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Abstracts  

High purity H2 production from shale gas using sorption enhanced chemical looping steam reforming 

(SE-CLSR) was investigated at 1 bar, GHSV 0.498 hr-1, feed molar steam to carbon ratio of 3 and 650 ℃  

for 20 reduction-oxidation-calcination cycles using CaO and 18 wt. % NiO on Al2O3  as sorbent and 

catalyst/oxygen carrier (OC) respectively. The shale gas feedstock was able to cyclically reduce the 

oxygen carrier and subsequently reform with high H2 yield and purity. For example H2 yield of 31 wt. 

% of fuel feed and purity of 92 % were obtained in the 4th cycle during the pre-breakthrough period 

(prior to cycles with low sorbent capacity). This was equivalent to 80 and 43 % enhancement compared 

to the conventional steam reforming process respectively. 

1. Introduction 

Hydrogen is regarded as the fuel of the future while worldwide demand for H2 is expected to rise in 

both chemical and energy use [1].  Various processes for H2 production such as partial oxidation, auto-

thermal reforming, water electrolysis, biomass gasification and steam reforming have become 

commercially successful since it (H2) was discovered by Henry Cavendish in 1788.  Catalytic steam 

reforming  (C-SR) has emerged as the major technology for syngas production (in large scale) [2-6] in 

refining and petrochemical complexes [7] and steam methane reforming has become the most 

common method for large scale H2 production for years [8].  Despite having reached technological and 
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commercial maturity, the C-SR process is still one of the most energy intensive processes for syngas 

production through its heating requirement with high operational and maintenance cost [1, 9]. To 

generate high purity H2 and maximise yield, additional units such as water-gas shift (WGS) and 

separation units (such pressure swing adsorption, membrane or cryogenic technology) are included in 

a C-SR plant [10-12], making the process complex and economical only at large scales [11]. Global 

warming is presently one of the major concern in the world [13, 14]. The C-SR process is also one of 

the contributors of global warming; by increasing the CO2 concentration in the atmosphere. For every 

4 mole of H2 produced by complete steam methane reforming process for example, a mole of CO2 is 

generated. In addition to tons of CO2 generated [15] and release into the atmosphere by the reformer 

furnace flue gas. Thermodynamic constraints are also a major drawback of the process to date [16, 

17] requiring the process to be operated at high temperature, whilst medium-high pressures (30-40 

bar) which thermodynamically limit the fuel conversion, have to be used to reduce plant size. Other 

challenges of the process include risk of coke formation, limited catalyst effectiveness and overall the 

efficiency of the process has reached its maximum [18-20]. 

Researchers are presently focusing on novel technologies that generate H2 at lower cost, eliminating 

or reducing the major remaining challenges with C-SR process. The development of technologies such 

as membrane reactor [21-25] permit C-SR reaction at mild operating conditions suppressing the 

thermodynamic limitations [10]. Similarly, coupling of C-SR with chemical looping usually termed 

Chemical looping steam reforming or ‘CL-SR’ [13, 26-30] can minimise energy requirement, and 

sorption enhanced steam reforming (SE-SR) [31-35], as well as sorption enhanced chemical looping 

steam reforming (SE-CLSR) [6, 36-42] combine H2 production and CO2 capture in a single reactor 

enhancing H2 yield and purity compared to the conventional process, avoiding a separate water gas 

shift stage, and lowering the burden of H2 separation. Membrane assisted SR, CLSR, SESR and SE-CLSR 

are all part of the current efforts in process intensification of H2 production via reforming methods. 

The latter (SE-CLSR process) also minimises the energy requirement of operating the system to a great 

extent by close-coupling the heat demand of H2 production with the heat released by the 
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chemisorption of its CO2 by-product. Detail process description with schematics of the SE-SR and SE-

CLSR process can be found in S G Adiya et al [9, 43] and Ryden and Ramos [39]. 

Hydrocarbons are the major feedstock in steam reforming process for the generation of H2 and 

synthesis gas [44]. Approximately, 90 % of the global H2 generated originates from conversion of fossil 

fuels [45]. A boom in shale gas production [13] and unconventional gas resources in the world such as 

hydrates foresees that gas will remain the main feedstock of steam reforming in the near term. The 

current development in oil and gas extraction such as drilling and fracking have made shale gas 

production economically viable [9]. Thus, additional techniques of gas consumption are also desirable 

due to its newfound albeit temporary abundance. 

Presently, CaO is the best known natural solid high temperature CO2 sorbent, and can be mined in the 

form of limestone (CaCO3) and dolomite (CaMg(CO3)2). Because of the sorbent’s low cost, significant 

CO2 sorption/desorption capacity even after repeated cycles, and fast reaction kinetics, CaO as high 

temperature CO2 sorbent has attracted much attention. CaO’s theoretical capture capacity of CO2 is 

as high as 0.786 g of CO2/g of sorbent [46].  

In the present study, experimental analysis of hydrogen production via the SE-SR and SE-CLSR 

processes using a model composition shale gas with CaO(S) sorbent and NiO based catalyst / oxygen 

carrier (OC) was conducted on a bench scale packed bed reactor for the first time. This follows from 

our previous study (S G Adiya el al [47]) which focused on the same materials and feedstock (NiO 

based catalyst / oxygen carrier (OC) and shale gas) and assessed via experiments the steam reforming 

of shale gas with and without chemical looping. The purpose of the study is to demonstrate the effect 

of coupling sorption enhacement (SE) and chemical looping (CL) in C-SR process in packed bed reactor 

using a realistic feedstock,  as well as validate our previous thermodynamic equlibrium analysis in  S G 

Adiya et al [9]. 

2. Materials and Methodology  

 2.1 Experimental Materials  
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The model shale gas mixture used for the experiment was reproduced from cylinders of different 

hydrocarbons. The desired molar composition (Table 1) was calculated based on the mole fraction of 

the species and a given total volumetric flow rate selected according to desired gas hourly space 

velocity (GHSV).  A detailed description of the experimental materials and rig set-up can be found in 

the supplementary data (SD1 and SD2) and was described in a previous publication [47]. CaO sorbent 

and commercial 18 wt. % nickel oxide on aluminium oxide support (NiO on Al2O3 support) catalyst was 

provided by Twigg Scientific & Technical Ltd for the experimental study. The catalyst performed the 

dual action of catalyst and OC. 

Table 1 Composition of shale gas used for experiments [48] 

Species Composition (%) [48]  Molar Flow (mol/s) 

CH4 79.4 2.68 x 10-6 

C2H6 16.1 5.44 x 10-7 

C3H8 4.0 1.35 x 10-7 

N2 0.4 1.35 x 10-8 

Total 100 3.37 x 10-6 

 

2.2 Experimental procedure 

2 g of catalyst and 1 g of CaO sorbent (1.2 mm mean size) were loaded into the reactor before setting 

up the experimental rig as described in SD2. The catalyst particle size was chosen to respect the 

particle-reactor diameter ratio (ca. 1/10) found in industrial SMR plants where diffusion as well as 

kinetic limitations control the reaction rates, while maintaining low pressure drop between reformer 

inlet and outlet and offering good mechanical strength. After setting the experimental rig, the furnace 

temperature was then set to the desired temperature e.g. 650 ℃. This was followed by reduction of 

the catalyst from non-active NiO to catalytically active Ni phase, conducted using a gas mixture feed 

of 5 vol. % hydrogen in nitrogen carrier gas. The nitrogen and hydrogen flow rate were 200 and 10 

cm3 min-1 (STP) respectively.  Reduction of the NiO to Ni resulted in micro GC H2 vol. % reading which 

remained at zero, and then returned to 5 vol. % after about 45 minutes, indicating that the catalyst 

had completed its reduction step. Hydrogen flow was then stopped, leaving only the nitrogen feed 
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until the hydrogen reading reached 0 % again, having flushed out all the reducing H2 from the reactor. 

This was followed by the SE-SR process, which started by feeding water and fuel (shale gas) to the 

reactor using the programmable syringe and MKS flow controller respectively at the desired molar 

steam to carbon ratio. Experiments lasted for at least 3 hours and ended by turning off the water and 

fuel flows first, then the furnace. This left only nitrogen feed to completely flush out the reformate 

gases and cool down the reactor before turning off the chiller and dismantling the rig for the next 

experiments when the reactor temperature had reached ambient temperature. 

The experimental procedure for the first cycle of SE-CLSR process was exactly the same as that of the 

SE-SR process procedure (above). In both processes an air feed of 500 cm3 min-1 STP and 850 ℃ had 

the effect of simultaneously re-oxidising the catalyst/OC, and regenerating it by also burning off any 

carbon that might have deposited on the catalyst/OC. The choice of higher oxidation temperature of 

850 ℃ was to fully regenerate the sorbent (CO2 desorption by calcination). The recorded temperature 

during air feed increased by roughly 10-15 ℃ owing to the oxidations reactions of the carbon residue 

and re-oxidation of the nickel-based catalyst. The major difference between the experimental 

procedures of the SE-CLSR process and those of the SE-SR process was the presence of the reducing 

H2/N2 feed in the SE-SR process, whereas the SE-CLSR process relied on autoreduction of the catalyst. 

The experimental procedure for C-SR process used for comparison was also exactly the same as that 

of the SE-SR process except that 3 g of catalyst on its own was used in the C-SR process as opposed to 

the 2 g of catalyst and 1 g of CaO in both the SE-SR and SE-CLSR processes. The choice of 2 g of catalyst 

in the SE- processes was a compromise between increasing the reactor bed load and increasing the 

gas input to maintain the same gas hourly space velocity when comparing the conditions with and 

without Ca sorbent. The latter, which resulted in a higher carbon input, was considered less logical. A 

full description of the post processing procedures allowing the calculations of water conversion, H2 

purity and molar yields of products can also be found in SD3. Explanation of thermodynamic 

methodology and characterisation techniques used can be found in SD4 and 5 respectively and are 

also described in [47].  
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3. Results and discussion 

 3.1 Sorption enhanced steam reforming (SE-SR) process of shale gas 

3.1.1 Effect of temperature on SE-SR process 

Temperature is one of the major variables on which the conversion of CaO and its carbonation capacity 

is determined. The effect of temperature on sorption enhanced steam reforming (SE-SR) process was 

investigated from 600 to 700℃  at GHSV 0.498, 1 bar pressure and feed molar steam to carbon ratio 

(S:C) of 3 using CaO as CO2 sorbent. Higher temperature during sorption were not investigated as they 

owning to the thermal decomposition of CaCO3(s)  [9, 49-51]. Moreover, the equilibrium vapour 

pressure of CO2  over CaO(S) is low at low temperatures [9, 39, 52]. Consequently, only the range of 

600 to 700℃ was investigated. Lower temperatures were not investigated either because they 

suppressed catalyst activity.    

Table 2 presents the plots of average values of H2 yield and purity over temperature range. H2 yield 

and purity decreased gradually as temperature increased. This was expected because the SE process 

is favoured at low/medium temperature [38] for reasons explained earlier. The conversion of 

feedstocks (fuel and H2O conversion) were not reported during the carbonation period because 

equations they are derived from were not applicable due to the inability to quantify the carbonation 

rate on the solid sorbent at any given time. However, gas yields including that of H2 were quantifiable 

using the nitrogen balance. 

Table 2 H2 yield and purity in the pre-breakthrough period at 1 bar, GHSV 0.498 and S:C 3 using 18 wt. % NiO 

on Al2O3 support catalyst (average values) 

Temperature ℃ H2 yield (wt. % of fuel) H2 purity (%) 

600 21.138 83.946 

650 20.793 83.966 

700 20.323 82.961 

 

The effect of temperature (600-700 ℃) on the outlet gas composition in the SE-SR during the pre-

breakthrough period (active sorbent stage or period before the sorbent starts saturating) is depicted 

in Table 3. In the pre-breakthrough period, the molar production rate of CO and CO2 was completely 
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zero (at all the investigated temperature) owing to the presence of the sorbent (carbonation reaction 

and enhancement of water gas shift). CH4 yield increased with increase in operating temperature. The 

low CH4 yield in the low/medium temperature range was due to the shift in equilibrium caused by the 

CO2 capture favouring the H2 generation reactions and subsequently higher fuel conversion. The 

increase in the CH4 yield with increasing temperature is no doubt caused by limited carbonation 

reaction and thermal decomposition of CaCO3 which occurs at higher temperatures [49-51]. Hence, 

lowering the feed conversion as the sorption enhancement faded.  

Table 3 Molar production rate of CH4 and H2 in the pre-breakthrough period at 1 bar, GHSV 0.498 and S:C 3 

using 18 wt. % NiO on Al2O3 support catalyst (average values) 

Temperature ℃ H2 CH4 

600 6.82 X 10-6 1.17 X 10-6 

650 6.71X 10-6 1.28 X 10-6 

700 6.55 X 10-6 1.34 X 10-6 

 

In all the investigated temperatures, after the breakthrough period, CO and CO2 generation 

commenced gently and stabilised at a certain point (roughly after about 3960 s of experiments) 

representing the emergence of the post breakthrough period as depicted in Figure 1. H2 yield also 

decreased gently when moving from the breakthrough period to the post breakthrough period as 

depicted in Figure 1(a), almost degenerating the process back to the C-SR process levels. However, a 

comparison between the SE-SR and C-SR process will be made later.  

The exothermic nature of the WGS reaction leads to a higher concentration of CO in both the 

breakthrough and post breakthrough period at higher temperatures. As for CO2, sorbent saturation 

inhibits its removal to a certain extent by the exothermic carbonation reaction, thus the gradual 

increase in the CO2 content of the product gas was observed as the process evolved from the 

breakthrough period to the post breakthrough period. During the breakthrough period, the molar 

production rate of CO2 was primarily determined by the WGS reaction. At this point, less CO2 was 

generated with increasing temperature owing to the suppression of the WGS reaction. 
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Figure 1 Process output vs time at 650 ℃ , 1 bar, GHSV 0.498 and S:C 3 using 18 wt. % NiO on Al2O3 support 

catalyst  (a) H2 yield and purity, fuel and H2O conversion vs time (b) moles out vs time (c) clearer graph of 

moles out vs time  

 

Numerous experimental researches have been done on the SE-SR process with varied feedstocks and 

sorbents. For example, Ding et al  [53] examined the SE-SR process of CH4 using hydrotalcite-based 

CO2 adsorbent. Martavaltzi and Lemonidou [54] also investigation the SE-SR process using CH4 and a 

new hybrid material NiO–CaO–Ca12Al14O33 performing the dual action of both steam reforming 

catalyst and CO2 sorbent. A direct comparison of the present study with previous work is not possible 

owing to the difference in the feedstock (shale gas). Nonetheless, most of the previous studies on the 

SE-SR process such as Zin et al and Esteban-Díez et al. [55, 56] including those mention earlier Ding et 

al and Martavaltzi and Lemonidou [53, 54] are in good agreement to those of the present studies with 

regards to substantially increased  in H2 yield and purity in the SE-SR compared to the C-SR process. 

 3.1.2 Comparison of SE-SR with C-SR and with chemical equilibrium  
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Figure 2 depicts a comparative analysis of the SE-SR and the C-SR process. As shown in the figures both 

H2 yield and purity increased significantly in the presence of CaO sorbent compared to the Ca-free 

system. Up to 45 % and 46 % rise in H2 yield and purity were achieved when the average process 

output of SE-SR was compared with that of the C-SR process at 600 ℃ under same operational 

condition (GHSV 0.498, 1 bar pressure and S:C 3). This is significantly higher than the C-SR process, 

despite the use of a lower mass of catalyst (2 g vs. 3 g). 

 

Figure 2 Comparison of SE-SR during the pre-breakthrough period with C-SR and chemical equilibrium 

results at 1 bar, GHSV 0.498 and S:C 3 using 18 wt. % NiO on Al2O3 support catalyst (a) comparison of SE-SR 

(solid lines with filled symbols) and C-SR process (dashed lines with unfilled symbols), H2 yield and purity vs 

temperature (average values) (b) comparison of SE-SR (solid line with filled symbols) and chemical 

equilibrium (dashed lines with unfilled symbols), H2 yield and purity vs temperature (average values) 

 

The presence of sorbent in the system also lowered the temperature of maximum H2 yield  as depicted 

in Figure 2(a). To illustrate this, a comparison between the C-SR and SE-SR process optimum operating 

temperature can be used. The maximum H2 yield and purity in the temperature range investigated 

(600-700 ℃)  was at 700 ℃ for the C-SR process. This significantly dropped to 600 ℃ for the SE-SR 

process. The latter would significantly reduce the cost of operating the system and could permit the 

use of cheaper reactor materials afforded by the mild temperatures of the process unit. 

The inability of the experimental results to reach equilibrium (Fig. 2b) could be attributed to mass 

transfer and kinetic limitations, and to loss of sorbent capacity over time. Kinetic limitations can be 

overcome by operating at higher temperature, whilst mass transfer limitations can be mitigated by 

reducing the particle size of the bed materials (catalyst/OC and sorbent) to such a size that there will 
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be no diffusion effect [45] and/or by decreasing the gas hourly space velocity, thus increasing the 

residence time of the reactions [47].  

Comparing the results of the SE-SR process during the post breakthrough period with that of the 

conventional process leads to a surprising observation. It was expected that the SE-SR process will 

degenerate back to the C-SR process after the sorbent had become fully saturated (post breakthrough 

period). However, the opposite was observed. H2 purity was higher in the SE-SR process even though 

the sorbent was saturated owing to a steady production of CO2. Previous studies by Albrecht et al and 

Xie et al [34, 57] have reported a similar observation and attributed it to the fact that CO2 is still 

absorbed by the sorbent during the post breakthrough period but very slowly. H2 yield and fuel and 

water conversion were also higher at 600 ℃  in the SE-SR but merged (with insignificant difference) 

with the C-SR process at higher temperatures (650 and 700℃) as depicted in Figure 3. The 

phenomenon observed at 600 ℃  results from the fact that the carbonation reaction is favoured at 

low/medium temperatures while that of high temperatures (650 and 700℃) might result from the 

fact that the carbonation reaction is limited at higher temperatures [9] explained earlier. Table 4 

presents percentage (%) enhancement of SE-SR process over the C-SR process (H2 yield and purity). 

For a given parameter ‘P’ such as H2 yield or H2 purity, the percentage enhancement ‘EP’ between SE-

SR and C-SR is calculated as EP = ((PSE-SR – PC-SR )/PC-SR) × 100.  Table 4 lists the values of EH2 yield and E H2 

purity found in the experiments and those expected from equilibrium. The experimental results 

investigated at 600, 650 and 700 ℃ show 45, 19 and 5 % increase in H2 yield and 46, 30 and 28 % 

increase in purity compared to the C-SR process. On the whole, the measured enhancing effects of 

sorption were stronger than those predicted between C-SR experiments and C-SR equilibrium states 

except for H2 yield at 600 ℃ for equilibrium studies. 
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Figure 3 Comparison of SE-SR process during the post breakthrough period with C-SR process at 1 bar, GHSV 

0.498 and S:C 3 using 18 wt. % NiO on Al2O3 support (a) average H2 yield and purity, fuel and H2O conversion 

(b) average outlet moles vs temperature (Note: Solid lines with filled symbols are SE-SR process results and 

dashed lines with unfilled symbols for C-SR process) 

 

Table 4 Percentage (%) enhancement of SE-SR process over C-SR process (EH2 yield and EH2 purity), comparison 

between values obtained in the experiments (Exp). 

Operating Temperature EH2 yield (%), 

Exp  

EH2 yield (%), 

Eq. 

EH2 purity (%), 

Exp 

EH2 purity (%), 

Eq. 

600 ℃ 45 0 46 22 

650 ℃ 19 7 30 27 

700 ℃ 5 13 28 29 

 

3.2 Sorption Enhanced Chemical looping steam reforming (SE-CLSR) process of shale gas 

 3.2.1 Effect of sorbent and chemical looping on steam reforming process 

Reduction-oxidation-calcination cycles were conducted in the quartz fixed bed reactor. Again 2 g (1.2 

mm mean sieve size) of the catalyst/OC was randomly mixed with 1 g (1.2 mm mean sieve size) of CaO 

sorbent and loaded in the reactor. For the purpose of studying the effect of sorption enhancement 

coupled with chemical looing in the C-SR process; the SE-CLSR experiments were performed at 

atmospheric pressure, GHSV 0.498, S:C ratio of 3 and a temperature of 650 ℃  under constant flow of 

inert N2 gas. 20 reduction-oxidation-calcination cycles were conducted to investigate the cyclic 

behaviour and stability of the Ca based CaO sorbent and the 18 wt. % NiO on Al2O3 support 

catalyst/OC. 
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Figure 4 depicts the average process outputs (H2 yield and purity) achieved in the 20 reduction-

oxidation-calcination cycles. Fuel and water conversion during the pre-breakthrough period were 

excluded owing to the inability to accurately measure the carbonation rate on the solid sorbent at any 

given time explained earlier.  

NiO reduction, steam reforming of shale gas and WGS reactions happen concurrently with in-situ CO2 

capture, causing substantial increase in H2 yield and purity (compared to the C-SR process as depicted 

in Figure 4 as expected in the pre-breakthrough (active carbonation stage). The observed 

phenomenon results from the presence of the CO2 sorbent shifting the equilibria of both the steam 

reforming and the WGS reaction to the right towards higher conversion to CO, then to CO2, followed 

by capture of the CO2 on the sorbent, with the carbon product becoming entirely solid calcium 

carbonate (during pre-breakthrough). 

 

Figure 4 Comparison of SE-CLSR process outputs with C-SR at 1 bar, GHSV 0.498, S:C 3, reforming/reduction 

temperature at 650 ℃  and oxidation at 850 ℃ with CaO and NiO on Al2O3 support  as sorbent and 

catalyst/OC respectively (pre breakthrough period average process outputs) (Note: Solid lines are for SE-

CLSR  and dashed lines for C-SR process) 

 

Additionally, the presence of the nickel-based catalyst/OC in the SE-CLSR system also causes further 

positive effect on H2 yield and purity, even though part of the fuel was initially used for reduction of 

the catalyst/OC. This is because the reduction of fuel by NiO produces total oxidation products CO2 
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and H2O, with the former being captured by the sorbent, and the latter increasing the water 

concentration of the system, effectively achieving a dual effect or enhancement in accordance with 

Le Chatelier’s principle. The slight decrease in H2 yield and purity after the 5th cycle, which fairly 

stabilises in the 8th cycle may be caused by a number of factors to be investigated,  including loss of 

active sites of the catalyst/OC, which itself may arise from the accumulation of solid carbon by 

deposition on the surface of the catalyst/OC, extensive sintering of the Ni particles, and Ni active site 

blockage [47] , as well as loss of sorbent capacity over time, a well-known process for CaO sorbents 

undergoing cyclic carbonation-calcination at high temperatures and in the presence of steam. 

Comparison of the SE-CLSR process outputs with chemical equilibrium results is presented in Figure 5, 

the comparison shows that the SE-CLSR process experimental results were away from equilibrium for 

most cycles but were close to it for cycles 4, 5 and 6.  

 

Figure 5 Comparison of SE-CLSR process outputs with chemical equilibrium results at 1 bar, GHSV 0.498, S:C 

3, reforming/reduction temperature at 650 ℃  and oxidation at 850 ℃ with CaO and NiO on Al2O3 support  

as sorbent and catalyst/OC respectively (pre breakthrough period average process outputs) (Note: Solid 

lines are for SE-CLSR  and dashed lines for chemical equilibrium results) 

 

Figure 6 present the 4th cycle outputs against time stream chosen as best output representative of all 

the 20 reduction-oxidation-calcination cycles. The breakthrough period is followed by the post 

breakthrough period (CO2 steady state production). At this stage the process is expected to 

degenerate back completely to the C-SR process owing to the full saturation of the Ca based CO2 
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sorbent.  Both H2 yield and purity Figure 6(a) were higher during the pre-break through period with a 

gentle decline at the breakthrough period that approaches stability towards the post breakthrough 

period. However, it is worth remembering that, fuel and water conversion during the pre-

breakthrough and breakthrough periods are not reliable for reasons explained earlier. The molar 

production rate of CO and CO2 on the other hand increases with move from the breakthrough period 

to the post breakthrough period Figure 6(b).  

During the oxidation stage conducted at 850 ℃, three major reactions were expected to happen. The 

regeneration of the sorbent, solid carbon oxidation reactions and nickel oxidation reaction. Both 

sorbent regeneration and carbon oxidation reactions have the potential to generate CO2. The later 

(carbon oxidation reactions) and nickel oxidation reaction consumed oxygen from the air feed. Thus, 

carbon and oxygen elemental balances were not enough to define the three unknown rates of Ni 

oxidation, carbon oxidation, and sorbent calcination. Moreover, the most vital part of the oxidation 

reaction process is in the first 3 minutes, as the process is quite fast in the reactor. The micro gas 

chromatography analysed the results with a frequency of 3 minutes, rendering monitoring of the 

oxidation reaction process with time on stream impossible or unreliable with the micro-GC. However, 

an increase in the oxidation temperature was observed during the oxidation process due to the 

exothermic nature of the reaction. The burning off of the solid carbon (coke) deposition during the air 

feed was coincidental with CO2 and CO generation. As the oxidation reaction approached its end, a 

gradual decrease in the reactor temperature was observed. SD6 presents a percentage enhancement 

of SE-CLSR process with C-SR process (H2 yield and purity percentage). 
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Figure 6 Process outputs for the 4th cycle at 1 bar, GHSV 0.498, S:C 3, reforming/reduction temperature at 

650 ℃  and oxidation at  850 ℃ with CaO and NiO on Al2O3 support  as sorbent and catalyst/OC respectively  

 

Comparison of our results with previous research is difficult mainly because researchers focused on 

pure methane as feedstock, promoted Ca based CaO sorbent and a different catalyst/OC.  For 

example, a similar study coupling sorption enhancement and chemical looping was conducted by 

Hafizi et al, [37] showing the application of 2Fe2O3/MgAl2O4 and 22Fe2O3/Al2O3 as catalyst/OC and 

cerium promoted CaO as CO2 sorbent using pure methane as feedstock. Their characterisation findings 

and the SE-CLSR process experimental outputs shows the better performance of cerium promoted 

CaO sorbent for CO2 removal. They also found that 2Fe2O3/MgAl2O4 catalyst/OC exhibited better 

performance compared to 22Fe2O3/Al2O3. The catalyst(s)/OC(s) and sorbent demonstrated stable 

performance at 600 ℃  in good nine reduction and calcination cycles. Antzara et al. [38] also 

investigated the performance of SE-CLSR process using a mixture of a bifunctional NiO-based 

catalyst/OC supported on ZrO2, and a ZrO2-promoted CaO-based CO2 sorbent with pure methane as 
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feedstock. The materials showed excellent stability without deterioration in their performance for 20 

continues reforming and regeneration cycles. They reported high H2 concentration throughout the 

pre-breakthrough period with low concentration of CO and CO2 which is in good agreement with the 

present study. Their conclusion that SE-CLSR process has significant advantages compared to the C-SR 

process is also in good agreement to that of the present study. 

 3.2.2 Comparison of SE-CLSR at post CO2 breakthrough period with C-SR process  

Comparison of the post breakthrough period of the SE-CLSR process and the C-SR process is shown in 

Figure 7, this presents a significant decrease in fuel and water conversion (which could be calculated 

since no CO2 sorption was taking place), with resulting lower H2 yield and purity in the SE-CLSR process 

at steady state of post CO2 breakthrough in most of the cycles. This could be attributed to a number 

of factors.  First, our catalyst bed was diluted with calcium carbonate, affecting the activity of the 

catalyst, although this effect was not observed for the uncycled, H2 reduced SE-SR process.  Most 

likely, another possible reason is the fact that there were potential deposits of carbon in both the 

catalyst and calcium carbonate beyond the 1 hour 30 minutes of use during the fuel/steam feed.  The 

C-SR process experiments were conducted for a period of 1 hour 30 minutes while those of SE-CLSR 

process were conducted for a period of 3 hours to enable full observation of the pre-breakthrough 

period, breakthrough and the post pre-breakthrough period. This would have significantly affected 

both the fuel and water conversion, and subsequently the H2 yield and purity.   
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Figure 7 Comparison of post breakthrough period of SE-CLSR with the C-SR process at 1 bar, GHSV 0.498, S:C 

3, reforming/reduction temperature at 650 ℃ and oxidation at  850 ℃ with CaO and NiO on Al2O3 support  

as sorbent and catalyst/OC respectively (Note: Solid lines are for experimental results and dashed lines for 

C-SR process)  

 

3.3.3 Cyclic stability and behaviour of sorbent and catalyst/OC during SE-CLSR process 

The stability of the CaO sorbent (from limestone) coupled with 18 wt. % Ni on Al2O3 support as 

catalyst/OC was determined by the increasing number of cycles and the carbonation efficiency of the 

sorbent. As seen in Figure 4; H2 yield and purity increased at first steadily with increase in the number 

of cycles.  At the 4th cycle a significant rise in both the H2 yield and purity was seen which was followed 

with a gentle decrease in both the yield and purity till approximately the 9th cycle; where the process 

output almost stabilized (with insignificant difference). The later no doubt can be attributed to 

decrease in the sorbent capacity and loss of activity of the catalyst/OC with increasing usage. Even 

though CaO sorbents have many advantages as CO2 sorbent, the sorbent’s industrial application has 

faced some serious concerns including the loss of sorption capacity in long-term cyclic operation, and 

the formation of CaSO4 owing to loss of reactivity with sulphur containing gases [46, 58-60]. Sintering 

of the sorbent, including agglomeration of particles, pore shape and shrinkage change are major 

causes of loss of CaO sorption capacity [46]. The gradual increase in the 1st cycle, might result from 

the fact that the reactivity NiO particles (catalyst/OC in the process) is known to increased slightly 

after first contact with fuel [39, 61].  
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Others researchers have studied the CO2 sorption behavior of limestone sorbents in repeated cyclic 

absorption desorption cycles [46], for example, over 500 carbonation/calcination cycles were 

conducted by Grasa and Abanades [62], there results are in good agreement to those of the present 

study in the sense that sorbent capture capacity was significantly decreased during the first 20 cycles 

and then stabilized at a certain point limit.  

4.  Materials characterization after use  

The X-ray diffraction patterns of the fresh and reacted mixture of the sorbent and catalyst/OC after 

20 reduction-oxidation-calcination cycles of SE–CLSR are presented in Figure 8. The patterns were 

identified by the usual peaks of nickel, nickel oxide, alumina and CaO by X’Pert HighScore Plus software 

for phase analysis of the XRD data. The Scherrer equation was used to find the crystallite size of the 

Ni/NiO phases. The Ni crystallite sizes of the reacted catalyst were in the range 29.69 – 30.82 nm with 

no significant difference to those of the C-SR process when compared at same conditions. The NiO 

crystallite sizes of the fresh and reacted catalyst after the last (20th) oxidation cycle step were in the 

range 45.1 – 49.1 nm. This represents a significant sintering effect owing to the mixing of the catalyst 

and sorbent. The effect of reacting temperature was not apparent in the XRD data. A very small peak 

of Al2O3 around 30◦ 2 roughly appeared in the reacted catalyst but was absent in the fresh and H2 

reduced catalyst in Figure 8(a) of the SE-SR process system.  This might be caused by crystallisation 

after long (1 hour 30 minutes roughly) exposure of the sorbent and catalyst mixture to reaction 

temperature.  A slight negligible increase in the crystallite size of the reacted mixture of the 

catalyst/OC was observed. The slight increase could depict sintering of the Ni crystallite during stability 

test of the catalyst/OC [63]. The great characteristic peaks of NiO matching exactly those of the fresh 

sorbent and the catalyst/OC mixture suggested sufficient oxidation of the Ni to NiO. 
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Figure 8  18 wt. % NiO on Al2O3  support XRD patterns; triangles are CaO peaks, squares are NiO peaks, 

arrows are superimposed NiO, CaO and Al2O3 peaks, circles represent superimposed NiO and Al2O3  peaks, 

while the unidentified peaks are Al2O3 peaks  in both processes (a) for SE-SR process, (b) for SE-CLSR process,  

 

Field emission- scanning electron microscopy (FESEM) was used to study morphological characteristics 

of the sorbent and catalyst/OC. Comparison of the fresh and the reacted CaO sorbent and catalyst/OC 

mixture after 20 reduction-calcination-oxidation cycles shows sintering and excessive agglomeration 

of the mixture (see SD8). Expansion of the CaO sorbent particles during CO2 adsorption causes 

sintering of the particles [46, 64]. The expansion that causes sintering is extremely influenced by 

temperature and particle separation distance. A high adsorption temperature and shorter distance 

between two sorbent particles increases the sintering rate during the adsorption process [46]. The 

latter, shorter distance between two sorbent particles might be the major cause of sintering in the 

present studies, since the adsorption temperature is moderately low.  With the help of EDX (mapping 

method) it was found that solid carbon deposition on the surface of the sorbent and catalyst/OC 

mixture (mixed randomly) was not homogeneously distributed during both processes (SE-SR and SE-

CLSR process). The lack of homogeneity from carbon deposition could be attributed to the 

level/position of the catalyst in the bed.  It is expected that the topmost (upstream) part of the catalyst 

will be more prone to solid carbon deposition than the downstream parts.  

The textural properties of the sorbent; BET surface area of the fresh and reacted mixture samples are 

given in Table 5. The BET surface area of the CaCO3 was found to be 0.349 m2/g, while after calcination 

to CaO it was 7.121 m2/g.  The BET surface area of CaO increased significantly due release of CO2 and 
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other elements present in the CaCO3; causing formation of a highly porous layer with small particles 

on the surface of CaO sorbent. The BET surface area of the reacted sorbent and catalyst/OC mixture 

in SE-CLSR (after 20 reduction-calcination-oxidation cycles) and that of sorbent and catalyst mixture 

in the SE-SR process show a slight decrease compared to the unused mixture of the sorbent and 

catalyst/OC, which could be owed to sintering and pore blockage particularly after repeated cyclic 

absorption and desorption cycles [37] in the SE-CLSR process. 

The concentration of solid carbon found on the surface of the sorbent and catalyst/OC mixture using 

CHNS analysis and that of solid carbon in the condensate (from the TOC analysis) was 

negligible/insignificant in both processes. Thus, it can be concluded that burning off of the solid carbon 

during the oxidation reaction process at 850 ℃ was successful.  157 ppm of solid carbon was found in 

the condensate sample of 20 reduction-oxidation-calcination cycles collectively. The collective small 

concentration of the solid carbon also made us consider it insignificant. Overall, the effect of 

temperature on the surface area, carbon concentration on the surface of the catalyst and the 

condensate was not obvious. The absence of any major difference in the solid carbon concentration 

on the surface of the catalyst during SE-SR process was not surprising because all the temperatures 

were investigated at S:C 3, which thermodynamically inhibits solid carbon deposition [9, 65].  

Table 5 Characterisation results after the last (20th) oxidation cycle at 1 bar, GHSV 0.498, S:C 3, 

reforming/reduction temperature at 650 ℃ and oxidation at ℃ 850 using CaO and Ni on Al2O3 support as 

sorbent and catalyst/OC respectively  

Condition 
NiO/Ni crystallite 

size (nm) 

BET 

Surface 

area (m2/g) 

C (Mole) on 

catalyst 

C (g/L) in 

condensate 

CaCO3 N/A 0.349  N/A N/A 

CaO 48.23 7.121 N/A N/A 

Fresh catalyst 45.05 3.45 N/A N/A 

Reduced catalyst with H2 30.82 2.256 N/A N/A 

Fresh sorbent and 

catalyst/OC mixture 
44.89 5.131 N/A 

N/A 

SE-SR Reacted at 600 ℃ 29.69 3.060 0.016 0.096 

SE-SR Reacted at 650 ℃ 30.41 2.532 0.014 0.091 

SE-SR Reacted at 700 ℃ 30.40 2.901 0.012 0.083 
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SE-CLSR Reacted at 

650 ℃   
49.08 4.605 0.001 

0.16 

5. Conclusion  

       In order to define the optimum operating conditions for the SE-CLSR process and determine its 

feasibility with a shale gas feedstock, the effect of Ca based CaO sorbent and operating temperature 

in the range of 600-700 ℃ was studied first in a packed bed at atmospheric pressure.  It was found 

that low/medium operating temperature is more suitable for a SE-SR process owing to the thermal 

decomposition of CaO sorbent at high temperatures, in addition to carbonation favoured 

thermodynamically at low/medium temperatures. However, low operating temperature suppresses 

catalyst activity.  It was also discovered that the presence of CaO as in situ CO2 sorbent has the 

potential to decrease operational and capital costs because of milder reactive conditions and lower 

reactor materials requirements. 

       High purity H2 was generated using a novel low energy consumption process termed SE-CLSR process 

using a gas feedstock closely reproducing an actual shale gas. The feasibility of the intensified C-SR 

process (coupled with sorption enhancement and chemical looping) was demonstrated 

experimentally over a mixture of a bifunctional NiO-based catalyst/OC supported on Al2O3 and a Ca-

based CaO sorbent.  20 reduction-oxidation-calcination cycles of experiments were performed in a 

bench-scale fixed bed reactor at 1 bar, GHSV 0.498, S:C 3 and 650 ℃. High hydrogen yield of 31 wt. % 

and purity of 92 % was obtained (in the 4th cycle) during the pre-breakthrough period of the SE-CLSR 

process (prior to cycles with low sorbent capacity). The post breakthrough period did not degenerate 

fully to the C-SR process due to catalyst/OC bed dilution with sorbent, and decreased amount of 

catalyst compared to the C-SR process.  The surface area of the sorbent and catalyst/OC mixture after 

20 reduction-calcination-oxidation cycles underwent a slight decrease compared fresh mixture of the 

sorbent and catalyst/OC caused by sintering and pore blockage after repeated cyclic absorption-

desorption cycles. The FESEM images of the mixture also showed sintering and agglomeration on the 

reacted sorbent and catalyst/OC mixture. Sorbent regeneration and Ni oxidation to NiO at 850 ℃  
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using air feed successfully burned off the solid carbon deposits on the surface of the sorbent and on 

the catalyst/OC mixture during the oxidation step of SE-CLSR. Regeneration and oxidation of the CaO 

sorbent and catalyst/OC was also accomplished at the same temperature. 

For the process to be commercially applicable, a more advanced analysis and optimisation of the SE-

CLSR process is necessary, including, prolonged testing under cyclic conditions, finding mixture 

conditions of sorbent and catalyst/OC that prevent coking, together with detailed technological and 

economic analysis and whole process design for scaling purposes. Yet, it is obvious that the 

combination of sorption enhancement and chemical looping on C-SR process has great prospects for 

high H2 yield and purity generation at reasonable lower cost and high energy efficiency. 
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