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Nonclassical probability and convex hulls

January 29, 2016

Abstract

It is well known that the convex hull of the classical truth value func-
tions contains all and only the probability functions. Work by Paris and
Williams has shown that this also holds for various kinds of nonclassi-
cal logics too. This note summarises the formal details of this topic and
extends the results slightly.

1 An informal walk through the argument

J.R.G. Williams has recently published several interesting papers on the topic
of “nonclassical probability” [17, 16, 18]. Building on work by J.B. Paris [12],
Williams shows that standard arguments for probabilism! can be extended to
cover agents who have credences over nonclassical logics. The key move is to
notice that two standard arguments for probabilism — Dutch book arguments
and Accuracy arguments — both work by showing that a rational agent ought
to have her credences “in between” the possible truth values, and that this
part of the argument makes no appeal to particular facts about how the truth
values are structured [16]. In the case of classical logic, it is straightforward that
functions in the convex hull of the truth value functions — the formal cashing
out of this “in betweenness” — are all and only the probability functions. So the
hard work is then to characterise what properties these functions in between
the truth values have in general. Williams notes a partial characterisation given
by Paris, and says that “beyond this, it is a matter of hard graft to see whether
similar completeness results can be derived for [other logics]” [18]. This note is
a contribution to that hard graft.

The remainder of this section informally describes the basics of the project
we are engaged in.

The basic ingredients are a language, a set of sentences, that a rational agent
has degrees of belief in. These sentences can be assigned various truth statuses.
In the classical case, we have “True” and “False” as the statuses, but a three
valued logic has “True”, “False” and “Neither”. One might be moved towards a
three valued logic by considering some proposition involving a vague predicate:

1By “probabilism” I mean the view that a rational agents’ credences — or degrees of belief
— ought to satisfy the axioms of probability (Definition 5).



“McX is tall” might be neither definitely true nor definitely false if McX is
somewhat tall but not very tall. One might think that in this case the sentence
“McX is tall” gets truth status Neither.? Different ways the world could be are
identified with different assignments of these truth statuses to sentences. The
language has some compositional structure and the assignment of truth statuses
tracks this structure in a certain way.

On top of this, there is the question of belief. Let’s imagine that the “actual”
truth status of a proposition is “True”: what would an ideally rational, fully
informed agent believe about that proposition? Presumably she would believe it
to maximal degree 17 Choice of “1” as maximal is something of a convention, but
a convention that makes the presentation rather easy. I am assuming throughout
that credences are real-valued, though even this assumption can be significantly
weakened, if one wants.

What about the ideally informed rational credence for a proposition assigned
“Neither”? What would a perfectly rational, fully informed agent believe about
this proposition? Perhaps she would believe it to degree one half? Or degree
zero? Or degree one? There is, here, some flexibility in how one determines
what the perfectly rational belief states are once we have some non-classical
truth statuses. But let’s say we fix some way of determining the perfectly
rational beliefs to have in sentences with these alternative truth statuses. Codify
this decision in a function from truth statuses to real numbers. This gives us a
composite function from sentences to real numbers that assigns to each sentence
the ideal belief state for that sentence in a particular world. Call this a cognitive
evaluation.

In the terminology of Williams [18], the logic of the objects of belief is se-
mantically driven: it is facts about ways the truth statuses could be distributed
that determine the logic. The approach is also cognitively loaded: facts about
truth status are intimately connected to the rational beliefs of ideally informed
agents.

So the question now is: how can we constrain the rational beliefs of non-
ideally informed agents? Arguments based on betting, or based on basic con-
cerns about epistemic value secure the conclusion that a rational agent’s belief
state should be in the convex hull of the set of possible cognitive evaluations
[16]. The remainder of this paper will explore the consequences of this fact.

The hope is that this note will be fairly elementary and self-contained, pro-
viding most of the definitions required to make sense of the material discussed.

2 Logics and lattices

Let’s start with the objects of belief. We have some sort of logical language L. 1
want to assume as little as possible about L. The idea is that L is the collection
of sentences we assume you have credal attitudes towards.

2There are other motivations for three valued logics, but I won’t discuss them here. There
are also other responses to the vagueness example: I will touch on two other logics for vagueness
— degree theories and supervaluationism — later on.



Definition 1 A logical language is a set containing finitely many elementary
letters that is closed under the binary operations V and A. The set contains two
privileged elements T and L. o

So if ¢,1 € L then ¢ V4 € L and likewise for A. T and L will be privileged by
serving as the tautology and contradiction. Note that we don’t assume that L
consists only of elementary letters and things built up from them using the two
mentioned connectives: I want to leave open the possibility that L contains, for
example, negation, or quantifiers, or modal operators. .. All we require is that it
be closed under or and and.® The focus on these connectives makes sense since
these are the connectives that appear in the definintion of probability.

Definition 2 A cognitive evaluation is a function v: L — [0,1] such that

v(T)=1and v(L)=0. o

I'm being very broad in my understanding of evaluations. We’ll add some
properties to evaluations in a moment. T and L are privileged in having their
cognitive loads picked out. Each v captures some way the world could be. And
every way the world could be is captured by some v.

Definition 3 For a set of evaluations V', the convex hull of V', co(V') is the set
of functions, b, such that b() = 3, w(v)v(+¥) for all ¥, with ), w(v) =1 and
w(v) >0forallveV. o

The convex hull is important, because several important arguments about
what it takes to have rational credences boil down to saying that you ought to
have your credences be in the convex hull of the set of evaluations [12, 17, 16, 18].
In the classical case we know that the convex hull of the evaluations is the set
of all and only the probability functions.

Definition 4 A classical cognitive evaluation is a cognititve evaluation v: L —
{0,1} with:

T1 v(=¥) = 1 iff v(¥) = 0
T2 v(@Ap)=1iff v(¥) =1 and v(p) =1
T3 v(¥Vp)=0iff v(¥) =0 and v(p) =0 o

Note that the truth value of any conjunction is determined by v’s action on the
conjuncts, likewise for disjunctions.

Definition 5 A probability function is a function p: L — [0, 1] with:
P1 If ¢ then p(¥) =1 and if 9 F then p(¢) =0

P2 If ¥ ¢ then p(¥) < p(p)

3It may be that certain elements of the proof can survive the removal of this assumption
by judicious insertion of phrases like “when 9 V ¢ exists”.



P3 p(¥V ¢) +p(I A ) = p¥) + p(p) D

Note that this definition of probability is relative to consequence relation F.
If  is classical consequence then this is equivalent to the standard definition
of probability as a nonnegative, normalised, additive function on a Boolean
algebra. This generalised definition of probability appears in Paris [12] and
Williams [17, 16, 18]. When I say “probability” in what follows, what I will
mean is generalised probability in the above sense. It will normally be clear
from the context which F I have in mind when I talk about probability.

We are interested in theorems of the form “all v € V satistify certain prop-
erties if and only if all b € co(V) satisfy certain properties”. For example, Paris
shows that if the truth value functions satisfy certain properties, then the convex
hull consists of all and only the probability functions.

We want some sort of consequence relation on L. The definition of probabil-
ity makes reference to some relation among propositions with respect to which
the probability function is monotonic, so we need to find such a relation.

Definition 6 A set of valuations V' determines a relation on L, <y that satisfies
the No Drop property:

U<y pevoeV, vd) <vp) o

I omit the subscript if it’s clear which V is at stake. This relation is transitive
and reflexive, so L is partially preordered by <y . I use < rather than something
like F, since there’s no obvious analogue of < — the irreflexive part of < — for the
turnstile, and T’ll need this symbol later. Note that if V is the set of classical
cognitive evaluations defined above, then <y is classical consequence.

What we’re moving towards is having L /=y being well behaved enough that
we can do interesting things with it. We’re going to impose structure on this
object by requiring that V' have certain nice properties. Let’s now add some
structure to our cognitive evaluations.

Definition 7 An evaluation v is truth-functional for % for some connective
iff for all ¢, 9 € L we have v(p x ¥9) = Ti(v(p),v(d)) for some real-valued
function T,. A set of valuations V is truth-functional for * iff all v € V are
truth-functional for * with the same T.,. o

Definition 8 A relation ~ is a congruence relation for x iff

e ~ is an equivalence relation (transitive, reflexive and symmetric)

o If 9 ~ ¢ and ¢ ~ ¢’ then ¥ x @ ~ ¥ x o
Lemma 1 If V is truth functional for x then =y is a congruence relation for
*. o

Given a relation < on a language L, denote the symmetric part of < by =. Let
L/= to be the set of equivalence classes of L.* What we’re doing is turning a big

4For the classical case, this is the Lindenbaum—Tarski algebra.



space of sentences into a smaller space of equivalence classes of sentences. Since
we're interested in functions that are monotonic with respect to the relation (P2
of Definition 5), these functions assign the same value to elements of the same
equivalence class. So for our purposes, sentences that are grouped together can
be treated as the same thing.

Definition 9 A truth function 7% : [0,1]? — [0,1] is a t-norm if it satisfies the
following properties:

Associativity T, (z,T.(y, 2)) = Tu (Tu(z,y), 2)
Commutativity T.(z,y) = Tk (y, )
Non-decreasing If ¢ < y then Ty (z,2) < Ti(y, 2)
Top-unit T.(z,T) ==

A truth function is a ¢-conorm if it satisfies the first three of these properties,
but instead of Top-unit, satisfies:

Bottom-unit 7y (z, 1) ==z
Two more properties of interest:
Idempotent T.(z,z) ==z

Distributive Say * distributes over o when Ty (x, T, (y, 2)) = To(Tx(z,y), Tk (z, 2))
O

We will say that V satisfies one of the above properties (with respect to a
connective) when all v in V' have the same truth function for the connective and
that function satisfies the property.

Note that the classical truth function for conjunction is a (idempotent) t-
norm, and for the disjunction is a (idempotent) t-conorm and further, conjunc-
tion and disjunction distribute over each other. For any n, an n-valued fuzzy
logic satisfies these properties iff 7\, = max and Tx = min. Other many valued
logics do not satisfy idempotency, but satisfy the rest of the properties. The
three cognitive loadings of the Kleene truth tables that Williams discusses [18]
likewise satisfy the above properties.

Lemma 2 Consider a set of valuations V' and a relation defined by the No Drop
condition <y .

If V satisfies Non-decreasing and Top-unit for A\ then ¢ =y @ AT

If V satisfies Non-decreasing and Bottom-unit for V then ¢ =y @V L

If V satisfies Idempotent for A then ¢ =y @ A ¢ and likewise for V

If V satisfies Non-decreasing for A then, if ¢ <y ¢ then p A9 <y ¢ AV
and likewise for V



o IfV satisfies Associativity for A then (o AY) A =y @ A (I A1)

o IfV satisfies Commutativity for N\ then © AN =y ¥ A ¢ and likewise for
vV

o [If x distributes over o then ¥ x (po ) =y (o p)* (Fop) o

The proofs are all pretty easy so they have been ommitted. Note that associativ-
ity and commutativity mean that we can abbreviate long (finite) conjunctions
or disjunctions by A, ¥; and \/, ¥; without ambiguity.

Like Williams, we are interested in cognitively loaded logics: logics where
the structure comes from the set of cognitive evaluations V. We want V to be
well-behaved enough that <y, puts some interesting structure on L that we can
exploit. In particular, we want the structure to be lattice-theoretic. Let’s briefly
summarise the definition of a lattice.®

Definition 10 A poset (X, =) is a set X with a binary relation < that is
reflexive, antisymmetric and transitive. Let < be the irreflexive part of <. =
is a partial order on X, and I will sometimes talk about “the lattice X” where
it is clear what relation is at stake. A lower bound for A C X is a 9 € X such
that ¥ < ¢ for all ¢ € A. The infimum — greatest lower bound — of A C X,
called inf A, is a lower bound of A such that if ¢ is a lower bound of A, then
¥ < inf A or ¢ = inf A. Note that infima needn’t exist in general, but if X is
finite and non-empty, then inf A € X. Define upper bounds and greatest upper
bounds (suprema, or sup) in the obvious way. Infima and suprema, if they exist,
are unique.

A lattice is a poset that contains infima and suprema for all pairs of elements
(and hence for all finite subsets). A lattice is bounded if it has top and bottom
elements T, L% such that ¥ < T and L < ¢ for all ¥ in X. A lattice is finite if
X is. A lattice is distributive if inf {1, sup{p, ¥} } = sup{inf{d, ¢}, inf{J,¢¥}}.0

A couple of shorthands will be useful: let inf{d, o} = ¥ A ¢, and sup{¥, p} =
Y .

Definition 11 A filter in a lattice X is an up-set of X closed under infima, or
a subset of F' C X such that:

o If ¥ € F and ¥ < ¢ then ¢ € F (up-set)
o If ¥, € F then inf{¥, p} € F (closed under infima)

An ideal of X is a down-set closed under suprema. The principal filter generated
by ¥ is the smallest filter containing 1, likewise for the principal ideal. All filters
(and ideals) of finite lattices are principal filters (ideals) of some element. A
filter (ideal) is called proper if it is not identical to X. Order the proper filters

5See [2, 1, 5].
8T’m reusing this notation here, because T and L will be privileged precisely in being the
bounds on our logical lattices.



by set inclusion. The maximal elements of this ordering are the wlirafilters.
Alternatively, a filter F' is an ultrafilter iff: if 9 Y ¢ € F' then 9 € F or p € F.

A cover of an element ¥ is an element ¢ such that ¥ < ¢ and there does
not exist a ¢ such that 9 < ¥ < ¢. A cover of ¥ is an element “immediately
above” . A cover of ¥ is a minimal element of the up-set of 4. A join-irreducible
element is one that covers only one element. Or equivalently, j is join-irreducible
if j = sup{¥, p} implies j = ¢ or j = p. Meet-irreducible elements are defined
dually. o

Definition 12 A No Drop System (L,V) is a logical language L and a set of
evaluations on L, V, such that (L/=y, <y) is a lattice where ¢ At = inf{p, ¥}
and ¢ V ¢ = sup{p, ¢} for all ¢, € L. o

We’re now going to describe a set properties for a set of valuations V such
that (L, V) is a No Drop system. Note that these are jointly sufficient, but are
unlikely to be necessary conditions.

Theorem 1 IfV is a truth-functional set of valuations with an idempotent t-
norm for A and an idempotent t-conorm for V then (L/=y,<y,V) is a No
Drop System.

PrOOF It is immediate that <y and V satisfy No Drop. We omit the subscript
V' throughout. That L/=y is partially ordered by <y follows from <y being
a congruence relation for the connectives. 1 < T, so since V satisfies Non-
decreasing and Top-unit o Ay < @ AT = . Likewise for ¢ and ¢ swapped. So
@ A1 is a lower bound on {¢, 1 }. Therefore, we just need to show that it is the
greatest lower bound. Assume that ¥ is a lower bound; that is ¥ < ¢, 1. Since
V' satisfies Idempotent and Non-decreasing for A we have J = 9 A9 < p A 9.
The proof for V is similar. Thus, infima and suprema for pairs of elements exist
and so (L/=y,<y) is a lattice. n

Further, if V has A and V distribute over each other, then the lattice is
distributive. Without idempotency, it is still the case that for any lower bound
¥ on {p, ¥}, we have 9 A Y < o Ay < < inf{p, ¢} (if this latter exists). So
without idempotency you might not have A and inf coinciding perfectly, but
they are still required to be somewhat close. A similar fact holds for sup and V.
I leave this as a somewhat inchoate suggestion for how to generalise the above
result.

The above theorem demonstrates that the kinds of systems arrived at by
Williams [17, 18] are of this sort (if one assumes some reasonable properties
of V). The logic needs at least this structure for the definition of probability
to make sense. That is, what we have done up to now is provide a rigorous
discussion of what it takes to be a well behaved semantically driven logic. What
we show in the next section is that this is sufficient for the convex hull to contain
all and only the (nonclassical) probabilities.

Might it be that some logic of interest in the context of rational belief fails
to satisfy the properties discussed above? One example of this will be discussed



in the second half of the paper. Other examples might crop up, and seeing what
can be said about them in this context is, echoing Williams, a matter of hard
graft.

3 Convex hull of evaluations

This section summarises the relevant results of Gustave Choquet’s Theory of
Capacities [4]. In particular, the following is a summary of some material from
sections 39-42. We extract from Choquet an argument that the convex hull
of the cognitive evaluations is precisely the set of probabilities (relative to the
lattice defined by <y). The first step is to show a more general result for all
additive monotonic functions on a lattice.

Let L be a distributive lattice. Consider the set of real valued functions on
this lattice F'. Consider f + g defined pointwise, and Af likewise for A € R.
This makes this set of functions a vector space.

Definition 13 Call an element e of a convex set” of functions an extremal
element iff e = e1 + €3 = €1 = A1e and es = A\ge where \; > 0. o

Consider the set of positive real valued functions on the lattice that are
monotonic and satisfy: f(e A ¥) + f(e Y ¥) = f(¢) + (). These form a
positive cone, call it A.

Theorem 2 A function f is extremal in A iff f = fp . where this is defined:

prate) {3 0l

P is a downset and A a real number.

Proor We first show that fp ) is extremal. Suppose that fp = fi + f2. For
x € P we have fi(x) = fa(x) = 0. Consider u,v ¢ P, and take some w > u.
Now,

fiw) + fo(u) = A = fi(w) + f2(w)
therefore

[f1(w) = fr(w)] + [fuw(w) = fa(u)] =0

However, we know from the fact that f; and f5 are positive and monotonic that
fi(w) > fi(u) > 0 and thus that fi(w) = fi(u), and likewise for fa. There is
a w such that w > u,v. Thus fi(u) = f1(v). Hence, fi and fy take constant
values on the complement of P. Let these values be a; and as. We know that
a; +az = A, Thus, fi = <L f and fo = 22 f. Hence, f is extremal.

Now assume f is extremal. If f only takes one non-zero value then it is
clear that f is extremal, so assume without loss of generality that we have
0< fla) =v < p= f(b) for some a,bin L and v, 4 in the reals. Let fi(x) =

7A set is convex iff it is identical to its convex hull



fx Y a)— f(a) and fo(z) = f(z A a). f1 and fo are in F (because L is
distributive) and f = f1 + f2. fi(a) =0 but f(b) #0, and f(a) # 0 so there is
no A\ > 0 such that f; = A\f. n

This theorem is basically a combination of Choquet’s theorems 40.1 and 41.1.

Consider M, the set of positive additive monotonic functions on L with
m(L) =0. M C F. Conversely, every f € F is of the form f(L)+ m for some
m € M. Consider M, the subset of M such that m(T) = 1. What are the
extremal elements of M;?

Theorem 3 The extremal elements of My are indicator functions of ultrafilters.

PROOF Consider an extremal element of M; called m. Let B(m) be the set of
elements of E such that m(z) = 1. B(m) is an ultrafilter. It’s clear that B(f)
for any f € M; is a filter. To show that B(m) is an ultrafilter, one assumes
that m(9 V ¢) =1 but m(9), m(¢) < 1 and then by the same strategy as in the
proof above one shows that m can’t be extremal.

Conversely consider an ultrafilter B and its indicator function fgz. B(fg) =
B and fp is an extremal element of M;. Both claims are pretty obvious. n

So the set of probability functions (the functions in M7) have, as their ex-
tremal elements the indicator functions of the ultrafilters. In the classical case,
the indicator functions of ultrafilters are precisely the cognitive evaluations. In
the nonclassical case, there can obviously be evaluations that aren’t indicator
functions of ultrafilters: for example, any evaluation that assigns any number
in (0,1) to some sentence is not an indicator function of anything. But, by the
same token, those evaluations will be non-extremal elements: they will be in the
convex hull of the indicator functions of ultrafilters. So, as long as the indicator
functions of ultrafilters are among the admissible evaluations, the convex hull
of the evaluations will be equal to the convex hull of the indicator functions of
ultrafilters. What’s interesting to note is that as far as non-classical probability
goes, it is only the lattice structure (encoded in the ultrafilters) that matters to
what counts as probabilistically coherent.

So we have that the extremal elements of the set of probabilities are some
of the cognitive evaluations. We now just need to show that the convex hull of
this set of extremal elements is indeed the set of probabilities we started with.
This follows from the Krein-Milman theorem [6], which says precisely that the
convex hull of the extremal elements of a convex set is that set.® Note that we
didn’t need to assume that the lattice L was finite for any of the above.

There is an alternative approach to a related result that makes appeal to
the structure of MV algebras [11, 10, 7]. This framework is more general in the
sense that the logical algebraic structure may fail to be a lattice, but it is more
restricted in the sense that an MV algebra requires a negation that behaves
classically.” Exploring further relations between MV algebras and the current
project would be an interesting avenue for further work.

81t is actually the closure of that set, but the set of probabilities is closed.
9In the sense that ~—p = .



This concludes the first half of the paper. The main conclusion so far is
that semantically driven, cognitively loaded logics with truth functional cogni-
tive evaluations for conjunction and disjunction that are an idempotent, dis-
tributive t-norm and t-conorm respectively have all and only the (generalised)
probabilities as convex combinations of the evaluations.

4 Supervaluationism and filter evaluations

As Williams notes, there is an important and popular class of logics that are not
truth-functional: supervaluations. Since truth-functionality was a vital part of
getting the above results off the ground, it might seem that we cannot accom-
modate these kinds of logics. But it turns out that we can, as Paris commented.

From now on we will have to assume that the lattice L is finite. It does not
suffice for this to require that the set of elementary letters is finite. What is
actually required to ensure finiteness of the logical lattice is a tricky question: it
is essentially a kind of “word problem”. Let me point to a couple of cases where
we do know that the lattice will be finite. A classical propositional logic with
finitely many elementary letters will have a finite No Drop System (essentially,
the Lindenbaum-Tarski algebra). This is so since the evaluation of a sentence
is a function of the evaluations of the elementary letters, and there are only
finitely many distributions of classical evaluations to the elementary letters. An
n-valued Lukasiewicz logic with finitely many elementary letters has a finite No
Drop System for the same reason. It follows from work in [8] that an S5 modal
logic with finitely many elementary letters has a finite No Drop System. A
logical language with a modal operator where there was some fixed maximum
degree (in the sense of [3, p.74]) of sentences would also have a finite No Drop
System. !0

And let me point to a couple of cases where the lattice is not finite: an
intuitionistic logic could have ¥, ~), ~~1), ~~~~id ... be distinct propositions.
So the Heyting algebra for one elementary letter is countably infinite. Likewise,
for modal logics weaker than S5 9,09, 0009 ... could all be distinct.

The core idea of a supervaluational logic is to consider sets of evaluations
of some underlying base logic (typically classical logic). The evaluations in the
set typically represent various “sharpenings” or “precisifications” of some vague
predicate. Something is “supertrue” if it is true on all sharpenings: true for
all evaluations in the set. Consider some set of evaluations X C V and define
vx (9) iff v(¥) =1 for all v € X and 0 otherwise.

Lemma 3 For every X C V, there exists a ¥ such that vx(p) =1 iff ¥ < ¢.

PRrOOF The set of ¥ € L that are such that v(9) = 1 form a filter. This follows
from No Drop and that v satisfies Non-decreasing. So for each v there is a 9
which is the principal element of the filter corresponding to v (since L is finite,
every filter is principal). Since the intersection of filters is a filter and every

10T suspect that there is some relationship between the finite model property [3, p. 146 ff]
and having a finite No Drop System, but I'm not quite sure what.

10



filter is principal, the intersection filter has a principal element. In particular,
consider the intersection of the filters corresponding to elements of X. The
indicator function for this set is precisely vx. Call the principal element of this
filter ¥. It is clear that vx(p) =1 iff ¥ < . n

Definition 14 A filter evaluation is the indicator function of a filter. o

The above lemma and definition show that supervaluational truth value func-
tions (supertruth evaluations) are precisely the filter evaluations. Since, in the
finite case, there’s a one-to-one correspondence between filters and their prin-
cipal elements, we can talk about filters on L/=y or elements of L/=y inter-
changeably. This is not true for the infinite case.

Consider vy which is such that vy(¢) = 1 iff 9 < ¢ and 0 otherwise. Take
the collection of these for all ¢ € L and call it VY. If we take the base logic to
be classical then every v € V is also in VY and it corresponds to an ultrafilter.

Jaffray [9] points out the following. Consider b € co(VV).

b(d) = Y w(v)v(¥)

VsV

= Z w(vy) vy (V)
= Z w(vy,)
p<dJ

It turns out that b defined as above are not probabilities, but they do satisfy
the slightly weaker requirements for being Dempster-Shafer belief functions.

Definition 15 A Dempster-Shafer belief function satisfies:

DS1 If - o then b(¥) = 1 and if ¥ I then b(¢) =0

DS2 If ¥ F ¢ then b(9) < b(yp)

DS3 b(\/?; U;) > Elg{l,...,n}(_1)“‘_1()(/\1‘61 ;) o
Let m(p) = w(vy,) for all p. Note that m so defined is a mass function:

Definition 16 A mass function satisfies:

M1 m(L)=0
M2 3, m(9) =1
M3 m(d9) > 0 for all ¥ o

4

Recall that the w in terms of which m is defined are the “weights” involved in
something’s being in the convex hull of the vs, and these are non-negative and
sum to 1. Now all we need to do is show that b satisfies DS1-3 iff m satisfies
M1-3. This turns out to be quite involved; the next two sections are devoted
to laying out this result in detail.

11



5 Incidence algebras and the Mobius inversion

So now we need to go on a detour into some basics of incidence algebras on
posets. This section summarises the relevant results of Rota [13]. First, let
[, ¢] be the set of 1) such that ¥ < ¢ < ¢. Define [, ) etc in the obvious
way. Since L is finite, all such “intervals” will be finite. Consider the function
¢: L x L — R defined by ¢(d,¢) = 1 iff ¥ < ¢. Set ¢ to 0 everywhere else.
Consider also the function §: L x L — R defined by §(9, ) = 1 iff ¢ = ¢ (and
0 everywhere else). Now, we want to find the p such that:

Z M(ﬁv 1/0((% (P) = 6(197 90)
e[V, p]

That is, we want the u which is the “inverse” of ( where composition of functions
is by “convolution” and the identity is the delta function (this is the incidence
algebra of a poset).

Theorem 4 The u we need is:

1 ifd=¢
w0, 0) = § =Xy, 10, 0) if <o
0 if9 £

PRrROOF First consider the case where ¥ = ¢. Then we have u(,9)((9,9) = 1.
_ 1 _
Therefore, 'U/(ﬂ,'ﬁ) = m =1.
Now consider ¥ < ¢. Then:

Yo ou@ W)= Y p@, )%, 0) + uld @)(p, ) =0

YE[V, ] eI, p)

Rearranging this, we see that:

1
)yt
So:
np) == > w,y)
YE, )
Let pu(v, p) = 0 otherwise (i.e. if it is not the case that ¥ < ). n

1 is also a right inverse for (, since the convolution operation is associative.
Theorem 5 Let b be defined as follows:
b(9) =y m(d)
<Y

then

m(¥) = > ble)ule, V)

<P

12



Proor

D b)) =D Y m(w)ulp, )

p<¥ p<OY<ep
=33 @), p)ulp.9)
p<9d
=Y "m) Y (W, e)ulp, D)
¥ PE[Y,9)
=" m()d(w, 0) = m(9) .
P

So for any b defined in terms of m, we can use this M6bius inversion technique
to get an expression for m in terms of b.

6 Mass functions and belief functions

We are now in a position to prove that b satisfies DS1-3 iff m satisfies M1-3.

Theorem 6 Let b and m be related as in Theorem 5. If m satisfies M1-3 then
b satisfies DS1-3

ProOOF DS1 and DS2 are pretty straightforward. To show DS3, we need the
following fact: if A is a nonempty finite set then

> (=nlFl=0
BCA

This requires some combinatorics and the binomial theorem. Note also that if
A is empty, the above quantity is 1, since (—1)° = 1.
Fix some collection of n sentences in L, ¥;. And let I(p) = {i,p < 9;}.

5 (—U'”“b(/\m) S Y i)

P£IC{1,...,n} I O<A\D
= > mlp) Y (~nrH
peL 0£ICI(p)
I(p)#0

~S ) [1- 3
IC1(p)
= Y mlp)

w€eL
I(p)#0

= > mlp

@<1; for some ¢
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This is clearly less than b(\/ ¥;) = 3__ <\ 9, m(¢). This concludes the proof of
DS3. Note this last step requires that if ¢ - o; for some 4, then ¢ - \/ ;. This
is obvious, since if ¢ < o then ¢ < ¢ V ¢ (this requires Non-decreasing and
Bottom-unit). n

For the other direction of the proof, we’ll need the following result.
Lemma 4 The down-set of ¥, D(¥) is a sublattice of L.

PrOOF The only non-trivial part of showing that D(¥) is a lattice is showing
that if ¢, € D(¥#) then sup{y, 1} € D(¥). But since p,9 < ¢} we have that
pViY <IVvyI=1. n

We’ll also need the following well known fact:

Lemma 5 An element of a distributive lattice can be written as the supremum
of a set of meet-irreducible elements in a unique way. 0

This is basically lemma 3 of chapter 11 of [2], see also theorem 3.4.1 of [15] and
the surrounding discussion. Let’s now do the other direction.

Theorem 7 Let b and m be related as in Theorem 5. If b satisfies DS1-3 then
m satisfies M1-3

PRrROOF Note that m(L) is actually undefined by the above expression, so let’s
set it to be 0. >, m(V) = > 5.+ m(¥) = b(T) = 1. That takes care of M1 and
M2.

Consider again the down-set of ¥, D(). Since D(¥) is a lattice, we can
consider the meet-irreducible elements of D(19). Call these the ¢; and assume
there are n of them. Lemma 5 entails that every element of D(¥}) is a supremum
of these meet-irreducibles. In other words: if ¢ < ¥ then ¢ = A, ¢; for some
I € {1,...,n}. Note that every element of the set [/, ¢;, ] corresponds to a
subset of I and therefore, by Proposition 3.1 of [19], we have:

p (/\%,ﬂ> = (-l

m(¥) = > p(, b)) =bW)+ > u (/\ soi,ﬁ) b (/\ soi>
1 I I

P<D Ic{l,...,n
SUEDY <—1>'”b</\%>
Ic{1,...,n} I
—b) - > (-1 (/\ %-)
Ic{1,...,n} I

Now, 9 =\ ¢;, so by DS3 we have that this last expression is greater than 0.
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This is a modest improvement on the result in Paris [12] and Williams [17]
in that we don’t need to assume that the “base” logic is classical.'!

7 Conclusion

I had two goals in writing this note. The first goal was to explicitly lay out, in
detail, all the formal apparatus and results that lie behind the remarks Williams
makes about the convex hull of cognitive evaluations in his discussion of nonclas-
sical probability. To this end I have explictly set out the important results from
Choquet, Rota, Jaffray and others that are necessary ingredients in Williams’
dialectic. The second goal was to attempt to get clearer on the scope of those
remarks. To this end I have carefully defined the concept of a No Drop System
and shown under what conditions we can define probabilities over this system.
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