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Abstract
1.	 The	area	of	occupancy	(AOO)	is	a	widely	used	index	in	conservation	assessments,	
notably	in	criteria	B2	of	the	International	Union	for	Conservation	of	Nature	(IUCN)	
red-list.	However,	IUCN	guidelines	require	assessing	AOO	at	finer	resolution	than	
is	generally	available.	For	 this	 reason,	extrapolation	 techniques	have	been	pro-
posed	to	predict	finer	AOO	from	coarser	resolution	data.

2.	 Here,	we	apply	10	published	downscaling	models	to	the	distributions	of	a	 large	
number	of	plant	and	bird	species’	in	contrasting	landscapes.	We	further	compare	
the	output	of	two	ensemble	models,	one	relying	on	all	10	downscaling	models	and	
one	a	subset	of	five	models	that	can	be	fit	rapidly	and	robustly,	with	minimal	over-
sight	required.	We	further	compare	the	accuracy	of	downscaled	predictions	with	
respect	to	species	prevalence.

3.	 Across	 all	 landscapes	 and	 taxa,	 the	models	predicted	AOO	consistently.	 Some,	
such	as	the	power	 law	and	Hui	models,	were	nonlinear	with	respect	to	species	
prevalence.	 Some	 models	 consistently	 over	 or	 under	 predicted,	 such	 as	 the	
Nachman	and	Poisson	models.	Furthermore,	some	models	proved	to	give	more	
variable	predictions	than	other	models,	e.g.	Nachman	and	power	law.	For	these	
reasons,	none	of	these	models	are	suitable	for	downscaling	 if	used	 individually.	
The	Thomas	model	was	also	rejected,	because	it	is	too	computationally	intensive,	
even	 though	 its	 predictions	 are	 relatively	 unbiased.	 The	most	 effective	model,	
when	used	by	itself,	was	the	improved	binomial	model.	However,	the	two	ensem-
ble	models	were	able	to	provide	accurate	predictions	of	AOO	with	low	variability	
compared	to	using	any	one	single	model.	There	was	no	significant	loss	in	perfor-
mance	using	the	simpler	ensemble	model,	and	therefore	this	solution	is	the	least	
computationally	intensive	and	requires	least	user	oversight.

4.	 Our	results	show	that	downscaling	models	could	be	potential	tools	to	reliably	es-
timate	AOO	for	conservation	assessments.	Under	circumstances	where	there	is	
no	a	priori	reason	to	prefer	one	model	over	another	then	an	ensemble	of	these	
models	may	be	the	best	solution	for	batch	analysis	of	IUCN	status	under	criteria	
B2.	Moreover,	we	foresee	the	use	of	downscaling	for	the	production	of	other	bio-
diversity	indicators,	such	as	for	invasive	species	monitoring.
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1  | INTRODUC TION

Knowing	the	distribution	and	abundance	of	organisms	at	high	res-
olutions	is	critical	for	many	conservation	applications.	For	example,	
the	 area	 of	 occupancy	 (AOO)	 of	 a	 species	 is	 an	 easily	 calculated	
measure	of	a	species’	rarity	and	range	that	is	correlated	with	abun-
dance	(Gaston,	1994;	Gaston	&	Lawton,	1990),	which	is	much	more	
difficult	to	estimate.	Consequently,	it	is	a	criteria	recommended	by	
the	 International	 Union	 for	 Conservation	 of	 Nature	 and	 Natural	
Resources	(IUCN)	for	assessing	red	list	extinction	risks	under	criteria	
B2	(IUCN,	2012).	Gaston	and	Fuller	(2009)	found	that	AOO	was	used	
in	the	red	listing	of	between	37%	and	97%	of	species,	depending	on	
the	taxonomic	group.

To	calculate	AOO,	we	simply	 require	 information	on	a	 species’	
occurrences	across	its	range	which	can	then	be	can	be	summarised	
as	the	number	of	occupied	grid	cells	of	a	given	area	(Gaston,	1991,	
1994).	Rather	than	requiring	targeted	studies,	it	is	therefore	possible	
to	measure	AOO	using	aggregated	data	from	a	wide	range	of	data	
sources	collected	over	extended	time-spans,	such	as	freely	available	
biodiversity	data	(e.g.	GBIF),	allowing	its	calculation	to	be	easily	au-
tomated	(Bachman,	Moat,	Hill,	de	la	Torre,	&	Scott,	2011).

Another	reason	for	the	popularity	of	AOO	is	that	organisms	are	
often	overlooked	when	they	are	small,	cryptic,	hidden	or	difficult	to	
identify.	Such	organisms	require	more	effort	to	survey	at	fine	res-
olutions.	Biogeographic	atlases	are	often	constructed	from	ad	hoc	
surveys	 that	 inevitably	 lead	 to	spatial	unevenness	 in	surveying	ef-
fort.	 Therefore,	 observations	 are	often	 aggregated,	 to	 reduce	 this	
geographic	bias.	So	although	it	might	be	preferable	to	study	actual	
populations	of	organisms	for	conservation,	for	a	large	number	spe-
cies,	AOO	is	a	practical	measure	of	their	status,	rather	than	the	num-
ber	of	observations	or	their	population	size.

The	grain	size	at	which	the	records	are	summarised	is	nontrivial	
as	we	must	be	certain	of	 the	status	of	 the	species	across	all	 cells.	
The	finer	the	grain	size	the	closer	the	correlation	between	AOO	and	
true	abundance	(Kunin,	1998)	but	the	greater	the	sampling	coverage	
required.	 Aggregating	 data	 at	 coarse	 grain	 sizes	 reduces	 false-ab-
sences	but	at	the	expense	of	becoming	less	useful	for	conservation	
planning	and	assessments.	Coarse-grain	data,	commonly	referred	to	
as	atlas	data,	can	be	quickly	and	cheaply	generated,	and	as	the	quan-
tity	of	freely	available	biological	record	data	is	markedly	increasing,	
there	has	been	a	surge	in	their	publication	(Powney	&	Isaac,	2015).	
Consequently,	atlases	are	some	of	the	most	accessible	species	dis-
tribution	data.

As	 no	 standardised	 method	 exists	 for	 selecting	 the	 most	 ap-
propriate	 grain	 size,	 atlas	 data	 are	 generated	 at	 a	wide	 variety	 of	
grain	sizes,	and	grid	squares	of	25,	100	or	2,500	km2	are	typical	for	
even	well	studied	taxa	 in	European	countries.	However,	conserva-
tion	 assessments	 typically	 require	 AOO	 to	 be	 measured	 at	 finer,	

standardised	 grain	 sizes.	 For	 example,	 IUCN	 guidelines	 suggest	
that	 assessments	 should	be	carried	out	 at	4	km2	 resolution	 (IUCN	
Standards	 and	 Petitions	 Subcommittee,	 2017).	 They	 also	 recom-
mend	not	to	use	grain	sizes	larger	than	10	km2,	above	which	a	single	
grid	cell	occupancy	would	be	 larger	 than	the	critically	endangered	
threshold	 for	 AOO.	However,	 for	 the	 vast	majority	 of	 species	we	
have	 insufficient	 knowledge	across	 the	entirety	of	 their	 ranges	 to	
create	maps	at	such	fine	grain	sizes.

There	is	therefore	a	challenge	to	compare	AOO	collected	at	dif-
fering	grain	sizes	and	for	estimating	AOO	at	finer	grain	size	than	the	
available	data.	A	solution	is	to	employ	the	occupancy-area	relation-
ship	 (OAR,	Kunin,	1998);	species	occupancy	 is	scale-dependent	so	
that	AOO	 increases	as	grain	 size	 is	 increased.	Travelling	along	 the	
OAR	slope	allows	us	to	traverse	grain	sizes.	For	predicting	AOO	at	
the	fine	grain	sizes	necessary,	we	can	model	the	OAR	at	coarse	res-
olutions	for	which	data	are	available	and	then	extrapolate	the	rela-
tionship	to	predict	AOO	at	 finer	resolutions	 (Kunin,	1998),	 termed	
“occupancy	downscaling.”	These	curves	are	a	fundamental	property	
of	spatial	data,	but	their	shape	will	be	 influenced	by	the	degree	of	
aggregation	 of	 the	 organism	 at	 those	 resolutions	 and	 by	 species	
prevalence	at	the	atlas	scale.

At	 least	ten	different	models	have	been	proposed	for	extrapo-
lating	the	OAR.	They	cover	a	broad	theoretical	spectrum	and	levels	
of	complexity	(see	Azaele,	Cornell,	&	Kunin,	2012;	Barwell,	Azaele,	
Kunin,	&	Isaac,	2014)	(Supporting	Information	Table	S3).	The	simplest	
model	proposed	is	the	Poisson	model	which	assumes	that	individuals	
are	 distributed	 independently	 according	 to	 a	 binomial	 distribution	
(Wright,	1991).	Three	models	are	variations	assuming	fractal	distri-
bution	patterns,	the	power	law	(Kunin,	1998),	Nachman	(Nachman,	
1981)	and	 logistic	 (Hanski	&	Gyllenberg,	1997)	models.	Four	mod-
els	are	based	on	the	negative	binomial	distribution	and	incorporate	
a	measure	of	over-dispersion:	the	negative	binomial	 (He	&	Gaston,	
2000),	generalised	negative	binomial	(He,	Gaston,	&	Wu,	2002),	im-
proved	negative	binomial	 (He	&	Gaston,	2003)	and	 finite	negative	
binomial	(Zillio	&	He,	2010).	The	Thomas	model	incorporates	spatial	
point	processes	in	order	to	more	flexibly	account	for	species	aggre-
gations	(Azaele	et	al.,	2012).	The	only	spatially-explicit	model	is	the	
Hui	model,	which	differs	from	the	others	in	that	it	only	requires	data	
at	 a	 single	 grain	 size	 (Hui,	 2009;	Hui,	McGeoch,	&	Warren,	 2006;	
Hui	et	al.,	2009).	It	is	based	on	the	conditional	probability	that	a	ran-
domly	chosen	adjacent	cell	is	occupied	when	the	cell	in	question	is	
also	 occupied.	 This	 has	 the	 advantage	of	 giving	 some	 information	
on	the	 likelihood	of	adjacent	calls	being	occupied	 in	the	finer	grid.	
A	related	model,	which	we	do	not	consider	here,	accounts	 for	 the	
percolation	effect	on	occupancy	at	coarse	grains,	this	is	the	so-called	
“droopy-tail”	model	(Hui	&	McGeoch,	2007).

Azaele	et	al.	(2012)	compared	all	models,	except	the	Hui	model,	
for	16	rare	and	scarce	higher	plant	species	in	Britain	and	concluded	
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that	 the	 Thomas	 model	 produced	 the	 most	 accurate	 predictions.	
However,	Barwell	et	al.	(2014)	compared	the	same	models,	with	the	
addition	 of	 the	Hui	model,	 using	 38	 species	 of	 British	 dragonflies	
(Odonata)	and	concluded	that	the	Hui	Model	gave	the	best	predic-
tions.	Among	the	other	models,	the	Nachman	and	Power	Law	mod-
els	also	performed	well,	but	 in	contrast	 to	Azaele	et	al.	 (2012)	 the	
Thomas	model	was	among	the	worst	performing.	 In	another	com-
parison	of	models	on	different	datasets	with	contrasting	extents,	the	
improved	negative	binomial	model	was	one	of	the	best	performing	
(Hui	&	McGeoch,	2007).

However,	testing	the	models	poses	a	real	challenge	for	model	
validation	 as	 we	 must	 know	 true	 occupancy	 at	 the	 prediction	
scale,	which	for	most	species	 is	unknown	at	fine	grains	size	over	
wide	 extent.	 In	 fact,	 current	 tests	 of	 downscaling	 models	 have	
been	conducted	on	only	a	handful	of	species,	for	which	high	qual-
ity	 data	 in	 at	 least	 part	 of	 their	 distribution	 range	was	 available	
(Azaele	et	al.,	2012;	Barwell	et	al.,	2014).	Thus,	prior	to	adopting	
downscaling	models	for	conservation	assessment	we	need	to	test	
their	performance	on	a	broader	range	of	species	and	landscapes,	
particularly,	comparing	taxa	with	differing	degrees	of	aggregation;	
landscapes	 with	 different	 spatial	 features	 and	 data	 collected	 at	
different	grain	 sizes.	This	 is	especially	 true	as	 there	are	no	clear	
guidelines	 as	 to	which	methods	 are	 the	most	 reliable	 and	under	
which	circumstances.	The	IUCN	documentation	suggests	using	a	
power	model,	 extrapolated	between	 the	 atlas	 and	4	km2	 resolu-
tion,	however,	there	is	no	objective	assessment	of	whether	this	is	
the	most	appropriate	model	 (IUCN,	2012).	To	recommend	a	suit-
able	approach	to	downscaling	some	pertinent	questions	need	to	
be	 resolved,	 such	 as	 whether	 certain	models	 or	 combination	 of	
models	are	more	suitable	for	particular	taxa,	whether	the	models	
form	a	consistent	order	in	terms	of	the	predicted	AOO	(e.g.	from	
the	 highest	 predicted	 AOO	 to	 the	 lowest	 predicted	 AOO),	 and	
how	does	the	prevalence	of	the	species	at	the	atlas	scale	influence	
downscaling.

In	 this	paper,	we	present	 the	results	of	downscaling	2,724	dis-
tribution	maps	from	1,325	species	of	plants	and	birds	in	a	wide	va-
riety	of	landscapes	in	north-western	Europe.	We	test	the	ability	of	
the	10	downscaling	models	to	estimate	known	AOO	at	a	finer	grain	
size,	and	examine	if	model	performance	is	predictable	with	regards	
species	prevalence.	We	also	compare	the	performance	of	individual	
models	to	an	ensemble	approach	and	make	recommendations	as	to	
the	most	suitable	for	predicting	occupancy	in	situations	where	the	
most	appropriate	model	is	unknown.

2  | MATERIAL S AND METHODS

2.1 | Study area

Although	 previous	 studies	 have	 examined	 just	 a	 handful	 of	 spe-
cies	from	single	datasets,	 in	this	study	we	have	collated	data	from	
six	 European	 atlases	 covering	 two	 taxonomic	 groups,	 vascular	
plants	 and	 birds,	 at	 three	 spatial	 scales	 from	 regional	 to	 country	
level,	 totalling	2,724	 individual	maps	 from	1,325	species	 (Table	1).	
Vascular	plant	 and	bird	 atlas	data	were	 selected	due	 to	 their	 high	
availability	and	the	contrasting	spatial	distributions	of	the	two	taxa.	
The	 selected	 atlases	 cover	 a	wide	 degree	 of	 landscape	 variability,	
from	densely-	 (Flanders)	to	sparsely-	 (Assynt)	populated,	and	from	
lowland	 (Fermanagh,	 Flanders,	 and	 Shropshire)	 to	 mountainous	
(Cumbria	and	Assynt)	regions.

Bird	 data	 were	 downloaded	 from	 the	 Global	 Biodiversity	
Information	 Facility	 (National	 Biodiversity	 Data	 Centre,	 2011;	
Vermeersch	et	al.,	2014).	Vascular	plant	data	were	downloaded	from	
the	database	of	the	Botanical	Society	of	Britain	and	Ireland	database	
(Evans,	Evans,	&	Rothero,	2002;	Forbes	&	Northridge,	2012;	Halliday,	
1997;	Lockton	&	Whild,	2015).	We	used	the	Irish	Grid	(EPSG:29903)	
for	 Ireland;	 the	 Ordnance	 Survey	 Grid	 (EPSG:27700)	 for	 England	
and	Scotland	and	the	Belgian	Lambert	72	system	(EPSG:31370)	for	

TABLE  1 A	summary	of	the	atlas	datasets	used	to	test	the	predictions	of	downscaling	models.	The	time	period	is	the	period	over	which	
observations	were	collected	and	contributed	to	the	aggregated	atlas	data

Organisms Geographic extent Time period Number of species Area (km2)
Grain size 
(km2)

Modelling grain 
sizes (km2) Source

Breeding	birds Flanders,	Belgium 2000–2002 156 13,522 25 100;	400;	1,600 Vermeersch	
et	al.	(2014)

Breeding	birds Ireland,	Eire,	and	
Northern	Ireland

1988–1991 138 84,421 100 400;	1,600;	6,400 National	
Biodiversity	
Data	Centre	
(2011)

Vascular	plants Shropshire,	England 1985–2014 819 3,465 4 16;	64;	256 Lockton	and	
Whild	(2015)

Vascular	plants Cumbria,	England 1974–1996 969 6,845 4 16;	64;	256 Halliday	(1997)

Vascular	plants Fermanagh,	Northern	
Ireland

1975–2010 278 1,851 4 16;	64;	256 Forbes	and	
Northridge	
(2012)

Vascular	plants Assynt,	Scotland 1988–1999 364 728 4 16;	64;	256 Evans	et	al.	
(2002)
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Belgium.	All	manipulations	of	grid	reference	and	geographic	projec-
tion	were	conducted	in	PostGIS	(version	2.1)	in	PostgreSQL	(version	
9.4.2).	 For	 all	 records	 in	 these	 datasets,	 the	 grain	 size	 of	 all	 coor-
dinates	was	 reduced	 to	 the	 resolutions	 stated	 in	 Table	 1.	 All	 grid	
cells	are	assumed	to	be	equal	area,	which	over	the	distances	used	
in	 this	 study	 is	 a	 reasonable	 assumption.	However,	 continental	 or	
global	studies	would	need	to	use	other	grid	systems	or	apply	correc-
tions.	To	eliminate	the	large	number	of	casual	and	vagrant	species,	
all	species	with	fewer	than	10	occurrences	were	excluded	from	anal-
ysis.	Subspecific	taxa	in	each	dataset	were	simplified	to	species	and	
duplicates	 removed.	 Also,	 aggregate	 taxa	 in	 the	 genera	Euphrasia,	
Taraxacum,	Hieracium and Rubus	were	simplified	into	the	aggregate	
groups	Euphrasia officinalis	agg.,	Taraxacum officinale	agg.,	Hieracium 
agg.,	and	Rubus fruticosus	agg.

2.2 | Modelling

We	tested	the	ability	of	ten	downscaling	models	to	estimate	AOO	at	
finer	grain	sizes	than	the	input	data.	Each	atlas	was	first	coarsened	
to	three	 larger	grain	sizes	to	generate	the	OAR	to	which	to	fit	 the	
models.	We	 investigated	 several	 methods	 of	 coarsening	 the	 atlas	
data	that	maintain	constant	extents	across	all	grain	sizes,	hereafter	
referred	to	as	“upgraining”	(Marsh,	Barwell,	Gavish,	&	Kunin,	2018).	
The	ten	downscaling	models	were	applied	to	the	coarse-grain	size	
atlas	data	and	extrapolated	 to	predict	occupancy	at	 the	grain	 size	
of	 the	 original	 atlas	 data	 (which	was	 not	 employed	 during	model-
ling),	the	observed	occupancy.	As	we	investigated	several	methods	
of	upgraining	which	alter	 the	extents	of	 the	atlases,	we	compared	
the	observed	and	predicted	areas	occupied,	calculated	as	the	num-
ber	of	occupied	cells	multiplied	by	cell	area,	rather	than	proportional	
occupancy	within	the	altered	extent.	All	analyses	were	carried	out	in	
R	3.3.2	(R	Core	Team,	2017)	using	the	package	“downscale”	(Marsh	
et	al.,	2018).

2.3 | Preparing the atlas data—“Upgraining”

For	each	species,	we	first	aggregated	the	original	atlas	data	by	com-
bining	cells	in	2	×	2	arrays.	This	scale	is	hereafter	referred	to	as	the	
“base”	 scale	 and	 is	 the	 smallest	 grain	 size	 used	 for	modelling	 the	
OAR.	We	 then	aggregated	 these	data	a	 further	 two	 times	 to	pro-
vide	three	estimates	of	occupancy	in	order	to	generate	the	OAR	with	
which	 to	 fit	 the	downscaling	 functions.	The	process	of	coarsening	
the	grain	 size	we	 refer	 to	as	 “upgraining”	 in	order	 to	distinguish	 it	
from	alternative	processes	that	are	often	referred	to	as	“upscaling,”	
such	as	predicting	species	richness	from	a	subsampled	area	or	ex-
trapolating	a	predictive	bioclimatic	model	of	species	presence	across	
a	wider	area	(e.g.	Harte,	Smith,	&	Storch,	2009;	Marcer,	Pino,	Pons,	
&	Brotons,	2012).	The	exception	is	the	Hui	model,	the	only	spatially	
explicit	model,	which	takes	only	the	base	scale	data	as	input.

The	 boundaries	 of	 most	 atlases	 are	 irregular,	 and	 therefore	
aggregating	 cells	 to	 larger	 grain	 sizes	 also	 increases	 the	 apparent	
extent	of	the	atlas	 (Figure	1,	top	row).	As	the	downscaling	models	
fit	 the	proportion	of	 the	extent	occupied	against	 grain	 size	 this	 is	

undesirable.	Unlike	previous	studies,	we	therefore	standardised	the	
extent	of	all	modelling	grain	sizes	to	that	of	the	largest	grain	size.	To	
do	so,	however,	requires	extending	the	atlases	at	all	finer	grain	sizes	
to	 unsampled	 areas	 by	 creating	 new	 cells	 (Figure	 1,	 bottom	 row).	
As	we	assume	no	a priori	knowledge	of	these	unsampled	areas	we	
assign	these	cells	as	absences.	Alternatively,	we	could	include	only	
those	largest	grain	size	cells	that	are	completely	sampled	at	the	base	
scale.	However,	for	irregularly-shaped	or	subsampled	atlases	this	will	
require	discarding	a	portion	of	the	atlas.	We	must	therefore	compro-
mise	between	making	assumptions	about	the	status	of	the	species	
in	unsampled	areas	and	having	to	discard	information	by	excluding	
sampled	areas.

To	explore	 this	 compromise	we	 tested	 four	potential	 solutions	
proposed	by	Marsh	et	al.	 (2018)	and	available	 in	the	“downscale”	
package	(Figure	2).	The	solutions	are	reached	by	calculating	the	pro-
portion	of	each	cell	at	the	largest	grain	size	sampled	at	the	base	scale	
(Figure	1,	 bottom	 right).	We	 can	 then	 set	 a	 threshold	of	 sampling	
coverage	necessary	for	a	cell	to	be	retained.

For	 two	of	 the	methods	 the	 threshold	 is	 kept	 constant	 across	
species	and	datasets,	either	retaining	all	cells	(All-Sampled)	or	only	
those	 cells	 that	 are	 completely	 sampled	 at	 the	 largest	 grain	 size	
(Sampled	Only).	A	 third	option	 is	 the	minimum	 threshold	 required	
to	maintain	all	known	occurrences	and	so	will	vary	between	species	
(All-Occurrences).	The	final	option	is	the	extent	threshold	where	the	
number	of	sampled	atlas	cells	treated	as	not	containing	data	is	equal	
to	the	number	of	external	cells	treated	as	absences.	In	this	option,	
the	 standardised	 extent	 is	maintained	 to	 be	 equivalent	 to	 the	 ex-
tent	of	the	original	atlas	data	and	is	atlas-specific	(Gain-Equals-Loss).	
Figure	2	shows	the	extent-standardised	atlases	created	by	the	four	
methods	for	a	representative	species,	Acrocephalus scirpaceus,	from	
the	Irish	birds	dataset.

2.4 | Downscaling

We	compared	the	ability	of	each	of	the	ten	downscaling	models	to	
predict	occupancy	for	each	species	atlas	using	each	of	the	four	up-
graining	methods.	However,	due	to	the	processing	time	required	for	
the	 Thomas	model,	 it	was	 only	 run	 for	 the	All-Sampled	 threshold	
criteria.	Before	modelling	we	first	checked	that	during	the	upgrain-
ing	process	we	did	not	reach	the	scale	of	saturation,	the	grain	size	at	
which	all	cells	are	occupied,	or	the	scale	of	endemism,	the	grain	size	
at	which	only	a	single	cell	is	occupied	(Azaele	et	al.,	2012).	If	reached,	
we	discarded	all	occupancies	 for	grain	sizes	 larger	 than	 this	point.	
In	 cases	where	 this	 left	 fewer	 than	 three	 data	 points	 the	 species	
was	discarded	from	the	analysis.	Default	parameters	were	used	 in	
all	cases,	but	where	necessary	starting	parameters	were	adjusted	to	
improve	accuracy	after	visual	inspection	of	the	plots.	The	Hui	model	
does	not	require	upgrained	data	but	to	keep	continuity	with	the	al-
ternative	models	we	used	extent-standardised	maps	created	using	
the	four	upgraining	procedures.

Additionally,	 we	 compared	 two	 methods	 of	 averaging	 predic-
tions	 across	 multiple	 models.	 The	 first,	 hereafter	 “ensemble,”	 in-
volves	averaging	 log	predicted	AOO	across	all	nine	models	 (ten	 in	
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the	 case	of	 the	All-Sampled	upgraining	method	 for	which	we	also	
ran	 the	Thomas	model).	The	 second	method,	we	 term	 “simple	en-
semble,”	 involves	 averaging	 only	 across	 the	 five	 simplest	 models:	
power	law,	Nachman,	Poisson,	logistic	and	negative	binomial.	These	
models	were	selected	as	they	can	be	fitted	quickly	and	are	robust	to	
the	choice	of	input	parameters,	meaning	that	the	minimum	of	user	
engagement	is	required	when	processing	large	volumes	of	species.	
Verifying	 the	 performance	 of	 this	 simple	 ensemble	 would	 allow	
batch	analysis	of	downscaling	models	with	high	confidence	of	model	
fit.

2.5 | Analyses

In	all	cases,	the	fitted	models	were	used	to	calculate	the	AOO	(not	
the	proportion	of	occupancy	as	extents	varied	between	upgraining	
threshold	 criteria	 used)	 at	 the	grain	 size	of	 the	original	 atlas	data.	
The	accuracy	of	the	downscaled	predictions	for	each	threshold	cri-
terion	for	each	species	was	calculated	as	the	percentage	difference	
between	 the	 predicted	 and	 observed	 AOO	 p

pred
i − pobs

i

pobsi

× 100,	 where	
pobs
i

 and ppredi 	are	the	observed	and	predicted	AOO	for	species	i,	re-
spectively	(Barwell	et	al.,	2014).	The	shape	of	the	OAR	for	a	species	

is	dependent	upon	the	spatial	characteristics	of	the	species	including	
its	prevalence	across	the	landscape.	We	therefore	plotted	accuracy	
against	prevalence	determined	at	the	base	scale.

3  | RESULTS

3.1 | Upgraining methods

In	 our	 datasets,	 which	 are	 not	 atypical,	 using	 the	 most	 stringent	
threshold	for	upgraining	(Sampled-only)	resulted	in	too	few	data	for	
downscaling	for	580	species	maps,	because	the	occupancy	rapidly	
saturates	at	coarse	grains.	Additionally,	a	further	18	species	maps,	
plus	one	species	map	using	the	Gain-Equals-Loss	threshold,	reached	
the	scale	of	endemism	as	occurrences	at	the	edges	of	the	atlas	were	
removed.	These	species	are	particularly	rare	species	with	confined	
distributions.	The	Sampled-only	 in	particular,	and	the	Gain-Equals-
Loss	methods	 gave	markedly	 lower	 and	more	dispersed	estimates	
than	 the	 All-Occurrences	 and	 All-Sampled	 methods	 (Figure	 3).	 In	
contrast,	the	All-Occurrences	and	All-Sampled	methods	gave	com-
parable	results	and	for	many	of	the	models	gave	the	most	accurate	
downscaling	predictions.

F IGURE  1  	“Upgraining”	of	atlas	data	to	several	larger	grain	sizes	for	a	representative	species,	Acrocephalus scirpaceus,	from	the	Irish	
birds	dataset.	The	standard	method	of	aggregating	cells	in	2	×	2	arrays	(top	row)	results	in	an	increase	in	the	extent	of	around	a	third.	In	this	
study,	we	standardise	the	extent	across	all	grain	sizes	(bottom	row)	by	extending	the	cells	at	all	smaller	grain	sizes	to	the	extent	of	that	of	the	
largest.	Added	unsampled	cells	at	smaller	grain	sizes	are	assigned	as	absences.	The	map	in	the	bottom	right	is	the	proportion	of	the	area	of	
each	cell	at	the	largest	grain	size	that	is	sampled	by	cells	at	the	smallest.	These	values	can	be	used	as	thresholds	to	determine	if	these	cells	
are	discarded	or	retained;	we	explore	four	potential	solutions	to	this	trade-off	(Figure	2)
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3.2 | Downscaling models

Apart	 from	 the	Thomas	and	 finite	negative	binomial	models,	 each	
model	took	similar	amounts	of	time	to	process.	On	a	standard	desk-
top	computer	more	than	150	models	could	be	run	in	one	minute.	The	
finite	negative	binomial	model	was	slower	by	half,	but	the	Thomas	
model	took	at	least	two	orders	of	magnitude	longer	to	fit	but	varied	
greatly.	The	time	to	fit	the	Thomas	model	could	be	reduced	by	ini-
tiating	the	function	with	suitable	starting	parameters,	however,	it	is	
always	slower	than	other	models	and	prohibitively	so	for	hundreds	
of	models.

Model	performance	was	consistent	 irrespective	of	 the	 type	of	
organisms	and	 landscape	 (Figure	3,	Supporting	 Information	Figure	
S4).	For	example	the	Poisson	model,	that	assumes	spatial	indepen-
dence	 of	 the	 distribution,	 consistently	 underestimates	 occupancy,	
particularly	 for	 commoner	 species.	 However,	 the	 Hui	 and	 Power	
Law	models	tend	to	overestimate	the	occupancy	and	particularly	for	
those	species	with	higher	prevalences.

There	were	also	consistent	differences	in	within-model	variabil-
ity.	For	example,	the	power	law,	Hui,	and	Thomas	models	displayed	
highest	variability	in	accuracy,	based	on	the	span	of	the	50%	quar-
tile	 of	 all	 errors	 (Table	 2;	 Supporting	 Information	Figures	 S5–S8),	

whereas	 the	 negative	 binomial	 and	 finite	 negative	 binomial	were	
more	consistent.	Ensemble	models	seem	to	be	as	 robust	as	 these	
models,	but	their	means	are	closer	to	true	AOO.	The	simple	ensem-
ble	 approach	 did	 not	 display	 noticeably	more	 variability	 than	 the	
full	 ensemble	 approach	 despite	 using	 half	 the	 number	 of	models	
(Table	 2).	 Furthermore,	 both	 ensemble	models	 gave	 good	predic-
tions	across	a	wide	range	of	prevalences	and	 little	bias	at	 the	ex-
tremes	of	 rarity	and	commonness	 (Supporting	 Information	Figure	
S4),	suggesting	there	is	little	added	benefit	to	utilising	the	full	en-
semble	approach	at	the	expense	of	extra	processing	time	and	user	
oversight.

For	nearly	all	models,	occupancy	prediction	of	 the	commonest	
species	was	poorer,	but	this	is	to	be	expected	because	as	the	occu-
pancy	comes	close	to	saturation	it	contains	 less	 information	about	
the	underlying	species	distribution.	The	exceptions	were	the	power	
law	and	Hui	models,	which	greatly	overestimated	occupancy	at	lower	
prevalences.	Several	of	the	models	gave	unbiased	predictions	of	oc-
cupancy	across	a	wide	range	of	prevalence	up	to	50%	prevalence.	
Notable	 are	 the	 improved	negative	 binomial,	 generalised	 negative	
binomial	and	Thomas	models.	For	several	models,	the	predictions	for	
the	rarest	species	underestimated	occupancy	(see	Thomas,	Poisson	
and	Negative	 Binomial	models	 in	 Figure	 3).	 The	 responses	 of	 the	

F IGURE  2  	The	extent-standardised	atlas	data	for	a	representative	species,	Acrocephalus scirpaceus,	from	the	Irish	birds	dataset	
after	upgraining	the	atlas	data	a	further	two	scales.	We	explored	the	four	possible	methods	of	thresholding	the	extent	available	in	the	
“downscale”	package.	Grey	cells	are	absences,	red	cells	presences	and	white	cells	no	data.	Each	map	is	overlain	with	the	outline	of	the	
extent	of	the	original,	nonstandardised	atlas	data	at	the	base	scale
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Poisson,	power	law,	Hui,	and	Generalised	Negative	Binomial	models	
were	particularly	nonlinear	with	 respect	 to	 their	prediction	of	 the	
AOO	and	the	prevalence	of	the	species.

4  | DISCUSSION

4.1 | Suitable use cases

Downscaling	 is	 a	 useful	 technique	 to	 compare	 data	 collected	 at	
different	 resolutions,	 however,	 it	 is	 important	 to	 be	 aware	 of	 its	
limitations.	 As	 with	 all	 extrapolation	 techniques,	 there	 has	 to	 be	
confidence	 in	 the	 underlying	 assumptions	 upon	which	 the	 predic-
tions	rely	and	more	caution	 is	needed	the	further	you	extrapolate	
from	known	data.

Downscaling	is	more	accurate	for	rarer	species	and	for	this	rea-
son	is	suitable	for	use	in	conservation	assessments.	However,	if	the	
organism	is	so	rare	that	it	is	only	known	from	a	few	sites,	then	con-
servation	assessments	are	probably	better	conducted	based	directly	
upon	 the	 available	 data,	 rather	 than	 through	 extrapolation.	 Our	
results	 show	 a	 slight	 underestimation	 of	 occupancy	 at	 the	 lowest	
prelevancies	for	several	models	(Figure	3).	This	might	be	a	property	
of	the	spatial	distribution	of	rare	species,	but	it	may	also	reflect	an	

over-sampling	of	rare	species.	For	example,	if	observers	are	more	in-
terested	in	observing	and	recording	rare	species	than	common	ones	
or	 if	 rare	 species	are	more	 likely	 to	be	 false-positive	observations	
(Groom	&	Whild,	2017).	Biogeographic	atlas	data	are	rarely,	if	ever,	
a	completely	systematic	sample	and	often	contain	spatial	and	taxo-
nomic	sampling	biases	(Dennis	&	Thomas,	2000;	Rich	&	Woodruff,	
1992).

Reliable	downscaling	results	assume	spatially	even	and	saturated	
surveying	of	the	area	of	 interest	 in	the	atlas	data.	The	assumption	
is	therefore	that	aggregating	data	from	multiple	field	surveys	tends	
to	balance	out	unevenness	in	surveying	effort.	Poor	species	detect-
ability	might	influence	the	result,	but	if	surveying	effort	is	close	to	
saturation	this	problem	will	be	reduced.	Downscaling	from	a	resolu-
tion	where	surveying	is	particularly	incomplete	will	result	in	unreli-
able	predictions	that	are	sensitive	to	difference	in	surveying	effort	
and	detectability.	For	this	reason,	there	is	a	compromise	in	choosing	
the	grain	size	to	downscale	from.	A	large	grain	size	will	saturate	sur-
veying	effort	quickly,	but	will	require	greater	extrapolation	to	pre-
dict	occupancy	at	a	fine	resolution.	The	examples	we	have	chosen	
to	study	are	from	published	biogeographic	atlases.	All	these	atlases	
have	some	estimation	of	the	completeness	of	their	surveying	and	all	
are	considered	to	be	intensely	surveyed.

F IGURE  3  	A	comparison	of	occupancy	predictions	created	using	four	different	methods	of	upgraining.	Species	were	split	into	15	bands	
equally	distributed	in	log	space	based	upon	prevalence	(proportion	of	grid	cells	occupied)	at	the	“base”	scale.	Lines	are	the	running	means	
for	of	the	percentage	difference	between	log	observed	and	log	predicted	occupancy	of	all	atlases	combined.	The	coloured	polygons	are	the	
inner	50%	of	the	records	from	predictions	that	is	50%	of	the	records	fall	within	the	polygon,	50%	outside	it.	For	many	species	there	is	not	
sufficient	data	for	the	Sampled-Only	method	to	work,	therefore	the	Sampled-Only	data	does	not	include	data	from	as	many	species	as	the	
other	methods.	The	Thomas	model	was	only	run	on	the	All-Sampled	data
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Downscaling	is	particularly	suited	to	bulk	screening	of	data	be-
cause	 it	 can	 be	 largely	 automated.	Once	 a	 downscaling	workflow	
has	been	constructed,	it	can	be	run	repeatedly	on	the	same	sources	
and	 results	 compared	 at	 regular	 periods	 or	 as	 new	 data	 becomes	
available.	With	suitable	thresholds	for	AOO	and	occupancy	change	
this	could	be	used	as	a	bulk	monitoring	system.	Such	workflows	are	
needed	 to	 provide	 ongoing	 policy	 advise	 on	 biodiversity	 change,	
such	 as	 the	 initiatives	 to	 provide	 Essential	 Biodiversity	 Variables	
and	invasive	species	monitoring	(Kissling	et	al.,	2017;	Vanderhoeven	
et	al.,	2017).

4.2 | Choosing upgraining methods

Upgraining	is	necessary	to	create	a	series	of	occupancy	grids	at	dif-
ferent	resolutions	from	which	to	extrapolate	from.	However,	there	
is	a	trade-off	between	making	assumptions	about	absences	outside	
the	survey	extent	and	the	exclusion	of	areas	not	completely	covered	
by	the	coarsest-grained	grid.

In	 particular,	 the	 exclusion	 of	 so	 much	 data	 when	 using	 the	
Sampled-Only	 method	 is	 not	 conducive	 to	 a	 useful	 prediction	 in	
many	cases.	Not	only	were	a	significant	number	of	species	discarded	
as	models	could	not	be	fitted,	but	the	models	also	consistently	under-
predicted	occupancy	(Figure	3).	The	Gain-Equals-Loss	threshold	also	
undepredicted	 occupancy	 on	 average.	 Using	 the	 All-Occurrences	
and	All-Sampled	thresholds	produced	the	most	accurate	and	consis-
tent	estimates.	Indeed	for	the	power	law	model,	results	were	identi-
cal	using	the	two	thresholds.	As	the	power	law	does	not	saturate	at	

one,	having	additional	absences	just	shifts	the	intercept	up	or	down	
while	 the	 slope	 remains	 unaffected	which	 then	 gets	 standardised	
out.	As	the	other	models	have	a	saturation	point,	shifting	their	 in-
tercept	closer	to	that	point	will	also	affect	their	slope.	We	therefore	
recommend	either	the	All-Occurrences	and	All-Sampled	upgraining	
methods.	The	final	choice	may	be	dependent	upon	the	shape	of	the	
study	region,	where	the	larger	the	departure	from	a	rectangular	ex-
tent	means	that	the	All-Sampled	threshold	must	extrapolate	to	more	
unsampled	areas.

4.3 | Choosing suitable models

Three	properties	are	desirable	for	a	robust	model:	on	average	the	
model	should	 recover	accurate	estimates	of	 fine-grain	AOO	(the	
best	fit	 lines);	there	should	be	minimum	variability	between	spe-
cies	and	atlases	(the	error	around	the	best	fit	lines);	and	estimates	
should	be	unbiased	with	 respect	 to	prevalence	 (the	slope	of	 the	
lines).

The	Nachman,	improved	negative	binomial,	generalised	negative	
binomial	 and	 Thomas	models	 produced	 the	most	 accurate	 results	
(Table	2).	The	Thomas	model,	however,	is	too	computationally	inten-
sive	and	requires	oversight	which	prevents	it	being	useful	for	batch	
processing.	The	Poisson,	negative	binomial	and	finite	negative	bino-
mial	models	generally	undepredicted	AOO,	whereas	the	power	law	
and	Hui	models	overpredicted.

The	 Poison,	 power	 law,	 Nachman,	 generalised	 negative	 bino-
mial,	Hui	and	Thomas	models	all	showed	high	variability	in	accuracy	
across	species,	suggesting	that	even	if	mean	accuracy	is	high	there	
is	 high	 likelihood	 of	 an	 inaccurate	 estimate	 for	 any	 given	 species.	
The	negative	binomial	and	finite	negative	binomial	models	had	the	
lowest	variability.

These	 results	 are	 largely	 consistent	with	previous	model	 com-
parisons	(Azaele	et	al.,	2012;	Barwell	et	al.,	2014;	Hui	&	McGeoch,	
2007).	There	are	some	differences,	such	as	the	performance	of	the	
Hui	model	with	a	dataset	of	British	Odonata	 (Barwell	et	al.,	2014),	
however,	in	this	case,	the	magnitude	of	downscaling	is	considerably	
larger	than	our	comparison.	Before	following	our	recommendations	
for	downscaling,	users	 should	consider	whether	 the	 scale	and	de-
gree	of	extrapolation	are	comparable	to	their	use	case.

Nonlinearity	 in	 response	 to	 prevalence	was	 a	 particular	 prob-
lem	for	the	logistic,	power	law,	Poisson,	and	Hui	models.	This	could	
also	be	a	problem	when	comparing	species	at	different	time	 inter-
vals.	Under	such	circumstances,	the	decline	or	spread	of	a	species	
could	be	missed	if	such	changes	in	species	occupancy	are	masked	by	
systematic	errors	caused	by	 the	model's	 response	 to	species	prel-
evance.	 For	 example,	 as	 species	prevalence	 increased,	 the	 logistic	
model	 tended	 to	underpredict	AOO	more	while	Hui	 tend	 to	over-
predict.	So	if	a	species’	true	AOO	increased	between	two	time	steps,	
we	might	not	identify	this	change	using	the	logistic	model,	while	we	
might	conclude	that	it	increased	its	AOO	much	more	than	its	actually	
did	if	using	the	Hui	model.

We	 suggest	 that	 unless	 there	 is	 an	 a	 priori	 reason	 for	 select-
ing	 a	 specific	model,	 then	 an	 ensemble	modelling	 approach	 is	most	

TABLE  2 A	statistical	summary	of	the	results,	showing	the	
mean,	median	and	50%	quartile	of	all	the	errors	in	predicted	
occupancy,	bases	upon	the	all	taxa	in	all	atlases	and	the	“All-
Sampled”	upgraining	process.	The	mean	and	median	are	provided	
for	readers	to	evaluate	the	skewness	of	error	distributions	and	the	
span	of	the	50%	quartile	indicates	the	variability

Model Mean Median 25% 75% Span

Logistic −9.5 −11.2 −19.6 −1.2 18.4

Poisson −42.4 −44.3 −54.8 −32.0 22.8

Power	Law 27.2 25.4 8.8 43.8 34.9

Nachman 6.0 5.5 −5.5 16.6 22.1

Negative	binomial −20.4 −20.5 −28.3 −12.3 16.0

Improved 
negative	
binomial

0.7 1.0 −8.9 10.3 19.2

Finite	negative	
binomial

−19.8 −19.9 −27.7 −11.7 16.0

Generalised	
negative	
binomial

−0.6 −0.3 −11.2 10.2 21.4

Hui 22.5 22.1 10.7 33.5 22.9

Thomas −3.7 −6.2 −17.2 6.9 24.1

Ensemble 4.0 −3.5 −13.3 4.8 18.1

Simple	ensemble −7.8 −7.5 −17.9 1.9 19.8
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appropriate	as	it	averages	out	much	of	the	inter-	and	intramodel	vari-
ation.	 Furthermore,	 using	 the	 simple	 ensemble	method	 results	 in	 no	
major	loss	in	performance	compared	to	the	more	computationally	in-
tensive	 full	 ensemble	method.	 Furthermore,	 it	 utilises	 only	 the	most	
robust	models	 that	 should	 achieve	 optimisation	without	 any	 further	
user	oversight,	and	so	is	ideal	for	bulk	processing.	The	IUCN	Standards	
and	Petitions	Subcommittee	(2017)	recommended	method	of	using	a	
power	law	relationship	in	particular	is	poor	choice	due	to	its	overpredic-
tion	of	occupancy	for	all	species,	bar	the	extremes,	and	extreme	nonlin-
earity	in	the	response	with	prevalence,	and	we	recommend	this	method	
is	avoided.	Use	of	this	method	may	lead	to	over	optimistic	conservation	
assessments	due	to	overestimation	of	occupancy.	However,	 if	down-
scaling	were	used	in	the	assessment	of	change,	it	could	overestimate	
both	the	rate	of	decline	of	a	declining	species	and	the	rate	of	recovery	
of	an	increasing	species.	Despite	the	diverse	landscapes	and	taxonomic	
groups,	we	used	as	test	cases	the	choice	of	best	model	is	the	same.

4.4 | Occupancy downscaling for conservation 
assessments

Occupancy	downscaling	 is	a	potentially	powerful	method	 for	con-
servation	 assessments	 and	 to	 compare	 biogeographic	 atlases	 be-
tween	regions	and	time	periods.	The	method	is	simple,	uses	widely	
collected	data	that	are	becoming	increasingly	freely-available	in	on-
line	databases	and	makes	few	assumptions	about	the	way	the	data	
are	collected.

However,	 in	 this	 study,	we	are	only	extrapolating	one	grain	 size	
down	 and	 there	 is	 some	variability	 even	 in	 the	 predictions	 through	
the	ensemble	approach.	It	 is	 likely	that	for	assessments	at	the	IUCN	
recommended	scale	of	4	km2	extrapolation	across	greater	scales	than	
we	were	able	to	test	is	possible.	However,	we	would	expect	the	rel-
ative	performances	of	the	models	to	remain	consistent,	even	though	
the	error	will	increase	with	further	extrapolation.	For	this	reason,	ad-
ditional	work	 is	 being	 conducted	 to	 test	 these	models	 across	more	
scales,	but	with	simulated	species.	It	will	be	important	for	any	assess-
ments	made	using	this	approach	to	include	an	estimate	of	the	uncer-
tainty	around	the	prediction.	One	such	solution	might	be	to	present	
the	range	of	individual	model	values	as	an	estimate	of	error.

To	 conclude,	with	 the	 right	 choice	 of	models,	we	 have	 shown	
that	AOO	can	be	 rapidly	and	automatically	estimated	 from	widely	
available	biodiversity	data	and	for	a	wide	range	of	species	and	land-
scapes.	This	technique	promises	to	speed	the	process	of	red-listing	
species,	but	can	also	be	used	in	repeatable	and	reliable	production	of	
biodiversity	change	indicators.
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