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Individual Testing is Optimal for Nonadaptive

Group Testing in the Linear Regime
Matthew Aldridge

Abstract—We consider nonadaptive probabilistic group testing
in the linear regime, where each of n items is defective indepen-
dently with probability p ∈ (0, 1), and p is a constant independent
of n. We show that testing each item individually is optimal, in
the sense that with fewer than n tests the error probability is
bounded away from zero.

I. INTRODUCTION

Group testing considers the following problem: Given n

items of which some are ‘defective’, how many ‘pooled tests’

are required to accurately recover the defective set? Each

pooled test is performed on a subset of items: the test is

negative if all items in the test are nondefective, and is positive

if at least one item in the test is defective.

In Dorfman’s original work [1], the application was to

test men enlisting into the U.S. army for syphilis using a

blood test. Dorfman noted that one could test pools of mixed

blood samples and use fewer tests than testing each blood

sample individually. The test result from such a pool should

be negative if every blood sample in the pool is free of the

disease, while the test result should be positive if at least one

of the blood samples is contaminated. Other applications of

group testing include in biology [2], signal processing [3], and

communications [4], to name just a few.

The most important distinction between types of group

testing is between:

• Nonadaptive testing, where all the tests are designed in

advance.

• Adaptive testing, where the items placed in a test can

depend on the results of previous tests.

This paper considers nonadaptive testing. Nonadaptive testing

is important for modern applications of group testing, where an

experimenter wishes to perform a large number of expensive

or time-consuming tests which are required to be performed

in parallel.

A second important consideration is how many defective

items there are. In this paper, we consider the linear regime,

where the number of defective items k is a constant proportion

p ∈ (0, 1) of the n items. A lot of group testing work

has concerned the very sparse regime where k is constant

as n → ∞ [5]–[7] or the sparse regime k = Θ(nα) as

n → ∞ for some α < 1 [8]–[12]. However, we argue that the

linear regime is more appropriate for many applications. For

example, in Dorfman’s original set-up, we might expect each

person joining the army to have a similar prior probability p
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of having the disease, and that this probability should remain

roughly constant as more people join, rather than tending

towards 0; thus one expects k ≈ pn to grow linearly with

n.

Within nonadaptive group testing in the linear regime, two

cases have received most consideration in the literature:

• Combinatorial zero-error testing: The defective set is any

subset of {1, 2, . . . , n} with given size k, and one wishes

to find the defective set with certainty, whichever such set

it is. One assumes that k/n tends to a constant p ∈ (0, 1)
as n → ∞. [13]–[16]

• Probabilistic small-error testing: We assume each item

is defective with probability p, independent of all other

items, where p ∈ (0, 1) stays fixed. We want to find

the defective set with arbitrarily small error probability

(averaged over the random defective set). [16]–[20]

This paper considers probabilistic small-error testing. One

could consider the case of combinatorial small-error testing,

where exactly k ∼ pn items are defective chosen uniformly

at random, together with a small-error criterion. However, we

claim that the probabilistic model of independent defectivity

is more realistic in applications: again, soldiers might each

have a disease with some known prevalence p, but it is un-

realistic to know exactly how many soldiers have the disease.

The choice between combinatorial (known k) or probabilistic

(independent p) set-ups tends not to substantially affect results,

as the probabilistic case sees concentration of the number

defectives around k = pn; we briefly discuss in Section IV

that our result may extend to the combinatorial small-error

case. Probabilistic zero-error testing is not of interest: since

any of the 2T subsets of items could be the defective set, it is

immediate that individual testing is optimal.

We emphasise that we are looking for full reconstruction;

that is, we only succeed if we find the exact defective set,

classifying every defective and nondefective item correctly.

(See Definition 2 for formal definitions.)

For group testing in the linear regime, it is easy to see that

the optimal scaling is the number of tests T scaling linearly

with n. A simple counting bound (see, for example, [8], [11],

[20]) shows that we require T ≥ (1−δ)H(p)n for large enough

n, where H(p) is the binary entropy. Meanwhile, testing each

item individually requires T = n tests, and succeeds with

certainty. (In the combinatorial case, T = n − 1 suffices, as

the status of the final item can be inferred from whether k

or k − 1 defective items have been already discovered from

individual tests.) Thus we are interested in the question: when

is individual testing with T = n (or n − 1) optimal, and when

can we reduce T towards the lower bound H(p)n?
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In the adaptive combinatorial zero-error case it is known

that individual testing is optimal for p ≥ 1−log3 2 ≈ 0.369 [14]

and suboptimal for p < 1/3 [13], [21] for all n. Hu, Hwang

and Wang [13] conjecture that p = 1/3 is the correct threshold.

In forthcoming work, Aldridge [16] gives algorithms using

T < 1.11 H(p)n tests for all p ≤ 1/2 and large n.

In the adaptive probabilistic small-error case, it is known

that individual testing is optimal for p ≥ (3 −
√

5)/2 ≈ 0.382

and suboptimal for p < (3 −
√

5)/2 [17] for n sufficiently

large. In forthcoming work, Aldridge [16] gives algorithms

using T < 1.05 H(p)n tests for all p ≤ 1/2 and large n.

In the nonadaptive combinatorial zero-error case, it is well

known that individual testing is optimal when k grows faster

than roughly
√

n, which is the case for all p ∈ (0, 1) in the

linear regime for n sufficiently large [5], [15], [22], [23].

This leaves the nonadaptive probabilistic small-error case.

In this paper, we show that individual testing is optimal for

all p ∈ (0, 1) and all n.

Theorem 1: Consider probabilistic nonadaptive group testing

where each of n items is independently defective with a given

probability p ∈ (0, 1), independent of n. Suppose we use T < n

tests. Then there exists a constant ǫ = ǫ(p) > 0, independent

of n, such that the average error probability is at least ǫ .

(The average error probability is defined formally in Defi-

nition 2.)

The previous best result was by Agarwal, Jaggi and Mazum-

dar [20]. They used a simple entropy argument to show that

individual testing is optimal for p ≥ (3 −
√

5)/2 ≈ 0.382, and

a more complicated argument using Madiman–Tetali inequali-

ties to extend this to p > 0.347. We extend this to all p ∈ (0, 1).
Further, Agarwal et al. use a weaker definition of ‘optimality’

than we do here: they show that the error probability is

bounded away from 0 as n → ∞ when T < (1 − δ)n for

some δ > 0, whereas we show that the error probability is

bounded away from 0 for any T < n.

Wadayama [19] had claimed to be able to beat individual

testing for some p in work that was later retracted in part [24].

We discuss this matter further in Section IV.

Finally, we note that other scaling regimes than the linear

regime have been studied, notably the sparse regime k = Θ(nα)
for different values of the sparsity parameter α ∈ [0, 1). In

these regimes, for n sufficiently large: adaptive testing always

outperforms individual testing [8], [15], [25], nonadaptive

small-error testing always outperforms individual testing [7],

[9], [10], [12], [26], and nonadaptive zero-error testing out-

performs individual testing for α < 1/2 but not for α > 1/2
[5], [22], [23], [27].

II. DEFINITIONS AND NOTATION

We fix some notation and state some important definitions.

Definition 2: There are n items, and we perform T tests.

A nonadaptive test design can be defined by a test matrix

X = (xti) ∈ {0, 1}T×n, where xti = 1 means item i is in test t,

and xti = 0 means it is not.

Given a test design X and a defective set K ⊆ {1, 2, . . . , n},
the outcomes y = (yt ) ∈ {0, 1}T are given by yt = 0 if xti = 0

for all i ∈ K, and yt = 1 otherwise.

An estimate of the defective set is a (possibly random)

function K̂ = K̂(X, y) ⊆ {1, 2, . . . , n}.
The average error probability is

P(error) =
∑

K⊆{1,2,...,n}
p |K |(1 − p)n−|K |

P
(

K̂(X, y) , K
)

,

where y is related to X and K as above, and the probability

P can be replaced by an indicator function if the estimate K̂
is nonrandom.

The concept of an item being ‘disguised’ will be important

later.

Definition 3: Fix a test design X and a defective set K.

Given an item i (either defective or nondefective) contained

in a test t, we say that item i is disguised in test t if at least

one of the other items in that test is defective; that is, if there

exists a j ∈ K, j , i, with xt j = 1. We say that item i is totally

disguised if it is disguised in every test it is contained in.

Lemma 4: Consider probabilistic group testing with defec-

tive probability p. Fix a test design X, and write wt =
∑n

i=1 xti
for the weight of test t; that is, the number of items in test t.

Further, write Di for the event that item i is totally disguised.

Then

P(Di) ≥
∏

t:xt i=1

(1 − qwt−1) ,

where q = 1 − p.

This is essentially Lemma 4 of [20]; we give a shorter proof

here based on the FKG inequality (see for example [28], [29,

Section 2.2]).

Proof: For a test t containing item i, write Dt,i for the

event that i is disguised in t. Clearly we have

P(Di) = P
(

⋂

t:xt i=1

Dt,i

)

.

Further, for a test t containing item i we have P(Dt,i) = 1 −
qwt−1, since i is disguised in t unless the other wt − 1 items

in the test are all nondefective. Note also that the Dt,i are

increasing events, in the sense that for L ⊆ K the indicator

functions satisfy 1Dt, i
(L) ≤ 1Dt, i

(K). The FKG inequality

tells us that increasing events are positively associated, in that

P

(

⋂

t:xt i=1

Dt,i

)

≥
∏

t:xt i=1

P(Dt,i) ,

and the result follows.

III. PROOF OF MAIN THEOREM

We are ready to proceed with the proof of Theorem 1.

Proof of Theorem 1: The key idea is the following:

Suppose some item i is totally disguised, in the sense of

Definition 3. Then every test containing i is positive, no matter

whether i is defective or nondefective. Thus we cannot know

whether i is defective or not: we either guess i is nondefective

and are correct with probability p, guess i is nondefective

and are correct with probability q, or take a random choice

between the two. Whichever way, the error probability is

bounded below by the constant min{p, q}, which is nonzero

for p ∈ (0, 1). It remains to show that, again with probability

bounded away from 0, there is such a totally disguised item i.
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Fix n. Fix a test design X with T < n tests. Without loss of

generality we may assume there are no tests of weights wt = 0

or 1. All weight-0 ‘empty’ tests can be removed. If there is a

weight-1 test, we can remove it and the item it tests, repeating

until there are no weight-1 tests remaining. These removals

leave p the same, do not increase the error probability, and

reduce T/n, since we had T/n < 1 to start with.

From Lemma 4, the probability that item i is totally dis-

guised is bounded by

P(Di) ≥
∏

t:xt i=1

(1 − qwt−1) ,

Write L(i) for the natural logarithm of this bound, so P(Di) ≥
eL(i), where

L(i) = log
∏

t:xt i=1

(1 − qwt−1)

=

∑

t:xt i=1

log(1 − qwt−1)

=

T
∑

t=1

xti log(1 − qwt−1).

We must show that, for some i, L(i) is bounded from below,

independent of n. Then with probability at least eL(i) we have

a totally disguised item, and the theorem follows.

Write L̄ for the mean value of L(i), averaged over all i

items. (Note that L̄ is negative.) Then we have

L̄ =
1

n

n
∑

i=1

L(i)

=

1

n

n
∑

i=1

T
∑

t=1

xti log(1 − qwt−1)

=

1

n

T
∑

t=1

(

n
∑

i=1

xti

)

log(1 − qwt−1)

=

1

n

T
∑

t=1

wt log(1 − qwt−1)

≥ T

n
min

t=1,2,...,T

{

wt log(1 − qwt−1)
}

(1)

≥ min
t=1,2,...,T

{

wt log(1 − qwt−1)
}

(2)

≥ min
w=2,3,...

{

w log(1 − qw−1)
}

=: L∗
. (3)

Going from (1) to (2) we have used the assumption T/n ≤ 1

(and that T/n is multiplied by a negative expression), and

going from (2) to (3) we used assumption that no test has

weight 0 or 1. Note further that the the bound L∗ is indeed

finite, since, for q < 1, the function w 7→ w log(1 − qw−1) is

continuous for w ∈ [2,∞), finite at w = 2, and tends to 0 as

w → ∞.

Since L̄ is the mean of the L(i)s, there is certainly some i

with L(i) ≥ L̄ ≥ L∗, and thus some i with P(Di) ≥ eL
∗
. We

are done.

Inspecting the proof, we see immediately that, when T < n,

we have an explicit bound on the error probability of

P(error) ≥ ǫ(p) = min{p, q}eL∗
, (4)

Fig. 1. The error probability bound (4), plotted against the prevalence p.

with L∗ as in (3). The bound (4) is plotted in Figure 1.

It is simple to compute the bound for any p. In particular,

one can easily check that for p > 0.161 the minimum in (3) is

achieved at w = 2, giving L∗
= 2 log(1 − q1) = 2 log p, giving

eL
∗
= p2 and therefore the very simple bound

P(error) ≥
{

qp2 p ≥ 1/2,
p3 0.161 < p < 1/2.

On the other hand, we can consider the limit as p → 0. By

comparing L∗ to the expression w log(1 − qw), which can be

explicitly minimised using calculus, we see that the optimal

w in (3) is asymptotically

w ∼ − log 2

log q
∼ log 2

p
as p → 0,

giving L∗ ∼ −(log 2)2/p, and the asymptotic expression for

ǫ(p) in (4) as

ǫ(p) ∼ p exp

(

−(log 2)2
p

)

≈ p exp

(

−0.480

p

)

as p → 0.

By being more careful at the step from (1) to (2), we see

that when T < (1 − δ)n we can improve the bound (4) to

P(error) ≥ min{p, q}e(1−δ)L∗
.

Note that in the proof we only bounded the probability that

one particular item is wrongly decoded, so the bound (4), while

explicit, simple to compute, and bounded away from 0, is

unlikely to be tight for many cases.

IV. CLOSING REMARKS

We have shown that individual testing is optimal for small-

error nonadaptive testing in the linear regime for all p ∈ (0, 1).
Our result here contradicts a result of Wadayama [19,

Theorem 2], later retracted [24], which claimed arbitrarily

low error probabilities for n sufficiently large with T/n < 1.

Wadayama used doubly regular test designs chosen at random

subject to each item being in l tests and each test containing r

items, where l and r are kept fixed as n → ∞. Since l/r = T/n,

one requires r > l ≥ 1 to beat individual testing. However,

with these designs, following the outline above, we see that

the probability that any given item i is totally disguised is
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bounded below by P(Di) ≥ (1−qr−1)l , a constant greater than

0 for r > l ≥ 1. Thus these designs cannot have arbitrarily

low error probability.

A note of caution with our result is due. We have only

shown that the error probability cannot be made arbitrarily

small – however, it might be very small. For example, we

see from Figure 1 that the error bound given by (4) is very

small for p < 0.1. Thus, for some given nonzero error

tolerances, and some p and n, it may still be that random

designs can be profitably used in applications – suggestions

include Bernoulli random designs [6], [7], [9], [10], [18], [26],

designs with constant tests-per-item [12], [18], or Wadayama’s

doubly regular designs [18], [19]. Further ‘finite blocklength’

analysis of these designs would be useful in investigating this

point.

It seems likely that a similar result to Theorem 1 holds

for small-error testing under the combinatorial model, where

exactly k ∼ pn items are defective, chosen uniformly at

random. We conjecture that for T < n − 1 (recalling again

that the final item’s status can be inferred from the status of

the other items) the error probability is bounded away from

0. The main difficulty here is that the FKG inequality used in

the proof of Lemma 4 is reliant on the independence of the

defectivity of items. Further, one would have to be careful in

asserting that the existence of a totally disguised item ensures

a probability of error bounded away from 0. One work-around

to the latter point might be to show there is likely to be

both a totally disguised defective item and a totally disguised

nondefective item, so the tester cannot know which is which.

We have shown that, with a small-error criterion, individual

testing is optimal in the linear regime k ∼ pn for p > 0,

while it is known that individual testing is suboptimal when

k = Θ(nα) for any α < 1 [7], [9], [10], [26]. This leaves open

exactly when individual testing becomes suboptimal. For ex-

ample, is individual testing optimal or not when k ∼ n/log n?

The method employed here required p to be bounded away

from 0; with p = 1/log n, for example, a totally disguised

item could be safely assumed to be nondefective with error

probability tending to 0.
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[18] M. Mézard, M. Tarzia, and C. Toninelli, “Group testing with random

pools: Phase transitions and optimal strategy,” Journal of Statistical

Physics, vol. 131, no. 5, pp. 783–801, 2008.
[19] T. Wadayama, “Nonadaptive group testing based on sparse pooling

graphs,” IEEE Transactions on Information Theory, vol. 63, no. 3, pp.
1525–1534, 2017, see also [24].

[20] A. Agarwal, S. Jaggi, and A. Mazumdar, “Novel impossibility results
for group-testing,” 2018, arXiv:1801.02701 [cs.IT].

[21] P. Fischer, N. Klasner, and I. Wegenera, “On the cut-off point for
combinatorial group testing,” Discrete Applied Mathematics, vol. 91,
no. 1, pp. 83–92, 1999.

[22] H.-B. Chen and F. K. Hwang, “Exploring the missing link among
d-separable, d̄-separable and d-disjunct matrices,” Discrete Applied

Mathematics, vol. 155, no. 5, pp. 662–664, 2007.
[23] D. Du and F. Hwang, Combinatorial Group Testing and Its Applications,

2nd ed. World Scientific, 1999.
[24] T. Wadayama, “Comments on “Nonadaptive group testing based on

sparse pooling graphs”,” IEEE Transactions on Information Theory,
vol. 64, no. 6, pp. 4686–4686, June 2018.

[25] F. K. Hwang, “A method for detecting all defective members in a popu-
lation by group testing,” Journal of the American Statistical Association,
vol. 67, no. 339, pp. 605–608, 1972.

[26] C. L. Chan, P. H. Che, S. Jaggi, and V. Saligrama, “Non-adaptive prob-
abilistic group testing with noisy measurements: near-optimal bounds
with efficient algorithms,” in 49th Annual Allerton Conference on

Communication, Control, and Computing, 2011, pp. 1832–1839.
[27] W. H. Kautz and R. C. Singleton, “Nonrandom binary superimposed

codes,” IEEE Transactions on Information Theory, vol. 10, no. 4, pp.
363–377, 1964.

[28] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, “Correlation inequalities
on some partially ordered sets,” Communications in Mathematical

Physics, vol. 22, no. 2, pp. 89–103, 1971.
[29] G. R. Grimmett, Percolation, 2nd ed. Springer-Verlag, 1999.


