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PHYSICAL REVIEW A VOLUME 50, NUMBER 6 DECEMBER 1994 

Topological quenching of the tunnel splitting for a particle 
in a double-well potential on a planar loop 

Stefan Weigert 
Institut fur Physik der Universitat Basel, Klingelbergstrape 82, CH-4056 Basel, Switzerland 

(Received 29 June 1994) 

The motion of a particle along a one-dimensional closed curve in a plane is considered. The only 
restriction on the shape of the loop is that it must be invariant under a twofold rotation about an 
axis perpendicular to the plane of motion. Along the curve a symmetric double-well potential is 
present leading to a twofold degeneracy of the classical ground state. In quantum mechanics, this 
degeneracy is lifted: the energies of the ground state and the first excited state are separated from 
each other by a slight difference A E ,  the tunnel splitting. Although a magnetic field perpendicular 
to the plane of the loop does not influence the classical motion of the charged particle, the quantum- 

mechanical separation of levels turns out to be a function of its strength B. The dependence of A E  
on the field B is oscillatory: for specific discrete values B, the splitting drops to zero, indicating a 
twofold degeneracy of the ground state. This result is obtained within the path-integral formulation 
of quantum mechanics; in particular, the semiclassical instanton method is used. The origin of the 
quenched splitting is intuitively obvious: it is due to the fact that the configuration space of the 
system is not simply connected, thus allowing for destructive interference of quantum-mechanical 
amplitudes. From an abstract point of view this phenomenon can be traced back to the existence of 
a topological term in the Lagrangian and a nonsimply connected configuration space. In principle, 
it should be possible to observe the splitting in appropriately fabricated mesoscopic rings consisting 
of normally conducting metal. 

PACS number(s): 03.65.Sq, 73.20.Dx, 03.65.Db 

I. INTRODUCTION 

The nonlocal character of quantum mechanics mani- 

fests itself in the phenomenon of tunneling. A quantum- 

mechanical particle prepared in one of the minima of a 

symmetric double-well potential on the real line is influ- 

enced by the existence of the second minimum, in spite 

of the fact that from a classical point of view its en- 

ergy might not be sufficient to negotiate the intervening 

potential barrier. The instanton method [l], based on 

specific classical paths in the inverted potential, is used 

successfully to evaluate path integrals [2]: one obtains 

the quantum-mechanical splitting A E  of the lowest-lying 

energy levels in the semiclassical limit. 
In this work the instanton method is applied to a sys- 

tem which, although similar to the particle in a double 

well, is different from a topological point of view. Imag- 

ine a particle moving on a one-dimensional loop [3,4] in 

the xy plane, under the influence of a symmetric double- 

well potential V(p) .  The total system is assumed to be 
invariant under twofold rotations about the t axis. Since 

two inequivalent classical paths exist which connect the 

minima, one expects modifications of the tunneling phe- 
nomenon compared to the double well on the line fcf.151). 

L 2 ,  

In addition, a constant magnetic field B pointing along 

the 2 axis will be included. This field does not have 
any influence on the motion of the classical particle since 

the resulting Lorentz force is always perpendicular to the 
loop. It  will be shown that,  nevertheless, the splitting of 

the ground-state energies of the quantum-mechanical sys- 

tem depends on the strength of the field B; for specific 

values of B the splitting even drops to zero. 

From a general point of view the model studied in this 

paper is interesting for the following reasons. First of all, 

the system provides a natural realization of a quantum- 

mechanical particle moving on a Riemannian manifold 

which is defined by the loop. Second, it represents an 

example of a quantum system defined on a configura- 

tion space which is multiply connected [6]. Third, such 

a configuration space allows for 'Ltopological terms" in 

the action being irrelevant in a classical description, but 

leading to observable effects in the corresponding quan- 

tum theory. In the context of topological field theory 

such effects are known to be caused by Chern-Simons or 

Wess-Zumino terms [ 7 ] .  
In Sec. I1 the model is defined and the determination of 

the splitting A E  via the instanton method is sketched. 

Section I11 contains the semiclassical evaluation of the 

relevant propagators for the particle on a circle without 
magnetic field in a first step and with nonzero field in a 

second one. Then, in Sec. IV the modifications necessary 
for the treatment of a r b i t r a n ~  loops are presented. Src- 

tion V provides a brief summary; the structural similarity 

of results obtained for quenched tunnel splitting in spin 

systems is pointed out and related work on transmission 
properties of mesoscopic rings is discussed. Finally, the 

topological aspects of the model are briefly restated in 
general terms. 
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11. MODEL 

The Lagrangian 

describes a charged particle under the influence of a po- 
tential V(q) moving in the xy plane in the presence of 
a uniform magnetic field B pointing along the z axis: 
B(q)  = Be, = V X A(q).  The vector potential A(q)  
has constant magnitude on circles about the r axis and 
is tangent to them, A(q)  = a(r)e,, with r and p being 
polar coordinates in the xy plane. For simplicity, the par- 
ticle is from now on constrained to move on a circle about 
the origin, defined by L T :  G($,  y) = x2 + y2 - R2 = 0; 
general loops will be studied in Sec. IV. The Lagrangian 
LA (q, q) becomes 

with the constant A(R) = eRa(R)/c. The value of the 
action functional SA[p(t)] depends on the path connect- 

ing d t l )  and cp(t2) 

It is important to note that the third term of (2) ,  as a 
total derivative 

does not contribute to the classical equations of motion. 
This property is easily understood in physical terms by 
observing that the Lorentz force due to the magnetic field 
B is always perpendicular to the ring and therefore does 
not influence the classical motion. Nevertheless, due to 
the multiply connected configuration space, the presence 
of the gauge term A(R)+ will lead to  observable conse- 
quences in a quantum-mechanical setting. 

The potential V(p)  on the ring is assumed to be in- 
variant under a rotation by X about the z axis, i.e., 

as shown in Fig. 1. Qualitatively, the results will be seen 
to depend only on the symmetry (5) of the potential, 
not on its actual shape. The classical ground states of 
the system are given by the particle resting at one of 
the minima p+ or cp-, as follows immediately from the 
equations of motion 

The energy E = mR2G2/2 + V(p) is non-negative if one 
requires V(p&) = 0. 

The goal of this investigation is to calculate the sep- 
aration AE of the two lowest energy levels of the quan- 

- K  cp. 0 cp+ X 'P 

FIG. 1. The symmetric double well on a loop. The instan- 
tons a and p, respectively, belong to two inequivalent paths 
connecting the maxima p* of the inverted potential -V(p).  

tum system. To this end appropriate propagators will 
be evaluated semiclassically within the path-integral for- 
mulation of quantum mechanics. In order to establish 
notation, the basic ingredients of the so-called instanton 
method are now reviewed briefly. For simplicity, the La- 
grangian (2) with vanishing magnetic field is considered 
first. 

The quantum-mechanical amplitude for a particle to 

reach the position eigenstate I pb) I p(tb)) after the 
time interval T - tb - t, when starting from I pb) at 
time ta is governed by the propagator 

where i? is the Hamiltonian operator of the system and 
the right-hand side denotes a formal sum over all paths 
in configuration space connecting the points p, and cpb 

in time T. The weight of each path p(t) depends on its 
action S[p(t)]. I t  is convenient to  analytically continue 
the propagator to complex times T = it. In the resulting 
Euclidean propagator (cf. [g]) 

all but the contributions from the lowest states will be 
suppressed exponentially for large T. The functions 
&(p)  are the quantum-mechanical eigenstates of the 
Hamiltonian with eigenvalues E,. 

Under the substitution t + - i r  the path integral in 
Eq. (7) takes on its Euclidean form 

S, [(P(r)] standing for the Euclidean action 

therefore, the action S, is naturally associated with 
a particle moving in the inverted potential W(p) 
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-V(p).  The associated Euclidean energy E, = 

- m R 2 ( d p / d ~ ) 2 / 2  - W ( p )  no longer has a definite sign, 
but it is still a conserved quantity as follows from the 
Euclidean equation of motion 

An exact calculation of the Euclidean propagator K, 
usually is not possible; its semiclassical approximation, 
however, is obtained by taking into account only those 
contributions to the path integral (9) which come from 
the stationary points of the action functional S,[p(t)] 
and their neighborhoods, i.e., paths which solve Eq. (11) 
and paths fluctuating about these solutions. Choosing 
the minima p* of the potential V(p)  as initial and fi- 
nal points c p ,  and pb, respectively, one finds that K,  is 
dominated by zero-energy solutions of (11) given by 

In the limit of T + m such a path (connecting p, with 
pb) is known as an instanton; if the ficticious particle 
travels in the opposite sense the solution is called an  anti- 
instanton. As mentioned earlier one is interested in the 
propagator K,  for large T ,  cf. Eq. (8). The temporal 
width of one single instanton is finite [8]; in other words, 
the particle is located most of the time in the neighbor- 
hoods near the maxima p*. It turns out that in order 
to obtain an asymptotically correct expression for the 
propagator, not only single instantons but strings of ar- 
bitrarily many instantons and anti-instantons have to be 
taken into account: in classical terms this situation corre- 
sponds to the particle going back and forth any number of 
times between the maxima of the potential W ( p ) .  Apart 
from an error which is exponentially small in time T [g], 

such strings are approximate solutions of the equations 
of motion. Furthermore, it is assumed that the centers 
of the instantons on the T axis, T,, are widely separated: 
contributions of overlapping instantons (7, -- T,+~) can 
be neglected consistently (cf. [8]); this assumption is also 
known as the dilute-gas approximation. 

Due to the difference in topology of the double-well 
potential on the ring and on the real line, the sets of paths 
connecting p +  and p-  are different; the tunnel splitting 
A E  is expected to be sensitive to this difference. In the 
following section, the four propagators 

with external magnetic field B will be calculated in the 
limit of large T, the knowledge of which is sufficient for a 

determination of the separation A E  by comparison with 
Eq. (8). The calculations actually will closely parallel 
work done by Felsager [8], and for various technical de- 
tails the reader is urged to consult this reference. 

111. CALCULATION OF THE TUNNEL 

SPLITTING 

The calculation of the tunnel splitting A E  as a func- 
tion of the magnetic field B is divided into two parts. 
First, the field B is assumed to be zero, the focus be- 
ing on the enumeration of all possible paths connecting 
the minima at p + .  In contrast to the double-well po- 
tential on the line, the number of paths with prescribed 
length increases exponentially, not linearly. In a second 
step, the field term (4) is taken into account, leading to a 

dependence of the splitting on the field: A E  = A E ( B ) .  

A. Vanishing magnetic fleld 

Imagine the quantum-mechanical particle to be located 
a t  the maximum p-  of the potential W ( p )  at  time -T/2. 
The (Euclidean) amplitude to find the particle a t  posi- 
tion p+ after time T is given by Ke(p+,T/2;  p-. -T/2). 

Approximate evaluation of the path integral in Eq. (9) 
proceeds as follows. The main contribution comes from 
the two single instantons denoted by a and P (cf. Fig. 1): 

the first one visits the minimum at p = 0 of the potential 
W ( y )  before reaching p +  and the second one travels in 
the opposite direction passing through the point p = -7i 

before reaching the maximum at p + .  Since an instanton 
effectively needs some finite time only to travel from a 
point near p -  to a point near p + ,  for long times T other 
contributions arising from more complicated paths have 
to be included, as mentioned before: the fictitious par- 

ticle may "oscillate" any number of times between the 
maxima, the only proviso being that it starts at  p- and 
finally comes to rest at  p + .  Anti-instantons traveling 
from p +  to p -  are denoted by ?i and p, respectively. 
Therefore each path consists of an alternating sequence 
of instantons and anti-instantons with the positions of 

their centers on the T axis given by 

with an odd integer N ,  which will be referred to as the 
length of the string. 

In Fig. 2 a graphic scheme is given to enumerate all 
possible paths of a given length N .  There are two paths 
( a ;  p)  with N = 1 connecting p-  with p + ,  corresponding 
to instantons taking the upper or the lower branch of the 
ring when traveling to the other minimum. For N = 3 

there are eight possible paths: symbolically all strings 
are given by 

and similarly for larger values of N. For a given N ,  there 

P 

------, ,'- FIG. 2.  Graphical enumeration of instan- 
ton strings of length N. Each sequence of YL\.- symbols a (or p) and ?i (or j?) corresponds 

CL N = j  
to a possible string. 
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are 2N paths: whenever the particle is at  one of the 

maxima cp* of the potential W(p)  there are two ways 
to reach the other maximum. A multi-instanton path 
of length N with centers at 7' (71, 72,. . . , TN) will be 
denoted by (pY(7). For the approximate evaluation of 
Ke(cp+,T/2;cp-, -T/2) one has to know the behavior of 
the paths ( ~ ( 7 )  in the neighborhood of the quasistation- 
ary paths @;(T) following from the expansion 

4 7 )  = + 747) l (16) 

with ~ ( 7 )  vanishing at the end points T = f T/2. Ex- 
panding the potential about the quasistationary paths 
one obtains 

where the dependence of on T has been suppressed. 
The contribution of a path @y and its neighborhood is 
given by 

with 

representing the action of the deviations from the multi- 
instanton path. 

An exponentially small error only is made if one ap- 
proximates the action SE of a multi-instanton path in 

(18) by 

S: being the action of a single instanton or anti- 
instanton; since the Lagrangian L(cp, @) is invariant un- 
der the transformation cp -+ -p, instantons and anti- 
instantons have the same action. Summing all contribu- 
tions of the quasistationary paths and integrating over 

all possible locations 7' of instanton centers one finds 

W C e-~s:/h J ~ / ~  . . . J T S  JJ" dTN . . . dr2dTl 

odd N -T/2 -T/2 -T/2 

with gN(O, T/2; 0, -T/2) denoting the path integral over 
the fluctuations q(7) in Eq. (18). Introduce the quantity 

as the ratio of the N-instanton propagator KN to the 
Euclidean propagator K, of a harmonic oscillator with 
frequency W starting and ending at zero: 

the frequency W being determined by the quadratic ap- 
proximation of the potential V(p) at the minima p+.  It 
is known that in the limit of large T the quantity A de- 
pends neither on T nor on the position of the center of 
the instanton; also, the quantity A can be evaluated ex- 
plicitly, giving the relevant contribution to the so-called 
prefactor of the final expression for the splitting AE. Up 
to this point the calculation is essentially equivalent to 
that of a double-well potential on the line [g]. The ex- 

pression for ZN(O,  T/2; 0, -T/2), however, depends on 
the topological properties of the ring-shaped configura- 
tion space. Using ( N  - 1) times the general property of 
composition for propagators 

K(cpfl, 7"; cp, r) = dcplK(cp", 7"; cp1, 7')K((p1, 7'; cp, T) ,  l 
(24) 

one can write 

BN(o,  ~ / 2 ;  0, -T/2) = C J . . . J dcp~-ldcp~-? dcpl 

Z N  paths 

- I 

The propagator K N  is made up of 2N contributions from Eq. (24), one can write 
the different paths consisting of N instantons and anti- - 
instantons. In Eq. (25) each of these paths is decomposed KN(O, T/2; 0, -T/2) 
into a product of N single (anti-)instanton contributions = A N ~ , ( O ,  ~ / 2 ;  0, -T/2) 
E .  Using Eq. (22) in the form 2 N  paths 

(26) 

and recombining the oscillator propagators according to 

Z N  paths 
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Consequently, the existence of 2N paths for given N im- 

plies that the propagator KN is proportional to (2A)", 
to be compared with a single path (leading to A N )  in 
the case of the double well on the line. Finally, the full 
propagator is obtained from Eq. (21) as 

K,(p+, T/2; P- ,  -T/2) 

-. ,/ye-ur/2 J d i ( 2 ~ ) ~  exp (-NSz/h) 
7r fi 

odd N 

= / ~ , - - T I ~  sinh (2AT exp (-Sz/fi) ) , (28) 

where the intermediate steps are identical to those in 
Ref. [8] after replacing the quantity A by 2A. Similarly, 
one obtains the propagator for the particle starting and 
ending a t  the point P+ by summing over N even 

g e - - T / 2  cosh  AT exp (-Szlfi)) . (29) 

The remaining two propagators follow from the invari- 
ance under p* -+ p,. Using the ground-state wave func- 
tions of a harmonic oscillator centered at  the minima p+ 

for the functions &,(P) in Eq. (8) and comparing with 
the explixit expressions for the propagators for large val- 
ues of T ,  Eqs. (28) and (29), allows one to deduce the 
following result for the energy splitting: 

A E  E El - E. = 2(2A)T exp (-S:/fi) (30) 

for a particle in a symmetric double-well potential on a 
ring. 

B. Nonzero magnetic field 

In the presence of a uniform magnetic field B pointing 
along the z axis the Euclidean action S e [ c p ( ~ ) ]  is modified 
by the Euclidean version of the field term (4) 

The path-integral expression for the Euclidean propaga- 
tor now reads 

and the calculation of Sec. IIIA goes through up to the 
expansion about the various instanton strings. Now a 
path P(T) of length N contributes 

tl(T/2)=0 
exp { s t ( ~ ~ ( T ) ) / f i )  J DV exp {-ge[~(7)]/fi} 

tl(-T/2)=0 

where the action 2 [ 7 7 ( ~ ) ]  in the exponent has been re- 

placed by ge[77(~)] since one has 

for all paths with q ( f T / 2 )  = 0, which are the only 

ones considered here. Consequently, the path-integral 
part of Eq. (33) is identical to the one calculated pre- 
viously; it can be written as A ~ K , ( o , T / ~ ; O ,  -T/2) 

ANJ-fiexp(-w~/2). The first factor in Eq. (33), 
however, now depends on the topology of the path under 
consideration. 

As before, the real part of the Euclidean action of an 
N-instanton string is given approximately by N times 
the corresponding single-instanton action S:, 

where uo = S,: A(R)dp is the contribution of an indi- 

vidual instanton traveling directly from cp- to p+, aris- 
ing from the field term. The quantity S(&) takes on 
integer values depending on the topological properties of 
the individual multi-instanton path. It is important that 
the field term leads to contributions from a- and /3-type 
instantons with equal magnitude but opposite sign 

In other words, the factor 6 is +l for a single a-type 
instanton and equals -1 for the P type. 

More explicitly, the contribution of paths with length 
N has the following structure. Each path comes with fac- 
tors exp(-NS:/fi) and A"K, depending on the length 
AT only, whereas the factor e ~ ~ { - i u ~ 6 ( ~ ~ ) )  depends on 
the nature of the path taken. One can write, for the 
contribution of these paths, 

Without magnetic field (go = 0) one recovers the result 
for K, given in Eq. (27). The sum in Eq. (37) can 
be evaluated in the following way. First, divide the set 
of all paths hom (P- to p+ into two parts: those paths 
starting with an a instanton and those starting with a 13 
instanton 
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C e-iuOS/h 
ZN paths 

= C e-iuOslfi + 

2N-1 paths 2N-1 paths 

= 2 cos(uo/h) C e-iu0d'5 (38) 

2N-1 loops 

In the last step the contribution of the first part of the 
multi-instanton path has been factored out and the re- 
maining sum in Eq. (38) is over all closed loops of length 
( N  - l ) ,  starting and ending a t  p+. Taking property 

Eq. (36) into account, one can see that 6(pT-l)  equals 

the winding number m of the loop under consideration. 
For N = 3, there are four loops of length 2, two of which 
have m = 0 and two having m = f l, respectively. If 

N = 5, one has eight paths with winding numbers 
varying between f 2. The multiplicities of paths with 
different m are given by binominal coefficients (f), k = 

0,1,2,3,  . . . . For arbitrary N, one finds that 

leading finally to the Euclidean propagator 

T/2; P-, -T/2) E e - w ' / 2  C J d ? [ 2 ~  C O S ( U ~ / ~ ) ] ~  exp (-NSz/h) 
odd N 

This result is again obtained by following the calculation a- : G(X, = 0. (43) 
~ - .  . . 

in [8], now replacing A by 2A cos(uo/fi). Consequenlty, 
the expression for the tunnel splitting has to be modified The twofold rotational symmetry implies that if the point 

accordingly and one obtains ( s o l  yo) is located on curve then -(xo, yo) also is on the 
curve: G(-so, -yo) = 0. 

Replace the coordinates z = X + iy  by a new pair W = 
E El - E. = 2(2A) cos (5 2)  exp(-sz/q (41) u + iv by means of an analytic function 

with the magnetic flux = B.nR2 through the ring and z = g(w) . (44) 
- - 

aO = hc/2e being the elementary (two-electron) flu 
Expressed in the new coordinates one finds, for the La- 

quantum. Therefore, the splitting A E  between the low- 
grangian, 

est energy eigenvalues is "quenched" whenever the flux 
a through the ring is an  odd integer multiple of the flux 
quantum 

(42) a ( B , R )  = ( 2 k + l ) a o ,  ~ E Z .  

~ I - : u = u ,  
Since the flux is a function of two independent param- 

/' 
eters, the tunnel splitting can be made to vanish in two 
ways: by a variation of either the magnitude B of the 
field or the radius R of the circle. 

v = 0 

IV. T U N N E L  SPLITTING 
FOR GENERAL LOOPS 

v = K  
The quenching of the tunnel splitting will now be 

shown to  persist for particles moving on a large class 
of planar loops instead of a circle. The shape of the 
loops is an arbitrary smooth curve (Fig. 3) required to 
be invariant under rotation through an  angle .n about an 
axis perpendicular to the plane. Such loops will be called 
Cz loops. As before a double-well potential V is assumed 
to exist along the line, being compatible with the sym- 
metry of the loop, as expressed in Eq. (5). Altogether, FIG. 3. A general C2 loop, defined by d r :  G ( x ,  y) = 0. 
the classical system now is described by the Lagrangian The coordinates v and U represent an orthogonal system; dJ? 
L ~ ( ~ ,  q) of Eq. (1) along with the constraint coincides with the coordinate line U = uo. 
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Due to the Riemann mapping theorem [l01 there exists a 

function g(w) such that the curve al" coincides with one 
of the coordinate lines in the w plane, with U = uo, say. 
Since g(w) defines a conformal transformation, U and v 
represent orthogonal coordinates and the motion on dl" 
is described by the Lagrangian 

where 

Consequently, for each C2 loop the Lagrangian is identi- 
cal to that of a particle moving on a circle with a pos- 
itive position-dependent mass m(v) and a modified vec- 
tor potential a(u). The analytic function g(w) = expw 
mediates between Cartesian and polar coordinates: for 
uo = In R one recovers the Lagrangian of the particle 
(with mass m = 1) on the circle, Eq. (2). The symmetry 
of the system implies [cf. Eq. (5)] 

The effect of the magnetic field on the particle is still 
described by a total derivative dA(v)/dv, where 

having again no influence on the classical motion. The 
Lagrangian (46) is a simple example of a particle moving 
on a Riemannian manifold, m(v) being the metric tensor. 
A general discussion of this situation can be found in Ref. 
161, for example (cf. also the end of this section). 

As a result of these modifications, the calculations per- 
formed in the previous sections have to be changed in 
three places; from now on overlined quantities denote 
quantities referring to general Cz loops. First of all, the 
actions of the extremal paths (i.e., the classical solutions) 
will be different since the instanton now is defined as a 
solution of 

instead of Eq. (11). Due to m(u) > 0 and the period- 
icity of m(u), Eq. (48), one can proceed in analogy to 
the previous calculation after replacing 2V(u)/mR2 -+ 
2V(v)lm(v) 1111. 

Second, the phase shift a o / h  is modified because the 
effective vector potential a(v) is no longer constant along 
the loop d r .  Nevertheless, the symmetry properties of 
the system still guarantee the shifts for a- and P-type 

instantons to have equal modulus and opposite sign. Ex- 
plicitly, the field term now defines a. according to 

in analogy to Eq. (36). 
The third modification is due to the change in the 

quantity A. It  will be shown now that the methods to 
evaluate it explicitly are still working in spite of the more 
complicated mass term m(u). The Euclidean path inte- 
gral reads 

where ge[u(t)]  is defined as 

The Euclidean equation of motion is given by 

and the prime denotes the derivative with respect to v. 
Let G(t) be one of the solutions for E, = 0 of this equation 
connecting the maxima of the inverted potential -V(v) 
[i.e., G(t) satisfies Eq. (50)] and expand the paths enter- 
ing in X, about it according to v ( r )  = G(r) + ~ ( 7 ) .  One 
obtains 

where 

dii d7l 
Z0[q(r)]  = exp (-; J r b  dT{-(c) + V ' ( ~ ) V  

70 

as follows from partially integrating the first term, using 
va = Q, = 0, and the Euclidean equation of motion (54). 
Furthermore, since 

with ii E &/dr, one can write the remaining integrand 
of (55) in the form 
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where 

is a given function of (Euclidean) time T since it is com- 
pletely determined by C(T). 

Thus the problem of determining the parameter X has 
been reduced to calculating the propagator for an oscil- 
lator with time-dependent mass and hequency. This can 
be done, for example, in analogy to  the calculation pre- 
sented by Felsager [8] after reintroducing real time t = i r  
and partially integrating 

The operator in curly brackets is of Sturm-Liouville 
type [12]; in combination with the boundary conditions 
qa = Q = 0, it is known to have a complete set of eigen- 
functions. After expanding an arbitrary path in terms of 
these functions, the expression (60) turns into an infinite- 
dimensional Gaussian integral which can be calculated in 

v 

the usual way. However, as the actual value of the pref- 
actor is not relevant for the quenching of the tunnel 
splitting, it is not calculated explicitly here. 

Finally, some remarks concerning the quantum me- 
chanics of constrained systems are appropriate. It is 
known that quantization of such systems leads to correc- 
tions of the "natural" Hamiltonian in the form of an addi- 
tional potential term of order h2, related to  the spatially 
variable curvature of the constraining surface [13,14]. In 
order to obtain well-defined results the constraint should 
be modeled as the limit of a strong narrow gully as it 

is discussed thoroughly in [15]. Here the freedom of 
applying conformal transformations to the interior l? of 
the curve LT reflects different choices of the shape of 
the gully: the function g(w) in Eq. (44) is not defined 
uniquely. Given the curve dl? in the complex plane one 
can conformally map its interior l? onto itself by prescrib- 
ing (i) the image of an arbitrary point and (ii) the angular 
part of the derivative of g(w) at  this point without losing 
the essential property that one of the coordinate lines co- 
incides with the boundary al?. The question of ordering 
the noncommuting operators in the kinetic energy, show- 
ing up in the quantized Hamiltonian associated with the 
Lagrangian L(v, G), Eq. (45), would lead to ambiguities 
of order h2. Similarly, making a point transformation 
in the path integral (52) in order to  remove the spatial 
dependence of the mass would lead to corrections of the 

order h2 [16]. In the present context a semiclassical eval- 
uation of the path integrals is attempted, being correct 
to order h only, so that terms of order h2 can be safely 
neglected. 

V. TOPOLOGICAL ASPECTS AND DISCUSSION 

If a particle is constrained to move in a symmetric 
double-well potential on a C2 loop one finds the following 
expression for the tunnel splitting: 

It is interesting to compare this general expression for 
the splitting AE with the corresponding formula ob- 
tained for a particle in a double well on the line, where 
A E  = 2AT exp(-S:/h). Three modifications arise. 
Consider first a situation without magnetic field. Imag- 
ine to have two copies of the part of the potential V(x) on 
the line between the minima X+ = f 7r/2 and use them to 
construct the double well on the ring with radius R = 1. 
The parameter relevant for the splitting is seen to ac- 
quire a factor of 2 on the ring: A + 2A, which arises 
since, intuitively speaking, on the ring there are two dis- 
tinct ways for the particle to tunnel from one minimum 
to the other. This can also be seen immediately if one 
imagines to cut open the ring at  p = 0, for example, 
eliminating in this way the paths containing 0- and 5 
type instantons: the resulting tunnel splitting would be 
identical to that one on the line. If the external mag- 
netic field is turned on, no interference can arise for the 
potential on the line: for a given length N there is one 
and only one path connecting the minima. On the cir- 
cle, however, the splitting acquires an oscillatorv factor 
depending on the enclosed flux representing the" second 
modification of Eq. (61). The third change is due to de- 
forming the circle to an arbitrary loop with appropriate 

symmetry, whichrequire quantitative modifications only: 
A -+ X, S," + S:, and @ + 5. The topological character 
of the quenching is clearly illustrated by the qualitative 

insensitivity of the structure of Eq. (61) under smooth 
deformations. 

The quenching of the tunnel splitting due to an ex- 
ternal magnetic field investigated here is analogous to 
the quenching observed in spin systems. Suppose that a 
crystal field provides two equivalent minima for a mag- 
netic ion with spin J and that the location of the min- 
ima depends on the external field [5,17]. In a Hamilto- 
nian formulation the classical spin system is equivalent 
to that one of a fictitious charged particle moving on 
a sphere representing the phase space of the spin. It 
is coupled to a fictitious magnetic monopole located at  
the center of the spherical phase space. Again, the field 
term is a total derivative thus beine: irrelevant on the 
classical level. Quantum mechanically, however, it con- 
tributes differently to the actions of the two types of in- 
stantons present in the system. As a consequence, the 
tunnel splitting A E  also acquires a trigonometric factor 
cosb. The quantity 4 can be expressed in terms of the 
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magnetic flux of the monopole through the phase-space 
surface spanned by the two instanton paths, thus becom- 
ing a function of the external magnetic field. It follows 
that specific values of the field strength exist for which 
the quantum-mechanical ground state of the spin system 
is twofold degenerate. 

In the study of transport properties of mesoscopic sys- 
tems 118-201 results have been obtained which are closely 
related to those for the model presented here; the ba- 
sic questions and the methods, however. are somewhat 
different. An important example of a mesoscopic sys- 
tem consists of a small ring with attached conducting 
legs, the transmission properties of which are of partic- 
ular interest. In a simple model, impurities in the ring 
are modeled by two (typically different) scatterers, one in 
each branch. The question of tunneling, however, is not 
addressed directly. Nevertheless, it turns out that due 
to the variation of a magnetic field enclosed by the ring. 
oscillations of the transmission amplitude are observed. 
Presumably, they represent remnants of the quenching of 
the tunnel splitting addressed here, requiring the exact 
symmetry of the potential well. Without this symmetry. 
the actions associated with the paths cu and P ,  respec- 
tively, would be different, no longer allowing for complete 
destructive interference. 

In this context also some general remarks 1191 have 
been made pertaining to the energy spectrum of a per- 
fectly conducting ring with an arbitrary 2~-periodic po- 
tential V(cp). It has been observed that one can set up 
an interesting and useful analogy between a quantum- 
mechanical particle moving on a circle and in a one- 
dimensional periodic lattice V(q). respectively. At first, 
there seems to be an important difference in the peri- 
odic properties of the wave functions in these systerns. 
On a circle. the wave function $c(p) is required to 
be transformed into itself under translation about 27r: 

dlC (p  t 27r) = $c(cp), whereas a Bloch wave *L (X) may 
acquire a phase when shifted over one period xo of the 
lattice: g L ( z  + xO) = exp(ikxO)$~(x) ,  with k being the 
wave vector of the eigenfunction under consideration. If, 
however, a magnetic field is enclosed by the circle, under 
a rotation about 2~ the phase of the state $c(cp) is shifted 
by an amount which is proportional to the strength of 
the field. Consequently, the familiar dispersion relation 
E = E ( k )  for the particle in a one-dimensional crystal 
can be interpreted to give the energy spectrum & = & ( B )  
of the circle enclosing magnetic flux. Choosing a unit 
cell which contains two identical potential wells in order 
to appropriately represent the double-well potential on 
the ring, one finds that there are no energy gaps at  the 
boundaries of the Brillouin zone 1211. As a result there 
are particular values of k, i.e.. values of the field B. for 
which two orthogonal states with the same energy do ex- 
ist Tunneling becomes impossible, thus confirming the 
results obtained here fkom the path-integral approach. 
Also, analogies could be drawn to the phenomenon of 
flux quantization in superconductivity [22,23]. 

As mentioned before, the coupling of the particle to 
the magnetic field gives rise to a term in the Lagrangian 

which is a total derivative. Therefore it represents a 
gauge transformation of the Lagrangian and does not in- 
fluence the classical equations of motion. In quantum 
mechanics, however, nontrivial topological properties of 
the configuration space D can lead to observable effects 
stemming from such a term, because quantum mechanics 
is sensitive to global features. This is seen particularly 
well in the path-integral approach to quantum mechanics. 
The propagator connecting two points q and q' consists 
of a sum of contributions, each stemming from a specific 
homotopy sector. In other words, there exist paths from 
q to q' (characterized by different generalized winding 
numbers) which cannot be transformed into each other 
by continuous deformations. In general, one can write 

[4,71 

T ~ ( D )  being the first homotopy group (or fundamental 
group) of configuration space D.  The factors a[y] have 
modulus one, but the superposition of paths y from dif- 
ferent sectors (i.e., paths with different winding numbers) 
leads to interference of the various partial propagators 
K,. In the present calculation it turned out to be more 
convenient to arrange the contributions to the propaga- 
tor according to the length N of the instanton string, not 
according to their winding numbers. Consequently, the 
sum over paths in Eq. (37) still contains contributions 
from various sectors. 

The addition of topological terms which do not affect 
the classical motion but lead to consequences in the cor- 
responding quantum-mechanical systems has attracted 
interest in various fields. Anyons being candidates for 
the explanation of the fractional quantum Hall effect are 
conveniently defined by adding a total derivative to the 
free particle Hamiltonian in two dimensions, in this way 
effectively attaching a tube with magnetic flux to the 
particles [24,7]. In a field theoretical context topological 
terms in the Lagrangian are also known as Chern-Simons 
or Wess-Zumino terms. In general, topological field the- 
ories are interesting since qualitative properties of the 
solutions follow from topological arguments alone. 

Experimentally, observing the properties of mesoscopic 
systems is within reach [25]; even experiments with single 
Au loops have been reported 1261. The presence of a per- 
sistent current in a ring enclosing magnetic flux 1181 has 
been confirmed, although the quantitative agreement be- 
tween experimental and theoretical data is still discussed 
[27,28]. Due to the possibility to fabricate and to handle 
single mesoscopic loops, an experimental realization of 
the double-well potential might be possible by means of 
the presently available technology. 
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