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Abstract

In neural decoding, there has been a growing interest in machine learning on

whole-brain functional magnetic resonance imaging (fMRI). However, the size

discrepancy between the feature space and the training set poses serious chal-

lenges. Simply increasing the number of training examples is infeasible and

costly. In this paper, we proposed a domain adaptation framework for whole-

brain fMRI (DawfMRI) to improve whole-brain neural decoding on target data

leveraging pre-existing source data. DawfMRI consists of three steps: 1) fea-

ture extraction from whole-brain fMRI, 2) source and target feature adaptation,

and 3) source and target classifier adaptation. We evaluated its eight possible

variations, including two non-adaptation and six adaptation algorithms, using

a collection of seven task-based fMRI datasets (129 unique subjects and 11 cog-

nitive tasks in total) from the OpenNeuro project. The results demonstrated

that appropriate source domain can help improve neural decoding accuracy

for challenging classification tasks. The best-case improvement is 8.94% (from

78.64% to 87.58%). Moreover, we discovered a plausible relationship between

psychological similarity and adaptation effectiveness. Finally, visualizing and

interpreting voxel weights showed that the adaptation can provide additional

insights into neural decoding.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a medical imaging tech-

nique that records the Blood Oxygenation Level Dependent (BOLD) signal

caused by changes in blood flow (Ogawa et al., 1990). Typically, an fMRI se-

quence is composed of MRI volumes sampled every few seconds, where each5

MRI volume has over 100,000 voxels and each voxel represents the aggregate

activity within a small volume (2−3mm3). fMRI can measure the neural activ-

ity associated with multiple cognitive behaviors and examine brain functions in

healthy relative to disordered individuals. Distinguishing functional brain activ-

ities can be framed as classification problems and solved with machine learning10

techniques, e.g. classifying clinical populations (Norman et al., 2006; Tong &

Pratte, 2012) or cognitive tasks (Cheng et al., 2015c; Gheiratmand et al., 2017).

However, in such settings, the number of fMRI training examples available for

machine learning is relatively small compared to the feature (voxel) space, typ-

ically less than one hundred examples per brain state. This size discrepancy15

makes accurate prediction a challenging problem.

Traditionally, this challenge is dealt with by preselecting voxels that belong

to regions of interest (ROIs) based on prior work and established knowledge

of domain experts (Poldrack, 2007), or by performing a “searchlight” anal-

ysis (Kriegeskorte et al., 2006). While making the problem computationally20

more tractable, it may ignore a significant portion of information in fMRI, and

miss potentially valid and superior solutions in the first place. Recently, stud-

ies of whole-brain fMRI are becoming increasingly popular (Allen et al., 2014;

Gonzalez-Castillo et al., 2015; Vu et al., 2015). This approach not only broadens

the scope of potentially important differences between cognitive states, but also25

lifts the need for a priori assumptions about which parts of the brain are most

relevant. Whole-brain fMRI analysis can take all available information into ac-
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count in a more data-driven workflow, however they can be severely hindered

by their small training sets.

While any individual fMRI dataset provides only a few training examples,30

growing public data repositories collectively contain much more training exam-

ples, such as OpenNeuro1 and the Human Connectome Project2. While every

neuroimaging experiment is importantly different, many recruit similar sets of

cognitive functions. If training examples from related, pre-existing datasets can

be leveraged to improve the performance and interpretability of decoding mod-35

els, it would unlock immense latent power in big data resources that already

exist in the neuroimaging community.

Domain adaptation, or more broadly transfer learning, is an emerging ma-

chine learning scheme for solving such a problem (Pan & Yang, 2010). It aims at

improving the classification performance in a particular classification problem40

by utilizing the knowledge learned from different but related data. In domain

adaptation terminology, the data to be classified are called the target domain

data, while the data to be leveraged are called the source domain data (Pan &

Yang, 2010). The effectiveness of domain adaptation has been shown in varied

domains such as computer vision and natural language processing (Patel et al.,45

2015; Weiss et al., 2016).

Domain adaptation has also been applied to brain imaging data in decoding

cognitive states. For example, Zhang et al. (2018) proposed two transfer learning

approaches by making use of shared subjects between target and source datasets.

They employed two factorization models (Varoquaux et al., 2011; Chen et al.,50

2015) to learn subject-specific bases, which are assumed to be invariant across

datasets. Using a source dataset with shared subjects can help the models learn

better subject-specific bases, and therefore improve the prediction accuracy.

However, the approaches are not applicable when no subjects are shared between

datasets, which is common for multi-site data sharing projects.55

1https://openneuro.org/
2https://www.humanconnectome.org/
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There is another related multi-task learning (MTL) approach for neural de-

coding. Rao et al. (2013) proposed sparse overlapping sets lasso (SOS Lasso)

for fMRI, with an MTL approach. MTL is a branch of transfer learning, which

aims at improving the performance of all tasks considered and does not differ-

entiate source and target domains. In the context of SOS Lasso, the multiple60

“tasks” are datasets associated with each of several participants of the same ex-

periment. The tasks are related as in multitask group lasso (Yuan & Lin, 2006),

but groups can be overlapped with one another, and features can be sparsely

selected both within and across groups. This technique uses all data relevant

to a specific classification problem, but it does not leverage similarities among65

different classification problems.

In diagnosing brain diseases or disorders, Li et al. (2018) developed a deep

transfer learning neural network to improve the autism spectrum disorder classi-

fication by leveraging an autoencoder (Vincent et al., 2010) trained on the data

of a large number of healthy subjects. Ghafoorian et al. (2017) applied deep70

learning based domain adaptation to brain MRI for lesion segmentation with a

convolutional neural network trained on a source domain of 280 patients and the

last few layers fine-tuned on a target domain of 159 patients. Wachinger et al.

(2016) proposed an instance re-weighting framework to improve the accuracy

of Alzheimer’s Disease (AD) diagnosis by making the source domain data to75

have similar distributions as target domain data. Cheng et al. (2012, 2015a,b,

2017) proposed several workflows to perform domain adaptation to improve AD

diagnosis accuracy by leveraging data of mild cognitive impairment, which is

considered as the early stage of AD.

Despite the progresses in the broad domain of neuroimaging, to the best80

of our knowledge, domain adaptation has not been studied systematically for

whole-brain fMRI data. This paper proposes a Domain adaptation framework

for whole-brain fMRI (DawfMRI) to improve the performance in a target do-

main classification problem with the help of source domain data. This enables

systematic study of domain adaptation for whole-brain fMRI to evaluate and85

further develop feasible solutions. It can also help discover novel findings, un-
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derstand how domain adaptation works in the context of neuroimaging, and

identify key technical challenges. Our main contributions are twofold:

1. Methods: We formulated the DawfMRI framework consisting of three

steps: 1) feature extraction from whole-brain fMRI, 2) source and target90

feature adaptation, and 3) source and target classifier adaptation. Under

this framework, we identified a state-of-the-art realization of each step

and evaluated all eight possible variations, including two non-adaptation

and six adaptation algorithms. Our source code is available at: https:

//github.com/sz144/DawfMRI.95

2. Results: We designed experiments systematically using a collection of

tasks from the OpenNeuro/OpenfMRI3 project. Results demonstrated a

promising way of leveraging existing source data to improve neural de-

coding on target data. We discovered a plausible relationship between

psychological similarity and adaptation effectiveness and revealed addi-100

tional insights obtained via adaptation.

2. Materials and Methods

2.1. OpenfMRI Data

We chose seven OpenfMRI datasets4 used in the study reported in (Poldrack

et al., 2013). Table 1 lists the details of the selected datasets. OpenfMRI is a105

public fMRI data sharing project. It provides whole-brain task-based functional

MRI data, as well as structural MRI data and metadata. Both functional and

structural images are in the NIfTI format. The metadata record experiment-

related information, such as onset time, length, and weighting.

The seven datasets contain 11 tasks in total. We used the same task ID110

as Poldrack et al. (2013). Tasks 2, 3, 4 and tasks 8, 9, 10, respectively, are

3We used the data from the OpenfMRI project (https://openfmri.org/), now known as

OpenNeuro. We will use the name OpenfMRI in the rest of this paper.
4Data used in this paper are available at: https://legacy.openfmri.org/dataset/, also

in the new BIDS format at OpenNeuro: https://openneuro.org/public/datasets
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Table 1: List of OpenfMRI datasets used in our experiments (ACN denotes accession number,

#Sub denotes the number of subjects in each run, and #Run denotes the number of runs

used in our experiments).

Task ID ACN #Sub #Run Task & Contrast Description

01 ds001 16 2
Balloon analog risk task: Parametric pump effect

vs. control

02 ds002 17 2 Probabilistic classification: Task vs. baseline

03 ds002 17 2 Deterministic classification: Feedback vs. baseline

04 ds002 17 2 Mixed event-related probe: Task vs. baseline

05 ds003 13 1 Rhyme judgement: Task vs. baseline

06 ds005 16 2 Mixed-gambles task: Parametric gain response

08 ds007 20 2 Stop signal task: Letter classification vs. baseline

09 ds007 19 2 Stop signal task: Letter naming vs. baseline

10 ds007 205 2 Stop signal task: Pseudoword naming vs. baseline

21 ds101 21 2 Simon task: Incorrect vs. correct

22 ds102 26 2 Flanker task: Incongruent vs. congruent

contributed by the same subjects. We used the original version (revision version

1.0.0) of each dataset. In total, there are 202 fMRI sequences from 129 unique

subjects for run 1 and 188 sequences from 116 unique subjects for run 2.

2.2. Data Preprocessing Pipeline115

To process the data from OpenfMRI, we implemented a standard preprocess-

ing pipeline using FSL (Jenkinson et al., 2012) based on the processing stream6

implemented by Poldrack et al. (2013). The output of one step will be the input

of next step. As shown in Table 2, the pipeline has five steps:

1. Perform motion correction on the BOLD signal sequences from OpenfMRI120

5Only 19 subjects were involved in run 2 for this task.
6https://github.com/poldrack/openfmri
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Table 2: Preprocessing pipeline for the selected OpenfMRI data.

Steps Operation Description Tools Used

1 Motion correction MCFLIRT (FSL)

2 Brain extraction BET (FSL)

3 Within-run statistical analysis FEAT (FSL)

4 Alignment of Z statistic maps featregapply (FSL)

5
Vectorization of Z statistic maps

masked by MNI152 T1 2mm brain mask
Nibabel

using MCFLIRT (FSL).

2. Perform brain extraction using BET (FSL).

3. Perform first-level analysis to generate statistical parametric maps (SPMs)

(Friston et al., 1994, 1998) of contrasts for each experiment condition using

FEAT (FSL). FSL design files are generated from the OpenfMRI onsets125

files using the custom code.

4. Align the spatially normalized Z statistic maps obtained in Step 3 with the

MNI152 standard image using featregapply (FSL). The data dimension is

standardized to 109 × 109 × 91 (2mm3) voxels.

5. Vectorize the voxels from the Z statistic maps that fall within the standard130

MNI152 T1 2mm brain mask (distributed with FSL) using the Python

package Nibabel (Brett et al., 2017).

The contrasts associated with each task represent differences between the

primary tasks and some baseline conditions. Rather than considering the in-

fluence of various baseline conditions, we conducted our experiments using the135

same single contrast per task as Poldrack et al. (2013). The contrasts used are

also reported in Table 1.

2.3. Domain Adaptation for Whole-Brain fMRI

We propose a domain adaptation framework for whole-brain fMRI (DawfMRI)

as shown in Fig. 1. This framework consists of three steps: feature extraction,140
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Parametric Maps

Source and Target 
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Feature Representation 
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Adaptation
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Visualizing 
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Target Positive Sample

Target Negative Sample
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Source Negative Sample

Figure 1: The proposed domain adaptation framework for whole-brain fMRI consists of three

steps: feature extraction, feature adaptation, and classifier adaptation, e.g. via indepen-

dent component analysis, transfer component analysis, and cross-domain SVM, respectively.

Learned model can be visualized on a brain atlas for cognitive interpretation.

feature adaptation, and classifier adaptation.

• Feature extraction aims to distill informative and non-redundant features

from high-dimensional data to accelerate computation, reduce overfitting,

and facilitate interpretation. Whole-brain fMRI is very high-dimensional.

However, there are not as many meaningful components as the number145

of voxels. Thus there is high redundancy and feature extraction can be

applied to reduce the dimension by identifying a more compact set of in-

formative features, e.g. with principal component analysis or independent

component analysis.

• Feature adaptation is a domain adaptation scheme that utilizes the source150
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domain samples for target model training. The motivation is to leverage

the samples from a related (source) domain when the information pro-

vided by the target domain samples is limited for training a good model.

However, a classifier trained on source domain data will typically perform

poorly on the target domain classification. This is due to domain feature155

distribution mismatch, which means that the features in target and source

domains do not follow the same probability distribution. The objective of

feature adaptation is to minimize this mismatch by feature mapping or re-

weighting (Pan & Yang, 2010). After performing feature adaptation, the

adapted samples from source domain can be used as additional samples160

for training the target model.

• Classifier adaptation is another domain adaptation scheme that aims at

improving the classifier performance in a target domain using the knowl-

edge, such as coefficients or parameters, from a pre-trained classifier. The

motivation is that when the information provided by target domain data165

is limited to train a good classifier, the discriminative information that

a classifier learned from source data can be leveraged to train a better

target classifier.

There is a key difference between feature adaptation and classifier adapta-

tion. The goal of feature adaptation is to make the source and target domain170

data similar. Classifier adaptation, in contrast, involves fitting a model to the

source domain data, and using this model to set priors for another model of the

target domain. When feature adaptation is used without subsequent classifier

adaptation, the feature-adapted source domain is used directly as if it contains

additional training examples in the feature-adapted target domain. That is, a175

single model will be fit to the feature-adapted source and target domain data.

Each step of DawfMRI can be optional. If all the three steps are skipped,

we train a classifier directly on the whole-brain data. To study DawfMRI sys-

tematically, we employ a state-of-the-art method for each step in DawfMRI:

independent component analysis (ICA) (Comon, 1994) for feature extraction,180
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Table 3: Notations and descriptions.

Notation Description

D Input feature dimension

Dt
l Labeled target data

d Output (lower) feature dimension

H Centering matrix

I Identity matrix

K Kernel matrix

k(·, ·) Kernel function, e.g. linear, Gaussian, polynomial

nT , nS Target/source sample size

U Feature mapping/transformation matrix

Vs Source support vectors

w Classifier coefficients

XT , XS Target/source data

ZT , ZS Learned target/source representation

transfer component analysis (TCA) (Pan et al., 2011) for feature adaptation,

and cross-domain SVM (CDSVM) (Jiang et al., 2008) for classifier adaptation.

Table 3 lists the key notations used for easy reference in the following presen-

tation of these methods.

2.3.1. Feature Extraction by ICA185

ICA is a popular method for fMRI feature extraction. We followed the

procedure of performing ICA in (Poldrack et al., 2013) in our experiments.

Spatial smoothing was performed on the SPMs obtained from the pipeline in

Sec. 2.2. Then ICA was performed on smoothed whole-brain SPMs using

MELODIC (Beckmann & Smith, 2004), the ICA tool in FSL.190

We performed ICA on data from all seven datasets for better estimation

quality. The objective of this step is to extract informative low-dimensional fea-
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tures from high-dimensional input rather than adaptation. It is unaware of the

domain differences and does not attempt to utilize this information. Therefore,

there is no adaptation in this step and all data share a common ICA feature195

space.

2.3.2. Feature Adaptation by TCA

TCA aims to find a feature mapping to minimize the mismatch between

target and source distributions, using the Maximum mean discrepancy (MMD)

(Borgwardt et al., 2006) as the distribution mismatch metric. Given source

domain data XS ∈ R
D×nS , target domain data XT ∈ R

D×nT , where nS and

nT denote the number of samples of XS and XT respectively, and D denotes

the input feature dimension, MMD between the two domains is

MMD(XS ,XT ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

nS

nS
∑

i=1

xSi
−

1

nT

nT
∑

i=1

xTi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

H

=
[ 1

n2
S

nS
∑

i,j=1

k(xSi,xSj)−
2

nSnT

nS ,nT
∑

i,j=1

k(xSi,xT j)

+
1

n2
T

nT
∑

i,j=1

k(xT i,xT j)
]

,

(1)

whereH denotes a reproducing kernel Hilbert space (RKHS) (Berlinet & Thomas-

Agnan, 2011), k(·, ·) denotes a kernel function, such as linear, Gaussian, and

polynomial, xSi and xTj are the ith and jth sample of XS and XT , respec-

tively. TCA assumes that the domain difference is caused by marginal distri-

bution mismatch, i.e, P (XS) 6= P (XT ). Hence, the objective is to learn new

feature representations ZS and ZT by mapping the input data to a feature space

where the MMD between the two domains is minimized, i.e., P (ZS) ≈ P (ZT ).

Equation (1) can be rewritten as MMD(XS ,XT ) = tr(KL), where

K ∈ R
n×n = k([XS ,XT ], [XS ,XT ]) =





KS,S KS,T

KT,S KT,T



 , (2)
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L ∈ R
n×n is:

Lij























1
nS

2 if xi,xj ∈ XS ,

1
nT

2 if xi,xj ∈ XT ,

− 1
nSnT

otherwise,

(3)

and n = nS + nT . To minimize MMD, TCA employs a dimension reduction

approach. A matrix Ũ ∈ R
n×d is used to map the kernel features to a d-

dimensional space (d ≪ nS + nT ), which results in a new kernel matrix

K̃ = (KK
1

2 Ũ)(Ũ⊤K
1

2K). (4)

We can consider K̃ as the inner product of the new representation Z = [ZS ,ZT ] ∈

R
d×n. Then Z = Ũ⊤K

1

2K. Let U = K
1

2 Ũ ∈ R
n×d, we obtain

tr((KUU⊤K)L) = tr(U⊤KLKU). (5)

In addition, covariance matrix U⊤KHKU (Fukunaga, 1990) is employed for

preserving the properties (variance) of XS and XT , where H ∈ R
n×n is a

centering matrix (Marden, 2014). Consequently, the learning objective becomes

min
U

tr(U⊤KLKU) + λ · tr(U⊤U)

s.t. U⊤KHKU = Id, λ > 0,

(6)

where Id ∈ R
d×d is an identity matrix, λ is a tradeoff parameter for regulariza-

tion. Denoting Γ = diag(γ1, . . . , γd) as Lagrange multipliers, we can derive the

Lagrange function for Eq. (6) as

L = tr(U⊤(KLK+ λI)U) + tr((I −U⊤KHKU)Γ). (7)

Setting ∂L
∂U

= 0, we obtain the following generalized eigendecomposition problem

(KLK+ λI)U = KHKUΓ. (8)

Finally, U can be learned by solving Eq. (8) for the d smallest eigenvectors.
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2.3.3. Classifier Adaptation by CDSVM

CDSVM is an SVM classifier that utilizes the source support vectors learned

by a standard SVM on source domain samples to find a better decision boundary

for target samples. It re-weights each source support vector according to its

average distance to the target (training) feature vectors, and then the target

classifier will be trained with the target training samples and re-weighted source

support vectors. We learn the decision function of CDSVM f(x) = w⊤x by

optimizing the following objective:

min
w

1

2
‖w‖2 + C

M
∑

i=1

ξi + C

K
∑

j=1

σ(vs
j ,D

t
l)ξ̄j

s.t. yif(xi) ≥ 1− ξi, ξi ≥ 0, ∀(xi, yi) ∈ Dt
l ,

ysjf(v
s
j) ≥ 1− ξ̄j , ξ̄j ≥ 0, ∀(vs

j , y
s
j ) ∈ Vs,

σ(vs
j ,D

t
l) =

1

M

∑

(xi,yi)∈Dt

l

exp(−β‖vs
j − xi‖

2
2).

(9)

Dt
l represents the labeled (training) target domain data. Vs denotes a matrix200

composed of all source support vectors. M is the number of samples in Dt
l . K is

the number of source support vectors in Vs. vs
j is the jth source support vector

in Vs. ξi and ξ̄j are slack variables for the ith target feature vector and jth

source support vector respectively. C is a hyperparameter controlling the trade-

off between the slack variable penalty and the SVM soft margin. σ(vs
j ,D

t
l) is a205

function that evaluates the distance between vs
j and Dt

l . β is a hyperparameter

controlling the influence of the source support vectors. Larger value of β leads

to less influence of source support vectors, and vice versa.

2.4. Visualizing Model Coefficients for Interpretation

The final classifier coefficients (or weights) indicate the significance of the210

corresponding features for a classification problem. Visualizing them in the

brain voxel space can help us gain some insights into which areas contribute more

to prediction performance. To achieve this, we chose a linear kernel in TCA,

SVM and CDSVM and developed a method to map the classifier coefficients

13



Figure 2: Mapping classifier coefficients w ∈ R
d×1 back to voxel weights ŵ ∈ R

D×1 in the

voxel feature space.

back to voxel weights in the original brain voxel space for interpretation, as215

shown in Fig. 2.

In the following, we detail how to map the model coefficients of TCA+SVM

(or TCA+CDSVM) to the original voxel space. If feature extraction is per-

formed, e.g. in the case of ICA+TCA+SVM, one more step will be needed to

map the coefficients in the ICA space to the voxel space, e.g. by GIFT (Calhoun220

et al., 2001).

Using the same notations above, we have X ∈ R
D×n composed of target and

source data, TCA has learned a feature transformation U ∈ R
n×d, and SVM

has learned coefficients w ∈ R
d×1. According to Eq. (5), the TCA features

can be represented as Z = U⊤X⊤X ∈ R
d×n. For a sample x ∈ R

D×1, its

transformed feature z = U⊤X⊤x ∈ R
d×1. The predicted class is

ŷ = sgn(w⊤z) = sgn(w⊤U⊤X⊤x), (10)

where sgn is the sign function (1 for positive values, -1 for negative values). Let

ŵ⊤ = w⊤U⊤X⊤ ∈ R
1×D, we obtain

ŷ = sgn(ŵ⊤x). (11)

Hence, ŵ contains the weights corresponding to each voxel in the whole brain

space for final prediction.
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3. Experimental Results

3.1. Experiment Settings and Evaluation Methods225

Our experiments will focus on using domain adaptation to improve perfor-

mance on challenging binary classification problems that require distinguishing

brain states associated with different cognitive tasks. Thus, we only consid-

ered the most basic scenario, specifically, both target and source classification

problems are binary. We studied DawfMRI in the setting of one-to-one domain230

adaptation only. This means that one target domain will be supplemented by

only one set of source domain data.

3.1.1. Algorithm Setup

We evaluated eight possible variations of the DawfMRI framework, including

two non-adaptation algorithms: 1) SVM and 2) ICA+SVM, and six adaptation235

algorithms: 3) CDSVM,4) ICA+CDSVM, 5) TCA+SVM, 6) TCA+CDSVM,

7) ICA+TCA+SVM, and 8) ICA+TCA+CDSVM.

For feature adaptation only algorithms (5 & 7), i.e., performing TCA without

using CDSVM, an SVM was fit to both of the feature-adapted source and target

domain data. For algorithms using CDSVM (3, 4, 6, and 8), we trained an240

SVM on the source domain, and then used the learned source support vectors

as additional input knowledge for training CDSVM on the target domain.

As mentioned in Sec. 2.4, we chose a linear kernel in TCA, SVM, and

CDSVM for easy interpretation. We optimized hyperparameters on regular grids

of log scale for each algorithm, with a step size of one in exponent. We searched245

for the best C and µ values within the range [10−3, 103] and [10−5, 105] for SVM

and TCA, respectively. For CDSVM, we grid-searched for the best combination

of C and β values in [10−3, 103]. We also varied the feature dimension of ICA

and TCA output from 2 to 100 (2, 10, 20, 50 and 100), and optimize the relevant

algorithms with the best feature dimensions.250
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Figure 3: Multi-class classification confusion matrix for linear SVM performance on the whole-

brain SPMs. Entry (i, j) in the confusion matrix is the number of observations actually in

task i, but predicted to be in task j. Three most challenging pairs of classification tasks (3 vs

6, 6 vs 22, and 1 vs 22) were selected as target domains to perform domain adaptation.

3.1.2. Target and Source Domain Setup

Each task (listed in Table 1) is associated with data collected from a number

of participants over one or two scanner runs. An SPM expressing a particular

contrast between task and baseline exists for each run for each subject. These

SPMs comprise the set of possible training examples, and the tasks serve as255

the category labels. Each pair of tasks is a domain, and our problem is binary

classification between two tasks. Each domain can be used as a target (the

primary problem that we want to improve performance on) or a source (the

secondary problem from which we want to leverage knowledge to help better

solve the primary problem). We anticipate the classification problems with260

lower prediction accuracy to have higher potential of improvement via domain

adaptation. Therefore, we selected three most challenging domains, with highly

confusable pairs of tasks:

1. Tasks 1 (32 samples) & 22 (56 samples),

2. Tasks 3 (34 samples) & 6 (32 samples),265
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3. Tasks 6 (32 samples) & 22 (56 samples).

These domains were identified by performing multi-class classification. Specif-

ically, we used a linear SVM to classify all eleven classes of the whole-brain

SPMs. Figure 3 shows the 10-fold cross-validation results as a confusion ma-

trix, where an entry (i, j) is the number of observations actually in task i, but270

predicted to be in task j. This allows us to identify the most confusable pairs.

The results indicate that Tasks 1 and 6 were often confused with other tasks.

Task 1 was misclassified as Task 22 more than half the time. Task 6 was the

least accurately classified overall, of which the samples were often misclassified

as Tasks 3, 21, or 22. We noted that samples from Task 3 can also be misclas-275

sified as Task 6. We then identified the three aforementioned pairs of tasks as

target domains to focus on. These selected pairs are confirmed later to be those

benefiting the most from domain adaptation in our adaptation effectiveness

study (Sec. 3.2.3).

Source selection and class labels: When using one pair of tasks as the280

target domain, the remaining nine tasks are combined pairwise to give 36 unique

pairs, each of which is a candidate source domain. For each pair, one task is

labeled 1 and the remaining task is labeled −1, also called positive and negative

classes, respectively. There are two ways to match source domain labels with

target domains labels, i.e., 1 with 1 and −1 with −1, or 1 with −1 and −1 with285

1. We studied both cases.

3.1.3. Evaluation Methods

We performed 10 × k-fold cross-validation (CV) evaluation, with k = 2, 5,

and 10, corresponding to using 50%, 80%, and 90% of available target domain

samples for training. All training samples were sampled uniformly at random for290

cross validation. CV was only applied to target domain samples. Source domain

samples were all used for training when performing domain adaptation. We will

report the mean classification accuracy with standard derivations for perfor-

mance evaluation. To study the statistical significance of the results obtained

by adaptation algorithms compared to those by non-adaptation algorithms, we295
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Figure 4: Classification accuracy (in %) of seven algorithms on the three target domains.

Non-adaptation (left) and adaptation (right) algorithms are separated by the vertical dashed

line. Adaptation algorithms use the best source domains, as indicated in the bars. Error bars

indicate the standard derivations.

will report the p-values of paired t-tests.

Applying CDSVM directly to the whole-brain SPMs ran out of 50GB mem-

ory, so we were unable to obtain the results. Experimental results for the re-

maining seven algorithms will be reported in the following section.

3.2. Classification Performance300

3.2.1. Results on Different Target Domains

Figure 4 shows the 10-CV classification results across the three different tar-

get domains. For adaptation algorithms, we tested all possible source domains

to report the best results in Fig. 4, with the corresponding sources indicated

in the bars. The best results on the three target domain were obtained by305

TCA+CDSVM, ICA+TCA+SVM, and TCA+CDSVM respectively. The three

algorithms outperformed the non-adaptation algorithms significantly (maximum

p-value < 0.0001 in paired t-test). The largest accuracy improvement was ob-

tained by TCA+CDSVM with source 22 vs 9 on the target domain 3 vs 6.
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Figure 5: Classification accuracy (in %) of seven algorithms for three cross validation settings

on target classification problem task 3 vs task 6 (positive vs negative), with source task 10 vs

task 1. Error bars indicate the standard derivations. Non-adaptation (left) and adaptation

(right) algorithms are separated by the vertical dashed line.

This improves over the best non-adaptation method (SVM) by 8.94% (from310

78.64% to 87.58%).

3.2.2. Effect of Training Sample Size

Next, we fixed the target and source domains to observe how the performance

varies with different sizes of training data, specifically, 10-fold, 5-fold, and 2-

fold cross-validation. The target domain was fixed to 3 vs 6, and the source315

domain was fixed to 10 vs 1. Thus, this source domain may not be optimal for

adaptation algorithms.

Figure 5 depicts the classification accuracy of seven algorithms for differ-

ent training samples sizes. TCA+CDSVM achieves the best results for 10-CV

and 5-CV, and further paired t-test results indicate the improvements over the320

best non-adaptation algorithms were statistically significant (p-value < 0.0001).

However, for 2-CV, the accuracy improvement for TCA+SVM (77.37%) and

ICA+TCA+CDSVM (77.27%) over ICA+SVM (76.36%) were not statistically

significant, with corresponding p-values of 0.66 and 0.62 respectively. This in-
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Figure 6: Adaptation effectiveness of TCA+CDSVM (colored dots) over SVM (black vertical

bars) across all target domains, with 10-fold cross-validation. Target domains are sorted with

respect to the maximum improvement. The top three and bottom three source domains are

listed on the right half, in the order of the worst, the second worst, the third worst, the third

best, the second best, and the best, from left to right.

dicats that very small training sample size is still challenging, even with adap-325

tation.

3.2.3. Sensitivity to Source Domain

For studying the adaptation effectiveness of different source domains over

different target domains, we applied TCA+CDSVM and SVM to all possible
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combinations of the 11 tasks as target domains. Figure 6 summarizes the ob-330

tained accuracy with the target domains sorted by the largest improvements of

TCA+CDSVM over SVM. A psychological interpretation will be given in Sec.

4.1.

Figure 6 shows that the effectiveness of domain adaptation was significantly

affected by the source domain, and TCA+CDSVM did not consistently outper-335

form SVM. This is called “negative transfer” (Pan & Yang, 2010).

The figure also shows a negative correlation between the baseline SVM accu-

racy and the maximum improvements. For higher SVM accuracy, TCA+CDSVM

can hardly perform better, instead, it performed worse in many cases (e.g. the

target domain of 8 vs 22 and 2 vs 6). This is consistent with our expecta-340

tion, that domain adaptation is effective for more challenging problems, which

motivated our target domain selection strategy in Sec. 3.1.2.

3.2.4. Effectiveness of Each DawfMRI Step

In feature extraction, ICA can extract informative features from high-dimensional

whole-brain data. By comparing the results in Fig. 4, we can observe that345

ICA+SVM outperforms SVM for the targets 1 vs 22 and 6 vs 22. For tar-

get 3 vs 6, the accuracy obtained by ICA+SVM is slightly lower than the one

obtained by SVM. Considering the much lower dimension of independent com-

ponents compared with the dimension of whole-brain data, ICA is an effective

feature extractor.350

In feature adaptation, TCA can also extract features with lower dimension

from whole-brain SPMs without performing ICA. Moreover, features extracted

by TCA are common and useful across source and target domains. As shown

in Figures 4 and 5, both TCA+SVM and ICA+TCA+SVM outperformed non-

adaptation algorithms with appropriate sources. This indicates that by perform-355

ing TCA, samples from appropriate source domains can be used as additional

training data for target domain.

In classifier adaptation, CDSVM can improve the accuracy when combined

with ICA, TCA, or both. By comparing the results in Figs. 4 and 5, ICA+CDSVM
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Table 4: Statistics of the four psychological similarity features used for logistic model training,

which are target domain similarity (TDSim), source domain similarity (SDSim), cross-domain

similarity (CDSim) and target domain SVM accuracy (TDSVM Acc).

CDSim TDSim SDSim TDSVM Acc

Min -1.78 -1.02 -1.21 -1.60

Median -0.05 -0.59 -0.36 -0.026

Mean 0.00 0.00 0.00 0.00

Max 3.47 1.93 2.73 1.33

did improve over ICA+SVM consistently, though the amount of improvement360

was not as large. By contrast, (ICA+)TCA+CDSVM did not outperform

(ICA+)TCA+SVM consistently. This indicates that the effectiveness of classi-

fier adaptation tends to be data-dependent.

4. Discussion

This section will further analyze DawfMRI with two objectives to facilitate365

further discussion: 1) exploring whether adaptation effectiveness is related to

psychological similarities between tasks, 2) understanding how domain adapta-

tion improves neural decoding by visualizing the model coefficients.

4.1. Psychological Interpretation of Source Domain Effectiveness

Domain adaptation effectiveness is closely related to meaningful relation-370

ships between the target and source domains. On the other hand, psychological

experiments are intrinsically related by the cognitive mechanisms that support

the ability to perform the tasks. Hence, we expect the cognitive similarity be-

tween a set of tasks to be predictive of whether or not domain adaptation will

be effective.375

4.1.1. Psychological Similarity Study

We explored the potential relationship between psychological similarity and

adaptation effectiveness by modeling the probability of domain adaptation with
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Table 5: Logistic model learning for studying the relationship between psychological similarity

and adaptation effectiveness. The model was regressed on four variables, TDSim, SDSim,

CDSim, and TDSVM Acc, for predicting improved or not improved.

Beta Standard Error t-value p-value

(intercept) -0.085 0.097 -0.88 0.38

TDSim -0.10 0.11 -0.98 0.32

SDSim -0.20 0.11 -1.89 0.057

CDSim 0.26 0.11 2.38 0.017

TDSVM Acc -0.80 0.10 -7.75 9.15e-15

TCA+CDSVM improving prediction accuracy as a function of the psychological

similarity between tasks within and across domains.380

To estimate the psychological similarity, we associated each task with a set of

cognitive functions that it relies on. The associations were defined by referring

to the cognitive concepts in Cognitive Atlas7 (Poldrack et al., 2011). Out of the

11 tasks in Table 1, 10 were associated with a number of cognitive functions

(min = 5, max = 13, median = 7). The mixed event related probe (task 4) had385

an incomplete entry so it was excluded from these and further studies. There

were 42 functions in total, and each task was represented as a binary feature

vector. The psychological similarity between each pair of tasks was computed

as the cosine similarity between their feature vectors.

Because each domain is composed of a pair of tasks, the similarity between390

the target and source domains in each model is associated with four pairwise task

similarities. The overall psychological similarity between each pair of domains

was estimated by averaging these four pairwise similarities. We will refer to this

estimate as the Cross-Domain Similarity (CDSim). Moreover, the similarity

between the two tasks of the target domain is denoted as the Target-Domain395

Similarity (TDSim), and the similarity between the two tasks of the source

7http://www.cognitiveatlas.org/
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domain is denoted as the Source-Domain Similarity (SDSim).

This study focused on 504 target and source combinations of the classifi-

cation problems with no more than 90% in accuracy obtained by whole-brain

SVM. Of these 504 models, 261 was improved. We labeled them as ‘improved’400

or ‘not improved’ to train a logistic model. This binary outcome was regressed

on four variables, CDSim, TDSim, SDSim, and TDSVM Acc (the accuracy of

the standard SVM in the target domain). The variables were standardized to

have a mean of zero and standard deviation of one before fitting the model.

Table 4 lists the statistics of the four variables.405

Table 5 reports the learning outcome of the logistic model, where increas-

ing CDSim increased the probability of improved accuracy. This relationship

between psychological similarity and adaptation effectiveness is important. On

the one hand, it is consistent with how these adaptation methods are meant

to work. On the other hand, it suggests that it may be possible to predict the410

adaptation effectiveness in advance, without resorting to a post-hoc selection of

the source domain through trial and error.

4.1.2. Source Selection Validation

We also adopted a leave-one-target-domain-out strategy to learn to “select”

an appropriate source domain. For the hold-out target domain, we selected the415

source domain with the highest likelihood of accuracy improvement given by

the logistic model. Then we compared the real improvement of using the se-

lected source data against random source selection, i.e., the mean improvement,

for TCA+SVM, TCA+CDSVM, and ICA+TCA+SVM. Results showed that

psychological similarity based source selection led to 0.0068, 0.0065, and 0.0371420

higher classification accuracy than random selection, respectively. Therefore, it

can help source selection.

In addition, we did the same analysis to TCA+SVM to compare MMD-

based source selection with random source selection. We computed the MMDs

for all possible target and source combinations using Eq. (5) after performing425

TCA, as well as the accuracy of respective TCA+SVM. Results showed that
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Figure 7: Visualization of the voxels with top 1% weight magnitude and occurring in clus-

ters of at least 20 voxels in the four models: target SVM, source SVM, TCA+SVM, and

TCA+CDSVM. Numbers of distinct and overlapped voxels identified by the models are shown

in the middle bars.

on average, selecting source domains with the smallest MMD can achieve 0.064

higher accuracy than random source selection.

4.2. Neural Decoding Visualization and Cognitive Interpretation

It is also important to understand why a model performs well and which430

brain networks are particularly important, e.g. for advances in cognitive neuro-

science and understanding neural disorder physiology. Exploring what informa-

tion tends to emerge through domain adaptation will provide insights into how

these methods work and what cognitive similarity is being leveraged through

domain adaptation. Therefore, we carried out two studies to examine where the435

important voxels are in the brain, and how much the voxel sets in the target

domain, source domain, and adapted models overlap.

4.2.1. Model Overlapping Study I

We firstly studied the case of task 3 vs 6 as target and task 22 vs 9 as

source, which showed the biggest improvement in classification accuracy. Figure440

7 shows the voxels with the top 1% wight magnitude in the four models (target

SVM, source SVM, TCA+SVM, and TCA+CDSVM) and occurring in clusters
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of at least 20 voxels. The target and source domain SVMs place their important

voxels in completely different areas. Not only is there no overlap, but the supra-

threshold voxels in each model are sampled from different lobes of the brain: the445

target domain SVM is associated primarily with supra-threshold voxels in the

frontal lobes, while the source domain SVM is associated primarily with supra-

threshold voxels in the occipital lobe and sensory motor cortex. The distribution

of coefficients is so different between source and target models, but adaptation

can be nevertheless very effective.450

We then overlaid the adapted models from TCA+SVM and TCA+CDSVM.

TCA+SVM has substantial overlap with the source domain SVM, and nearly

no overlap with the target domain SVM. This substantial overlap, however, is

only about 1/3 of the supra-threshold voxels in the TCA+SVM model. The

remaining 2/3 are completely distinct from either the target or source models,455

indicating that information from the source domain has revealed a different

dimension along to which to dissociate the tasks in the target domain than was

apparent in the target data in isolation.

This general pattern is echoed in the model adapted with TCA+CDSVM,

except that in this case there is virtually no overlap with the source domain and460

there is instead modest overlap with the target domain. Again, the adapted

model is largely associated with supra-threshold voxels that do not overlap with

either the target or source SVMs. Thus, the adaptation procedure has provided

additional insights into the classification problem, showing the exploited infor-

mation to be more than the simple sum of information from the target and465

source domain models.

4.2.2. Model Overlapping Study II

We further analyzed the overlapped important voxels (with top 1% weight

magnitude) in the four aforementioned models for 142 different target-source

pairs where TDSVM Acc≤ 90% and TCA+CDSVM leading to at least 3%470

improvement. We examined the number of (overlapped) voxels for all 15 possible

combinations of the four models, including individual models. We formed a
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1) Target SVM only
2) Source SVM only

3) Target and Source
4) TCA+SVM only

5) TCA+SVM and Target SVM
6) TCA+SVM and Source SVM

7) TCA+SVM, Target SVM and Source SVM
8) TCA+CDSVM only

9) TCA+CDSVM and Target SVM
10) TCA+CDSVM and Source SVM 

11) TCA+CDSVM, Target SVM and Source SVM
12) TCA+SVM, TCA+CDSVM

13) TCA+SVM, TCA+CDSVM and Target SVM
14) TCA+SVM, TCA+CDSVM and Source SVM

15) TCA+SVM, TCA+CDSVM, Target SVM, and Source SVM

Figure 8: The overlapped important voxels for all 15 possible combinations (y-axis) of the

four models: target SVM, source SVM, TCA+SVM, and TCA+CDSVM. The x-axis denotes

142 different target-source pairs where TDSVM Acc≤ 90% and TCA+CDSVM leading to at

least 3% improvement. The (overlapped) voxel numbers for the 15 model combinations form

a 15-element vector for each target-source pair. This vector is normalized to unit length and

visualized as a column. A larger value indicates a larger number of voxels.

15-element vector for each target-source pair with 15 such numbers and then

normalized it to unit length. Figure 8 depicts the normalized vectors as columns

for all 142 target-source pairs, labeled with the corresponding model(s).475

There is a clear effect that each model identifies a fairly distinct set of voxels

(rows 1, 2, 4, and 8), which are more than the overlapped voxels between non-

adaptation and adaptation models (rows 5, 6, 9 and 10). On the other hand, by

comparing the results shown in rows of 5, 6, 9 and 10, TCA+SVM overlaps with

the source domain SVM much more than with the target domain SVM, and the480

opposite is true for TCA+CDSVM. This again confirmed that adaptation is

exploiting information additional to the target and source domain models, and

different adaptation schemes are exploiting different information.

4.3. Technical Challenges

Based on the experimental results, we can see two technical challenges in485

DawfMRI. One is how to select a good source domain automatically (without ex-

haustive testing) to reduce or even avoid “negative transfer”, as observed in our
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experiments. The plausible relationship between psychological similarity and

adaptation effectiveness in Sec 4.1 can lead to a better than random solution.

However, it is not the optimal selection of sources. The other challenge is how to490

make use of multiple source domains to further improve the classification perfor-

mance. We can see such a need from the 2-CV results in Fig. 5, where domain

adaptation is not effective when the number of training samples is very small.

We need to carefully leverage the positive effects from each source domain while

minimizing the potential negative impacts. This needs a smart, adaptive pro-495

cedure to be introduced. We consider both challenges are important directions

to explore in the future.

5. Conclusions

In this paper, we proposed a domain adaptation framework for whole-brain

fMRI (DawfMRI). DawfMRI consists of three key steps: feature extraction,500

feature adaptation and classifier adaptation. We employed three state-of-the-

art algorithms, ICA, TCA and CDSVM, for DawfMRI. We studied two non-

adaptation algorithms and six adaptation algorithms on task-based whole-brain

fMRI from seven OpenfMRI datasets. Results show that DawfMRI can signif-

icantly improve the classification performance for challenging binary classifica-505

tion tasks. We also observed “negative transfer” in the experiments, indicating

that domain adaptation does not always give better performance and should

be used with care. Furthermore, we discovered a plausible relationship between

psychological similarity and adaptation effectiveness, and interpreted how the

models provide additional insights. Finally, we pointed out two important re-510

search directions to pursue in future work.
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