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Abstract
1.	 The area of occupancy (AOO) is a widely used index in conservation assessments, 
notably in criteria B2 of the International Union for Conservation of Nature (IUCN) 
red-list. However, IUCN guidelines require assessing AOO at finer resolution than 
is generally available. For this reason, extrapolation techniques have been pro-
posed to predict finer AOO from coarser resolution data.

2.	 Here, we apply 10 published downscaling models to the distributions of a large 
number of plant and bird species’ in contrasting landscapes. We further compare 
the output of two ensemble models, one relying on all 10 downscaling models and 
one a subset of five models that can be fit rapidly and robustly, with minimal over-
sight required. We further compare the accuracy of downscaled predictions with 
respect to species prevalence.

3.	 Across all landscapes and taxa, the models predicted AOO consistently. Some, 
such as the power law and Hui models, were nonlinear with respect to species 
prevalence. Some models consistently over or under predicted, such as the 
Nachman and Poisson models. Furthermore, some models proved to give more 
variable predictions than other models, e.g. Nachman and power law. For these 
reasons, none of these models are suitable for downscaling if used individually. 
The Thomas model was also rejected, because it is too computationally intensive, 
even though its predictions are relatively unbiased. The most effective model, 
when used by itself, was the improved binomial model. However, the two ensem-
ble models were able to provide accurate predictions of AOO with low variability 
compared to using any one single model. There was no significant loss in perfor-
mance using the simpler ensemble model, and therefore this solution is the least 
computationally intensive and requires least user oversight.

4.	 Our results show that downscaling models could be potential tools to reliably es-
timate AOO for conservation assessments. Under circumstances where there is 
no a priori reason to prefer one model over another then an ensemble of these 
models may be the best solution for batch analysis of IUCN status under criteria 
B2. Moreover, we foresee the use of downscaling for the production of other bio-
diversity indicators, such as for invasive species monitoring.
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1  | INTRODUC TION

Knowing the distribution and abundance of organisms at high res-
olutions is critical for many conservation applications. For example, 
the area of occupancy (AOO) of a species is an easily calculated 
measure of a species’ rarity and range that is correlated with abun-
dance (Gaston, 1994; Gaston & Lawton, 1990), which is much more 
difficult to estimate. Consequently, it is a criteria recommended by 
the International Union for Conservation of Nature and Natural 
Resources (IUCN) for assessing red list extinction risks under criteria 
B2 (IUCN, 2012). Gaston and Fuller (2009) found that AOO was used 
in the red listing of between 37% and 97% of species, depending on 
the taxonomic group.

To calculate AOO, we simply require information on a species’ 
occurrences across its range which can then be can be summarised 
as the number of occupied grid cells of a given area (Gaston, 1991, 
1994). Rather than requiring targeted studies, it is therefore possible 
to measure AOO using aggregated data from a wide range of data 
sources collected over extended time-spans, such as freely available 
biodiversity data (e.g. GBIF), allowing its calculation to be easily au-
tomated (Bachman, Moat, Hill, de la Torre, & Scott, 2011).

Another reason for the popularity of AOO is that organisms are 
often overlooked when they are small, cryptic, hidden or difficult to 
identify. Such organisms require more effort to survey at fine res-
olutions. Biogeographic atlases are often constructed from ad hoc 
surveys that inevitably lead to spatial unevenness in surveying ef-
fort. Therefore, observations are often aggregated, to reduce this 
geographic bias. So although it might be preferable to study actual 
populations of organisms for conservation, for a large number spe-
cies, AOO is a practical measure of their status, rather than the num-
ber of observations or their population size.

The grain size at which the records are summarised is nontrivial 
as we must be certain of the status of the species across all cells. 
The finer the grain size the closer the correlation between AOO and 
true abundance (Kunin, 1998) but the greater the sampling coverage 
required. Aggregating data at coarse grain sizes reduces false-ab-
sences but at the expense of becoming less useful for conservation 
planning and assessments. Coarse-grain data, commonly referred to 
as atlas data, can be quickly and cheaply generated, and as the quan-
tity of freely available biological record data is markedly increasing, 
there has been a surge in their publication (Powney & Isaac, 2015). 
Consequently, atlases are some of the most accessible species dis-
tribution data.

As no standardised method exists for selecting the most ap-
propriate grain size, atlas data are generated at a wide variety of 
grain sizes, and grid squares of 25, 100 or 2,500 km2 are typical for 
even well studied taxa in European countries. However, conserva-
tion assessments typically require AOO to be measured at finer, 

standardised grain sizes. For example, IUCN guidelines suggest 
that assessments should be carried out at 4 km2 resolution (IUCN 
Standards and Petitions Subcommittee, 2017). They also recom-
mend not to use grain sizes larger than 10 km2, above which a single 
grid cell occupancy would be larger than the critically endangered 
threshold for AOO. However, for the vast majority of species we 
have insufficient knowledge across the entirety of their ranges to 
create maps at such fine grain sizes.

There is therefore a challenge to compare AOO collected at dif-
fering grain sizes and for estimating AOO at finer grain size than the 
available data. A solution is to employ the occupancy-area relation-
ship (OAR, Kunin, 1998); species occupancy is scale-dependent so 
that AOO increases as grain size is increased. Travelling along the 
OAR slope allows us to traverse grain sizes. For predicting AOO at 
the fine grain sizes necessary, we can model the OAR at coarse res-
olutions for which data are available and then extrapolate the rela-
tionship to predict AOO at finer resolutions (Kunin, 1998), termed 
“occupancy downscaling.” These curves are a fundamental property 
of spatial data, but their shape will be influenced by the degree of 
aggregation of the organism at those resolutions and by species 
prevalence at the atlas scale.

At least ten different models have been proposed for extrapo-
lating the OAR. They cover a broad theoretical spectrum and levels 
of complexity (see Azaele, Cornell, & Kunin, 2012; Barwell, Azaele, 
Kunin, & Isaac, 2014) (Supporting Information Table S3). The simplest 
model proposed is the Poisson model which assumes that individuals 
are distributed independently according to a binomial distribution 
(Wright, 1991). Three models are variations assuming fractal distri-
bution patterns, the power law (Kunin, 1998), Nachman (Nachman, 
1981) and logistic (Hanski & Gyllenberg, 1997) models. Four mod-
els are based on the negative binomial distribution and incorporate 
a measure of over-dispersion: the negative binomial (He & Gaston, 
2000), generalised negative binomial (He, Gaston, & Wu, 2002), im-
proved negative binomial (He & Gaston, 2003) and finite negative 
binomial (Zillio & He, 2010). The Thomas model incorporates spatial 
point processes in order to more flexibly account for species aggre-
gations (Azaele et al., 2012). The only spatially-explicit model is the 
Hui model, which differs from the others in that it only requires data 
at a single grain size (Hui, 2009; Hui, McGeoch, & Warren, 2006; 
Hui et al., 2009). It is based on the conditional probability that a ran-
domly chosen adjacent cell is occupied when the cell in question is 
also occupied. This has the advantage of giving some information 
on the likelihood of adjacent calls being occupied in the finer grid. 
A related model, which we do not consider here, accounts for the 
percolation effect on occupancy at coarse grains, this is the so-called 
“droopy-tail” model (Hui & McGeoch, 2007).

Azaele et al. (2012) compared all models, except the Hui model, 
for 16 rare and scarce higher plant species in Britain and concluded 
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that the Thomas model produced the most accurate predictions. 
However, Barwell et al. (2014) compared the same models, with the 
addition of the Hui model, using 38 species of British dragonflies 
(Odonata) and concluded that the Hui Model gave the best predic-
tions. Among the other models, the Nachman and Power Law mod-
els also performed well, but in contrast to Azaele et al. (2012) the 
Thomas model was among the worst performing. In another com-
parison of models on different datasets with contrasting extents, the 
improved negative binomial model was one of the best performing 
(Hui & McGeoch, 2007).

However, testing the models poses a real challenge for model 
validation as we must know true occupancy at the prediction 
scale, which for most species is unknown at fine grains size over 
wide extent. In fact, current tests of downscaling models have 
been conducted on only a handful of species, for which high qual-
ity data in at least part of their distribution range was available 
(Azaele et al., 2012; Barwell et al., 2014). Thus, prior to adopting 
downscaling models for conservation assessment we need to test 
their performance on a broader range of species and landscapes, 
particularly, comparing taxa with differing degrees of aggregation; 
landscapes with different spatial features and data collected at 
different grain sizes. This is especially true as there are no clear 
guidelines as to which methods are the most reliable and under 
which circumstances. The IUCN documentation suggests using a 
power model, extrapolated between the atlas and 4 km2 resolu-
tion, however, there is no objective assessment of whether this is 
the most appropriate model (IUCN, 2012). To recommend a suit-
able approach to downscaling some pertinent questions need to 
be resolved, such as whether certain models or combination of 
models are more suitable for particular taxa, whether the models 
form a consistent order in terms of the predicted AOO (e.g. from 
the highest predicted AOO to the lowest predicted AOO), and 
how does the prevalence of the species at the atlas scale influence 
downscaling.

In this paper, we present the results of downscaling 2,724 dis-
tribution maps from 1,325 species of plants and birds in a wide va-
riety of landscapes in north-western Europe. We test the ability of 
the 10 downscaling models to estimate known AOO at a finer grain 
size, and examine if model performance is predictable with regards 
species prevalence. We also compare the performance of individual 
models to an ensemble approach and make recommendations as to 
the most suitable for predicting occupancy in situations where the 
most appropriate model is unknown.

2  | MATERIAL S AND METHODS

2.1 | Study area

Although previous studies have examined just a handful of spe-
cies from single datasets, in this study we have collated data from 
six European atlases covering two taxonomic groups, vascular 
plants and birds, at three spatial scales from regional to country 
level, totalling 2,724 individual maps from 1,325 species (Table 1). 
Vascular plant and bird atlas data were selected due to their high 
availability and the contrasting spatial distributions of the two taxa. 
The selected atlases cover a wide degree of landscape variability, 
from densely- (Flanders) to sparsely- (Assynt) populated, and from 
lowland (Fermanagh, Flanders, and Shropshire) to mountainous 
(Cumbria and Assynt) regions.

Bird data were downloaded from the Global Biodiversity 
Information Facility (National Biodiversity Data Centre, 2011; 
Vermeersch et al., 2014). Vascular plant data were downloaded from 
the database of the Botanical Society of Britain and Ireland database 
(Evans, Evans, & Rothero, 2002; Forbes & Northridge, 2012; Halliday, 
1997; Lockton & Whild, 2015). We used the Irish Grid (EPSG:29903) 
for Ireland; the Ordnance Survey Grid (EPSG:27700) for England 
and Scotland and the Belgian Lambert 72 system (EPSG:31370) for 

TABLE  1 A summary of the atlas datasets used to test the predictions of downscaling models. The time period is the period over which 
observations were collected and contributed to the aggregated atlas data

Organisms Geographic extent Time period Number of species Area (km2)
Grain size 
(km2)

Modelling grain 
sizes (km2) Source

Breeding birds Flanders, Belgium 2000–2002 156 13,522 25 100; 400; 1,600 Vermeersch 
et al. (2014)

Breeding birds Ireland, Eire, and 
Northern Ireland

1988–1991 138 84,421 100 400; 1,600; 6,400 National 
Biodiversity 
Data Centre 
(2011)

Vascular plants Shropshire, England 1985–2014 819 3,465 4 16; 64; 256 Lockton and 
Whild (2015)

Vascular plants Cumbria, England 1974–1996 969 6,845 4 16; 64; 256 Halliday (1997)

Vascular plants Fermanagh, Northern 
Ireland

1975–2010 278 1,851 4 16; 64; 256 Forbes and 
Northridge 
(2012)

Vascular plants Assynt, Scotland 1988–1999 364 728 4 16; 64; 256 Evans et al. 
(2002)
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Belgium. All manipulations of grid reference and geographic projec-
tion were conducted in PostGIS (version 2.1) in PostgreSQL (version 
9.4.2). For all records in these datasets, the grain size of all coor-
dinates was reduced to the resolutions stated in Table 1. All grid 
cells are assumed to be equal area, which over the distances used 
in this study is a reasonable assumption. However, continental or 
global studies would need to use other grid systems or apply correc-
tions. To eliminate the large number of casual and vagrant species, 
all species with fewer than 10 occurrences were excluded from anal-
ysis. Subspecific taxa in each dataset were simplified to species and 
duplicates removed. Also, aggregate taxa in the genera Euphrasia, 
Taraxacum, Hieracium and Rubus were simplified into the aggregate 
groups Euphrasia officinalis agg., Taraxacum officinale agg., Hieracium 
agg., and Rubus fruticosus agg.

2.2 | Modelling

We tested the ability of ten downscaling models to estimate AOO at 
finer grain sizes than the input data. Each atlas was first coarsened 
to three larger grain sizes to generate the OAR to which to fit the 
models. We investigated several methods of coarsening the atlas 
data that maintain constant extents across all grain sizes, hereafter 
referred to as “upgraining” (Marsh, Barwell, Gavish, & Kunin, 2018). 
The ten downscaling models were applied to the coarse-grain size 
atlas data and extrapolated to predict occupancy at the grain size 
of the original atlas data (which was not employed during model-
ling), the observed occupancy. As we investigated several methods 
of upgraining which alter the extents of the atlases, we compared 
the observed and predicted areas occupied, calculated as the num-
ber of occupied cells multiplied by cell area, rather than proportional 
occupancy within the altered extent. All analyses were carried out in 
R 3.3.2 (R Core Team, 2017) using the package “downscale” (Marsh 
et al., 2018).

2.3 | Preparing the atlas data—“Upgraining”

For each species, we first aggregated the original atlas data by com-
bining cells in 2 × 2 arrays. This scale is hereafter referred to as the 
“base” scale and is the smallest grain size used for modelling the 
OAR. We then aggregated these data a further two times to pro-
vide three estimates of occupancy in order to generate the OAR with 
which to fit the downscaling functions. The process of coarsening 
the grain size we refer to as “upgraining” in order to distinguish it 
from alternative processes that are often referred to as “upscaling,” 
such as predicting species richness from a subsampled area or ex-
trapolating a predictive bioclimatic model of species presence across 
a wider area (e.g. Harte, Smith, & Storch, 2009; Marcer, Pino, Pons, 
& Brotons, 2012). The exception is the Hui model, the only spatially 
explicit model, which takes only the base scale data as input.

The boundaries of most atlases are irregular, and therefore 
aggregating cells to larger grain sizes also increases the apparent 
extent of the atlas (Figure 1, top row). As the downscaling models 
fit the proportion of the extent occupied against grain size this is 

undesirable. Unlike previous studies, we therefore standardised the 
extent of all modelling grain sizes to that of the largest grain size. To 
do so, however, requires extending the atlases at all finer grain sizes 
to unsampled areas by creating new cells (Figure 1, bottom row). 
As we assume no a priori knowledge of these unsampled areas we 
assign these cells as absences. Alternatively, we could include only 
those largest grain size cells that are completely sampled at the base 
scale. However, for irregularly-shaped or subsampled atlases this will 
require discarding a portion of the atlas. We must therefore compro-
mise between making assumptions about the status of the species 
in unsampled areas and having to discard information by excluding 
sampled areas.

To explore this compromise we tested four potential solutions 
proposed by Marsh et al. (2018) and available in the “downscale” 
package (Figure 2). The solutions are reached by calculating the pro-
portion of each cell at the largest grain size sampled at the base scale 
(Figure 1, bottom right). We can then set a threshold of sampling 
coverage necessary for a cell to be retained.

For two of the methods the threshold is kept constant across 
species and datasets, either retaining all cells (All-Sampled) or only 
those cells that are completely sampled at the largest grain size 
(Sampled Only). A third option is the minimum threshold required 
to maintain all known occurrences and so will vary between species 
(All-Occurrences). The final option is the extent threshold where the 
number of sampled atlas cells treated as not containing data is equal 
to the number of external cells treated as absences. In this option, 
the standardised extent is maintained to be equivalent to the ex-
tent of the original atlas data and is atlas-specific (Gain-Equals-Loss). 
Figure 2 shows the extent-standardised atlases created by the four 
methods for a representative species, Acrocephalus scirpaceus, from 
the Irish birds dataset.

2.4 | Downscaling

We compared the ability of each of the ten downscaling models to 
predict occupancy for each species atlas using each of the four up-
graining methods. However, due to the processing time required for 
the Thomas model, it was only run for the All-Sampled threshold 
criteria. Before modelling we first checked that during the upgrain-
ing process we did not reach the scale of saturation, the grain size at 
which all cells are occupied, or the scale of endemism, the grain size 
at which only a single cell is occupied (Azaele et al., 2012). If reached, 
we discarded all occupancies for grain sizes larger than this point. 
In cases where this left fewer than three data points the species 
was discarded from the analysis. Default parameters were used in 
all cases, but where necessary starting parameters were adjusted to 
improve accuracy after visual inspection of the plots. The Hui model 
does not require upgrained data but to keep continuity with the al-
ternative models we used extent-standardised maps created using 
the four upgraining procedures.

Additionally, we compared two methods of averaging predic-
tions across multiple models. The first, hereafter “ensemble,” in-
volves averaging log predicted AOO across all nine models (ten in 
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the case of the All-Sampled upgraining method for which we also 
ran the Thomas model). The second method, we term “simple en-
semble,” involves averaging only across the five simplest models: 
power law, Nachman, Poisson, logistic and negative binomial. These 
models were selected as they can be fitted quickly and are robust to 
the choice of input parameters, meaning that the minimum of user 
engagement is required when processing large volumes of species. 
Verifying the performance of this simple ensemble would allow 
batch analysis of downscaling models with high confidence of model 
fit.

2.5 | Analyses

In all cases, the fitted models were used to calculate the AOO (not 
the proportion of occupancy as extents varied between upgraining 
threshold criteria used) at the grain size of the original atlas data. 
The accuracy of the downscaled predictions for each threshold cri-
terion for each species was calculated as the percentage difference 
between the predicted and observed AOO p

pred
i − pobs

i

pobsi

× 100, where 
pobs
i

 and ppredi  are the observed and predicted AOO for species i, re-
spectively (Barwell et al., 2014). The shape of the OAR for a species 

is dependent upon the spatial characteristics of the species including 
its prevalence across the landscape. We therefore plotted accuracy 
against prevalence determined at the base scale.

3  | RESULTS

3.1 | Upgraining methods

In our datasets, which are not atypical, using the most stringent 
threshold for upgraining (Sampled-only) resulted in too few data for 
downscaling for 580 species maps, because the occupancy rapidly 
saturates at coarse grains. Additionally, a further 18 species maps, 
plus one species map using the Gain-Equals-Loss threshold, reached 
the scale of endemism as occurrences at the edges of the atlas were 
removed. These species are particularly rare species with confined 
distributions. The Sampled-only in particular, and the Gain-Equals-
Loss methods gave markedly lower and more dispersed estimates 
than the All-Occurrences and All-Sampled methods (Figure 3). In 
contrast, the All-Occurrences and All-Sampled methods gave com-
parable results and for many of the models gave the most accurate 
downscaling predictions.

F IGURE  1   “Upgraining” of atlas data to several larger grain sizes for a representative species, Acrocephalus scirpaceus, from the Irish 
birds dataset. The standard method of aggregating cells in 2 × 2 arrays (top row) results in an increase in the extent of around a third. In this 
study, we standardise the extent across all grain sizes (bottom row) by extending the cells at all smaller grain sizes to the extent of that of the 
largest. Added unsampled cells at smaller grain sizes are assigned as absences. The map in the bottom right is the proportion of the area of 
each cell at the largest grain size that is sampled by cells at the smallest. These values can be used as thresholds to determine if these cells 
are discarded or retained; we explore four potential solutions to this trade-off (Figure 2)

0 1Prop. of cell sampled

Absence

Presence

Absence

2400 km 21,600 km 26,400 km
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3.2 | Downscaling models

Apart from the Thomas and finite negative binomial models, each 
model took similar amounts of time to process. On a standard desk-
top computer more than 150 models could be run in one minute. The 
finite negative binomial model was slower by half, but the Thomas 
model took at least two orders of magnitude longer to fit but varied 
greatly. The time to fit the Thomas model could be reduced by ini-
tiating the function with suitable starting parameters, however, it is 
always slower than other models and prohibitively so for hundreds 
of models.

Model performance was consistent irrespective of the type of 
organisms and landscape (Figure 3, Supporting Information Figure 
S4). For example the Poisson model, that assumes spatial indepen-
dence of the distribution, consistently underestimates occupancy, 
particularly for commoner species. However, the Hui and Power 
Law models tend to overestimate the occupancy and particularly for 
those species with higher prevalences.

There were also consistent differences in within-model variabil-
ity. For example, the power law, Hui, and Thomas models displayed 
highest variability in accuracy, based on the span of the 50% quar-
tile of all errors (Table 2; Supporting Information Figures S5–S8), 

whereas the negative binomial and finite negative binomial were 
more consistent. Ensemble models seem to be as robust as these 
models, but their means are closer to true AOO. The simple ensem-
ble approach did not display noticeably more variability than the 
full ensemble approach despite using half the number of models 
(Table 2). Furthermore, both ensemble models gave good predic-
tions across a wide range of prevalences and little bias at the ex-
tremes of rarity and commonness (Supporting Information Figure 
S4), suggesting there is little added benefit to utilising the full en-
semble approach at the expense of extra processing time and user 
oversight.

For nearly all models, occupancy prediction of the commonest 
species was poorer, but this is to be expected because as the occu-
pancy comes close to saturation it contains less information about 
the underlying species distribution. The exceptions were the power 
law and Hui models, which greatly overestimated occupancy at lower 
prevalences. Several of the models gave unbiased predictions of oc-
cupancy across a wide range of prevalence up to 50% prevalence. 
Notable are the improved negative binomial, generalised negative 
binomial and Thomas models. For several models, the predictions for 
the rarest species underestimated occupancy (see Thomas, Poisson 
and Negative Binomial models in Figure 3). The responses of the 

F IGURE  2   The extent-standardised atlas data for a representative species, Acrocephalus scirpaceus, from the Irish birds dataset 
after upgraining the atlas data a further two scales. We explored the four possible methods of thresholding the extent available in the 
“downscale” package. Grey cells are absences, red cells presences and white cells no data. Each map is overlain with the outline of the 
extent of the original, nonstandardised atlas data at the base scale

Method All sampled All occurrences Gain equals loss Sampled only

Threshold 0 Species-specific Atlas-specific 1

Description Retain all cells The minimum 
threshold where all 

occurrences are 
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The number of 
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discarded equals 
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extent of the 
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data
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Example 
output
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Poisson, power law, Hui, and Generalised Negative Binomial models 
were particularly nonlinear with respect to their prediction of the 
AOO and the prevalence of the species.

4  | DISCUSSION

4.1 | Suitable use cases

Downscaling is a useful technique to compare data collected at 
different resolutions, however, it is important to be aware of its 
limitations. As with all extrapolation techniques, there has to be 
confidence in the underlying assumptions upon which the predic-
tions rely and more caution is needed the further you extrapolate 
from known data.

Downscaling is more accurate for rarer species and for this rea-
son is suitable for use in conservation assessments. However, if the 
organism is so rare that it is only known from a few sites, then con-
servation assessments are probably better conducted based directly 
upon the available data, rather than through extrapolation. Our 
results show a slight underestimation of occupancy at the lowest 
prelevancies for several models (Figure 3). This might be a property 
of the spatial distribution of rare species, but it may also reflect an 

over-sampling of rare species. For example, if observers are more in-
terested in observing and recording rare species than common ones 
or if rare species are more likely to be false-positive observations 
(Groom & Whild, 2017). Biogeographic atlas data are rarely, if ever, 
a completely systematic sample and often contain spatial and taxo-
nomic sampling biases (Dennis & Thomas, 2000; Rich & Woodruff, 
1992).

Reliable downscaling results assume spatially even and saturated 
surveying of the area of interest in the atlas data. The assumption 
is therefore that aggregating data from multiple field surveys tends 
to balance out unevenness in surveying effort. Poor species detect-
ability might influence the result, but if surveying effort is close to 
saturation this problem will be reduced. Downscaling from a resolu-
tion where surveying is particularly incomplete will result in unreli-
able predictions that are sensitive to difference in surveying effort 
and detectability. For this reason, there is a compromise in choosing 
the grain size to downscale from. A large grain size will saturate sur-
veying effort quickly, but will require greater extrapolation to pre-
dict occupancy at a fine resolution. The examples we have chosen 
to study are from published biogeographic atlases. All these atlases 
have some estimation of the completeness of their surveying and all 
are considered to be intensely surveyed.

F IGURE  3   A comparison of occupancy predictions created using four different methods of upgraining. Species were split into 15 bands 
equally distributed in log space based upon prevalence (proportion of grid cells occupied) at the “base” scale. Lines are the running means 
for of the percentage difference between log observed and log predicted occupancy of all atlases combined. The coloured polygons are the 
inner 50% of the records from predictions that is 50% of the records fall within the polygon, 50% outside it. For many species there is not 
sufficient data for the Sampled-Only method to work, therefore the Sampled-Only data does not include data from as many species as the 
other methods. The Thomas model was only run on the All-Sampled data
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Downscaling is particularly suited to bulk screening of data be-
cause it can be largely automated. Once a downscaling workflow 
has been constructed, it can be run repeatedly on the same sources 
and results compared at regular periods or as new data becomes 
available. With suitable thresholds for AOO and occupancy change 
this could be used as a bulk monitoring system. Such workflows are 
needed to provide ongoing policy advise on biodiversity change, 
such as the initiatives to provide Essential Biodiversity Variables 
and invasive species monitoring (Kissling et al., 2017; Vanderhoeven 
et al., 2017).

4.2 | Choosing upgraining methods

Upgraining is necessary to create a series of occupancy grids at dif-
ferent resolutions from which to extrapolate from. However, there 
is a trade-off between making assumptions about absences outside 
the survey extent and the exclusion of areas not completely covered 
by the coarsest-grained grid.

In particular, the exclusion of so much data when using the 
Sampled-Only method is not conducive to a useful prediction in 
many cases. Not only were a significant number of species discarded 
as models could not be fitted, but the models also consistently under-
predicted occupancy (Figure 3). The Gain-Equals-Loss threshold also 
undepredicted occupancy on average. Using the All-Occurrences 
and All-Sampled thresholds produced the most accurate and consis-
tent estimates. Indeed for the power law model, results were identi-
cal using the two thresholds. As the power law does not saturate at 

one, having additional absences just shifts the intercept up or down 
while the slope remains unaffected which then gets standardised 
out. As the other models have a saturation point, shifting their in-
tercept closer to that point will also affect their slope. We therefore 
recommend either the All-Occurrences and All-Sampled upgraining 
methods. The final choice may be dependent upon the shape of the 
study region, where the larger the departure from a rectangular ex-
tent means that the All-Sampled threshold must extrapolate to more 
unsampled areas.

4.3 | Choosing suitable models

Three properties are desirable for a robust model: on average the 
model should recover accurate estimates of fine-grain AOO (the 
best fit lines); there should be minimum variability between spe-
cies and atlases (the error around the best fit lines); and estimates 
should be unbiased with respect to prevalence (the slope of the 
lines).

The Nachman, improved negative binomial, generalised negative 
binomial and Thomas models produced the most accurate results 
(Table 2). The Thomas model, however, is too computationally inten-
sive and requires oversight which prevents it being useful for batch 
processing. The Poisson, negative binomial and finite negative bino-
mial models generally undepredicted AOO, whereas the power law 
and Hui models overpredicted.

The Poison, power law, Nachman, generalised negative bino-
mial, Hui and Thomas models all showed high variability in accuracy 
across species, suggesting that even if mean accuracy is high there 
is high likelihood of an inaccurate estimate for any given species. 
The negative binomial and finite negative binomial models had the 
lowest variability.

These results are largely consistent with previous model com-
parisons (Azaele et al., 2012; Barwell et al., 2014; Hui & McGeoch, 
2007). There are some differences, such as the performance of the 
Hui model with a dataset of British Odonata (Barwell et al., 2014), 
however, in this case, the magnitude of downscaling is considerably 
larger than our comparison. Before following our recommendations 
for downscaling, users should consider whether the scale and de-
gree of extrapolation are comparable to their use case.

Nonlinearity in response to prevalence was a particular prob-
lem for the logistic, power law, Poisson, and Hui models. This could 
also be a problem when comparing species at different time inter-
vals. Under such circumstances, the decline or spread of a species 
could be missed if such changes in species occupancy are masked by 
systematic errors caused by the model's response to species prel-
evance. For example, as species prevalence increased, the logistic 
model tended to underpredict AOO more while Hui tend to over-
predict. So if a species’ true AOO increased between two time steps, 
we might not identify this change using the logistic model, while we 
might conclude that it increased its AOO much more than its actually 
did if using the Hui model.

We suggest that unless there is an a priori reason for select-
ing a specific model, then an ensemble modelling approach is most 

TABLE  2 A statistical summary of the results, showing the 
mean, median and 50% quartile of all the errors in predicted 
occupancy, bases upon the all taxa in all atlases and the “All-
Sampled” upgraining process. The mean and median are provided 
for readers to evaluate the skewness of error distributions and the 
span of the 50% quartile indicates the variability

Model Mean Median 25% 75% Span

Logistic −9.5 −11.2 −19.6 −1.2 18.4

Poisson −42.4 −44.3 −54.8 −32.0 22.8

Power Law 27.2 25.4 8.8 43.8 34.9

Nachman 6.0 5.5 −5.5 16.6 22.1

Negative binomial −20.4 −20.5 −28.3 −12.3 16.0

Improved 
negative 
binomial

0.7 1.0 −8.9 10.3 19.2

Finite negative 
binomial

−19.8 −19.9 −27.7 −11.7 16.0

Generalised 
negative 
binomial

−0.6 −0.3 −11.2 10.2 21.4

Hui 22.5 22.1 10.7 33.5 22.9

Thomas −3.7 −6.2 −17.2 6.9 24.1

Ensemble 4.0 −3.5 −13.3 4.8 18.1

Simple ensemble −7.8 −7.5 −17.9 1.9 19.8
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appropriate as it averages out much of the inter- and intramodel vari-
ation. Furthermore, using the simple ensemble method results in no 
major loss in performance compared to the more computationally in-
tensive full ensemble method. Furthermore, it utilises only the most 
robust models that should achieve optimisation without any further 
user oversight, and so is ideal for bulk processing. The IUCN Standards 
and Petitions Subcommittee (2017) recommended method of using a 
power law relationship in particular is poor choice due to its overpredic-
tion of occupancy for all species, bar the extremes, and extreme nonlin-
earity in the response with prevalence, and we recommend this method 
is avoided. Use of this method may lead to over optimistic conservation 
assessments due to overestimation of occupancy. However, if down-
scaling were used in the assessment of change, it could overestimate 
both the rate of decline of a declining species and the rate of recovery 
of an increasing species. Despite the diverse landscapes and taxonomic 
groups, we used as test cases the choice of best model is the same.

4.4 | Occupancy downscaling for conservation 
assessments

Occupancy downscaling is a potentially powerful method for con-
servation assessments and to compare biogeographic atlases be-
tween regions and time periods. The method is simple, uses widely 
collected data that are becoming increasingly freely-available in on-
line databases and makes few assumptions about the way the data 
are collected.

However, in this study, we are only extrapolating one grain size 
down and there is some variability even in the predictions through 
the ensemble approach. It is likely that for assessments at the IUCN 
recommended scale of 4 km2 extrapolation across greater scales than 
we were able to test is possible. However, we would expect the rel-
ative performances of the models to remain consistent, even though 
the error will increase with further extrapolation. For this reason, ad-
ditional work is being conducted to test these models across more 
scales, but with simulated species. It will be important for any assess-
ments made using this approach to include an estimate of the uncer-
tainty around the prediction. One such solution might be to present 
the range of individual model values as an estimate of error.

To conclude, with the right choice of models, we have shown 
that AOO can be rapidly and automatically estimated from widely 
available biodiversity data and for a wide range of species and land-
scapes. This technique promises to speed the process of red-listing 
species, but can also be used in repeatable and reliable production of 
biodiversity change indicators.
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