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ARTICLES 

Diagonalization of multicomponent wave equations with a Born-Oppenheimer example 

Stefan Weigert and Robert G .  Littlejohn 

Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 

(Received 28 September 1992) 

A general method to decouple multicomponent linear wave equations is presented. First, the Weyl 

calculus is used to transform operator relations into relations between c-number valued matrices. Then 
it is shown that the symbol representing the wave operator can be diagonalized systematically up to arbi- 

trary order in an appropriate expansion parameter. After transforming the syn~bols back to operators, 

the original problem is reduced to solving a set of linear uncoupled scalar wave equations. The pro- 
cedure is exemplified for a particle with a Born-Oppenheimer-type Hamiltonian valid through second or- 

der in f i .  The resulting effective scalar Harniltonians are seen to contain an additional velocity- 

dependent potential. This contribution has not been reported in recent studies investigating the adiabat- 

ic motion of a neutral particle moving in an inhomogeneous magnetic field. Finally, the relation of the 
general method to standard quantum-mechanical perturbation theory is discussed. 

PACS numberk): 03.65.Sq, 03.40.Kf 

I. INTRODUCTION 

The spatiotemporal evolution of many physical sys- 

tems is governed by linear multicomponent wave equa- 

tions, the electromagnetic radiation field, and quantum- 

mechanical spinor wave functions being familiar exam- 

ples. I t  is common to study the approximate behavior of 

solutions with short wavelengths since under this as- 

sumption, typically, the problems simplify considerably 

without losing their essential features. Possibly a close 

relationship to an underlying, more familiar theory may 

emerge; such a situation can yield valuable insight into 

the original theory, as is the case for wave optics versus 

geometrical optics and for quantum mechanics versus 

classical mechanics. Going beyond the lowest order in 

some appropriate expansion parameter is more or less 
straightforward in problems involving scalar waves 

whereas in the case of multicomponent fields already the 

first nontrivial order tends to become laborious. In stud- 

ies of the adiabatic motion of a neutral particle subjected 

to an external magnetic field the question of higher-order 

terms arises naturally. 

I t  is the purpose of this paper to present a systematic 
method to diagonalize Hermitian multicomponent wave 

operators up to arbitrary order in an appropriate order- 

ing parameter. These results extend work done by 

Littlejohn and Flynn [1,2], who showed by making use of 
the Weyl calculus how to achieve the diagonalization up 
to the first nontrivial order; an investigation of elec- 

tromagnetic wave propagation along similar lines has 
been performed up to first order by Brent and Fishman 

[3]. This approach turns out to be so powerful that at  

least formally (in other words, putting aside questions of 

convergence) an exact diagonalization of arbitrary Her- 

mitian wave operators can be achieved. 

11. THEORY 

To  start, an outline of the approach to diagonalize 

multicomponent wave equations is given-for a more de- 

tailed account of the theory the reader is referred to 

Littlejohn's and Flynn's work, to which terminology and 

notation of the present work are adapted. 

Let the wave equation at stake be given by 

where the $, are the components of the A-dimen%onal 

wave field or "spjnor" V, and the ( A  X AA) matrix D has 

elements Da8(^q, k 1. The operators ̂ q and k correspond to 

position and momentum, and they are assum2d to fulfil1 

the commutation relations [@, ,km 1 = i d , ,  

( m ,  n = 1,2, . . . ). The quantity c denotes the ordering 

parameter and coincides in quantum-mechanical prob- 
lems with f i .  Often the position r%presentation is particu- 

larly conve_nient; with " q q  and k- - i d / a q  the linear 

operator D turns into a matrix of (pseudo) differential 
operators [4] coupling the components of Y(q) .  

By means of the Weyl calculus [5] a one-to-one 

correspondence between operators and symbols can be 
set up which in the position representation reads 

where iq)  are the elements of the position basis and Â  is 
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any operator. The operators hq, k ,  and D(hq,k ), in partic- 

ular, are mapped into uniquely defined phase-space func- 
tions q, k, and D ( q , k ) .  Effectively, symbols are c-number 
representations of operators with modified rules for form- 

ing products and, a fortiori, commutators. These rules 
keep trackhof the noncommutativity of the basic opera- 
tors hq and k.  

The Weyl correspondence has a number of appealing 
properties.* For ^example, the Hermiticity of the wave 

operator, D ~ ~ = D ~ ~ ,  is reflected in the Hermiticity of its 

symbol matrix, also called "dispersion tensor": 
D $ = D ~ ~ .  In addition (panturn-mechanical) expecta- 

tion values of operators A  turn into averages of phase- 
space functions A  (q ,  k )  with respect to appropriate den- 
sities in phase space. 

Basic to the following development is the Moyal for- 

mula [6] yh_ich relates the symbol of a prcduct 2f 
operators AB to the symbols of the operators A and B. 
Explicitly, one has 

where the operator e x p [ t z ]  is defined via its Taylor ex- 
pansion 

and the arrows indicate that the partial derivatives 

aq=a /aq ,  . . . act on the factors ondhe  left or  on the 

right of it, respectively; the operator h. is a useful short- 
hand for the ordinary Poisson bracket ! , ] ,  and the fac- 
tor i  /2 has been included for convenience. 

The sLrategy used to diagonalize the operator-valued 
matrix D co~s i s t s  in introducing an operator-valued uni- 
tary matrix U such that 

holds, where is required to have nonzero elements on 
the diagonal only. Having decoupled the individual "po- 
lariza_tionsH one can proceed to determine the_ solutions 
@=U 'T of the transformed wave operator A by stan- 
dard methods. Finally, one obtains the sought-after wave 
fields T of the operator B by writing 

The hard part of this program, clearly, consists of finding 
the operator 0 which diagonalizes the wave operator D. 

By making use of the Weyl correspondence rules the 
problem becomes tractable: having transcribed the 
operator relation Eq. (5) into a relation between fields of 
matrices defined all over phase space, one can resort to 
methods of linear algebra. This approach is base; on th_e 
assumption that the symbols of the operators U and A 

can be expanded into power series of the ordering param- 
eter E ,  that is, 

and, correspondingly, 

In  general, such expansions will hold in large parts of 
phase space; the ordering in E, however, breaks down in 
regions of "mode conversion" or "Landau-Zener cou- 
pling" [7] (cf. below). From now on it is assumed that ei- 
ther there are no such regions in phase space or  that one 
stays away from them. 

The requirement that 0 be a unitary operator imposes 
the following condition on the symbol matrices U,  : 

with U ,  l ,  v 1 0 ,  using Eqs. (4) and (7);  the Mth power of E 

is multiplied by a sum of ( M  + 1 ) ( M  + 2 ) / 2  terms. Com- 
paring the various powers of e on the left and right of Eq. 
(9) one finds 

1 + - - l  
O =  ,U,h. U,, M = 1 , 2 ,  . . . . 

1, U ,  

(u+l+u=M) 

As a result, the lowest-order symbol U ,  has to be a uni- 

tary matrix. Decompose the symbol matrices U ,  into 

two parts ( A ,  and B ,  are Hermitian matrices) 

where for later convenience the matrix U. has been fac- 

tored out. In other words, the matrices -~u;u, have 

been decomposed into their Hermitian and anti- 
Hermitian parts. For a given u = M  one finds that the 
matrix A M  is determined by all matrices U,, . . . , U,_,, 
since each of Eqs. (10) can be written as 

where the prime on the sum indicates that the terms with 
u = M  or v = M  have to be left out. For M = 1 this result 
reproduces correctly the first-order calculation [2] 

No condition whatsoever on the matrices B ,  follows 

from Eqs. (9); it will be shown momentarily that this free- 
dom is (more than) sufficient in order to diagonalize the 
symbol D. 

Instead of transcribing Eq. (5) directly into symbols (as 
Littlejohn and Flynn did) here the equivalent equation 

is chosen as a more convenient starting point: no triple 
products of operators occur which would require the 
twofold application of the Moyal formula (3). The sym- 
bol equivalent of Eq. (14) is given by 
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or, using Eqs. (41, (7), and (8), 

with in total ( M  + l ) ( M  + 4 ) /2 terms in the sum multi- 

plying the Mth power of E. The lowest-order term im- 

plies 

thus, the matrix U, is fixed by the condition that it diago- 

nalize D. Consequently, the columns of the matrix U,, 

that is, T$'= U,,+, are eigenvectors of the dispersion 

tensor D, 

with eigenvalues ALP) G A,,,,( q, k )  which are functions on 

phase space. There are A  eigenstates of the matrix D 
each of which is labeled by an index (p )  in parentheses in 
order to distinguish it from other labels which refer to 
the components of the vectors 7 ' ~ ' .  The unitarity of the 
matrix U, guarantees the normalization of the states 7'11'. 

In  these terms, regions of mode conversion are character- 
ized by eigenvalues ALP' and ALP'' separated by a "dis- 

tance" E or less, or by rapidly (over a length scale E) vary- 

ing eigenvectors r (p' and r 'p". 

Solving the Mth of Eqs. (16) for AM (which occurs ex- 

actly once) one finds 

where Eq. (17) has been used, and the bracket [ , ] stands 
for the matrix commutator. Since the commutator of any 

matrix with a diagonal matrix is equal to a matrix with 
zero diagonal elements one realizes that the nonvanishing 
diagonal terms of A, are completely determined 

by lower-order quantities U ,  . . . , U ,  and 

A,, . . . ,A,-,, and by D = U,A,U;. The requirement 

that A, be diagonal, in fact, is a condition on the as yet 

undetermined off-diagonal elements of the matrix BM: 

one can solve for these matrix elements by setting the 
off-diagonal elements of the left-hand side of Eq. (19) 
equal to zero, 

where the matrix in curly brackets of Eq. (19) is denoted 
by P, and the matrix A, is assumed to have no degenerate 

eigenvalues. As a result, all the elements of the matrices 

A ,  and BM are determined by the condition that U be a 

unitary matrix which diagonalize the dispersion tensor D 
up to the Mth order-all elements except those on the di- 
agonal of B,. It has been remarked by Littlejohn and 

Flynn [2] that the diagonal elements of the matrix [8] B 1  

effect a phase transformation of the states r ' p '  only and, 

therefore, are physically not relevant. Their argument, 
however, is correct only through terms of first order in E 

and, thus, cannot be applied here. For the time being, 
the ambiguity of the diagonal elements of B,w, thus, has 

no physical explanation; to achieve the diagoialization of 
D, it is sufficient and convenient [9] to choose B,,,,=O 

for all values of M. 

H:ving diagonalized the symbol D of the wave opera- 
tor D up to the desired order one can determine, at  least 
in principle, the operators associated with the symbols on 
the diagonal of A by inverting the Weyl correspondence, 

Eq. (2). Then, one has to find an exact or approximate 
solution of the resulting scalar wave equations, and from 
the knowledge of the2ymbol U-which fixes the di- 
agonalizing operator U-one eventually will find the 
solutions of the original set of Eq. ( l ) ,  using Eq. (6). 

111. A BORN-OPPENHEIMER-TYPE EXAMPLE 

A quantum system with a wave operator B = A - E I ^ ~  
considered as an example. The Hamiltonian operator H 
reads 

and the A X A unit matrix is denoted by I. The com- 

ponents of \y are coupled by the matrix V(^q) which de- 
pends on the operators ^q only. Such Hamiltonians arise, 
for example, in the Born-Oppenheimer treatment of mol- 
ecules [l01 (with A corresponding to the number of 
effectively coupled electronic states), or in the study of 
neutral particles with nonzero magnetic moment in exter- 
nal magnetic fields [ l  1,121 (with A  =2s + l being the 
number of spin states). In the following, the Hamiltonian 
H ( @ @ )  will be diagonalized up to second order in E 

which is to be identified with Planck's constant f i .  It is 
assumed that either there are no mode conversion regions 
in the problem at hand, or that one stays away from such 
regions in phase space. 

The noztrivial part of the Weyl transform of the wave 
operator D is given by that of the Hamiltonian 

To  lowest order in E, one has to determine the matrix U, 

which diagonalizes D, Eq. (17). Since the kinetic energy 
term is already diagonal, the eigenvectors of D are identi- 
cal to those of the potential matrix V(q),  

which will be assumed to be nondegenerate: ~ k ' f  V#'' 

for p#pl .  Note that the eigenvectors ~ ' p ' = . r ' b " ( ~ )  de- 
pend on q only [13]. Consequently, the terms on the di- 
agonal of A, read 
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and the dispersion surfaces (representing the physically 
relevant parts of phase space) are defined by the condi- 

tion A~'L '=o.  

In the following the second and third terms in the ex- 
pansion of the symbol 

are calculated explicitly by evaluating Eq. (19) for M = 1 
and 2. The result is displayed in Eq. (44). 

It is straightforward to calculate the first-order correc- 
tions to the diagonal terms of A, by writing down Eq. 

(19) for M - l ,  

Since U ,  is composed of the eigenvectors T(,' it depends 

on q only, and one finds in agreement with previous re- 
sults [7] 

where A (@'G A,, denotes the elements on the diagonal 

of 

A ,p = i r ' " ' * . ~ r ( ~ ' = i ( a l ~ / 1 1 3 )  ; (28) 

here the Dirac notation / a )  for the states T ( ~ !  has been 
introduced. 

In order to proceed to second order one has to deter- 

mine the matrix U ,  =U,( A ,  - iB1 ). Since U,= U , ( q )  it 
follows from Eq. (13) that A ,  =O.  The off-diagonal ele- 

ments of the matrix B ,  are given by 

and the diagonal elements of this matrix had been chosen 
to be zero: B ,,,, = 0. 

The second-order correction A2 is obtained from Eq. 

(19) for M =2, - 
n 2 = u ~ ( + c ~ Z 2 u , - u , ~  2 ~ 0 )  

+ ~ D ~ u , - u , ~ A ~ - u , ~ A , ) - u , A ~ ]  

+[A,,  A , - iB2]  . (30) 

Using the explicit form of the Hamiltonian, Eq. (221, and 
Eq. (24) one obtains 

where VD is obtained from diagonalizing the potential 

matrix V, and U ,  = - iUoB,  has been used. 

First of all, the terms containing the square of 2, as a 
matter of fact, do not contribute since they exactly cancel 
each other, 

( p 2 z 2  2uo~ ,~=~appap~~2~ , ,~~aypa ,u  U,,) 

- (aypayu U,,,,. )( % p a p o ~  '6y,3) 

- 2  2 =(Uo& p I),,  . (32) 

Here and in the following summation over indices occur- 
ring twice is assumed implicitly; bracketed indices ( ), 

however, are excluded from the summation convention. 
Next, a similar argument shows that the remaining 

terms with a factor p 2  give identical contributions. Us- 

ing U, ,p ,  = - i U O , p T B l , T ~  one obtains 

= -B,,,,P.VUo,,, - ~ , , u u ~ . V B l , u ,  . (33) 

Multiplication by U: from the left yields 

so that the contribution to the diagonal of A2 is given by 

Then, the fifth term in Eq. (3  1 )  follows from multiplying 

I l 
- - ,  ] = --- A tfl).v7Lfl) 

2 l 2m 
(36) 

from the left with U ;  leading to 

with diagonal elements 

i  1 
- - ( U : {  U o , A 1 ]  l,,=---A(,"A',' . 

2 2m 
(38) 

Only one of the remaining two terms linear in p gives a 
nonzero contribution. The second one, stemming from 

is equal to zero since B,,,, =O. The other term can be 

written as 

Using Eq. (23) one finds 
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so that 

and thus for a = P = p  

The eighth term of the right-hand side of Eq. (31) does 
not contribute since it is the product of the diagonal ma- 
trix A,  with B ,  which was assumed to be zero on the di- 

agonal, and the last term of Eq. (3 1) vanishes on the diag- 

onal anyway. 
The final result for the second-order dispersion tensor 

is obtained by collecting all the terms of Eqs. (24), (27), 

(351, (38), and (43), 

In this expression first- and second-order terms combine 
to formally reproduce the structure of a Hamiltonian of a 
particle in fictitious electromagnetic fields with vector 
and scalar potentials-apart from the last term which 
can be interpreted as an additional momentum-dependent 

potential. I t  originates from the first-order off-diagonal 
terms. 

The transformation of the symbol A'"' back to an 
operator 2'"' is achieved by using the following 
correspondence rules [14], obtained from inverting Eq. 

(2): 

which come down to "symmetrizing" the classical ex- 
pressions in q and p and subsequently replacing the 
canonical variables by the operators ^q and ^p. The opera- 
tors on the diagonal of the transformed wave operator 
read 

where 

3 

G,,(^q,^p )=f 2 [pjpkg/YkP(^q)+pjg/Yk"(^q)p^k 
j , k = l  

with the abbreviation 

It is remarkable that one obtains a formally identical 
second-order contribution from a perturbational analysis 
of a model where both spin and particle motion are treat- 
ed completely classically [15]. Comparing this result 
with calculations done for a neutral particle with magnet- 
ic moment moving in an  external magnetic field [11,12] 

shows that the last term of Eq. (46) in this context has not 
been reported earlier, although it follows necessarily in 

the present systematic procedure. The actual size of the 
various terms in Eq. (46) is discussed in detail for the 
motion of a neutral particle with magnetic moment in an 

inhomogeneous magnetic field [ l  51. 

IV. RELATION 

TO QUANTUM PERTURBATION THEORY 

The structure of the first- and second-order terms in 
the final expression of the diagonalized symbol, Eq. (44), 

is similar to that of the familiar formula of quantum- 
mechanical perturbation theory according to Rayleigh 
and Schrodinger. In  an M-dimensional Hilbert space the 
first corrections to the nth ener_gy eigenvalue E:'' of the 

unperturbed Hamiltonian [l61 H, read 

~ , ( E ) = ~ ~ ~ ~ + E ~ ~ ~ " + E ~ ~ ~ ~ ) + O ( ~ ~ )  

where V,, are the matrix elements of a perturbing poten- 

tial F in the unperturbed basis with states n ) . 
For a comparison of the expressions stemming from 

multicomponent wave equations and standard quantum- 
mechanical perturbation theory it is useful to present the 
latter one in terms of matrix notation [17]. In this varia- 

tion of the common formulation all states are displayed 
at  the same time [IS], and one writes down Schrodinger's 
equation with respeckto the eigenfunctions of the unper- 
turbed Hamiltonian H. in the compact form 

U being a unitary matrix as before and E being a diagonal 
matrix. Assuming that the Hamiltonian is given in the 
form 

and that the expansions 
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