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Pauli problem for a spin of arbitrary length: A simple method to determine its wave function 

Stefan Weigert 
Institut fur Physik der Universitat Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland 

(Received 2 October 1991) 

The problem of determining a pure state vector from measurements is investigated for a quantum spin 
of arbitrary length. Generically, only a finite number of wave functions is compatible with the intensities 
of the spin components in two different spatial directions, measured by a Stern-Gerlach apparatus. The 
remaining ambiguity can be resolved by one additional well-defined measurement. This method com- 
bines efficiency with simplicity: only a small number of quantities have to be measured and the experi- 
mental setup is elementary. Other approaches to determine state vectors from measurements, also 
known as the "Pauli problem," are reviewed for both spin and particle systems. 

PACS number(s): 03.65.B~ 

I. INTRODUCTION 

It is straightforward to determine the expectation 
values of operators with respect to a given (pure or  
mixed) state of a quantum system, at  least in principle. 
The inverse problem, to  determine the quantum state of 
an ensemble of identically prepared individual systems by 
performing measurements, is a nontrivial task, even in 
principle. 

Apparently, this question was raised for the first time 
in 1933: Pauli [l]  pointed out that it was not known to 
him whether knowledge of the probability distribution of 
position and momentum, I $(X) l 2  and would be 
sufficient to determine the wave function I $) of a parti- 
cle. In the meantime interest in this problem continued, 
and various contributions [2-241 have been made to this 
field. Since there are numerous formulations of the origi- 
nal "Pauli problem" and since a variety of approaches to 
its solution exist (together with some erroneous state- 
ments), a review of the literature may be useful. 

Instead of following the historical order of the contri- 
butions, a systematic approach seems to be more ap- 
propriate. Considering time-independent systems with 
bound states only, the Pauli problem decomposes natural- 
ly into eight different types, at  least. First of all, one may 
restrict the performance of measurements to one instant 
of time only. Then the dimension of the Hilbert space 3f 
associated with the system under investigation may be 
finite or infinite. The first case occurs for spin systems, 

whereas the (countably) infinite-dimensional Hilbert 
space is typical for particle systems. In  both cases one 

may either assume the system to be prepared in a pure 
state 11)) or, what is more general, in a mixed state, de- 
scribed by a density matrix p? The notation for the vari- 
ous cases is exhibited in Table I. Correspondingly, the 
four classes which arise if measurements are performed at 
dzferent times or, equivalently, if the knowledge of time 
derivatives is required, are denoted by I,( t ) ,  II,( t ) ,  etc. 

The aim of the present paper is to demonstrate the ex- 
istence of a simple solution for the pure spin system (class 
11,). I t  will be shown that measurements performed with 
a simple Stern-Gerlach apparatus are sufficient for the 

determination of a pure spin state. The number of mea- 
sured quantities exceeds the number of free parameters of 
a pure state only by one, combining thus simplicity with 
efficiency. 

The paper is organized as follows. The next section re- 
views a number of contributions to the Pauli problem. 
Section I11 describes the problem studied in this paper 
and discusses briefly the method to its solution. Subse- 
quently, in Sec. IV, the derivation of the central state- 
ment is given. Then, in Sec. V, it is shown how a specific 
symmetry, due to the present approach, is reflected in the 
solution. Section V1 contains a brief summary. 

11. APPROACHES TO THE PAUL1 PROBLEM 

Much work has been devoted to the problem of deter- 
mining the pure state $) of a particle in a known poten- 
tial V(x) ,  that is, to class I,. The number of positive 

statements, however, is limited. Instead, many authors, 
from Bargmann in Reichenbach's book [4] to Stulpe and 
Singer [24] provide counterexamples to the seemingly 
plausible guess that given values for the position and 
momentum distributions / qb( X ) l * and l $(p 11 * might suffice 
to single out one and only one wave function l $ ) .  
Reichenbach [ 4 ] ,  PrugoveEki [13], Vogt [IS], Moroz [17], 
Wiesbrock [21], Friedman [19], and Stulpe and Singer 
[24] present examples of pairs of states, also called Pauli 
partners, which do entail equivalent position and momen- 
tum distributions. ~ ~ ~ i c a l l ~ ,  these constructions involve 
wave functions with specific behavior under reflection at 
the origin or under spatial translation by a certain 
amount, be it in one or three dimensions. Furthermore, 
the complex conjugate of a given wave function plays an 
important role in this context. However, exploiting prop- 
erties of the eigenstates of the harmonic oscillator in one 
dimension, Corbett and Hurst [l41 show the existence of 

TABLE I. Notation for the types of the Pauli problem. 

State dim%= a dim%< W 

Pure I P  11, 

Mixed I .M I I M  
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a dense set of Pauli nonunique states in Hilbert space: 
The associated Pauli partners are not complex conjugate 
to each other and do not necessarily have a definite pari- 
ty. To my knowledge the basic problem underlying the 
construction of counterexamples, namely, to enunciate 
actually the full set of states compatible with I$(x) l and 

I $ ( p )  / 2, has not yet been solved. 
A number of constructive results can be found in the 

paper by Corbett and Hurst. For example, some general 
conditions for the existence of nonunique states are given. 
The question whether all real states (i.e., states with ei- 
ther a real position or momentum wave function) might 
be Pauli unique, raised by the same authors, has been 
answered in the negative by PaviCic [20]. In addition, 
one of the main theorems on particular real states seems 
to be incorrect, as is argued by Friedman [19], who 
presents a counterexample to the theorem. This author, 
in turn, proves the restricted set of "nonnegative states" 
to be Pauli unique. 

Gale, Guth, and Trammell [5] claim that knowledge of 
the position distribution / $(x)12 in combination with the 
probability current j (x)  allows one to determine the wave 
function l $ ) .  Writing $ ( X ) =  f ( X )  exp[iS(x)/fi] with 
real functions f and S, they argue that the relations 
p (x )=  $ ( x I 2 =  f ( X )  and 

admit only one solution, namely, $(X), apart from an ir- 
relevant total phase. But one easily works out that for a 
real wave function [S(x)  =0]  the solution of the problem 
is not necessarily unique. Consider, for simplicity, only 
one spatial direction. Two wave functions l$+ ) with the 
properties 

$*( -x)=+$+(x)  and $*(O)=O , (2) 

the moduli of which are equal almost everywhere, 
I$+(x) 1 2 =  I $ - ( x  )I2, cannot be distinguished by the mea- 
surement of the probability p (x )  and the associated 
current ](X)-0. This construction of Pauli partners is 
easily generalized to more than one dimension. 

Band and Park [l61 treat the more general situation 
when the particle system under investigation is in a state 
to be described by a density matrix p? Clearly, this type 
of Pauli problem, I,, includes as a special case the prob- 
lem for a particle in a pure state, Ip. These authors show 
that it is possible to expand the particle density matrix p  ̂
in a series of expectation values containing only (ap- 
propriately symmetrized) products of powers of the basic 
variables position 2 and momentum 8. But the corre- 
sponding operators, termed a "quorum" for the deter- 
mination of the state associated with p? are not con- 
sidered as "physically meaningful" by the authors, since 
the actual measurement of these quantities is not 
straightforward. Adopting the hypothesis that expecta- 
tion values of the operators d "2 /dt " and its powers, in- 
stead of 8 and its powers, are accessible in experiments, 
Band and Park arrive at a physically meaningful quorum, 
allowing one to determine the density matrix in its posi- 

tion representation. As a result, they have shifted to case 
IM( t ) ,  since this method requires measurements of expec- 
tation values at different times. Apart from this investi- 
gation, the only attempt to determine a mixed particle 
state by measurements at different times, to my 
knowledge, is given by Gale, Guth, and Trammell [5], on 
the level of a thought experiment. 

Feenberg's idea [2] to use I $(X, t )  l and its time deriva- 
tive at l$(x, t)i2/at in order to work out the underlying 
particle wave function [class I,(t)] is reported in 
Kemble's book 131; another discussion of this work is 
given by Reichenbach [4]. According to Gale, Guth, and 
Trammell, Kemble's generalization of Feenberg's argu- 
ment from one to three spatial dimensions is not correct, 
and a detailed analysis of the error can be found in Royer 

1221. 
It follows from this list that quite different sets of 

measurable quantities can be used to deal with the Pauli 
problem. For example, one can try to express the state as 
functions of expectation values of projection operators 
Ix ) ( X I and lp ) ( p  l or the probability density j ( X  1, of 
powers and products of the basic variables 2 and 8 or 2, 
respectively. Such a variety of approaches is also present 
in the study of the Pauli for a spin to be con- 
sidered now. 

The case of pure spin states 11, is less intricate because 
of the finite-dimensional ~ i l b e r t  space involved. Gale, 
Guth, and Trammell [5] present an approach which 
makes use of an advanced version of a Stern-Gerlach ap- 
paratus, called a Feynman filter (cf. Feynman, Leighton, 
and Sands [25]). It allows one to stop all components of a 
beam of spins in the state I$) except two, without dis- 
turbing their phase relation. Subsequently, the relative 
phase of the two remaining components can be deter- 
mined. Combined with a measurement of the intensities 
of the components constituting the beam, one is able to 
derive from 6s numbers (2s intensities plus 2 for each of 
the 2s relative phases) the underlying spin state. Since a 
pure state I$) is defined unambiguously by 4s real pa- 
rameters, one might suspect that other methods exist 
which would require a smaller number of quantities to be 
measured. The particularly simple cases with s = f or 1 

have been analyzed by various authors in detail, includ- 
ing Band and Park [7], Busch and Lahti 1231, and Stulpe 
and Singer [24]. For s = f  the study of a density matrix 

p? corresponding to class II,, is possible analytically and 

is also given by these authors. Systematic studies of this 
problem for arbitrary s =+, 1, *. . . are presented in two 

papers. The aforementioned method of using Feynman 
filters by Gale, Guth, and Tramell [5] can be adapted 
easily to the analysis of spin mixtures. It allows one, in 
principle, to determine directly the modulus and phase of 
each element of the density matrix p  ̂ (cf. in this context 
d'Espagnat's general remark [l l ]  on the measurability of 
the density matrix). Band and Park [8,9] choose a 
different approach. They show that there are 
( 2s + 1 )2 - 1 =4s ( S + l ) linearly independent "spin mul- 
tipoles," the measurement of which fixes all 4s (S + l ) free 
parameters of the density matrix. Nevertheless, accord- 
ing to the conclusion of the authors, one is left with the 
problem of actually performing the measurement of these 
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multipoles, being a nontrivial task in general. 
Two more paths have to be mentioned. On the one 

hand, PrugoveEki [l31 discusses the notion of "informa- 
tional completeness" without referring explicitly to the 
Pauli problem. What set of operators are informationally 
complete; i.e., the expectation values of what sets of 
operators contain the same amount of information as the 
wave function does? Related work was done by Wies- 
brock [21] and Busch and Lahti [23] (cf. Moroz [l71 also). 
In the second of these papers, a method of state deter- 
mination is described, requiring the simultaneous 
unsharp measurement of noncommuting observables. 
Royer [18,22] investigates the Pauli problem in combina- 
tion with Wigner functions and their experimental deter- 
mination. 

On the other hand, Lamb [6], when formulating an 
operational interpretation of nonrelativistic quantum 
mechanics, proposed a method to work out a quantum 
state by placing it in different potentials; other contribu- 
tions to this formulation of the Pauli problem are due to 
Kreinovitch [l21 and Wiesbrock [21]. 

In summary, the statements about the particle version 
of the Pauli problem are not coherent. Clearly, the prob- 
ability distributions / $ (X)  l 2  and l $ ( p )  1 are not sufficient 
to determine the quantum state, but it is not known how 
to characterize in a sensible way the set of pure states 
compatible with given Pauli data. No theoretically and 
experimentally convincing approach to the state deter- 
mination via measurements exists, even neglecting the 
more cumbersome case of mixtures. For spin systems the 
situation is more satisfactory, since solutions of the Pauli 
data problem are known, in principle. Nevertheless, it 
appears that the finite Hilbert space calls for a treatment 
simpler than the methods described above. 

111. PAUL1 PROBLEM 

FOR A PURE SPIN STATE 

This section consists of two parts. First, a particular 
formulation of the problem of Pauli data for a spin sys- 

tem is given, along with some general remarks. Second, 
the result, to be derived in the following section, is 
presented in a nontechnical way. 

For a given quantum system, it is by no means obvious 
which observables have to be chosen in order that their 
measured expectation values determine the quantum 
state / $ ). For example, the intuitively appealing guess 
that for a particle in a potential V(x) (without spin) 
knowledge of the probability distributions of position and 
momentum might suffice turned out to be wrong. Furth- 
ermore, as was emphasized above, it should be kept in 
mind that there will be no unique answer: Completely 
different sets of observable may have the required proper- 

ty. 
In the following a spin of length s =n /2, n E N, is con- 

sidered. The states l $ )  of the system are elements of the 
(2s + l )-dimensional Hilbert space 3f and, therefore, are 
specified by (2s + 1)  complex coefficients with respect to 
any basis of 3f. Because of the fact that only rays 

are physically distinct, the absolute phase of a state l $ )  is 
undetermined, and since the states / II, ) are normalized, 

the set of all states l$) E %  can be labeled by 4s real pa- 
rameters. 

It is assumed that there is a source Q emitting particles 
into the positive x direction, say, in a well-defined pure 
spin state l $ ) .  The particles enter a standard Stern- 
Gerlach apparatus orientated along the z axis, for exam- 
ple. Passing through the inhomogeneous magnetic field 
B, the beam is split into 2s + 1 components, which corre- 
spond to the different spin quantum numbers. A counter 
determines the intensities ( / $, (z )  12), that is, the squared 

moduli of the coefficients of expansion into the basis asso- 
ciated with the z direction [26]. As usual, the ensemble of 
equally prepared states 4 )  is supposed to be infinite, and 
the Stern-Gerlach apparatus is assumed to work perfectly 
well. 

A natural way to pose the Pauli data problem is 
presented now, which, after some refinement, will be 
shown to allow the state determination unambiguously. 
Suppose that in a first series of measurements the intensi- 
ties ( /$,(z)I2) of the state 14) have been determined 

with respect to the z axis, and that in a second series the 
intensities ( 1 $, (z ' ) !  have been measured with respect 

to a dzferent direction z'.  Without loss of generality, the 
direction z '  may be chosen to lie in the yz plane. In other 
words, the set of measured quantities consists of 2(2s+ 1) 
~perators~projecting onto the eigenstates of the spin 
operator S in the z and z' directions, respectively [27]. 
Does the set of these 4s +2  numbers ( I$, (z)12, 

14, (2' ) ( determine the state ' II, ) uniquely? Because of 
the normalization conditions 

only 4s out of all 4s + 2 intensities are independent. Con- 
sequently, this choice of Pauli data for a spin system is 
sensible: The number of independent real parameters de- 
rived from experiment agrees with the dimension of the 
manifold of physically distinct states l $) . 

Indeed, the considerations of the subsequent section 
lead to the result that only a finite number of states out of 
the 4s-dimensional set of states is compatible with the ob- 
served intensities, measured along two noncollinear direc- 
tions z and z ' .  In the generic case the remaining ambigui- 
ty turns out to be 22"fold and can be resolved by measur- 
ing the expectation value of the x component of the spin 
h 

S. Its origin can be understood as follows. As functions 
of the intensities, the unknown relative phases fulfil1 a set 
of 2s quadratic equations. Intuitively speaking, each of 
these relations contributes two roots, giving rise to a set 
of totally 22~olu t ions .  The invariance of the measured 
intensities with respect to a specific transformation of the 
apparatus effects that solutions occur in pairs. This 
phenomenon will be discussed in more detail in Sec. V. 

IV. DETERMINATION OF THE SPIN STATE 

The eigenfu2ctions of the third component S '̂ of the 
spin operator S are denoted by /z ;m ), -S < m  I s ,  and 
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they fulfil1 

Constituting a complete orthonormal set of basis vectors 
in Hilbert space H ,  any pure spin state I$) may be ex- 
pressed as a linear superposition of these 2s + 1 states. 
The system under study in the following is supposed to be 
in a particular state: 

with complex coefficients $,(z), which from now on are 
assumed to be different from zero. If one or more 
coefficients $,(z) happen to be zero, an infinitesimal 
change in the definition of the z direction generically is 
sufficient to deal with a state having nonzero coefficients 
only. 

Suppose that in a first series of measurements with the 
Stern-Gerlach apparatus the moduli { 1 $m (2) 12, 

-S 5 m I s  ) have been determined. Clearly, in Hilbert 
space 54, there is a 2s-dimensional submanifold Jn C B  of 
physically distinct states which is compatible with these 
numbers. The set JH is given by 

with the angles X, E [ -T,T), --S 5 m Ss.  The set of 
states JM, is more conveniently parametrized by the angles 
xm E [-T,T) instead of X,, defined by the relation 

Xm =#, +xm,  -S 5 m I S, corresponding to a shift of 
the origin. Then the value X =0 denotes the state 1 $ ) , 

I*(x=O)> - I* )  . (9) 

Now consider a rotation R, of the Stern-Gerlach ap- 

paratus transforming the z direction into z' not parallel 
to z, and z' lies in the yz plane. Associated with the 
direction z' there is another basis [ Jzl;m ), -S I m I s  j , 
representing the complete orthonormal set of eigenvec- 
tors of tke, third copponent of the transformed spin 
operator SZ = O(R, ) sZO- ' (RX ). Here O(R, ) is the uni- 
tary operator which represents the spatial rotation R, 
about the X axis in Hilbert space S. The state I $ ) reads, 
with respect to the primed basis, 

and the coefficients +hrn transform according to 

The matrix elements Ummt(R,' (z'; m 1z;m' ) of 
O( R, ' )= O(zl,z) are known, in principle. 

Consider the manifold JtZ of states I $(X) ) being com- 
patible with the first series of measurements, expressed 
with respect to the primed basis 1z';m ). The coefficients 

of expansion are given by 

leading to 

The question of whether or not a second series of mea- 
surements which fixes the numerical values of the quanti- 
ties /$,(zf)(* is sufficient to determine the state l$) 
amounts to studying the following problem. Do the 

quantities [ I $m ( z ' , ~  ) 1 *, -S I m I S ] represent a unique 
parametrization of the manifold M? In other words, is it 
possible to invert the transformations Eq. (13) unambi- 

gously, 

X=X( ( I$,(z')I2)) , (14) 

so that the phases X (more precisely 2s relative phases) 
are determined by the moduli ( I$, (z '  ) ('1 ? The relations 
in Eq. (13) are not uniquely invertible: A finite number of 
ambiguities arise which can be resolved by one additional 
well-defined measurement. The proof will proceed in two 
steps. First, it is shown that Eq. (13) generically has 22" 
solutions, and in the second step it is demonstrated that, 
generically, these solutions lead to differen; values of the 
expectation value of the first component SX of the spin 
operator. 

It turns out that a simple way to obtain all possible 
solutions of Eq. (13) consists in assuming the directions z 
and z' to differ only infinitesimally. Experimentally, this 
requires the intensities to be measured up to first order. 
The matrix of rotation about the x axis, O(R, 1, has 
nonzero elements in the diagonal and on the adjacent 
lines only, to first order in the infinitesimal angle of rota- 
tion E. This immediately follows from the properties of 

the creation and annihilation operators [28] S '̂, 

since S^"= f (3' + g -  ). The operator for an infinitesimal 

rotation reads 

with S'~e/fi or, explicitly in the (2s + 1)  dimensional 
matrix representation, 

Using this expression in Eq. (13), one obtains, to first or- 
der in 5, 
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for -S I m I s ,  where the notation A+, = # m  -4, etc., has been introduced. Requiring these expressions for the in- 
tensities to be equal to those associated with the coefficients $, (2) =$, (z,x=O) of the original state / 3 ), one obtains, 
to first order, 

Choosing m = -S, the right-hand side (RHS) is equal to for any given number aE[0,2T)y two of 
zero (because of C -, E O), so that B E  ( - T, T] follow, namely, 

~in(A~-,+,+A~-~+~)=sin(A~-,+~) (20) P-2a, a E [ O , r )  
P-=0 and p+=  3 ~ - 2 a ,  a E [ ~ , 2 ~ r )  . (24) 

is required for the existence of additional solutions. 
~ ~ ~ ~ e ~ b e r t h a t  all moduli I$m(z)I are assumed to be T h e v a l u e s a = ~ / 2 , 3 ~ / 2 a r e e x c e p t i o n s s i n c e o n l y / 3 i s  
nonzero and that all C;, -S 5 m I s ,  are fixed nonzero a solution. 
numbers. If Eq. (20) is fulfilled, the RHS of Eq. (19) van- AS a consequence, the set of all wave functions compa- 
ishes for m = -S + 1; therefore one is left with tible with the set of Pauli data, ( /$, (z)l, $, ( z ' )  ),  

generically consists of 22%lements. It will be demon- 
~ i n ( A 4 - ~ + ~ + A ~ - ~ + ~ ) = s i n ( A 4 - , + ~ )  , (21) strated in a moment that indeed all 22h t a t e s  are 

and repeating this argument, one finally obtains zs equa- 
different. To exhibit these states explicitly, it is con- 

tions 
venient to write p, =P(T), T= + 1, 

/ 3 ( ~ ) = (  l + T ) [ (  1 +o )P-a] , 
sin( A+, + Ax, ) 

(25) 
=sin(A4,),  - s + l I m I s ,  (22) 

with 
which simultaneously have to be fulfilled in order that 

I $(X) ) give the same Pauli data { l$, (z,x)l ,  l$, (zl,x)I ] 
o(a)= 

as the state l$) does. Any of the Eqs. (22) has two solu- + + ,  a E [ a , 2 n ) .  

tions because from the requirement 
I i '  at[o'P) 

For the set of allowed states / $ (T ) )  labeled by the vector 
s in(a+p)=sina , (23) T = ( T - ~ + ~ , T - ~ + ~ , .  . . , T ~ ) ,  rn=kl ,onef inds  

Suppressing the phase factor exp[i(&, +X-, ) ]  does not change the ray I$) under consideration; hence, using Eq. (25) 
2s times in the form 

(am = i;), one obtains the 22S states 
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Choosing all elements of T equal to - 1, one recovers the 
state I$). It is a straight-forward calculation to verify 
that the relative phases of neighboring coefficients 
Ap, (7) indeed fulfil1 Eq. (22). Since 

one has sinApm (~)=s inA+,  , --S + l 5 m i s ,  what was 
to be shown. 

The 22S wave functions 1 $ ( r ) )  compatible with a set of 

intensities with respect to the z and z' directions can be 
distinguished by their expectafion values of the x com- 
ponent Sx of the spin operator S. Including this measure- 
ment, one has obtained information related to all three 
spatial directions, which intuitively seems to be necessary 
to get full knowledge about the state of the system. As a 
result, in total, 4s + l numbers are required for the 
specification of a pure wave function according to the 
method described here. 

The value of ( $ ( T ) ) S ~ ~ / $ ( T )  ) can be calculated explic- 
itly for all states I $ ( T )  ). Using Eq. (28) and the (2s + 1)- 
dimensional matrix representation of 

=+(~:6,,,+, +c,S,,,-, ), one finds 

where C:+, =CL has been used. From Eq. (29) it fol- 
lows that 

and rm = + l .  This leads to 

Generically, Every T gives rise to a different expectation 
value ( ~ ( T ) ) s ~ ~ $ ( T )  ). By the way this result is one way 
to prove the fact that all )$(T) ) represent distinct st:tes. 
Another method, not requiring the evaluation of ( S x ) ,  
consists in showing that I $ ( T )  ) =exp(ia)l$(r1) ) entails 
T =  7' for almost every 1 $( T )  ). 

Consequently, by measuring ( g X )  for the system under 
study, one can single out the correct set of numbers rO, 
implying the exact determination of the state / $ ( T ~ ) )  
which was the ultimate goal. It must be noted that in or- 

der to measure the expectation value (3" )  the direction 
of the beam has to be changed by appropriate fields; this 
is assumed to be possible without changing the state of 
the spin. 

There is an obvious pairing of states with expectation 

values of 3" of equal magnitudes but opposite signs since 
according to Eq. (32) one has 

The origin of this structure in the set 22S solutions is indi- 
cated in the next section. 

V. PAIRING OF STATES 

As long as measurements are performed with respect 
to the yz plane only, one might expect the set of solutions 
compatible with the intensities along the z and z' direc- 
tions to possess a particular structure. Indeed, it is 
shown in the following that every solution of Eq. (13) has 
a nontrivial partner presenting another solution. To give 
an example, a system with spin is appropriate. An ex- 

plicit calculation shows that there are two rays compati- 
ble with prescribetintensities along y and z. The expec- 
tation values of SX associated with them have equal 
moduli but opposite signs. In fact, this is the situation 
for all values S, and it is due to the invariance of the mea- 
sured quantities with respect to a specific transformation 
of the experimental setup. 

Consider the first series of measurements which lead to 
the determination of the intensities ( I$, ( X  ) l 2 ) .  If this 
experiment is performed with a magnetic field B of oppo- 

site direction, the sequence of intensities { l $, (z ) l 2 )  
occurs in reverse order with respect to the z axis. A sub- 
sequent rotation of the Stern-Gerlach apparatus by an an- 
gle .rr about any axis through the origin perpendicular to 
the z axis (or, equivalently, a rotation of the coordinate 
system about the same axis by the angle --a) restores the 
original order of the intensities. A corresponding set of 
transformations (B into -B and a subsequent rotation 
about an axis perpendicular to the direction z') leaves in- 
variant the intensities measured with respect to z' .  Both 
sets of quantities are unchanged only if the axis of rota- 
tion coincides with the x axis. Consequently, there are 
two physically distinct configurations of the apparatus 
leading to the same set of observed quantities. This situa- 
tion, however, is equivalently described by stating that 
there are two spin states not to be distinguished by mea- 
surements in the xy plane alone. 

The transformation described above is induced by the 
antiunitary operator 

where k? is the time-inversion operator, and 
O(R;)=exp( -i.rrShy/fi) is a rotation by .rr about the x 

direction. The operator k? can be written as 

R, denoting the operator of complex conjugation. It is 
straightforward to show that for the spin state I $) and 
its partner 

the following relations hold ( p  =O, 1,2,. . . ,2s ): 
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According to the Appendix, these identities guarantee 

the invariance of the intensities [ 1 (z  ) 1 2, 1 $m (z '  1 1 2 ] .  
Since 

g 9 ~ R + = - 3 x ,  (38) 

one obtains 

(qlShXlq) = - ($ls^"l$> , 

indicating that the states I $ )  and / q )  can be dis- 
tinguished by the expectation value of the X component 
of the spin. 

The explicit form of l$) follows from writing 

where koŝ "R ' =gx has been used. From the relation 

where the vector n is obtained by rotating the unit vector 
m by an amount I kl about the vector k, one finds that 

2 s ^ x 3 + = - 9 ~ ,  2 $ ~ % + = - 3 ~ ,  $gz$+=gz . (42) 

Consequently, apart from an irrelevant phase factor, the 

h 

operator Yi? describes a rotation about the z axis by an 
amount of + .rr (or -d .  Therefore 

and the same ray is obtained by using O(R,") instead. 
A direct calculation shows that the coefficients 
q m ( z  )=(  - 1 ) -m$; ( z )  indeed fulfill Eq. (13) to first order 
in E .  

One may ask how the existence of paired solutions is 
reflected within the explicit form of all solutions 1 $( r) ). 
To see this it is sufficient to indicate that for any of the 22" 
solutions 

a partner exists with 

From the formula for $ ( r )  ) [Eq. (28)], it follows that 

The last step is a consequence of 

l m 

exp i 2 n -  2 ( I + o m , ) ]  

since 20, is equal to + 1. The result of Eq. (46) coincides 
with Eq. (43, choosing r'= -7, because suppressing the 
factor ( - 1 )Qoes not change the ray in Hilbert space. 
Furthermore, Eqs. (33)  and (39) are compatible, as it is 
necessary. 

VI. SUMMARY 

It is possible to determine unambiguously the wave 
function of a spin-s system, making use of an elementary 
Stern-Gerlach apparatus only. The intensities of a (gen- 
eric) pure wave function along the z axis and an 
infinitesimally twisted one z'  are sufficient for this pur- 

pose in combination with the expectation value of the 
spin component perpendicular to the zz' plane. Therefore 
this method requires knowledge of 4s + 1 real numbers. 
The state vector I $ ) in the ( 2s + l )-dimensional Hilbert 
space 3f of the problem is defined by 4s parameters. The 
additional measurement, being necessary in this ap- 
proach, is due to the fact that the 4s independent intensi- 
ties measured fulfill nonlinear equations, which turn out 
to have 22S roots. Note that the actual calculation of the 
phases 4 has to be performed numerically because no an- 
alytic formula has been derived for them. 

The approach presented by Band and Park 17-91 
effectively requires only the minimal number of quantities 
( = 4s) to be measured since in that case the defining rela- 
tions are linear. However, the measurement of the ap- 
propriate "spin multipoles" is much more intricate, if not 
unaccessible at all. On the other hand, Gale, Guth, and 
Trammel1 [5] use the more refined "technology" of Feyn- 
man filters, and according to their prescription, one has 
to determine 6s independent numbers. Hence the present 
approach to find out a spin wave function from measure- 
ments combines the advantage of a particularly simple 
experimental setup with the necessity to perform a small 
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number of measurements only. It would be still more sa- 
tisfactory to generalize this result to axes z,zl separated 
by a finite angle of rotation. For a spin-+ system, two 

states are compatible with intensities measured along the 
y and z axes. This supports the idea that no additional 
solutions bifurcate from those which have been found for 
infinitesimally close directions z,zl. 

From a mathematical point of view, the following 
problem has been considered. A normalized ray in Hil- 
bert space is defined most conveniently in terms of its 
(complex) coefficients, i.e., moduli and phases, with 
respect to any set of orthonormal basis vectors. The 
transformation of the coefficients under a definite change 
of basis then is a straightforward procedure. The ques- 
tion investigated in this paper reads as follows. Is a ray 
also defined unambiguously by the moduli of its 
coefficients with respect to two different orthonormal 
bases? The bases involved are assumed to be obtained 
from each other by a unitary transformation [correspond- 
ing to an element of the group SU(2)] having the particu- 
lar property that none of the basis vectors is left un- 
changed. As a result, the ray is defined in this way only 
up to a finite ambiguity, which, in the generic case, can 
be resolved easily by one additional "orthogonal" infor- 
mation. 

Investigating the Pauli problem for a particular system 
(class I,), the situation is formally identical, except that 
the dimension of the Hilbert space Yf is infinite. The 
question whether or not this method can be adapted suc- 
cessfully to the more general case is under study present- 

ly. One may hope to determine constructively along 
these lines the set of all states which are compatible with 
Pauli data { I $(X)  ', l $ ( p )  l j for the particle system. 
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APPENDIX 

Measuring all moments S = ( $1(3'Y'I$ ), 
P p =O,1,2 ,..., 2s, of the spin operator 3 is shown to be 

equivalent to the knowledge of all intensities ( l $, (z) 1'1. 
The expectation values of moments and intensities are re- 
lated by the matrix equation 

where S - ( 1,S, ,S2,. . . ,S2, and 

are (2s + l )-dimensional vectors and M is a (2s + l ) 
X (2s + l ) matrix given by 

with m, -S + 1. The inversion of Eq. (Al)  is only possi- 

ble if 

Being of Vandermonde type, the determinant of M can be 
given explicitly as 

and therefore is nonzero whenever all m, are different. 
In the case under consideration, all m, are different. 
Consequently, Eq. (A l )  is invertible globally, 

By the way, the actual value of the determinant of M is 
easily found to be equal to n:=op !. 
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