
This is a repository copy of Modelling the effects of stress on gap-acceptance decisions 
combining data from driving simulator and physiological sensors.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/136108/

Version: Accepted Version

Article:

Paschalidis, E orcid.org/0000-0001-7648-525X, Choudhury, CF 
orcid.org/0000-0002-8886-8976 and Hess, S orcid.org/0000-0002-3650-2518 (2018) 
Modelling the effects of stress on gap-acceptance decisions combining data from driving 
simulator and physiological sensors. Transportation Research Part F: Traffic Psychology 
and Behaviour, 59 (Part A). pp. 418-435. ISSN 1369-8478 

https://doi.org/10.1016/j.trf.2018.09.019

© 2018 Elsevier Ltd. Licensed under the Creative Commons Attribution-Non Commercial 
No Derivatives 4.0 International License 
(https://creativecommons.org/licenses/by-nc-nd/4.0/). 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


   
 
 

1 
 
 

Modelling the effects of stress on gap-acceptance decisions combining 1 

data from driving simulator and physiological sensors  2 
 3 

Evangelos Paschalidis, Charisma F. Choudhury, Stephane Hess 4 

Choice Modelling Centre, Institute for Transport Studies, University of Leeds, 5 
36-40 University Rd, Leeds LS2 9JT, UK 6 

 7 
 8 

Abstract 9 
 10 
Driving behaviour is an inherently complex process affected by various factors ranging 11 
from network topography, traffic conditions and vehicle features to driver characteristics 12 
like age, experience, aggressiveness and emotional state. Among these, the effects of 13 
emotional state and stress have received considerable attention in the context of crash 14 
analysis and safety research where driving behaviour has been found to be affected by 15 
drivers’ mental state/stress, cognitive workload and distraction. However, these studies are 16 
mostly based on questionnaire surveys and self-reports which can be prone to response bias 17 
and reporting/measurement errors. The analyses are also often descriptive in nature. In a 18 
parallel stream of research, advances in sensor technologies have made it possible to 19 
observe drivers’ stress through human physiological responses, e.g. heart rate, electro-20 
dermal activity etc. However, these studies have primarily focused on detecting stress 21 
rather than quantifying or modelling its effects on driving decisions. The present paper 22 
combines these two approaches in a single framework and investigates the gap-acceptance 23 
behaviour of drivers during an intersection crossing, using data collected using a driving 24 
simulator. The participants are deliberately subjected to stress induced by time pressure, 25 
and their stress levels are measured using two physiological indicators, namely 26 
Electrodermal Activity (skin conductance) and heart rate. In addition to statistical analyses, 27 
discrete choice models are developed to link the accept-reject choices of a driver with the 28 
driver demographics, traffic conditions and stress levels. The results of the models indicate 29 
that increased stress levels significantly increase the probabilities of accepting a gap. The 30 
improvement in model fit and safety implications derived from model estimates are also 31 
discussed. The insights from the results can be used for designing appropriate intervention 32 
strategies to improve safety.  33 

 34 
Keywords: gap-acceptance, driving stress, driving simulator, heart rate, Electrodermal 35 
Activity 36 
 37 
  38 
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1. Introduction 1 
 2 
Road safety continues to be an important issue with road crashes among the leading causes 3 
of death - accounting for more than 1.2 million fatalities and 50 million injuries globally 4 
each year (World Health Organization, 2015). Driver behaviour is a factor in over 90% of 5 
crashes, with speeding as one of the major contributors (World Health Organization, 2015). 6 
Driving behaviour models, which provide mathematical representations of drivers’ 7 
decisions involving acceleration-deceleration, lane-changing, overtaking, etc., are 8 
increasingly being used for evaluation and prediction of road safety parameters and 9 
formulating remedial measures (e.g. Farah et al., 2009; Barceló, 2010; Hoogendoorn at el., 10 
2010; Farah & Koutsopoulos, 2014). Reliable driving behaviour models are also critical 11 
for accurate prediction of congestion levels in microscopic traffic simulation tools) and 12 
analyses of emissions.  13 
 14 
Driving decisions are affected by various factors, including network topography, traffic 15 
conditions and driver characteristics - which include, among others, demographics, 16 
personality traits and emotional state. Existing driving behaviour models address many of 17 
these factors, either fully or partially, where the effects of surrounding traffic conditions 18 
have received considerable attention (Ossen and Hoogendoorn, 2005; Toledo, 2007; 19 
Choudhury, 2007; Marczak et al., 2013 to name a few). However, in most cases, the models 20 
do not adequately capture the sophistication of driver behaviour and the causal mechanism 21 
behind their observed decisions. In particular, research in other realms, in the context of 22 
crash analysis and safety research, has confirmed that driving behaviour is significantly 23 
affected by drivers’ mental state/mood (e.g. anger) (Garrity and Demick, 2001), cognitive 24 
workload (Hoogendoorn et al., 2010), distraction (Young et al., 2007) and fatigue (Thiffault 25 
and Bergeron, 2003). Existing work on drivers’ stress has mainly focused on the 26 
investigation of the relationship between stress and aberrant behaviour and its impact on 27 
safety (Ge et al., 2014; Westerman and Haigney, 2000; Hill and Boyle, 2007). However, 28 
these studies primarily examined the effects of stress based on self-reported surveys which 29 
can be prone to response bias and reporting errors. Indeed, at best, a driver can report an 30 
indication of stress levels, but not an objective measure of a physiological state. In addition, 31 
many of these studies are largely descriptive rather than relying on detailed modelling work. 32 
 33 
In a parallel stream of research, recent advances in sensor technologies have made it 34 
possible to measure drivers’ stress levels through human physiological responses, e.g. 35 
changes in heart rate, electrodermal activity etc. (Healey and Picard, 2005; Ahmed et al., 36 
2015). However, these studies have primarily focused on detecting stress rather than 37 
quantifying or modelling its effects on driving decisions in detail. 38 
 39 
This paper aims to fill in this research gap by developing gap acceptance models with 40 
explicit consideration of the effect of stress on driving behaviour. The gap-acceptance 41 
models developed in this research are based on an extensive experimental study in the 42 
University of Leeds Driving Simulator (UoLDS) where the drivers have been intentionally 43 
subjected to stressful driving conditions caused by time pressure and surrounding traffic 44 
conditions.  Their choices of accepted gaps have been recorded alongside physiological 45 
measurements of stress indicators (Electrodermal Activity and heart rate) and socio-46 
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demographic characteristics (age, gender, experience). A series of gap acceptance models 1 
are developed and augmented by continuous physiological measurements.  2 
 3 
The remainder of the paper is organised as follows. We first present a review of the 4 
literature, followed by the experimental setting and the data analyses. This is followed by 5 
a description of the methodological approach of the study. We then present estimation 6 
results followed by concluding remarks where insights from the models are discussed.  7 

 8 
2. Literature review 9 

 10 
2.1. Stress and driving context 11 
‘Driver stress’ has been defined as a situation that challenges drivers’ abilities, reduces their 12 
perceived control or threatens their mental/physical health (Gulian et al., 1989). Driver 13 
stress can be a consequence of several factors including the direct demands of the driving 14 
task, the environmental conditions (e.g. foggy, icy, etc.), network characteristics (e.g. 15 
surface characteristics), junction frequency, speed and flow per lane and/or potential 16 
secondary tasks, such as use of navigation system, texting, etc. (Hill and Boyle, 2007). 17 
Moreover, time urgency and the level of congestion have been identified as two important 18 
factors influencing drivers’ stress (Hennessy and Wiesenthal, 1999). 19 
 20 
There is a substantial body of literature that investigates the effects of stress on driving 21 
behaviour. Drivers under stress may be overwhelmed by negative emotions and thus are 22 
more likely to get involved in hazardous situations (Ge et al., 2014). Self-reported stress 23 
has been linked to aberrant driving behaviour, namely errors and violations (Kontogiannis, 24 
2006). These types of impaired behaviour are related to road crashes and incidents, 25 
therefore stress is considered as an issue related to traffic safety (Westerman and Haigney, 26 
2000; Useche et al., 2015, Qu et al., 2014). Moreover, Ge et al. (2014) found that perceived 27 
stress is linked to aggressive and risky driving behaviour. Also, Clapp et al. (2011), grouped 28 
reactions under stressful situations in three main categories which are the extremely 29 
cautious driving behaviour, aberrant behaviour and aggressive (or hostile) behaviour. The 30 
aforementioned findings provide compelling evidence regarding the effects of stress on 31 
driving, however, they are based on self-reported survey results and therefore prone to 32 
response bias and reporting/measurement errors.  33 
 34 
An alternative, and potentially more reliable, approach to detect drivers’ level of stress and 35 
study its effects, is through its implications on human physiology. Recent advances in 36 
sensor technologies and affective computing have made it possible to measure drivers’ 37 
stress levels through physiological responses, e.g. changes in heart rate, Electrodermal 38 
Activity (EDA), blood volume pulse, etc. There are several existing studies related to 39 
driving stress that use this type of data (some examples Healey and Picard, 2005; Singh 40 
and Queyam, 2013; Rigas et al., 2012). However, the aforementioned studies mostly 41 
focused on detecting stress rather than investigating its effects on observed driving 42 
behaviour. 43 
 44 
Two of the most widespread physiological indicators - also used in the present study - are 45 
heart rate and Electrodermal Activity (EDA). Heart rate represents the observed heartbeats 46 
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per minute. Lower heart rate is generally linked to a relaxed state while it increases under 1 
the presence of emotional stimuli or mental effort (Katsis et al., 2011). EDA is related to 2 
the sweat gland activity and it is an indicator that increases or decreases proportionally to 3 
stress effort (Katsis et al., 2011). EDA is composed of two different parts, namely the skin 4 
conductance level (SCL – tonic part) and skin conductance response (SCR – phasic part). 5 
While SCL is slowly varying and related to individual characteristics, SCRs are expressed 6 
as a sudden and fast increase of skin conductance owing to the presence of a specific 7 
stimulus and thus have been linked to acute stress. SCRs are identified if the increase in 8 
skin conductance activity exceeds specific critical values. 9 
 10 
Before proceeding, let us just expand on the argument of why such physiological 11 
measurements are superior to self-reported measures. The two most apparent issues with 12 
self-reported data are perception bias and measurement error. For the former, a respondent 13 
to a questionnaire may perceive to be more or less stressed than he/she actually is, and this 14 
can be amplified in the case of recall surveys. For the latter, it is difficult for a survey 15 
respondent to quantify the level of stress in an objective manner. An additional reason, 16 
which is mentioned less often, is that of strategic bias. A respondent in a survey may 17 
purposefully overstate or understate his/her actual stress levels for example to make an 18 
experienced situation seem more stressful or play down the effect of his/her own mental 19 
state. None of these issues should in theory arise with physiological measurements as they 20 
are driven by subconscious factors that cannot be easily biased by the respondent and are 21 
also measured objectively.  22 

 23 
2.2 Gap-acceptance behaviour and models 24 
Driving behaviour models primarily include car-following, lane-change and gap-25 
acceptance (Toledo, 2007). The latter of the aforementioned concepts focuses on two 26 
different aspects; the decision of drivers to change lane and the attempt of a turning or 27 
crossing manoeuvre at an intersection. In the literature, several methodological approaches 28 
have been developed in order to predict the intersection crossing decisions of drivers. This 29 
type of gap acceptance behaviour is of prime importance when studying issues such as 30 
network capacity, delays and road safety (Ashton, 1971; Fitzpatrick, 1991). The majority 31 
of these methodologies are based on the critical gap concept, which is defined as the 32 
minimum time gap in the priority stream which a driver moving on the minor road is willing 33 
to accept in order to cross through the conflict zone. According to Brilon et al., (1999), 34 
there are at least 20-30 different methods related to gap-acceptance decisions. Some of the 35 
most cited are the Raff method (Raff and Hart, 1950), the Greenshields method 36 
(Greenshields et al., 1946), the lag method (see Brilon et al., 1999), the logit method (Maze, 37 
1981) - which is a method based on traditional choice modelling techniques (see Ben-Akiva 38 
and Lerman, 1985), the Ashworth’s method (Ashworth, 1969), and the maximum 39 
likelihood method (Miller and Pretty, 1968). The main limitations regarding some of the 40 
existing methodologies in the context of unsignalised intersections are the assumptions of 41 
consistency and homogeneity (Bottom and Ashworth, 1978; Pollatschek et al., 2002). The 42 
former indicates that a driver, in all similar situations, would have a specific critical gap 43 
value tc and accept all gaps with a value greater than this (and reject the rest). Based on this 44 
assumption, a driver waiting to cross a junction, cannot reject a specific gap and later accept 45 
a shorter one. The assumption of consistency is not however accurate since e.g. risk 46 
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tolerance of an individual might change during waiting time leading to acceptance of a 1 
shorter gap compared to the ones rejected earlier (Pollatschek et al., 2002). Moreover, the 2 
various tc values of different consistent drivers are treated as a random variable that follows 3 
a specific distribution ĳ(tc) and cumulative distribution ĭ(tc) (Brilon et al., 1999). Sub-4 
groups of drivers are assumed to follow the same density and cumulative distribution 5 
functions resulting within-group homogeneity of the driver population.  6 
 7 
The assumptions of homogeneity and consistency of gap-acceptance methodologies raise 8 
limitations in the representation of drivers’ behaviour since they both ignore their 9 
sophisticated decision-making process. For instance, critical gap varies among and within 10 
drivers, in different situations, and should be treated as a random variable (Guo et al., 2014). 11 
The drawbacks imposed by these assumptions have been relaxed in gap-acceptance models 12 
developed in the context of lane-changing, where critical gaps are assumed to follow 13 
statistical distributions with means being functions of influencing variables like speed of 14 
the lead and lag vehicles (e.g. Ahmed 1999, Toledo 2003, Choudhury 2007). These models 15 
are also extended to incorporate the effect of driver demographics (age, gender) and driving 16 
style (e.g. Farah et al. 2009). Another competing approach is to model the gap accept-reject 17 
decisions based on ‘Utility maximization theory’ – Logit models for example. In Logit 18 
models, the probability of accepting or rejecting a gap is a function of different variables 19 
(e.g. gap size, the speed of the approaching vehicles, waiting time, etc.) and captures the 20 
trade-off among different influencing factors (e.g. Amin and Maurya, 2015). 21 
 22 
A review of the gap-acceptance literature showed that drivers’ behaviour is influenced by 23 
various factors. Most of the variables are related to traffic conditions such as gap size 24 
(Bottom & Ashworth, 1978; Nabaee et al., 2011), waiting time in the queue (Pollatschek et 25 
al., 2002) or at the stop line (Mahmassani and Sheffi, 1981) and the queue behind the driver 26 
while waiting at the stop line (Nabaee et al., 2011; Tupper et al., 2011). Apart from the 27 
aforementioned factors, Bottom & Ashworth (1978) mention that inter-individual variance 28 
is worth being investigated in terms of variables as extroversion (personality), age, annual 29 
mileage and vehicle type. 30 
 31 
Despite the advances in gap-acceptance model structures, the full range of variables 32 
influencing the decisions of the drivers has not yet been fully investigated. Some of the 33 
aspects which are not yet addressed include drivers’ strategies when deciding to cross an 34 
intersection or not, the motivation behind an observed “inconsistent” action and finally the 35 
effects of individual traits and characteristics (e.g. personality, attitudes, state of mind, level 36 
of stress etc.). The aim of the present study is to provide an extended gap-acceptance 37 
framework, through the development of a model that accounts for variables related to 38 
driver’s individual characteristics, with explicit consideration of drivers’ acute stress levels, 39 
and contribute to filling in this gap of driving behaviour modelling research.  40 
 41 
3. Data collection 42 
 43 
3.1 Driving simulator experiment 44 
The data used in this research is based on primary data collected as part of a comprehensive 45 
driving simulator study (Next Generation Driving Behaviour Models – NG-DBM) for 46 
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investigating the effect of stress in different driving decisions (e.g. acceleration-1 
deceleration, overtaking, red light violation, gap acceptance, etc.). The experiments have 2 
been conducted using the University of Leeds Driving Simulator (UoLDS). The UoLDS 3 
(Figure 1) is a high fidelity, dynamic simulator. The vehicle cab is a 2005 Jaguar S-type 4 
with all driver controls available and fully operational. This includes the steering wheel 5 
and braking pedal, and there is also a fully operational dashboard. The vehicle is positioned 6 
in a 4m diameter spherical projection dome. The dome provides fully textured 3-D 7 
graphical scene with a horizontal field of view of 250o and 45o vertical and it is placed on 8 
an 8 degrees of freedom motion system. The model of vehicle dynamics has been 9 
extensively validated to capture accurate vehicle behaviour on high-friction surfaces 10 
(Markkula et al., 2018). The raw data output consists of observations of 60Hz frequency. 11 
The relative validity of UoLDS has been confirmed in several studies (e.g. Jamson et al., 12 
2010; Markkula et al., 2018). While driving simulator data, given its ‘experimental’ flavour, 13 
has the risk to be prone to behavioural incongruence, it offers the flexibility to fully control 14 
the surrounding traffic and driving contexts (e.g. inducing time pressure and stressful 15 
scenarios) which are crucial for this particular study.   16 

 17 

 18 
Figure 1: The University of Leeds Driving Simulator 19 

[sourcesμ University of Leeds, University of Leeds Driving Simulator] 20 
 21 
The full data collection process involved around 90 minutes of total driving in the simulator 22 
for each individual. Participants initially had a short briefing session about the simulator 23 
and its operation followed by a practice session of approximately 15 minutes duration to 24 
familiarise themselves with the simulated environment and vehicle dynamics (i.e. motion 25 
system). For safety reasons, participants were accompanied by a researcher during the 26 
practice run, positioned in the back seat. After the practice session, participants started the 27 
main driving sessions, composed of two different environments, using an urban setting and 28 
a motorway setting, with a short break in between.  29 
 30 
The urban setting was composed by several tasks. These included an encounter with a slow-31 
moving lead vehicle that participants could decide to overtake or not, a traffic light with a 32 
red indication of long duration that aimed to cause frustration, an amber dilemma scenario 33 
where participants could decide to accelerate or brake and the gap-acceptance scenario 34 
presented in the current analysis. These scenarios were repeated twice (without and under 35 
the presence of time pressure) while in the end there was also a right-turn manoeuvre 36 
scenario which was the last task of the urban setting. Within an effort to minimize any 37 
potential residual effects from the previous tasks, some straight road segments without any 38 
critical events were included, in between the main tasks. The average duration of these 39 
dummy segments was 2-3 minutes and participants did not meet any traffic in these, 40 
however, at the second half of the urban setting they were deliberately subjected to time 41 



   
 
 

7 
 
 

pressure. The latter needs some more explanation. As mentioned above, the majority of the 1 
scenarios had two variants - one without and one with time pressure. Before each of the 2 
two main driving simulator settings, participants were instructed that they had to reach the 3 
destination within 35 minutes and they could see an emoji placed on the dashboard (Figure 4 
2) denoting their performance with respect to time. Participants were told that the emoji 5 
displayed to them was determined based on expected arrival time which is computed and 6 
constantly updated using a sophisticated algorithm running in the background and uses 7 
variables such as current speed, speed limit, distance to the end, an average estimated delay 8 
that will be caused by the events ahead etc. as inputs. This was then used to determine 9 
which of the three emoji to show.  Participants were instructed that the green state would 10 
indicate they were doing well, in terms of time, while the red would mean that they were 11 
late. The intermediate amber emoji meant that they were marginally fine in terms of time. 12 
That is, they will receive a red emoji if they have further delay in the remaining driving 13 
tasks. An amber state was introduced to make the shift from green to red emoji (and vice 14 
versa) more convincing to the participants. In reality, the state of the time pressure emoji 15 
was not related to their actual performance but was pre-decided in order to induce time 16 
pressure in specific road segments. It should be mentioned that the amber was always 17 
shown before/after the critical sections (e.g. in straight segments) as opposed to near 18 
intersections. Therefore, the data used for gap-acceptance model development only include 19 
red and green phases. It may be noted that the choice of 3 different emoji to indicate time 20 
pressure, was preferred to a conventional countdown timer since it would be easier to 21 
manipulate. In order to increase the likelihood that participants would consider time 22 
pressure indications, they were instructed that a penalty would be imposed on the monetary 23 
reward they received for their participation in case they were late at the end of a scenario 24 
(red emoji). Again, this was never the case since both main scenarios were programmed to 25 
end in the amber time pressure state. 26 
 27 

 28 
Figure 2: Time pressure indications 29 

 30 

Drivers’ physiological data, across the whole experiment, was collected using the Empatica 31 
E4 wristband which is a non-intrusive device that provides information about heart rate 32 
(HR), Electrodermal Activity (EDA), blood volume pulse (BVP) and temperature (TEMP). 33 
Each of the physiological indicators was collected with a different frequency, depending 34 
on the attributes of the wristband. EDA and temperature have a 4Hz frequency, blood 35 
volume pulse 64Hz and heart rate 1Hz. The device can be automatically synchronised with 36 
the clock of any computer when plugged in. 37 
 38 
3.2 The gap-acceptance task 39 
In the present study, the gap-acceptance task was presented twice, as a part of the urban 40 
driving scenario. Drivers faced the first gap-acceptance task without time pressure (green 41 



   
 
 

8 
 
 

emoji) followed by the same scenario with time pressure (red emoji). The scenario itself 1 
consisted of two groups of vehicles. At first, six blocking vehicles were shown to 2 
participants, moving at short headway distances. These vehicles were used to force drivers 3 
to stop before the main gap acceptance task. This first group of vehicles was followed by 4 
eleven vehicles that created 10 gaps. The gaps had an increasing trend in general. The 5 
increasing trend of gaps was chosen in order to secure that drivers would not face a large 6 
gap at the beginning of the scenario and miss information related to their willingness to 7 
accept a shorter one. However, to increase realism, some shorter gaps were also introduced 8 
in between (as 3rd, 5th, 7th and 8th gaps). The full set of available gaps were identical for 9 
both intersections and across participants. For each gap-acceptance task, the drivers could 10 
choose to accept the available gap and cross or reject the immediate gap and wait for a 11 
better one or even reject them all (i.e. wait till all 11 vehicles had crossed). The drivers, 12 
however, had no a priori knowledge regarding the number of the oncoming vehicles or the 13 
waiting time required. For the sake of simplicity, it was decided to constrain the gap-14 
acceptance scenario by developing a case where cars were shown only coming from the 15 
left side of the driver.  It may be noted that the time pressure was always applied at the 16 
second intersection albeit the fact that there might be confounding with learning1  and 17 
fatigue effects. The main reason for this design was related to drivers’ physiology, since we 18 
aimed to minimise the risk of increasing their responses at the beginning of the driving task 19 
by inducing additional stressors (e.g. time pressure) that would potentially influence and 20 
prevent them from returning to the baseline levels. Also, it would be more realistic for the 21 
participants to receive a red face indication closer to the end of the driving task, rather than 22 
during the first part. A general outline of the gap-acceptance scenario setting is illustrated 23 
in Figure 3, while the presented gap sizes are shown in Table 1.  24 
 25 

 26 
Figure 3: Illustration of the intersection 27 

 28 

Table 1: The available gaps and gaps’ sizes 29 

Gap ID 1 2 3 4 5 6 7 8 9 10 

Gap size (s) 2.8 3.45 3.4 4.4 4 5.4 5 4.7 6 6.8 

                                                      
1 Since the two scenarios occurred with a time gap of approximately 15 minutes in between where 

the drivers had to tackle other difficult situations, the learning effect is not expected to be significant. 
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3.3. Exploratory analysis 1 
 2 
3.3.1 Sample analysis 3 
The sample of the current analysis consists of 41 (22 male, 19 female) staff members or 4 
students at the University of Leeds, holding a valid driving licence, that successfully 5 
completed the urban task. Three participants were removed from the analysis, since they 6 
reported motion sickness during the practice session while also an additional participant 7 
was removed because the wristband device failed to collect physiological data. The mean 8 
age of participants is approximately 34 years and the corresponding standard deviation is 9 
11 years. Almost half of the participants stated that they are driving on a daily basis. The 10 
average driving experience of participants is almost 14 years. Regarding accident 11 
involvement, 6 participants have reported involvement in minor accidents while 4 have 12 
reported involvement in serious accidents. It is worth mentioning that a serious (or major) 13 
accident is defined as one where at least one person required medical treatment and/or there 14 
was property damage above £500. Finally, 7 participants stated that they had at least once 15 
received a ticket penalty for speeding behaviour. The descriptive statistics of the sample 16 
are also outlined in Table 2. 17 
 18 

Table 2: Descriptive statistics of the sample 19 

Variable Intervals Frequency % mean std. dev. min max 

Gender 
Female 19 0.46 - - - - 
Male 22 0.54 - - - - 

Age - - - 34.39 10.86 19 57 
Driving experience - - - 13.63 11.48 1 39 

Frequency of driving 

Everyday 21 0.51 - - - - 
2-3 times/week 12 0.29 - - - - 

Once/ week 4 0.10 - - - - 
Less often 4 0.10 - - - - 

Minor accident involvement 
No 35 0.85 - - - - 
Yes 6 0.15 - - - - 

Major accident involvement 
No 37 0.90 - - - - 
Yes 4 0.10 - - - - 

Ticket for speeding 
No 34 0.83 - - - - 
Yes 7 0.17 - - - - 

 20 
3.3.2 Gap-acceptance task analysis 21 
Before the development of the model, participants’ gap-acceptance behaviour has been 22 
examined with respect to the effects of time pressure. Table 3 presents the accepted gaps 23 
of each individual, and their respective size (a value n/a is given if no gap is accepted). A 24 
similar illustration is also provided in Figure 4. It should be mentioned that 12 out of 41 25 
participants did not accept any of the gaps presented to them (i.e. waited for all vehicles to 26 
pass), in both cases. On the other hand, six participants accepted a gap only under the time 27 
pressure conditions while they had not done so without time pressure. The remaining 23 28 
participants accepted a gap at both intersections. The latter group of participants always 29 
accepted the same gap in the second run or a gap that was shown earlier, compared to the 30 
one accepted without the external stressor. To further investigate this outcome, a paired 31 
samples t-test is applied to compare the significance of the difference of the accepted gap 32 
sizes at the two intersections. Given the small sample size, this difference has been also  33 



   
 
 

10 
 
 

Table 3: Accepted gap(s) of each participant at the two intersections 

 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

First 
intersection 

(without 
time 

pressure) 

Gap 
ID 

8 9 11 11 5 11 11 6 6 9 6 9 11 11 5 5 11 11 6 6 9 

Gap 
size 
(s) 

4.7 6 n/a n/a 4 n/a n/a 5.4 5.4 6 5.4 6 n/a n/a 4 4 n/a n/a 5.4 5.4 6 

Second 
intersection 
(under time 
pressure) 

Gap 
ID 

1 5 9 11 4 11 11 4 6 9 4 6 11 7 1 1 11 11 4 4 9 

Gap 
size 
(s) 

2.8 4 6 n/a 4.4 n/a n/a 4.4 5.4 6 4.4 5.4 n/a 5 2.8 2.8 n/a n/a 4.4 4.4 6 

                       

ID 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41  

First 
intersection 

(without 
time 

pressure) 

Gap 
ID 

8 6 11 6 11 6 11 11 11 8 9 11 5 9 9 11 11 11 5 11  

Gap 
size 
(s) 

4.7 5.4 n/a 5.4 n/a 5.4 n/a n/a n/a 4.7 6 n/a 4 6 6 n/a n/a n/a 4 n/a  

Second 
intersection 
(under time 
pressure) 

Gap 
ID 

4 3 11 6 6 6 11 11 11 4 9 11 4 5 6 9 9 11 4 6  

Gap 
size 
(s) 

4.4 3.4 n/a 5.4 5.4 5.4 n/a n/a n/a 4.4 6 n/a 4.4 4 5.4 6 6 n/a 4.4 5.4  
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 1 

 2 
Figure 4: Accepted gaps and sizes without and with time pressure 3 
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investigated with the non-parametric Wilcoxon test (De Winter 2013). The results (Table 1 
4) show that the mean size of the accepted gaps is smaller at the second intersection, and 2 
this difference is statistically significant. As mentioned in the data collection section, since 3 
the participants faced a series of additional tasks involving at least 15min of driving in 4 
between the two intersections, the learning effect is not likely to be a major influencing 5 
factor behind these choices. We, therefore, conclude that time pressure had a major 6 
influence on acceptance of smaller gaps which we further test empirically in Section 5. The 7 
mean values in Table 4 are smaller than some reported in the existing literature (e.g. Bottom 8 
& Ashworth, 1978; Fitzpatrick, 1991) however, they are very close to the median values 9 
reported by Ashton (1971) and Amin and Maurya (2015). It may be noted that given the 10 
simulated nature of our experiment and the scope to show a limited number of gaps to each 11 
participant, the presented gaps were on the shorter range on purpose. Otherwise, there 12 
would have been risk of missing the minimum acceptable gap.  13 
 14 

Table 4: Results of the paired samples t-test and Wilcoxon test 15 

Descriptives Paired samples t-test 

 Mean SD SE 
T df P 

Mean 
Difference 

SE 
Difference 

95% CI for Mean 
Difference 

First intersection 
(no time pressure) 

5.191 0.768 0.16 Lower Upper 

Second intersection 
(under time 
pressure) 

4.558 0.978 0.204 3.752 22 0.001 0.633 0.169 0.283 0.983 

Wilcoxon test p-value: 0.002 
 16 
Furthermore, with reference to Table 3, under the time pressure conditions, three of the 17 
participants accepted the first gap they faced. These drivers did not actually behave as 18 
expected during the task (stop at the intersection and wait for a gap, or not, to cross) but 19 
drove through the streaming of oncoming vehicles without stopping. This indicates that 20 
external stressors could increase risk-taking – however, such extreme behaviour may not 21 
be frequently observed in real life. Moreover, it is worth mentioning that the 10th gap was 22 
never accepted in the current experiment, although it is the largest one in terms of headway 23 
size. This behaviour maybe shows anticipation effects in gap-acceptance behaviour; drivers 24 
that wait until the last available gap also prefer to wait the additional time need until being 25 
able to cross when the intersection is clear rather than engaging in crossing under the 26 
presence of oncoming traffic. As mentioned above, almost one-third of participants follow 27 
this behaviour, without being influenced by time pressure in the second task. 28 
 29 
4. Methodology 30 
 31 
4.1 The gap acceptance model 32 
The gap-acceptance approach of the current paper has been formulated as a binary choice 33 
model, where each gap is considered as a different accept/reject decision. This approach is 34 
a modification of the Logit method mentioned in the literature section. The model assumes 35 
that the probability of accepting a gap increases with the increase in the utility.  The utility 36 
associated with a particular gap is a function of the attributes of the gap (e.g. gap size, order, 37 
etc.), characteristics of the driver (e.g. socio-demographics) and their state. The utility ܷ௧ 38 
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associated with the decision of a driver n to accept/reject a gap t can therefore be expressed 1 
as follows:  2 
 3 
 ܷ௧ ൌ ௧ܺߚ  ܼߛ  ߠ ܹ௧  ߥߙ   ௧ (1)ߝ

 4 
where ܺ௧ is a vector of gap-specific variables, ܼ are individual-specific and situation-5 
independent variables (e.g. socio-demographics), ܹ௧ is a vector of physiological variables 6 
that are used to capture drivers’ mental state, ߥ  represents the effect of unobserved 7 
variables that vary across individual drivers but is same for a specific driver (referred as 8 
individual specific error term), and ߝ௧  is the random error term (assumed to be 9 
independent and identically distributed). Finally, ȕ, Ȗ, ș and Į are vectors of parameters to 10 
be estimated. 11 
 12 
Following the aforementioned assumptions, the probability of gap-acceptance conditional 13 
on individual specific error term is defined as: 14 
 15 

 ܲ௧ீȁߥ ൌ  
݁ሺఉାఊାఏௐାఈఔሻͳ  ݁ሺఉାఊାఏௐାఈఔሻ (2) 

 16 
If the observed choice of a driver to accept a gap is set as ܻ௧ 11, the conditional full 17 
probability of an observed driver’s decision can be expressed, as shown in Equation 3: 18 
 19 
 ܲ௧ȁߥ ൌ ሺ ܲ௧ீȁߥሻሺͳ െ ܲ௧ீȁߥሻଵି  (3) 

 22 
The conditional probability of a sequence of Tn observed decisions of the same driver 20 
takes the form indicated by Equation 4: 21 

 23 

 ܲȁߥ ൌෑሺ ܲ௧ȁߥሻ்
௧ୀଵ  (4) 

 24 
The unconditional joint probability of the observations of a given driver can be expressed 25 
as follows: 26 
 27 

 ܲ ൌ න ሺ ܲȁߥሻ߮ሺାஶ
ିஶ  (5) ߥሻ݀ߥ

 28 
where a ĳ(Ȟ) is the probability density function of the individual specific error term 29 
assumed to have a standard normal distribution. The model parameters are jointly estimated 30 
using the Simulated Maximum Likelihood approach using 1000 Halton draws (Halton 31 
1960). The model has been specified and estimated in R based on the code framework 32 
provided by the Choice Modelling Centre, University of Leeds. 33 
 34 
4.2. Physiological data analysis 35 
The model described in the previous section has been augmented by continuous 36 
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physiological measurements. These observations have been used as direct explanatory 1 
variables, in order to investigate whether the gap-acceptance model would be more 2 
behaviourally representative when stress has been included. Two different responses have 3 
been considered, namely, heart rate and Electrodermal Activity (EDA). Before turning to 4 
the actual implementation, it is worth briefly discussing our use of these measures as direct 5 
explanators. Recent work in choice modelling (Abou-Zeid and Ben-Akiva, 2014) has 6 
focussed on the use of hybrid choice models to incorporate additional indicators of 7 
heterogeneity such as answers to attitudinal questions. This type of approach is not critical 8 
in our case as the physiological measures are direct measures of physiological states and 9 
should thus not be affected by the same concerns of measurement error. 10 
 11 
The physiological variables have been initially processed and transformed before their 12 
incorporation in the model. Transformation or standardisation of physiological variables is 13 
a common practice in relevant research (e.g. Zhai and Barreto, 2006; Singh et al., 2013; 14 
Kalimeri & Saitis,2016), within an effort to reduce the inter-individual differences in 15 
physiological responses, while it has also been found to improve the distinction among the 16 
various physiological states (BenShakhar, 1985). In the current approach, each gap is 17 
considered as a different discrete stimulus, rather than assuming the whole sequence as a 18 
single continuous stimulus (differences between the two approaches are explained in 19 
Cacioppo et al. (2007)). Thus, physiological responses used in the model have been 20 
calculated with reference to the initiation of each gap (i.e. when the lead vehicle associated 21 
with the gap reaches the beginning of the intersection).  22 
 23 
 Instead of using the raw observations, the heart rate data have been normalised at the 24 

individual level, applying a z-score transformation ቀ௫ିఓఙ ቁ , where x is a heart rate 25 

observation, ȝ is the heart rate mean value across the whole urban task and ı is its standard 26 
deviation (Picard et al., 2001; Healey and Picard, 2005; Maaoui and Pruski, 2010). The 27 
normalized heart rate in the beginning of each gap is then considered as a variable in the 28 
model. 29 
 30 
The EDA observations have been processed using the Matlab package Ledalab (Karenbach, 31 
2005). The skin conductance responses (SCRs) have been obtained applying trough-to-32 
peak analysis, where the amplitude of a response is calculated as the difference in the EDA 33 
values between a peak in the signal and its preceding trough (Benedek and Kaernbach, 34 
2010). The amplitude is then considered as an explanatory variable in the models. The EDA 35 
analysis is based on event-related response activation; each gap has been considered as a 36 
different stimulus. The initiation of each gap has been used as the starting point and 37 
responses are detected 1-4s after that moment. Moreover, since –we are interested to 38 
capture the stress-level at the beginning of a gap (when the lead vehicle corresponding to 39 
the gap reaches the intersection), the amplitudes corresponding to the immediately 40 
preceding gap has been used as an explanatory variable. An example of SCRs analysis is 41 
illustrated in Figure 5. Following literature indications (e.g. Sano et al., 2014), a critical 42 
value equal to 0.01ȝS is selected as a minimum critical SCRs. Moreover, each significant 43 
amplitude (above 0.01ȝS) has been divided by the maximum observed SCR amplitude, 44 
during the simulator experiment, to minimise the effects of individual differences (Lykken, 45 
1972). 46 
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 1 

 2 
Figure 5: Example of SCRs extraction 3 

 4 
5. Gap-acceptance model 5 
 6 
5.1 Parameter estimation results and interpretation 7 
A series of gap-acceptance models have been estimated based on the methodology 8 
presented in section 4.1. The first model includes only traffic-related variables, while the 9 
socio-demographics, time pressure dummy, and the physiological observations are 10 
eventually added. Thus, each new model includes all the previous variables plus one or 11 
more new ones. The aim of this approach is to compare model fit and investigate the 12 
incremental improvement (if any) of adding a specific group of variables. Four different 13 
models have been estimated in total, as follows: 14 
 15 

• Model 1: Traffic-related variables only 16 

• Model 2: Socio-demographics variables included 17 

• Model 3: Time pressure considered 18 

• Model 4: Physiological variables included 19 

The results of all four models are presented in Table 5. All parameter estimates are 20 
significant at 95% level (|t-ratio|>1.96). 21 
 22 
With reference to Table 5, gap size, speed, position, skin conductance response (SCR) and 23 
heart rate are continuous variables explained in the next paragraphs. Moreover, a series of 24 
dummy variables have been included in the models. 25 
 26 
Model 1μ Traffic-related variables only 27 
The first model includes the gap size (in seconds), the position of the vehicle during the 28 
waiting time, vehicle speed when arriving at the intersection area, a dummy variable 29 
indicating whether there is another gap following, or not, and the standard normal 30 
disturbance term (Model 1) as explanatory variables.  31 
 32 
As expected, gap size has a positive effect on gap acceptance behaviour showing that 33 
drivers’ probability to accept a gap increases with its size. 34 
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Table 5: Gap-acceptance models’ parameter estimates 1 

Variable 

Traffic related 
variables only model 

Model 1 

Socio-demographics 
included model 

Model 2 

Time pressure 
included model 

Model 3 

Physiological 
observations included 

model 
Model 4 

Estimate t-ratio estimate t-ratio estimate t-ratio estimate t-ratio 
Constant -24.39 -3.74 -25.92 -3.92 -33.56 -5.14 -59.05 -7.32 
Gap size 1.14 2.50 1.28 2.87 1.99 3.66 2.87 3.23 

Last gap dummy -9.01 -15.16 -9.17 -14.78 -10.24 -14.69 -13.57 -7.31 
Speed (first gap) 2.09 3.77 1.98 3.90 2.18 4.54 3.96 6.10 

Position 2.92 3.40 2.77 3.48 3.15 3.92 6.13 5.04 
Įacc 4.59 4.38 3.47 3.92 4.70 4.48 8.89 4.93 

Age>45 dummy - - -5.87 -4.16 -7.89 -4.29 -11.38 -3.79 
Regular driver 

dummy 
- - 5.00 3.05 6.50 3.18 10.08 3.27 

Time pressure 
dummy 

- - - - 2.45 2.96 3.75 2.94 

Skin conductance 
response 

- - - - - - 11.90 2.62 

Heart rate - - - - - - 2.40 2.13 
LL0  -426.29  -426.29  -426.29  -426.29 
LL  -83.53  -75.82  -71.61  -64.90 
ȡ2  0.80  0.82  0.83  0.85 

adjusted ȡ2  0.79  0.80  0.81  0.82 
observations  615  615  615  615 

 2 
 Vehicle position is a variable that captures a vehicle’s position at the intersection area (the 3 
value zero denoting the start of the intersection area) with an increase in value as the vehicle 4 
moves forward. If a participant has been outside of the intersection area during the task (it 5 
is the case for some participants during the first shown gap), the variable could also take 6 
negative values. The inclusion of this variable attempts to capture drivers’ behaviour to 7 
better position themselves and increase the likelihood of accepting the next available gap. 8 
This variable was considered in the model as, during data collection, a proportion of drivers 9 
was observed to slowly move their car forward during the period they were waiting for an 10 
acceptable gap. As expected, the effect of this variable is positively related to the gap-11 
acceptance probability and drivers are more likely to accept a gap the closer to or further 12 
inside the intersection their vehicle is.  13 
 14 
The variable vehicle speed is considered in the utility function only for the first gap of each 15 
intersection and is ignored for all the rest. It is used to capture the behaviour of not stopping 16 
at all at the junction and accepting the first gap – the likelihood of which is expected to 17 
increase if the driver is travelling at a high speed.  18 
 19 
Finally, the dummy variable of the last gap (which is 1 if there are no further approaching 20 
vehicles on sight) has a negative effect denoting a reduction in the probability of accepting 21 
a gap which is the last one. This confirms that drivers’ gap-acceptance decisions are not 22 
short-sighted or focused on the current gap only, rather, the drivers further consider the 23 
next available gaps before deciding whether to accept the immediately available gap or not 24 
(anticipation effect). The variable sign is thus intuitive. 25 
 26 
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Model βμ Socio-demographics variables included 1 
Model 2 included all of the Model 1 variables as well as the variables related to the 2 
sociodemographic characteristics of the drivers. Among the several sociodemographic 3 
variables tested, those with a statistically significant effect are Age>45 (which is 1 if the 4 
driver is older than 45 years, 0 otherwise) and Regular driver dummy (which is 1 if the 5 
driver typically drives every day, 0 otherwise). It may be noted that these variables are used 6 
in the dummy variable form, since it provides a better model fit with this coding, rather 7 
than having a continuous or ordinal form. The Age>45 dummy has a negative effect on 8 
gap-acceptance probability, indicating that older drivers are less likely to accept an 9 
available gap compared to younger. Moreover, all else being equal, participants that drive 10 
every day are more likely to accept a gap. It may be noted that the effects of gender, 11 
accident records and fine for speeding have also been tested but not found to have a 12 
statistically significant effect.  The signs of the variables common with Model 1 were found 13 
to be the same but the magnitudes were different. Such changes in sensitivity are expected 14 
as the socio-demographic variables are adding further insights in the observed behaviour 15 
potentially leading to more representative sensitivity values.  16 
The results of the gap-acceptance model(s) of this study support the existing literature 17 
findings. For instance, previous research (e.g. Matthews et al., 1999) used driving 18 
frequency as a measure of driving exposure and positively related it to crashes and speed 19 
violations. In the present case, participants driving on a daily basis – and thus with higher 20 
exposure - were more likely to accept a gap and therefore might be considered as more 21 
risk-takers. Similarly, in existing research elder drivers are found to have a less risk-taking 22 
propensity (e.g. Jonah, 1990; Krahé and Fenske, 2002; Rhodes and Pivik, 2011; Taubman-23 
Ben-Ari and Yehel, 2012) which is in agreement with our findings.  24 
 25 
Model γμ Time pressure considered 26 
The third gap-acceptance model (Model 3) includes all the variables of Model 2 and also 27 
accounts for the time pressure conditions induced at the second gap-acceptance task. The 28 
time pressure parameter has a positive effect indicating that drivers were more likely to 29 
accept a gap if they are subjected to time pressure. Again, the signs of the variables 30 
common with Model 2 were found to be the same but the magnitudes were different.  31 
 32 
Model 4μ Physiological variables included 33 
Finally, the model is enhanced by physiological variables related to heart rate and SCRs. 34 
The extraction and transformation/normalization of the physiological responses is 35 
described in section 4.2. Both variables have a significant a positive effect. This outcome, 36 
together with the effect of time pressure conditions, confirm that drivers’ (gap-acceptance) 37 
behaviour is not only influenced by traffic conditions but also by external stressors (time 38 
pressure in this case) or acute stress levels. In the current case, drivers’ stress is reflected 39 
through physiological responses during gap-acceptance choices, where a rise in the 40 
indicator values also implies an increase in the probability of crossing. However, the 41 
crossing behaviour, as examined in the present study can be also interpreted as an action 42 
that involves risk-taking propensity. Drivers’ physiological responses can hence be seen as 43 
indicators of potential aberrant or risky behaviour that could lead to a crash. 44 
 45 
The main findings of the presented models are in accordance with literature findings, in 46 
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terms of the effect of gap size on drivers’ behaviour, as participants were more likely to 1 
accept larger gaps. The effect of waiting time was also investigated, but no statistically 2 
significant outcomes were found. Moreover, potential queuing effects were not examined 3 
as we controlled for this effect and there was no other traffic on the minor road. Finally, 4 
literature findings (e.g. Bottom & Ashworth, 1978; Nabaee et al., 2011) suggest that older 5 
drivers tend to accept larger gaps. This outcome is in line with our results since older drivers 6 
had a smaller probability of accepting a gap.  7 
 8 
5.2. Model comparison 9 
As shown in Table 6, while the gap-acceptance model is being enriched with new 10 
parameters, measures of model improve, both for the final log-likelihood (LL) and the ȡ2 11 
and adjusted ȡ2 values.  12 
 13 
All models are next compared using the likelihood ratio test (e.g. Ben-Akiva and Lerman, 14 
1985). In brief, the test can be defined as: 15 
 16 

LR1 -2(LLR - LLU) 17 
 18 
where LR is the LL value of the restricted model (the one with fewer variables) and LU is 19 
the LL of the unrestricted model (the model that includes the extra variables). The resulting 20 
LR statistic is asymptotically Ȥ2-distributed and is compared with a critical value which 21 
depends on the degrees of freedom (difference in estimated parameters). If the LR statistic 22 
exceeds that threshold value then the null hypothesis that both models perform equally is 23 
rejected. 24 
 25 
The results of the various likelihood ratio tests are presented in Table 6. In all cases, the 26 
null hypothesis is rejected at 99% level which implies that the models with more variables 27 
have a significantly better goodness-of-fit compared to the simpler models re-confirming 28 
the hypotheses that driving is a complex task affected by factors beyond traffic conditions. 29 
Furthermore, since Model 4 has a significantly better goodness-of-fit compared to Model 30 
3 -  indicating statistically significant improvements in the model fit due to the 31 
incorporation of physiological variables.  32 

 33 

Table 6: Likelihood ratio tests’ results 34 

 35 
5.3 Sensitivity analysis 36 
The effect of each variable on the gap-acceptance probabilities is investigated first. In this 37 
regard, each variable is varied within the predefined bounds (specified by the range of 38 
values observed in the experimental data) while keeping all other variables constrained to 39 
the sample averages. The fixed values of the continuous variables used are 4.295s for gap 40 
size, 0.96m/s for speed, 4.0543m for the position (median value), -0.15 for the normalised 41 

Models LR Degrees of freedom (df) Ȥ2
(99%,df) Null hypothesis 

Model 2 vs Model 1 15.41 2 9.21 Rejected 

Model 3 vs Model 2 8.43 1 6.64 Rejected 

Model 4 vs Model 3 13.42 2 9.21 Rejected 
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heart rate and 0.038 for the normalised SCRs. For the dummy variables, sample average 1 
values are also used (varying between zero and one): 0.18 for age, 0.46 for driving 2 
frequency, 0.45 for time pressure and 0.05 for the last gap. Based on these values, the 3 
probabilities of gap-acceptance are estimated for the variables common in the Model 12 4 
and the Model 4 (based on model fit results in section 5.2) as presented in Figure 6.    5 
 6 

  7 

 8 
Figure 6: Variations in gap acceptance probabilities in Models 1 and 4 9 

 10 
A general observation from Figures 6 is that in case of all traffic variables, the general 11 
trends of change in the probabilities are similar for both Model 1 and Model 4. For example, 12 
all else being equal, the probability of accepting a gap increases with gap size, speed (for 13 
the first gap), the position with respect to the intersection and the gap being the last gap. 14 
However, all else being equal, the probabilities of accepting a gap are always higher for 15 
Model 1, denoting overprediction of accepting a gap if the driver characteristics and stress 16 
levels are not included in the model.  17 
 18 
Figure 7 depicts the effect of the socio-demographic variables used in the Model 43. With 19 
respect to the age dummy variable, the probability for accepting a gap, for a driver above 20 
45 years, has a value close to zero while gap-acceptance probability increases for younger 21 

                                                      
2 It may be noted that the state-of-the-art traffic simulation tools are based on the principles of Model 1. 
3 Since these variables are not included in the Model 1, their effect on gap-acceptance probabilities have 
not been investigated across models but only for Model 4. 
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drivers. In a similar way, the gap-acceptance probabilities for participants who drive on a 1 
daily basis, are higher compared to the rest. Finally, as expected, the probability for 2 
accepting a gap under time pressure conditions is almost double compared to no time 3 
pressure. 4 

 5 
Figure 7: Sensitivity plots of the dummy variables used in Model 4 on gap-acceptance 6 

probability 7 
 8 

The effect of the physiological measurement variables is shown in Figure 8. The results 9 
show that the gap acceptance probabilities increase in a similar pattern as the values of 10 
heart rate and increase in SCR. 11 
 12 

 13 
Figure 8: Sensitivity plot of heart rate and SCR on gap-acceptance probability 14 
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5.4 Substitution rates 1 
At the final part of the analysis, an alternative approach is attempted to compare Model 1 2 
and the Model 4. The approach is based on the marginal rates of substitutions (MRS) that 3 
also assists in avoiding issues of differences in scales across models. The MRS investigates 4 
the required change in a specific variable, in order to counterbalance the change in another 5 
variable and keep the total utility constant. The MRS is calculated as the ratio of the 6 
parameter estimates ( ߚȀߚ), where i and j denote two different variables of the model.  In 7 
most studies, MRS has been used to calculate marginal willingness-to-pay, using the 8 
marginal utility of price in the denominator and another variable (travel time for instance) 9 
in the numerator. In this case, the parameter of gap size has been used as the denominator 10 
and the ratios are computed using each of the other parameters as numerators. The results 11 
are illustrated in Figure 9 where the calculated MRS values represent the relative effect of 12 
each parameter with respect to the gap size parameter in each model. 13 
 14 
It should be mentioned that since the parameter of gap size is positive, the ratios with 15 
negative parameter are expected to be negative while positive ratios are expected when the 16 
opposite holds. Thus, when interpreting the MRS values, what is important is whether the 17 
absolute ratio value is higher than unity, rather than the sign of the ratio itself. For instance, 18 
|MRS|>1 shows that the change in utility, from a one-unit shift from the baseline of a given 19 
variable, is greater than the change corresponding to an increase in gap size by 1s. The 20 
opposite applies for |MRS|<1. 21 
 22 

 23 
Figure 9: Marginal rates of substitution 24 

 25 
As observed in Figure 9, the absolute values of MRS are larger than unity denoting all these 26 
variables have a higher contribution to the utility (in absolute terms) compared to the gap 27 
size variable (i.e. per second). Moreover, in all cases, the absolute values are higher for the 28 
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Model 1. The MRS for the last gap dummy indicates that the effect of the current gap being 1 
the last in the sequence of gaps is almost 8 times as negative as the increase of 1s in the 2 
gap size in the utility of gap acceptance in Model 1. However, in Model 4, it is 6 times as 3 
negative as the increase of 1s in gap size. For the approach speed, in the utility of gap 4 
acceptance in Model 1, the effect of an increase in approach speed of 1m/s is twice as 5 
positive as an increase of 1s in gap size. The same ratio in the Model 4 denotes that 1 m/s 6 
increase in approaching speed is approximately 1.4 times as positive as 1s gap increase. 7 
Likewise, the effect of a 1m increase in vehicle’s position (denoting proximity to the start 8 
of the intersection) is approximately 3.5 times and 2 times as positive as a 1s increase in 9 
gap size for Model 1 and Model 4 respectively. For the individual specific error term, the 10 
MRS values indicate the contribution of these in the utility are 4 and 3 times more than the 11 
contribution of gap size in Model 1 and Model 4 respectively. This reduction is expected 12 
as Model 4 captures the heterogeneity among the driver by means of the socio-demographic 13 
and physiological sensor variables leading to a reduction in unobserved heterogeneity.   14 
 15 
6. Conclusion 16 
 17 
The results of both the statistical analyses and the discrete choice model indicate a 18 
significant impact of time pressure on the gap-acceptance decision. The time pressure 19 
variable has an expected positive sign denoting that also else being equal, the probability 20 
of accepting a gap more than doubles in presence of time pressure. As expected, increasing 21 
gap size has a positive effect in acceptance probability. Moreover, socio-demographics as 22 
age and driving frequency, influence gap-acceptance probability. The effects of gap size 23 
and age are in line with the findings of previous literature. Further, empirical analyses 24 
demonstrate that the explanatory power of the models increases when the models are 25 
augmented with EDA and heart rate data. The gap acceptance probability was found to 26 
increase non-linearly with the increase with the skin conductance response and heart rates 27 
resulting significant increase in the probability (up to 40%) of accepting a gap. In addition, 28 
using the choice modelling framework made it possible to quantify the impact of time 29 
pressure and stress on sensitivities towards the traffic-related variables.  Results indicate 30 
that the inclusion of the physiological sensor measurements reduced the sensitivities 31 
towards the traffic-related variables, which can have important safety implications. These 32 
findings indicate the need for an additional dimension that should be considered in driving 33 
behaviour models for more realistic representation of reality. 34 
 35 
Despite the promising nature of the results, there are some limitations in this study that can 36 
be investigated in future research. First of all, the data was collected in a simulated 37 
environment and thus may be behaviourally incongruent due the experimental nature. 38 
However, it is not possible to control the driving situation to isolate the stress effects in a 39 
field study. We are investigating the transferability of models developed using the driving 40 
simulator to the field in separate research (Papadimitrou and Choudhury 2017) and ways 41 
to correct for the potential scale differences (Paschalidis et al. 2018) which will help to 42 
make the model coefficients more applicable in the field. Secondly, it should be noted that 43 
time pressure was always induced at the second intersection without counterbalancing 44 
between the two tasks. Though this is a standard approach in stress research (see Rendon-45 
Velez et al., 2016 for example) and the learning effect is likely to be minimal given the 46 
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experimental design, this is yet to be tested empirically. Moreover, it is worth mentioning 1 
that physiological responses actually represent ‘arousal’ which may be a reflection of other 2 
emotional states, positive or negative. Given the experimental setting of the current study, 3 
and the expected impact on drivers’ behaviour, we decided to conceptualize physiological 4 
responses as an expression of stress though it can be confounded with other forms of 5 
arousals as well. Another potential source of bias could be self-selection however, it is very 6 
likely that it is uncorrelated with stress levels and thus does not affect the results. Finally, 7 
in terms of the model structure, there is scope to use more advanced model structures (e.g. 8 
treating stress as a latent variable for instance) as well as enhance the models with ‘life 9 
stress’ and ‘trait stress’ data. Development of other driving behaviour models (signal 10 
violation, overtaking) and cross-comparison of the stress effects across scenarios will also 11 
be an interesting direction for future research. 12 
 13 
In terms of practical application of the models for prediction, the challenge lies in inferring 14 
the presence of time pressure and/or stress levels in real-life driving. However, with 15 
advances in ubiquitous computing technologies, it is now becoming feasible to measure 16 
stress levels in a very non-intrusive manner – wearable wristbands (as used in this study) 17 
and smartphone technologies that can detect stress levels from pitch and intervals of voice 18 
conversations (Sharma and Gedeon 2012, Lu et al. 2012). Given the extremely steep 19 
growth rate of wearables and smartphones, as well as advent of semi-autonomous cars 20 
(which have a wide range of sensors for inferring the surrounding traffic conditions), it is 21 
likely to be possible in near future to establish sophisticated models to sense stress levels 22 
of the driver and correlate it with potential influencing factors. Such prediction models for 23 
stress levels in real-world conditions will be very useful in widespread applications of the 24 
proposed model. This, coupled with the advances in the field of artificial emotional 25 
intelligence (Emotion AI) which has made it possible to device interventions to reduce 26 
stress (Fletcher et al. 2010, Picard et al. 2011), can make a significant contribution in 27 
increasing road safety. For instance, advances in vehicle operation technologies offer the 28 
opportunity for designing interventions to warn/advise drivers, limit acceleration- 29 
deceleration capabilities, introduce calming measures and even take over full control of the 30 
vehicle. The proper value addition of such novel technologies requires quantification of the 31 
safety impacts of stress. Our models can be used for such evaluations and/or subsequent 32 
willingness-to-pay. Applications may be also extended in the field of microsimulation to 33 
capture and better reflect driver heterogeneity. For example, there are emerging 34 
microsimulation models that combine activity models with traffic microsimulation (e.g. 35 
SimMobility (Adnan et al. 2016)). In these new types of tools, it is possible to include 36 
schedule delays in the traffic simulation component and our models can contribute to more 37 
realistic representation of driving behaviour in such simulation tools and hence increase 38 
their accuracy. 39 
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