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ABSTRACT 28 

Misdiagnosis of enteric fever is a major global health problem resulting in patient mismanagement, 29 

antimicrobial misuse and inaccurate disease burden estimates. Applying a machine-learning algorithm 30 

to host gene expression profiles, we identified a diagnostic signature which could accurately 31 

distinguish culture-confirmed enteric fever cases from other febrile illnesses (AUROC>95%). 32 

Applying this signature to a culture-negative suspected enteric fever cohort in Nepal identified a 33 

further 12.6% as likely true cases. Our analysis highlights the power of data-driven approaches to 34 

identify host-response patterns for the diagnosis of febrile illnesses. Expression signatures were 35 

validated using qPCR highlighting their utility as PCR-based diagnostic for use in endemic settings. 36 
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Enteric fever, a disease caused by systemic infection with S. enterica serovars Typhi or Paratyphi A, 37 

accounts for 13.5 to 26.9 million illness episodes worldwide each year.1,2 In resource-limited tropical 38 

settings these infections are endemic and the accurate diagnosis of patients presenting with 39 

undifferentiated fever is challenging. 40 

Diagnostic tests for enteric fever rely on microbiological culture or detection of a serological response 41 

to infection, and are often unavailable or insufficiently sensitive and specific.3 Blood culture remains 42 

the reference standard against which new diagnostic tests are evaluated, and the sensitivity for this test 43 

can reach 80% under optimal conditions4 but low blood volumes and uncontrolled antibiotic use often 44 

result in decreased sensitive in the field. New diagnostic approaches are urgently needed to enable the 45 

accurate detection of enteric fever cases in endemic settings, to guide management of febrile patients, 46 

appropriate use of antimicrobials, and to identify populations likely to benefit from vaccine 47 

implementation. 48 

Most common tests used for acute infectious disease diagnosis employ methods to directly detect the 49 

disease-causing pathogen, either by culture, antigen detection or amplification of genetic material by 50 

PCR. An alternative approach is to identify a set of human host immune responses, which together 51 

may generate a specific pattern associated with individual infections or pathogens. With an increasing 52 

quantity of molecular host response data being generated by high-throughput methods – including 53 

whole blood gene expression profiling – differences in the activation status of the immune response 54 

network during infection may be a tractable diagnostic approach. Recently small sets containing 2-3 55 

genes have been described, the expression of which can accurately differentiate between viral or 56 

bacterial infection, and active or latent tuberculosis.5,6 Merging available well-characterised datasets 57 

derived from human clinical samples representative of a variety of fever-causing infections common 58 

in tropical settings presents an invaluable resource to identify host immune response patterns specific 59 

for enteric fever.  60 

As a human restricted infection, the development of enteric fever diagnostics has been hindered by the 61 

lack of reliable in vivo models. Using data from a series of controlled human infection models 62 

(CHIM)4,7 or S. Typhi or S. Paratyphi A infection, whole blood gene transcriptional responses were 63 

identified and then further characterised using samples collected from febrile patients in an endemic 64 

setting (Kathmandu, Nepal). Integrating these data with publically available human gene transcription 65 

datasets, we employed a machine learning algorithm to identify an expression signature that could 66 

accurately distinguish blood culture-confirmed EF cases in both the controlled environment (CHIM) 67 

and endemic setting from other febrile disease aetiologies and non-infected individuals (healthy 68 

controls).8-12 69 

  70 
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Results 71 

Transcriptional profiles in response to enteric fever are similar in challenge study and endemic 72 

cohorts 73 

We recently described the molecular response profile of acute enteric fever in individuals 74 

participating in the typhoid CHIM, which was characterized by innate immunity, inflammatory and 75 

interferon signalling patterns.13  76 

To compare responses to enteric fever occurring during natural infection in an endemic area, we 77 

generated transcriptional profiles in samples collected from culture-confirmed enteric fever patients 78 

(S. Typhi: ‘03NP-ST’; S. Paratyphi: ‘03NP-SPT’), healthy community controls (‘03NP-CTRL’) and 79 

febrile, culture-negative suspected enteric fever cases (‘03NP-sEF’) recruited in Nepal (Kathmandu; 80 

Study: ‘03NP’) (Figure 1a). We detected significant differential expression (DE; FDR<0.05, 81 

FC±1.25) of 4,308 and 4,501 genes in enteric fever patients with confirmed S. Typhi (n=19) and S. 82 

Paratyphi (n=12) bacteraemia, respectively, when compared with healthy community controls (n=47; 83 

Figure 1b). Similar numbers of genes were differentially expressed in samples collected at the time of 84 

enteric fever diagnosis in healthy adult volunteers challenged with either S. Typhi (‘T1-ST’) or S. 85 

Paratyphi (‘P1-SPT’) in a CHIM (Figure 1b).7,13 86 

As comparison of host responses at the gene level can be difficult to interpret, we performed Gene Set 87 

Enrichment Analysis (GSEA)14 of blood transcriptional modules (BTMs) as a conceptual framework 88 

to interpret the host responses in the context of biological pathways and themes.15 Overall, between 54 89 

and 74 BTMs were significantly enriched (BH adjusted p<0.01) in blood culture-confirmed enteric 90 

fever cases in the CHIM and natural infection and CHIM participants who did not develop enteric 91 

fever (measured at day 7 post-challenge - ‘nD7) (Supplementary Table 1). The majority of BTMs 92 

enriched in cases from the enteric fever CHIM were also enriched in naturally infected cases from 93 

Nepal (56%-69, Supplementary Table 1–red squares). Positively enriched modules represented cell 94 

cycle (CCY), type I/II interferon and innate antiviral responses (IFN), dendritic cell (DC), innate 95 

immunity, inflammation and monocyte (Infl./Mono) signatures. In contrast, T cell (TC) signatures 96 

were down-regulated in patients with confirmed enteric fever, as we have previously described 97 

(Figure 1c-e).13 In addition a number of modules including inflammasome receptors (M53), 98 

monocyte enrichment (M118.0, M118.1, M81, M4.15, M23, M73, M64, S4) and inflammatory 99 

responses (M33) were significantly enriched in the CHIM but not in cases from Nepal. Single sample 100 

GSEA (ssGSEA) demonstrated the similar enrichment pattern for a selection of IFN and DC 101 

signatures between individuals with confirmed typhoid and paratyphoid fever in the CHIM and 102 

naturally infected cases (Figure 1f). Overall, we observed marked similarity in the gene transcription 103 

responses between acute enteric fever cases from the CHIM and an endemic setting in Nepal. 104 

 105 

 106 
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Responses of febrile, culture-negative samples in Nepal 107 

In culture-negative, suspected enteric fever patients (‘sEF’) from Nepal, we detected differential 108 

expression of 3,517 genes when compared with healthy community controls (Supplementary Figure 109 

1b). While we observed 2,843 genes as commonly expressed in all three Nepali patient cohorts 110 

(03NP-ST, 03NP-SPT and 03NP-sEF), an additional 582, 756 and 183 genes were uniquely expressed 111 

by subjects with confirmed S. Typhi, S. Paratyphi or suspected enteric fever, respectively 112 

(Supplementary Figure 1a&b). Unsupervised hierarchical clustering of these patients based on their 113 

expression of the 500 most variable genes in the Nepal cohort demonstrated clustering into three 114 

groups (Figure 1g): Group 1 contained mostly healthy control participants; Group 2 contained mostly 115 

patients with suspected enteric fever; and Group 3 contained a mixture of patients with suspected 116 

enteric fever, and blood culture-confirmed S. Typhi or S. Paratyphi infection.  117 

Using ssGSEA we observed a heterogeneous BTM enrichment pattern with broad variability in 118 

normalized enrichment scores across suspected enteric fever patients (depicted by the interdecile 119 

range; Supplementary Figure 1c). The most consistent positively or negatively enriched modules 120 

represented cell cycle, IFN, inflammatory responses, DC and some NK cell signatures (green cluster) 121 

and TC and BC related signatures (red cluster), respectively. In contrast, heterogeneous enrichment in 122 

which approximately half of participant samples demonstrated up or down regulation was observed in 123 

BTMs representing TC activation patterns, protein folding and metabolism (brown cluster), or in 124 

innate response and monocyte signatures (purple cluster) (Supplementary Figure 1c). These febrile 125 

patients were considered clinically to have enteric fever, and were therefore treated as such, however 126 

their heterogeneous gene transcription profiles suggest that any one of several different aetiologies 127 

may have precipitated hospital presentation. Further evidence to this is that in a recent RCT a higher 128 

proportion of culture-negative cases responded to fluoroquinolones rather than a 3rd generation 129 

cephalosporin, possibly due to the frequency of murine and scrub typhus in this population, however 130 

distinguishing between these infections is currently difficult.  131 

 132 

Multi-cohort data quality assessment 133 

In order to address the potential over-diagnosis of enteric fever and associated inappropriate 134 

antimicrobial use, we next aimed to identify a set of genes whose expression is able to differentiate 135 

enteric fever from other common febrile conditions found in tropical settings. We repurposed 136 

publically available datasets describing host transcriptional response in two malaria,10,16 four 137 

tuberculosis,8,17 and four dengue cohorts (Supplementary Table 2).9,18,19 We designed a discovery 138 

cohort consisting of control samples from each respective study (n=220 community controls or 139 

convalescent samples, ‘CTRL’), 74 enteric fever (‘EF’), 94 blood stage P. falciparum (‘bsPf’), 67 140 

dengue (‘DENV’) and 54 active pulmonary tuberculosis (‘PTB’) cases. An independent validation 141 

cohort consisted of 109 CTRLs, 50 EF, 19 bsPf, 49 DENV, and 97 PTB samples (Figure 2).  Finally, 142 
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a cohort of ‘unknown’ samples was created consisting of febrile culture-negative, febrile suspected 143 

EF cases from Nepal (‘sEF’), and samples collected from CHIM study participants who did not elop 144 

enteric fever after challenge at day 7 (‘nD7’) and their respective pre-challenge baseline samples 145 

(‘D0’) (Figure 2). Using Principle Component Analysis (PCA) to assess the variability at the level of 146 

gene expression between the cohorts indicated some distinct clustering between cases 147 

(Supplementary Figure 2a), for each infection whereas no such differences were observed with the 148 

comparator CTRL samples (Supplementary Figure 2b). 149 

 150 

Five genes sufficiently distinguish EF from other febrile infections 151 

With these data, we aimed to build a classifier containing a minimum set of genes that could 152 

discriminate culture-confirmed enteric fever cases from individuals with other causes of fever (class: 153 

‘Rest’, consisting of CTRLs, DENV, PTB and bsPf) (2-class classification, Figure 2) using a Guided 154 

Regularized Random Forest (GRRF) algorithm.20 Genes were ranked by frequency of selection in 155 

each of 100 iterations, and applying a selection threshold of ш25%, we identified a putative diagnostic 156 

signature containing STAT1 (98% of iterations), SLAMF8 (76%), PSME2 (39%), WARS (37%), and 157 

ALDH1A1 (36%) (Figure 3a). With this 5-gene signature we were able to predict which individuals 158 

in the validation cohort had enteric fever with a sensitivity and specificity of 97.1% and 88.0%, 159 

respectively (AUROC: 96.7%) (Figure 3b, Supplementary Table 3a). Of blood culture-confirmed 160 

enteric fever cases in the validation cohort, 6/51 were misclassified as ‘Rest’ (i.e. classification 161 

probability>0.5, Figure 3c-top), and 8/274 samples belonging to class ‘Rest’ were classified as 162 

enteric fever. These included six tuberculosis and one dengue case, and a pre-challenge baseline 163 

sample from a CHIM participant (Figure 3c-bottom).  164 

To allow comparison between the different disease conditions, we quantified expression of the 5 165 

genes identified in each sample using the z-score of the geometric mean of the expression values 166 

(expression score). Significant differences in expression scores were observed between the enteric 167 

fever samples and all other conditions in both the discovery (top) and the validation (bottom) cohort 168 

(Figure 3d). Of note, there were no significant differences between the scores calculated for the 169 

control samples derived from endemic areas or naïve, healthy controls from the CHIM, indicating the 170 

homogeneity of expression to these genes in healthy controls from different study and geographical 171 

locations.  172 

The design of discovery and validation cohorts is likely to have an impact on the diagnostic signature 173 

selected, and we therefore exchanged the validation and discovery cohort and re-ran the analysis. 174 

Although in this experiment 4 instead of 5 genes were selected (using a threshold ≥25%), most genes 175 

included were also part of the initial signature (STAT1, SLAMF8, WARS) and the high predictive 176 

accuracy was maintained (AUROC: 97.2%) (Supplementary Figure 3a&b). These results 177 
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demonstrate the ability of a small number of genes to accurately predict true EF cases from other 178 

febrile illnesses caused by another bacterial pathogen (TB), and of parasitic or viral origin. 179 

 180 

Multiclass prediction accurately classifies three of five conditions simultaneously 181 

Given the apparent success of small gene expression signatures in classifying two distinct groups, we 182 

sought to leverage the overall dataset and the GRRF algorithm to identify a signature that could 183 

accurately classify more than two classes simultaneously. We re-analysed the data preserving the 184 

original class labels (i.e. CTRL, bsPf, DENV, PTB and EF) and performed the iterative feature 185 

selection step using the GRRF algorithm (Figure 2–“multiclass classification”). Applying a ≥25% 186 

selection threshold to ranked features identified 7 genes (RFX7, C1QB, ANKRD22, WARS, BATF2, 187 

STAT1, and C1QC) able to discriminate the classes (Figure 3e). Prediction of the validation cohort 188 

using this 7-gene signature indicated good sensitivity and specificity for accurately classifying CTRL, 189 

bsPf and EF cases, however the identification of DENV and PTB was less accurate (Figure 3f, 190 

Supplementary Table 3b). Analysis of individual gene expression levels in each group indicated that 191 

RFX7 was only upregulated in bsPf samples, while STAT1, WARS as well as ANKRD22 and BATF2 192 

were all strongly upregulated in EF. Expression of these genes in PTB and DENV samples was 193 

variable accounting for the lower performance of the signature in these conditions (Supplementary 194 

Figure 4a&b).  195 

 196 

Prediction of unknown samples  197 

Given the superior performance of the 2-class diagnostic signature, our subsequent analyses focused 198 

on using the initial 5-genes identified to ascertain whether enteric fever was the likely true underlying 199 

aetiology of suspected febrile, blood culture-negative cases in Nepal (sEF; n=71), part of the unknown 200 

cohort (Figure 2). Included in this cohort were 144 samples originating from the challenge study with 201 

known class membership confirming the correct classification of 94.4% of the samples by the GRRF 202 

algorithm (Supplementary Table 4).  203 

Classification of these sEF cases predicted 9/71 (12.6%) febrile, culture-negative patients to be true 204 

enteric fever cases and the remaining samples to belong to class ‘Rest’ (Figure 4a). Relating the gene 205 

expression scores to the predicted class probabilities indicated no clear separation of scores according 206 

to the predicted class (Figure 4b). Furthermore, comparing the expression score of febrile, culture-207 

negative samples with culture confirmed enteric fever in Nepal showed a marked overlap, indicating 208 

that these scores alone are insufficient for 2-class discrimination (Figure 4c). 209 

 210 

Diagnostic validation by qPCR 211 
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Finally, to validate the induction of the diagnostic gene signature in blood culture-confirmed enteric 212 

fever cases, we performed high-throughput qPCR in samples collected during an independent typhoid 213 

CHIM (Supplementary Table 2)21 and in the Nepali cohort. Transcription of the 5-gene signature 214 

was increased at the time of diagnosis in most participants with culture-confirmed enteric fever in 215 

both sample sets (Figure 4d&e). Two CHIM participants diagnosed with typhoid infection and one 216 

patient infected with S. Paratyphi in Nepal showed low expression of all genes and a resulting low 217 

expression score (Figure 4e–black arrows). In contrast, one day 7 sample from a participant not 218 

diagnosed with enteric fever demonstrated high expression of the putative diagnostic gene signature 219 

(Figure 4e–black arrows).  220 

As surrogate disease severity markers, temperature showed poor correlation with the expression score 221 

in both CHIM and endemic setting culture-confirmed enteric fever cases (Figure 4f&g–left). In 222 

contrast, C-reactive protein levels (only available for CHIM participants) were significantly 223 

associated with the expression score of the 5-gene signature (Figure 4f&g–right) thus underlining the 224 

relevance of this signature in reflecting the clinical presentation of enteric fever. In the Nepal cohort, 225 

gene expression also strongly correlated between the array and qPCR data (Supplementary Figure 226 

6). Overall these results verify the strong expression of the putative diagnostic signatures in samples 227 

from patients with acute enteric fever and underline the clinical plausibility through association with 228 

disease severity parameters. 229 

  230 
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Discussion 231 

New approaches to diagnose patients with enteric fever are urgently needed, as currently available 232 

methods are antiquated and unreliable. New diagnostic modalities are required, to both improve the 233 

immediate management of patients, and to increase the accuracy of disease burden measurements to 234 

support targeted vaccine implementation. Here we demonstrate a reproducible host expression 235 

signature of 5 genes (STAT1, SLAMF8, PSME2, WARS, and ALDH1A1) able to discriminate EF cases 236 

from other common causes of fever in the tropics with an accuracy of >96%. To our knowledge, this 237 

exceeds the performance of all previously described enteric fever diagnostic methods, which often 238 

perform less well when assessed using samples collected directly from patients or participants. 239 

Moreover, application of high-throughput methods such as functional genomics, to this major health 240 

concern,22 underscores the importance and tangible benefits of applying ‘omics-technologies’ to 241 

combatting infectious diseases in the most needy populations.23 While further optimisation work is 242 

required, validating the expression of our signature using conventional methods such as qPCR 243 

demonstrates feasibility of further development into an affordable diagnostic test for use in endemic 244 

settings.24 245 

The degree of perturbation of molecular responses occurring during enteric fever can be confounded 246 

by the duration of clinical illness (ranging in 12hrs to ≥3 days in the CHIM and patients from Nepal. 247 

, respectively) or the specific pathogen (S. Typhi or S. Paratyphi). This may hinder identification of a 248 

reproducible gene expression signature reliably expressed in various settings. The responses to S. 249 

Typhi and S. Paratyphi cases in Nepal were remarkably similar, with the majority of DE genes 250 

overlapping between the two groups, which is unsurprising given the close genetic relatedness of both 251 

pathogens.25 Enrichment of BTMs resembled responses described previously by us13,26 and underlined 252 

the concordance between culture-confirmed enteric fever cases from Oxford and Nepal despite the 253 

possible differences between challenge and currently circulating strains. 254 

Despite the multiple redundancies incorporated into human immune pathways driven by successful 255 

evolution,27 our data suggest that the pattern of immune response activation is sufficiently specific to 256 

allow identification of the causative pathogen. For example, while immune responses during enteric 257 

fever and TB are broadly characterized by IFN-signalling, we and others have reported that this 258 

response during acute S. Typhi infection appears to be skewed towards a type-II pattern likely 259 

associated with neutrophils and NK cells rather than the type-I dominated profile found in TB.7,8,13,28-260 

31 Application of computational methods to large datasets including host gene expression has been 261 

shown to be an effective approach to capture such differential activation of immune pathways.5,6 Two 262 

of the genes identified in our 5-gene diagnostic signature are important entities in the IFN-i signalling 263 

cascade (STAT1, WARS), which has been broadly implicated in the responses to enteric fever, TB,8 264 

dengue,32 and P. falciparum33 infection. The discriminatory impact of increased expression of these 265 

genes identified in our analysis, however, suggests that there are distinct differences during the 266 
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responses to these very different pathogens sufficient to discriminate underlying disease aetiology34,35 267 

possibly based on subtle metabolic differences.13,36 While STAT1 and WARS are markers of an IFN-i 268 

response, SLAMF8 is surface-expressed protein37 found in macrophages, DCs and neutrophils and 269 

induced by IFN-i or Gram-negative bacteria.38 SLAMF8 negatively regulates ROS production 270 

through inhibition of NADPH oxidase 2 (NOX2) in the bacterial phagosome and reduces ROS-271 

induced inflammatory cell migration.39 While oxidative stress is a common response to infection, 272 

Salmonella survival is reduced in SLAMF1-deficient mice and can interfere with localization of 273 

functional NOX2 in Salmonella-containing vacuoles (SCVs), linking SLAM proteins and oxidative 274 

stress.40 PSME2 is one of two interferon-inducible subunits of the 20S immunoproteasome (IP) 275 

regulator 11S and is involved in immune responses and antigen processing.41 The 20S IP can be 276 

induced by oxidative stress and preferentially hydrolyses non-ubiquitinated proteins.42,43 Thus, genes 277 

involved in these processes may be exploited to distinguish between pathogens inducing oxidative 278 

stress from those also triggering ubiquitination.44,45 While ALDH1A1 has not specifically been linked 279 

with responses to invasive bacterial infections, it is involved in gut-homing of TCs through expression 280 

of retinoic acid,46,47 a phenotype we have observed following infection with S. Typhi.26 C1QB and 281 

C1QC are well-known subunits of the complement subcomponent C1q and, together with ANKRD22 282 

(involved in cell cycle control48), have previously been described as part of a signature able to 283 

distinguish active from latent TB.17 The function of the transcription factor RFX7 is largely unknown, 284 

but has been found to be strongly up-regulated during blood stage malaria and its selection in our 7-285 

gene signature is therefore likely to be driving the classification of malaria cases.  286 

Of note, while multiclass classification is difficult to perform and here merely serves as demonstration 287 

that data driven approaches may be capable of performing this task, it is interesting to observe 288 

increased misclassification rates specifically in the DENV and TB groups. In the validation cohort, 289 

the majority of misclassified DENV cases were identified as enteric fever (5/49) or TB (9/49), and 290 

misclassified TB samples as enteric fever (13/97) or DENV (23/97), possibly reflecting the 291 

overlapping immune response seen due to the intracellular nature of all three pathogens. In the TB 292 

group, 15/97 samples were misclassified as controls, compared with one DENV sample being 293 

misclassified as such for example, potentially owing to the broad clinical phenotype or lack of 294 

inflammatory/immune responses seen in the peripheral blood during tissue specific pulmonary TB 295 

infection. 296 

Overall, the genes identified in both signatures through our unbiased selection approach are supported 297 

by previous studies including those aiming to develop predictive diagnostic signatures.8,17,49 In the era 298 

of biological ‘big data’, several studies have explored the utility of gene transcription signatures 299 

capable of discriminating viral aetiologies, viral or bacterial infections as well as acute or latent 300 

tuberculosis.5,6,17,50-53 Only in the tuberculosis studies have such signatures been identified from 301 

samples collected in high-incidence, disease endemic settings and been further validated against other 302 
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disease processes including (but not limited to) pneumonia, sepsis, and streptococcal and 303 

staphylococcal infections.6,8,50 Herberg et al. demonstrated that distinction between viral and bacterial 304 

infections could be achieved based on two genes only.5 In contrast most efforts undertaken to 305 

diagnose active TB employ biomarker signatures ranging in size from 3-86 genes, possibly due to 306 

broad and heterologous molecular responses seen in response to differing clinical phenotypes of 307 

infection. In our analysis we specifically focused on pathogens with the potential to cause 308 

undifferentiated febrile illnesses in tropical settings. While the clinical presentation and epidemiology 309 

of the infections chosen may be sufficient to distinguish the aetiologies clinically, enteric fever has a 310 

broad differential diagnosis and is frequently over-diagnosed in the absence of confirmatory 311 

laboratory results. Notably, despite the high prediction accuracy of the signatures identified in our 312 

analysis, this type of data modelling is highly dependent on the quality and availability of suitable 313 

input datasets. Although an increasing amount of data is accumulating in the public domain, few well-314 

defined datasets of samples representing a larger repertoire of febrile illnesses are available. For 315 

example, rickettsial infection is likely to underlie a large burden of the culture-negative cases in 316 

Nepal, however no gene expression datasets exist and the lack of adequate confirmatory diagnostic 317 

tests further hinders the inclusion of such data in our analysis. 318 

Although the 5-gene signature achieved high accuracy in identifying enteric fever cases, several 319 

culture-confirmed cases were misclassified. Metadata from samples collected in the Oxford CHIM 320 

indicate that the majority of these misclassified samples had a temperature below 37żC (5/6) and were 321 

diagnosed beyond 7 days after challenge (4/6), which, in our CHIM experience, is likely to indicate a 322 

less severe disease phenotype. In contrast, six nD7 samples from the Oxford CHIM (part of the 323 

unknown cohort) classified as enteric fever showed some sign of response either based on increased 324 

cytokines, temperature or a positive stool culture (data not shown). Because our analysis was purely 325 

data driven and not motivated by clinical suspicion, we believe that these observations and the 326 

significant association of the gene expression scores with CRP provide sufficient evidence that these 327 

study participants had infection despite not meeting our study endpoint definitions for enteric fever. 328 

In summary, our work demonstrates how a large gene expression dataset derived from challenge study 329 

cohorts and settings endemic for febrile infectious diseases can be exploited for diagnostic biomarker 330 

discovery. Verification of the putative diagnostic signature using qPCR in independent validation sets 331 

indicates that a diagnostic test derived from these gene expression data could be developed for 332 

deployment in resource-limited settings. The application of purely data-driven analyses to large and 333 

well-defined host-pathogen datasets derived from disease relevant populations may enable us to 334 

develop a single, highly accurate diagnostic signature which would allow rapid identification of the 335 

main fever-causing aetiologies from readily available biological specimens.   336 
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Online Methods 337 

Typhoid challenge model 338 

Samples included in the discovery cohort were collected during a typhoid dose-escalation study in 339 

which 41 healthy adult volunteers ingested a single dose of S. Typhi Quailes strain following pre-340 

treatment with 120 mL sodium bicarbonate solution (Study: T1). In this study, one of two doses were 341 

administered: 1-5x103 (n=21) and 1-5x104 (n=20).4 Samples used in the validation cohort were 342 

collected from a second typhoid challenge model performed as part of a vaccine efficacy study 343 

(Study: T2), in which healthy adult volunteers ingested a single dose of S. Typhi Quailes strain (1-344 

5x104, n=99) 4 weeks after oral vaccination with Ty21a, M01ZH09 or placebo.54 Lastly, samples 345 

collected from the control arm of a further vaccine efficacy challenge study, in which participants 346 

received meningococcal ACWY-CRM conjugate vaccine (MENVEO®, GlaxoSmithKline) prior to 347 

challenge, were used for the independent qPCR validation experiment.21 The clinical and molecular 348 

results of these studies have been described previously.4,7,21,54 In all typhoid challenge studies 349 

participants were treated with a 2-week course of antibiotics at the time of diagnosis (fever ≥38°C 350 

sustained for ≥12hrs and/or positive blood culture), or at day 14 post-challenge if diagnostic criteria 351 

were not reached. 352 

 353 

Paratyphoid challenge model 354 

Clinical samples for paratyphoid infection were collected during a dose-escalation study, as 355 

previously described (P1).7 Briefly, 40 healthy adult volunteers were challenged with a single oral 356 

dose of virulent S. Parayphi A (strain NVGH308) bacteria, which as before, was suspended in 30mL 357 

sodium bicarbonate solution [17.5mg/mL], and after pre-treatment with 120mL sodium bicarbonate 358 

solution. Oral challenge inocula was given at one of two dose levels, low (n=20; median 359 

[range]=0.9×103 CFU [0.7×103–1.3×103]) or high dose (n=20; median [range]=2.4×103 CFU 360 

[2.2×103–2.8×103). Criterion for diagnosis were either microbiological (≥1 positive blood culture 361 

collected after day 3) and/or clinical (fever ≥38°C sustained for ≥12hrs). Participants were ambulatory 362 

and followed up as outpatients at least daily after challenge when safety, clinical, and laboratory 363 

measurements were performed.7 364 

 365 

Endemic Cohort 366 

To validate the gene transcriptional signatures in a relevant patient cohort, blood samples were 367 

collected from three cohorts at Patan Hospital or the Civil Hospital both located in the Lalitpur Sub-368 

Metropolitan City area of Kathmandu Valley in Nepal. Firstly, blood samples were collected as part 369 

of a diagnostics study55 from febrile patients presenting to hospital and diagnosed with blood culture-370 

confirmed S. Typhi (n=19) or S. Paratyphi A (n=12) infection and febrile patients who were blood 371 
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culture negative (n=71). Samples from a cohort of healthy control volunteers (n=44) were also 372 

collected as part of this study.  373 

 374 

Gene expression arrays sample processing 375 

In the human challenge studies (T1, T2, and P1), peripheral venous blood (3mL) was collected in 376 

TempusTM Blood RNA tubes (Applied Biosystems) before challenge (baseline, pre-challenge controls, 377 

‘D0’, n=166) and at paratyphoid diagnosis (‘SPT’, n=18) or typhoid diagnosis (‘ST’, n=75). In those 378 

challenged but who did not develop enteric fever within 14 days of challenge, gene expression was 379 

measured at the median day of diagnosis of the diagnosed group in the appropriate studies and this 380 

day was termed ‘nD7’ (n=73). In Nepal, blood was collected when patients presented to hospital 381 

(n=102) and from healthy controls (n=44) (Figure 1A, Supplementary Table S1). Total RNA was 382 

extracted from all samples using the TempusTM Spin RNA Isolation kit (Life Technologies). Where 383 

applicable, 50ng of RNA was used for hybridization into Illumina HT-12v4 bead-arrays (Illumina 384 

Inc.) at the Wellcome Trust Sanger Institute (Hinxton, UK) or The Wellcome Trust Centre for Human 385 

Genetics (Oxford, UK) and fluorescent probe intensities captured with the GenomeStudio software 386 

(Illumina Inc.). For the paratyphoid CHIM (P1) RNA gene expression was determined using RNA 387 

sequencing. Briefly, libraries were prepared using a poly-A selection step to exclude ribosomal RNA 388 

species (read length: 75bp paired-end) and samples were subsequently multiplexed in 95 samples/lane 389 

over 10 lanes plus one 5-plex pool run on 1 lane and sequenced using a Illumina HiSeq 200 V4. 390 

Data pre-processing 391 

Paired-end reads were adapter removed and trimmed from 75 to 65bp using trimmomatic v0.3556 and 392 

only reads exceeding a mean base quality 5 within all sliding windows of 5bp were mapped to the 393 

Gencode v25/hg38 transcriptome using STAR aligner v2.5.2b keeping only multi mapped reads 394 

mapping to at most 20 locations. featureCounts from the subread set of tools v1.5.1 was used to 395 

quantify reads in Gencode v25 basic gene locations with parameters  -C -B -M -s 2 -p -S fr. Between-396 

sample normalization was performed using TMM (Trimmed Mean of M-values) normalization as 397 

implemented in the edgeR57 package and we used principle component analysis (PCA) as quality 398 

control step and excluded 2 samples, which were clear outliers due to also failing QC during the 399 

library preparation. Counts were converted into log2 counts per million (cpm) values with 0.5 prior 400 

counts to avoid taking the logarithm of zero and were then taken forward to the multi-cohort quality 401 

control. Illumina HT-12v4 bead array data were pre-processed by background subtraction, quantile 402 

normalization and log2-transformation using the limma package in R.58 Probes were collapsed to 403 

HUGO gene identifiers keeping only the highest expressed probe. 404 

Data download 405 

Previously published whole blood transcriptional array data was downloaded from the Gene 406 

Expression Omnibus (GEO) data repository. In this study we specifically focused on studies 407 
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investigating blood stage Plasmodium falciparum (bsPf; two cohorts of blood-stage, HIV-negative 408 

malaria cohorts; children and adults),10,16 acute uncomplicated dengue (DENV; four adult South-East 409 

Asian cohorts of uncomplicated dengue fever patients),9,18,19 and active pulmonary tuberculosis (PTb; 410 

four cohorts of active, pulmonary TB HIV-negative adults from Africa and the UK),8,17 all infections 411 

which present with undifferentiated fever and are relevant to areas where enteric fever is endemic 412 

(Supplementary Table S2). Raw data were downloaded from GEO using the getGEO-function59 and 413 

quantile normalization with detection p-values and control probes where available. Probes were 414 

collapsed to HUGO gene identifiers keeping only the highest expressed probe. 415 

Data processing and cohort Quality Control 416 

Probe sequences on microarrays may not correspond to the most recent release of the human reference 417 

genome that was used for the RNAseq alignment. In order to mitigate this potential discrepancy we 418 

re-annotated the probes to the Gencode v25/hg38. The new annotations were used as gene names for 419 

each probe. To avoid uninformative genes and gender bias only probes common to all datasets, not 420 

located on sex chromosomes and with an expression above the lowest tertile of the average expression 421 

(12,821 probes) were used and a ‘superset’ was created by merging the expression data from all 422 

studies into one large data matrix. In order to avoid platform or study related artefacts between the 423 

data we applied surrogate variable analysis (sva)60 to remove batch effects based on study ID while 424 

preserving the disease condition (i.e. control or individual infection). 425 

Diagnostic signature identification 426 

For classification analyses, we separated the superset into a discovery cohort and a validation cohort. 427 

To ensure heterogeneity and optimal feature identification we restricted the discovery cohort to 428 

samples solely generated on Illumina platforms and ensured inclusion of EF samples from Oxford and 429 

Nepal. In order to establish a validation cohort we casted a wider net and permitted studies generated 430 

on other platforms including Affymetrix due to the limited amount of suitable datasets available in the 431 

public domain. In addition, to predict unknown samples by applying the signatures identified in this 432 

study, we separated the febrile, culture-negative suspected enteric fever cases, samples at day 7 after 433 

challenge of those who stayed well and their respective pre-challenge control samples from the 434 

superset into a cohort of samples of unknown aetiology (Unknown Cohort) (Figure 2). 435 

Only the discovery cohort was used for feature selection using Guided Regularized Random Forest 436 

(GRRF)20 as implemented in the R package RRF v1.761 with gamma = 0.5 and parameter mtry tuning 437 

was performed using the tuneRRF command. Feature selection was repeated on 100 iterations of 438 

bootstrapped subsets of about 70% of the data in the discovery cohort. To assess model performance, 439 

predictions on the held out 30% of the discovery cohort were performed and balanced accuracies62 440 

were recorded to account for class imbalances. Genes were then ranked by the frequency of positive 441 

gene selection by GRRF (based on mean Gini) during the 100 iterations and only genes included in at 442 
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least 25% of the selection rounds were included in the diagnostic signature and used for prediction of 443 

the independent validation cohort as well as the samples belonging to the unknown cohort (Figure 2). 444 

High-throughput qPCR validation 445 

We performed TaqMan gene expression assays to validate gene expression levels in samples from 446 

Nepal and a subset of individuals from the Oxford challenge studies. A panel of 24 probes were 447 

measured in triplicates on a 192.24 Fluidigm chip using the Biomark at the Weatherall Institute for 448 

Molecular Medicine (WIMM) single cell facility. Four samples and one probe failed in the quality 449 

control and were removed from the analysis. Raw Ct values were normalized to the housekeeping 450 

gene cyclophilin A (PPIA) (FCt values) and subsequently to control samples (healthy controls) to 451 

achieve FFCt values. 452 

Statistical analysis 453 

All data were processed in R version 3.2.4. Comparison of groups in Figure 3d were performed using 454 

Student’s t-Test and correlations between clinical parameters and expression scores were performed 455 

using Pearson correlation and correlation between array and qPCR expression as performed using 456 

Spearman correlations (alternative: two-sided). 457 

Data deposition: 458 

The datasets generated in these studies were deposited at GEO: GSE113867. 459 

  460 
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Figure Legends and Figures: 646 

Figure 1: Overview of Oxford and Nepal comparison. (a) Overview of enteric fever cohorts used 647 

in this study (T1: Typhoid CHIM study 1; T2: Typhoid CHIM study 2; P1: Paratyphoid CHIM; 03NP: 648 

Nepali cohort. ST: S. Typhi; SPT: S. Paratyphi; sEF: suspected Enteric Fever; D0: day of challenge 649 

which represents the control samples in the Oxford CHIM; CTRL: endemic community controls; 650 

nD7: day 7 after challenge in participants who stayed well in the CHIM; BC+: Blood-culture positive; 651 

BC-: Blood-culture negative; Dx: Diagnosis). (b) Volcano plots of up (red) and down (blue) regulated 652 

genes in S. Typhi and S. Paratyphi positive individuals (Nepal and Oxford). Black numbers indicate 653 

the up- and down-regulated genes. (c) Circular plot depicting the overlap of BTMs between enteric 654 

fever and nD7 samples from Oxford and Nepal. Tracks (from outer to inner): cohort and samples; 655 

BTM labels; direction of enrichment (blue: down; red: up). Cords represent overlap of enrichment in 656 

given cohorts (red: overlap between P1-SPT and T1-ST; green: overlap between T1-nD7 and P1-nD7; 657 

blue: overlap of 03NP-ST with P1-SPT and T1-ST; purple: overlap of 03NP-SPT with P1-SPT and 658 

T1-ST; yellow: overlap between 03NP-SPT and 03NP-ST). (d-e) Scatter plots of BTMs enriched 659 

(p>0.05) in blood-culture positive samples in Nepal (y-axis) versus Oxford (x-axis) for typhoid fever 660 

(d) and paratyphoid fever (e). (f) Single-sample GSEA Normalised Enrichment Scores (NES) of IFN 661 

and DC BTMs of individuals with blood-culture confirmed enteric fever in Nepal and Oxford. (g) 662 

Heatmap of the 500 most variably expressed genes in samples of the Nepali cohort. Bar graph on top 663 

of the heatmap shows temperature of each individual at the time of sampling.  664 
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Figure 2: Flow diagram of machine learning analysis. The discover cohort consisted of only 665 

Illumina datasets and was used for feature selection using the GRRF algorithm. For the validation 666 

cohort Affymetrix datasets were also included. A cohort of unknown samples consisted of pre-667 

challenge baseline samples of participants who stayed well following challenge, their respective nD7 668 

samples (7 days after challenge), and febrile, culture-negative suspected enteric fever (sEF) cases 669 

from Nepal. Refer to Supplementary Table S2 for study identifiers. 03NP: Nepali cohort. T1: Oxford 670 

typhoid CHIM study 1. T2: Oxford typhoid CHIM study 2; P1: Oxford paratyphoid CHIM. 671 
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Figure 3: Identification of diagnostic signatures. (a) Ranking of genes by their selection frequency 672 

into the diagnostic signature out of 100 iterations during the 2-class classification. A cut-off of 25% 673 

was selected to detect 5-gene putative diagnostic signature (orange bar). (b) Performance of the 5-674 

gene classifier when predicting the class membership of the validation cohort. (c) Top: Probability of 675 

an EF sample to be classified as non-EF (>0.5). Bottom: Probability of sample belonging to ‘rest’ to 676 

be classified as EF (>0.5). (d) Combined expression score for samples based on the 5-gene signature 677 

for samples in the discovery cohort (top) and validation cohort (bottom). Ox.CTRL: Oxford controls 678 

(D0); CTRL: Nepali control samples. PTB: pulmonary TB; DENV: Dengue samples; bsPf: blood-679 

stage P. falciparum; SPT: S. Paratyphi; ST: S. Typhi. (e) Ranking of genes by their selection 680 

frequency into the diagnostic signature out of 100 iterations during the multiclass classification. A 681 

cut-off of 25% was selected to detect a 7-gene putative diagnostic signature (orange bar). (f) 682 

Classification probabilities for each sample of the validation cohort based on the 7-gene signature. 683 

Significance levels in panel d were determined using the Student’s t-Test: *p<0.05; **p<0.01; 684 

****p<0.0001.  685 
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Figure 4: Prediction of Nepali unknown samples using the 2-class and qPCR validation. (a) PCA 686 

of sEF samples based on the 5-gene signature coloured by predicted class membership (EF: purple; 687 

green: rest). (b) Dot plot of prediction probability of being class EF versus the expression score 688 

calculated on the bases of the 5-gene signature. (c) qPCR gene expression scores of the 5-gene 689 

signature (FFCT over PPIA) for CTRLs, sEF, SPT and ST samples from Nepal. Yellow diamonds in 690 

the sEF category represent the 9 patients classified as EF based on the RF algorithm. (d) qPCR 691 

expression values (FFCt over PPIA) of the 5-gene signature in control samples (Oxford and Nepal), 692 

samples at day 7 after challenge of participants who stayed well following challenge with S. Typhi 693 

(nD7), S. Paratyphi (SPT) or S. Typhi (ST) in Nepal, or typhoid diagnosis after challenge (TD). 694 

Colour legend in panel (e). (e) Combined qPCR expression score of the 5-gene signature. Black 695 

arrows indicate outlier samples. (f) Temperature and CRP for samples of which data was available 696 

(CRP was only measured in the Oxford CHIM). (g) Spearman’s rank correlation of the 5-gene 697 

combined expression score and temperature (left; only nD7 and TD samples from the Oxford CHIM 698 

and SPT and ST cases from Nepal were included) and CRP (right; CRP was only available for Oxford 699 

CHIM samples and we excluded D0 baseline measures) at presentation to hospital (Nepal), diagnosis 700 

(Oxford CHIM) or day 7 after challenge in those who stayed well (Oxford CHIM).  701 
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Supplementary Figure Legends 702 

Supplementary Figure 1: Differentially expressed genes and BTMs of sEF cases from Nepal. (a) 703 

Volcano plot of differentially expressed genes in the Nepali sEF cohort. (b) Venn diagram 704 

representing the overlap of DE genes in the Nepali ST, SPT and sEF cases. (c) ssGSEA heatmap of 705 

BTMs significantly expressed (p<0.05) in at least 60% of sEF samples. Bar plot panel represents the 706 

interdecile range (IDR) for each BTM across all sEF cases. NES: Normalized Enrichment Score. 707 

Supplementary Figure 2: Superset quality control. (a) PCA plot based on the 500 most variable 708 

genes (IQR) of enteric fever cases (EF), malaria cases (bsPf), dengue cases (DENV) and TB cases 709 

(PTB) after batch correction. (b) PCA of all control samples for each disease cohort after batch 710 

correction. 711 

Supplementary Figure 3: Signature identification using a re-designed discovery and validation 712 

cohort. (a) Ranking of genes by their selection frequency into the diagnostic signature out of 100 713 

iterations during the 2-class classification. A cut-off of 25% was chosen to detect a putative diagnostic 714 

signature consisting of 4 genes (orange bar). (b) Prediction of the validation cohort using the 4 genes 715 

identified in (a). 716 

Supplementary Figure 4: Expression of the 7 target genes identified during the multiclass 717 

classification analysis in each sample of the discovery (a) and validation cohort (b). 718 

Supplementary  Figure 5: Prediction of Oxford CHIM samples part of the unknown cohort. (a) 719 

PCA of Oxford pre-challenge baseline samples and nD7 samples based on the expression values for 720 

the 5-gene diagnostic signature (2-class classification) coloured by predicted class membership 721 

(green: REST, purple: EF). (b) Dot plot of prediction probabilities against a combined expression 722 

score for each sample coloured by predicted class membership. 723 

 Supplementary Figure 6: Spearman correlation of expression values of the 5-gene diagnostic 724 

signature derived from microarrays or qPCR. 725 

 726 

Supplementary Tables: 727 

Supplementary Table 1: Overlap of BTMs between different study groups (in percent). 728 

Supplementary Table 2: Datasets included in this study. 729 

Supplementary Table 3. (a) Contingency table of class membership following the 2-class 730 

classification. (b) Contingency table of class membership following the multiclass classification. 731 
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Supplementary Table 4: Prediction accuracy and overview of misclassified samples following 732 

prediction using the 5-gene 2-class signature of the Oxford samples included in the unknown cohort. 733 

Supplementary Table 5: Class memberships of Oxford CHIM and Nepali samples included in the 734 

unknown cohort following the prediction using the 7-gene multiclass signature. 735 

 736 

 737 
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