrane pellets were obtained by differential centrifugation and a final step of 812 

ultracentrifugation. Samples were measured before (Pre) and after (Post) a washing step with 813 

fresh assay buffer and measurements were with the electrometric ΔpH assay (Henry, 1991). The 814 

effects of washing on CA activity were assessed with a depend t-test within species (P < 0.05, N 815 

= 6) and are indicated as: P < 0.05*; 0.01**; 0.001***; or “ns” for non-significant. All data are 816 

mean±s.e.m.. 817 

 818 

Figure 4 Carbonic anhydrase (CA) activity (µmol H+ mg protein-1 min-1) in cellular 819 

fractions of gill homogenates from the icefish C. gunnari and the red-blooded N. rossii. 820 

Membrane pellets and supernatants (Super) were obtained by differential centrifugation and a 821 

final step of ultracentrifugation. Measurements were with the electrometric ΔpH assay (Henry, 822 

1991) after incubation of samples with saline (Ctrl) or phosphatidylinositol-specific 823 

phospholipase C (PI-PLC), an enzyme that cleaves the membrane anchors of CA4 and CA15. 824 

The effect of PI-PLC on CA activity was assessed with an independent t-tests for each cellular 825 

fraction within species (P < 0.05, N = 6, except for C. gunnari Ctrl where N = 3). Significant 826 

differences are indicated as: P < 0.05*; 0.01**; 0.001***; or “ns” for non-significant. All data 827 

are mean±s.e.m.. 828 

 829 
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Figure 5 Inhibition of carbonic anhydrase (CA) activity (in %), by sodium dodecyl sulfate 830 

(SDS) in cellular fractions of gill homogenates from two notothenioid species, the icefish C. 831 

gunnari and the red-blooded N. rossii. Membrane pellets and supernatants (Super) were obtained 832 

by differential centrifugation and a final step of ultracentrifugation, and CA activity was 833 

measured with the electrometric ΔpH assay (Henry, 1991), in the absence (Ctrl) or presence of 834 

0.005% SDS, a surfactant that inhibits CA activity, but is less potent for CA4 isoforms. The 835 

effect of SDS on CA activity was assessed with a dependent t-tests comparing Ctrl and SDS 836 

treated samples, for each cellular fraction within species (P < 0.05, N = 6). Inhibition of CA 837 

activity that is significantly different from zero is indicated as: P < 0.05*; 0.01**; 0.001***; or 838 

“ns” for non-significant. All data are mean±s.e.m.. 839 

 840 

Figure 6 Inhibition of carbonic anhydrase (CA) activity (in %), by blood plasma, in 841 

cellular fractions of gill homogenates from two notothenioid species, the icefish C. gunnari and 842 

the red-blooded N. rossii. Membrane pellets and supernatants (Super) were obtained by 843 

differential centrifugation and a final step of ultracentrifugation. Red blood cell (RBC) lysates 844 

were obtained from N. rossii and CA activity was measured with the electrometric ΔpH assay 845 

(Henry, 1991), in the absence (Ctrl) or presence of 100 µL plasma from either N. rossii or C. 846 

gunnari. The effect of plasma on CA activity was assessed with a dependent t-tests comparing 847 

Ctrl and plasma treated samples, for each cellular fraction within species (P < 0.05, N = 6). 848 

Inhibition of CA activity that is significantly different from zero is indicated as: P < 0.05*; 849 

0.01**; 0.001***; or “ns” for non-significant. All data are mean±s.e.m.. 850 

 851 
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Figure 7 Plasma buffer capacity (βplasma; mmol H+ L sample-1 pH-1) of two notothenioid 852 

species, the icefish C. gunnari (blue) and the red-blooded N. rossii (red). Measurements were 853 

performed with an automated titrator over a pH range of 7.4-8.2. Linear regression models were 854 

fitted to the data and 95% confidence intervals are indicated by shaded areas. Haemoglobin (Hb) 855 

concentration was measured in all samples from N. rossii and was low (around the detection 856 

limit of the assay; 25 µg mL-1) except in one individual where 5.49 mg mL-1 Hb were detected; 857 

this individual was excluded from the analysis (open symbols). (B) Raw values of βplasma are 858 

plotted for both species and the mean±s.e.m. are indicated by the error bars. Analysis of variance 859 

(ANOVA) detected a significant effect of species on βplasma in the combined regression model (N. 860 

rossii, N = 4; C. gunnari, N = 6, P < 0.001 indicated as ***). 861 
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