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A Comparative Study of Velocity Obstacle Approaches for Multi-Agent

Systems

James A. Douthwaite, Shiyu Zhao and Lyudmila S. Mihaylova

Abstract— This paper presents a critical analysis of some of the
most promising approaches aimed at geometrically generating
reactive avoidance trajectories for multi-agent systems. Several
evaluation scenarios are proposed that include both sensor
uncertainty and increasing difficulty. An intensive 1000 cycle
Monte Carlo analysis is used to assess the performance of the
selected algorithms under the presented conditions. The Optimal
Reciprocal Collision Avoidance (ORCA) method was shown to
demonstrate the most scalable computation times and collision
likelihood in the presented scenarios. The respective features and
limitations of the algorithms are discussed and presented through
examples.

Index Terms— Collision avoidance, multi-agent systems, veloc-
ity obstacles, VO, RVO, HRVO, OCRA

I. INTRODUCTION

Collision avoidance is a subject that has seen an increasing

interest over the last decade with the growth of domestic and

commercial robotics. Multi-agent systems are now required to

navigate increasingly crowded and dynamic environments, of-

ten where inter-agent communication is unreliable. In addition

to this, in systems composed of numerous physical agents,

agents must be able to generate trajectories in order to avoid

other agents and obstacles in the field.

Two principle classifications of reactive avoidance tech-

niques can be drawn from the literature: 1) Cooperative, 2)

Non-cooperative. In both cases assumptions are made based on

the availability of the obstacle telemetry. Cooperative avoid-

ance algorithms operate on the assumption of a unilateral

communication system with explicit communication between

each agent and obstacle. Non-cooperative approaches however,

rely on obstacle telemetry sensed through an on board tracking

system. While typically multi-agent systems rely on com-

municated information about its neighbours, we examine the

scenario where agents are tasked with locally computing their

trajectories to achieve a desired way-point. This is synonymous

to scenarios where inadequate information is communicated or

lost. This reduces the agent trajectory generation to a localised

Sense, Detect and Avoidance (SDA) problem [1].

Previous approaches to solving the SDA problem in-

clude probabilistic modelling [2], conflict resolution interval

and agent trajectory optimisation [3]–[6]. More classical ap-

proaches include designed potential fields as seen in [7] and
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numerous geometry based avoidance techniques [8], [9]. The

concept of the Collision Cone and the Velocity Obstacle is

introduced in [8], defining geometric regions as constraints on

the agents feasible velocities at time tk+1. Presentation of the

collision scenario geometrically, given no prior knowledge or

predictions, allows a resolution velocity to be found quickly

and with minimal obstacle information.

Iterations of the Velocity Obstacle concept include the Re-

ciprocal Velocity Obstacle [10], [11], which has been shown

to reduce the trajectory oscillation by considering the reactive

nature of avoiding agents. Variable acceleration obstacles are

addressed under the notion of Acceleration Velocity Obstacles

in [12]. Hybrid-Reciprocal Velocity Obstacle are introduced

in an effort to eliminate direction ambiguity in [13] and

eliminate the phenomenon known as the reciprocal dance.

Despite producing smoother trajectories, the HRVO is not

capable of guaranteeing that trajectories will be smooth. A

method proposed to address this is the Optimal Reciprocal

Collision Avoidance method, by adopting the concept of half-

planes as linear constraints [14]. Similar techniques demon-

strate consideration for non-linear obstacle motion, proposed

in [15], with the addition of kinematic constraints in the

Kinematic Velocity Obstacles (KVO) in [16]. Although these

approaches have been widely used in multi-agent systems such

as pedestrian modelling and small robotic systems, they face

challenges in symmetric scenarios where a phenomenon known

as Dead-lock can occur.

This paper presents an in depth analysis of the most promis-

ing models and approaches for multi-agent collision avoidance.

These approaches are studied over a range of scenarios with

varying levels of difficulty and obstacle numbers. Through an

intensive Monte Carlo analysis the pros and cons of these algo-

rithms are demonstrated and discussed. These are evaluated in

the light of a minimum separation distance and computation

time, and can be applied both to unmanned aerial vehicles

and air traffic control. Two dimensional collision avoidance

is considered, although the extension to the three dimensional

case is natural.

The structure of the paper is as follows; In Section II

we introduce the problem context and the imposed sensor

constraints. Section III presents the mainstream Velocity Ob-

stacle approaches to collision avoidance and their principle

differences. Section IV presents the agent assumptions and

conditions used in the context of this paper. In Section V

the performance of the presented algorithms is assessed and

compared in several given example scenarios. Finally, the

results of the proposed experiments are presented and discussed
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Fig. 1. A description of the adopted sensor model defining the spherical
position of obstacle j, at time k, as its position in the azimuth dj ,θj and λj .

in Section VI.

II. PROBLEM DESCRIPTION

We begin by considering an interaction between two agents,

i and j, respectively. Both agents are moving through two

dimensional (2D) Cartesian space. The agents velocities are

denoted by ~vi ∈ R
3×1 and ~vj ∈ R

3×1, with representative

radii ri and rj , respectively. Agent i considers agent j as both

a collaborator and an obstacle to be avoided. The position of

agent i at time tk+1 is defined as ~pi,k+1 = ~pi,k+∆t·~vi,k where

∆t is the sampling rate. We define a maximum speed constraint

vmax to limit the velocities available to the avoidance routine;

represented simply as |~vi| <= vmax.

A. Sensor Model

We assume that each agent is able to make its own observa-

tions of its surrounding using an on board camera and range

finder. The resulting measurements represent the spherical

position of agent j in the form of an elevation, azimuth angle,

range and width, denoted by θj ∈ [−π, π], λj ∈ [−π, π],
dj ∈ [0, dmax] and αj ∈ [−π, π] respectively. The parameter

dmax is used here to describe the maximum visual range of

agent i. Agent i observes agent j in its body axes as seen in

Figure 1 [3].

For the context of this paper we assume avoidance is to be

carried out at constant altitude. Agent i measures the spherical

position, θj,k, λj,k, dj,k, and width αj,k in the body axes of i.
The agent then computes its equivalent 2D Cartesian position

~pj,k = [xj,k, yj,k]
T and radius estimate rj,k at time k. The

Cartesian velocity of the obstacle is then be calculated from

successive position samples ~vi,k = 1

∆t
(pj,k − pj,k−1). The

relative state of obstacle j, at time tk, is then defined as

Xj,k = [pj,k, vj,k, rj ]
T . The agents are otherwise assumed

capable of retaining a set of states that correspond to all

obstacles with in the agent’s visual horizon dmax.

III. VELOCITY OBSTACLE METHODS

A. The Velocity Obstacle

The concept of the Velocity Obstacle (VO), based on the

geometric assembly of the Collision Cone (CC), was first

presented in [8]. Obstacles are observed in the agents local

horizontal plane (XY) as their planar cross-section centred at

Fig. 2. The Velocity Obstacle V Oj (shaded in dark grey) from the initial
CCij . Here the V Oj defined in the configuration space of i, from the relative
position λij , configuration radius rc = ri + rj and velocity ~vj .

~pj as seen in Figure 2. Here, the collision cone for obstacle j is

defined as CCij from the geometric properties of the obstacles

relative position ~λij , configuration radius rc and velocity ~vj .

Velocities that will bring about collision with obstacle j

are then be represented in the velocity space by translating

CCij by ~vj via the Minkowski sum: V Oij = CCij ⊕ ~vj . In

the consideration of multiple obstacles, the union of multiple

V O1:n is taken. Agent velocities are therefore considered valid

if ~vi,k+1 6∈ V Ok = ∪n
j=1V Oj,k [8]. Velocities satisfying this

constraint describe a collision free trajectory for agent i in the

presence of obstacles V Oj=1:n for time tk.

In practice, oscillatory trajectories are often observed in

instances where two agents attempt to resolve a conflict with

one another using the VO method. This often propagates until

the point of collision occurs; as the two agents repeatedly

resolve velocities ~vi,k+1 that imply a new conflict at tk+1 [10].

Obstacles that are static, or moving with constant velocity can

otherwise be handled using the VO approach.

B. The Reciprocal Velocity Obstacle

An iteration of the conventional VO method, termed the

Reciprocal Velocity Obstacle (RVO) [10], attempts to consider

the reciprocal motion of the second decision making agent j

in order to produce smoother avoidance trajectories. The agent

generates a VO with an apex augmented by the average of the

two object velocities ~vi,k+1 6∈ CCij ⊕ (~vi,k + ~vj,k)/2. This

concept effectively allows the agent to mediate its correction

trajectory ~vi,k+1 in accordance with ~vj . At time tk, the RVO

contains represents the region of velocities for i that are the

average of both the velocity of agent i and the velocity of

obstacle j.

The RVO is shown to eliminate the V O oscillation men-

tioned in Section III-A [10], and the resultant resolution

trajectories are seen to be smoother. While this is the case,

agent i and obstacle j do not explicitly agree on which sides

they will approach each other. This can lead to scenarios where

agents will mirror the trajectories of their respective obstacles

in an attempt to avoid them. The oscillations induced by this

behaviour, distinct from those of the VO, are often referred to

as a Reciprocal Dance.
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Fig. 3. The construction of the Reciprocal Velocity Obstacle (RV Oj ) by
averaging the velocities of the agent ~vi and obstacle ~vj .

Fig. 4. The relation of the Hybrid Reciprocal Velocity obstacle HRVO to the
initial V Oj and the RV Oj for a given obstacle B.

C. The Hybrid Reciprocal Velocity Obstacle

An advancement on the VO problem has been proposed to

negate the causes of reciprocal dance by augmenting the VO

and RVO regions. The Hybrid Reciprocal Velocity Obstacle

(HRVO), shown in Figure 4, alters the apex of the HRVO in

order to example different behaviour depending on the relative

motion of the obstacle ~vj .

The centreline of the V Oj and RV Oj are collinear in nature,

therefore if the obstacle is moving right, the agent should

resolve a trajectory ~vi,k+1 to pass the obstacle on the left and

vice versa. Failure to do so brings about the phenomena of the

Reciprocal Dance. Although the method is shown to improve

the generation of smooth avoidance trajectories, it cannot guar-

antee it theoretically [13]. In the example given in Figure 4,

directional bias is established by adjusting the apex of the

HRV Oj to be the intersection of the leading edge of RV Oj

the trailing edge of V Oj (i.e. HRV Oij = CCij ⊕ ~vHRVO.

The resulting constraint set imposed upon agent i at time tk
is then written ~vi,k+1 6∈ HRV Ok = ∪n

j=1HRV Oi,k [13].

Typically the RVO and HRVO are only necessary in the

computation of inter-agent avoidance trajectories. The global

VO set for agent i can instead be written as the union

of the reciprocal variants (RVO or HRVO) for surrounding

agents Aj and the VO for obstacles Oj : ~vi,k 6∈ HRV Ok =⋃n
Aj=1

HRVOAj
∪
⋃n

Oj=1
VOOj

.

Fig. 5. a) The geometric description of the truncated VO for obstacle j, defined
by the truncation parameter τ , relative position (~pj − ~pi) and configuration
radius rc = ri+rj . b) The assembled ORCA obstacle and velocity correction
~u as a result of obstacle j.

D. Optimal Reciprocal Collision Avoidance

The RVO concept has be extended more recently in a method

termed Optimal Reciprocal Collision Avoidance (ORCA). The

ORCA approach is described well in [17], demonstrating

how the ORCA velocity obstacle is formulated for a given

reciprocally collision avoiding agent pair i and j. The resultant

trajectory is not only smooth but, for small time steps, can

be seen as continuous in the velocity space. The truncation

parameter, τ , represents the time window for which a collision

free trajectory should be guaranteed, i.e the agent can move at

its new velocity for τ seconds.

If we assume that ~vi and ~vj are those that will bring

about a collision in the future, then we define ~u as the

vector to the point closest to the boundary of V Oj : ~u =
(argmin~v∈δVOτ ||~v−(~vi−~vj)||)−(~vi−~vj)(see Figure 5). Here

||~v|| denotes the euclidean norm of ~v . Using the ”outward”

facing normal ~n of the boundary at the point (~vi − ~vj) + ~u
and the assumption that the responsibility that the avoidance

is shared equally, the formulation for the ORCAj constraint

can be written as ORCAτ
k = ~v|~v − (~vi +

1

2
~u).~n ≥ 0. The

geometric representation of ~v is given in Figure 5(b). Here it

is represented as a half-plane with normal ~n, with the initial

point at ~p = ~vi +
1

2
~u [17].

The ORCA lines themselves allow the scenario to be de-

scribed using only linear constraints. In addition, representation

of the RVO as half-planes allows for simplification of the

constraint set by eliminating those already covered by other

ORCA lines, whilst guaranteeing continuously smooth agent

trajectories.

E. Trajectory Selection

How the optimal resolution velocity is determined from

the constraint sets defined in Sections III-A-III-D, is also

subject to strategy [8]. In the literature this is typically deter-

mined by considering the minimum deviation from a desired

trajectory ~vprefi subject to the union of the V Ok set. In

such cases the optimal velocity can then be expressed as

~v∗i = argmin~v 6∈V O(||~v − ~vprefi ||). In this paper, the optimal

resolution velocity is determined similarly, using the Clear
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Path method [17], subject to the global constraint set of a given

algorithm.

IV. AGENT KINEMATICS & CONTROL

A. Way-point Navigation

In this case study, way-points are used to both ensure

contradictory trajectories and to indicate task completion. At

all times, the position of agent i’s way-point ~pwp,i is assumed

observable in its surroundings. The preferred velocity is that in

the direction of ~pwp,i, expressed as ~vprefi =
~pwp,i−~pi

||~pwp,i−~pi||
· vpref

where vpref is the preferred speed.

B. Neighbour Consideration

For the purposes of this paper it is assumed that the agents

have an infinite visual horizon. This allows the agents to

observe the trajectories of the complete agent set, and their

target way-points. To limit the number of constraints (and

therefore complexity of solution) a local neighbourhood is

adopted using the maximum separation dmax stated in Table I.

V. EXPERIMENTAL RESULTS

A. A Problem of Symmetry

In collision scenarios involving greater than two agents,

there exists a problem of symmetry. This occurs when the

obstacle configuration is perfectly symmetrical about the agents

velocity vector ~vi. Similar to the Dead-lock scenario in [13]; no

feasible solution can be found either because of this symmetry,

or because the velocity space is saturated with VO. Despite this

scenario being unlikely in real world applications, the agent is

incapable of resolving an avoidance heading without violating

or relaxing a given constraint.

In such scenarios a higher level strategy must be applied

to intelligently preserve a collision-free trajectory by manip-

ulating the constraint (or VO) set or designing a new desired

velocity (~vpref ). As part of the Monte Carlo analysis, the initial

positions of the agents are perturbed by a small noise signal

0.5m. This process also aids in the prevention of the dead-lock

by ensuring that the scenario is asymmetrical.

B. Experimental Conditions

In this section we demonstrate the conflict resolution meth-

ods outlined in Section III. The agent population is initialised

with the parameters defined in Table I. The noise parameters

are applied to better represent sensor-derived measurement of

the obstacle trajectory. Agents are designated a target way-

point at the antipodal position of a concentric circle with a

radius of 20m. The agents are tasked with crossing the circle to

reach their way-point positions ~pwp,i whilst avoiding collision.

In Figure 6 the agent initialise at their origins (circles) and

move through the collision centre to reach their respective way-

points (triangles).

Events such as collisions or way-point incidence are said to

occur when the following condition is violated ||~pi−~pwp,i|| <
(ri + rwp,i) − Ktol, where the parameter Ktol is a condition

tolerance that aims to eliminate ambiguity between collisions

and narrow-misses caused by the nature of discrete simulation.

Parameter Value

Maximum speed 2 m/s
Agent critical radius 0.5 m
Neighbour horizon 15 m

Camera standard deviation 5.208×10−5 rad
Range-finder standard deviation 0.5 m
Airspeed standard deviation 0.5 m/s
Position standard deviation 0.5 m
Agent orbital radius 10 m
Way-point orbital radius 20 m
Object position standard deviation 0.5 m
Cycles 1000
Sampling rate 0.25 s

Event tolerance (Way-points, Collisions etc..) 1×10−3 m

TABLE I

THE UNILATERAL AGENT PARAMETERS, INCLUDING ASSUMPTIONS ON

SENSOR UNCERTAINTY.

Fig. 6. A depiction of ten agents using the VO based reactive avoidance in
a concentric collision scenario. The oscillations due to obstacle compensative
motion can be clearly observed as the agent progress towards the collision
centre.

The agent and scenario parameters are otherwise explicitly

stated in Table I.

The selected algorithms presented in Section III were placed

in scenarios with an increasing numbers of agents. We examine

the ten agent scenario to discuss the principle difference in

algorithm behaviour. Figure 6 demonstrates the trajectories

generated by the VO algorithm. When compared to the RVO

in Figure 7 the trajectory adjustments can be seen to be

abrupt, with greater oscillation throughout, until all conflicts

are resolved.

The compensation for obstacle movement is clearly seen

in Figure 7 as the trajectories are shown more gradual. This

indicative of the adjustment of the RVO in response to the

movement of the obstacles; leading to fewer instances of harsh

correction. Oscillation in the form of Reciprocal Dance can still

be observed however as the direction of pass is resolved.

In comparing the RVO trajectories to that of the HRVO
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Fig. 7. A depiction of the ten agent concentric scenario and applying the RVO

based avoidance method. Abrupt trajectory changes can be seen observed, with
distinct oscillations as new agents j enter the visual horizon of agent i.

Fig. 8. The ten agent concentric scenario repeated with the HRVO obstacle
generation method applied. Oscillations can be observed as the procedure
begins, however shown to be near linear as the direction of pass is resolved.

in Figure 8; their is a clear reduction in the oscillation as

the agents initially determine their direction of pass. The

HRVO directional bias can also be observed from the agent

trajectories, indicated by the emergent spiral behaviour around

the conflict centre.

The representation of the VO as ORCA constraints is shown

to produce trajectories similar to that the of HRVO in Figure 9.

The linearity of the of the constraints however is shown to

create smooth trajectories throughout the conflict scenario,

resulting in a smaller overall course deviations.

The selected algorithms were exampled in scenarios with 2,

5, 10 and 20 agents and their performance measured over 1000

Monte Carlo independent iterations. In addition to this, two

sensor conditions were observed; A) Ideal Sensing; the agents

Fig. 9. The ten agent concentric scenario repeated under the ORCA obstacle
generation method. The resultant trajectories appear as smoother, more gradual
adjustments than the previous methods.

are given perfect knowledge of the surrounding obstacles B)

Representative Sensing; the agents adopt the sensor properties

defined in Table I.

Algorithm
Condition

Mean
Collisions

Mean
Minimum

Separation (m)

Mean
Computation
Time (ms)

Condition A

VO 9.203 0.581 2.000
RVO 3.140 0.831 2.100
HRVO 0.053 0.996 2.400
ORCA 0.038 1.000 0.460

Condition B

VO 7.749 0.624 2.000
RVO 9.380 0.577 2.100
HRVO 2.878 0.836 2.600
ORCA 6.881 0.757 0.463

TABLE II

ALGORITHM PERFORMANCE OF IN THE SAME 10 AGENT SCENARIO.

CONDITION A) SENSING CAPABILITIES ARE ASSUMED IDEAL, CONDITION

B) ASSUMING REPRESENTATIVE SENSING. EACH VALUE REPRESENTS THE

MEAN ACROSS 1000 INDEPENDENT MONTE CARLO ITERATIONS.

The mean behaviour of the presented approaches are shown

in Tables II, where a clear difference can be seen between

the Ideal and Representative sensing conditions during the

10 agent example scenario. Under the assumptions of ideal

obstacle telemetry, the compensative nature of the RVO is

shown to reduce the mean number of collisions to 31.40%. This

is a significant reduction from the 92.03% achieved in same

scenario using the original VO method. The innate directional

bias in the formation of the HRVO is shown to further reduce

the number of collisions to 0.53%. The lowest mean number

of collisions was however found using the ORCA method;

averaging 0.38% over 1000 iterations.
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Fig. 10. The mean algorithm computation times in both condition A)
Ideal obstacle knowledge is assumed B) Obstacle telemetry data is subject to
interference. Their effect on computation time is observed with an increasing
number of obstacles.

Observing the behaviour of the algorithms in the presence

of sensor uncertainty demonstrated a 5.08% mean increase in

computation time. This can be seen more clearly in Figure 10.

The RVO is shown to be sensitive to obstacle trajectory

uncertainty; with a factor of 3 increase in mean collision

likelihood across the 1000 iterations. This may be due the

aggravation of the reciprocal corrections (Reciprocal Dance)

by the uncertainty in obstacle trajectory. Similar behaviour

can also be observed for the ORCA algorithm, as the sensor

uncertainty is shown to significantly increase the likelihood of

collision under this regime also.

The ORCA algorithm was also shown to have achieved a

mean minimum separation closest to the desired 1m. This

suggests the ORCA algorithm was more consistent in its ability

to maintain the intended boundary condition. Although, in

considering noisy telemetry this resulted in a mean collision

likelihood 40.03% higher than the HRVO approach.

Studying Figure 10, we observe an exponential relationship

between the size of the agent population and the mean algo-

rithm computation time for the VO, RVO and HRVO methods.

The ORCA approach is however shown to benefit greatly from

the linear representation of the constraint set; computation time

is shown to scale linearly with increasing agent number. The

relationship between the performance reduction rate rORCA =
3.4 × 10−5s/n is shown to be distinctly lower than the other

presented approaches. The ORCA algorithm therefore has a

clear advantage when considering scalability for larger multi-

agent systems, abeit more susceptible to uncertainty than the

HRVO method. All analyses were completed using an Intel

Core i7-6600HQ quadcore (@2.8GHz) CPU. Code for the

presented algorithms and scenarios are also available on

Github [18].

VI. CONCLUSIONS

In this paper several well established approaches to non-

cooperative collision avoidance are presented for use in multi-

agent systems. Uncertainty in obstacle trajectory is shown

to increase the mean computation time of all the proposed

approaches by without compensative measures. The HRVO

and ORCA methods are shown to be more effective in both

negotiating dense environments without collision, and handing

obstacle trajectory uncertainty. The ORCA method is also

shown to generate both smoother resolution trajectories and

scalable mean computation times.

The presented algorithms have shown that reactive collision

avoidance can be sufficient to mitigate multiple collisions in a

communication denied environment. Further work into inherent

avoidance will examine such algorithms in the presence static

and dynamic obstacles in more sophisticated coordinated tasks.
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