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Abstract. Existing parsers for textual model representation formats
such as XMI and HUTN are unforgiving and fail upon even the smallest
inconsistency between the structure and naming of metamodel elements
and the contents of serialised models. In this paper, we demonstrate how
a flexible parsing approach can transparently and automatically resolve
a number of these inconsistencies, and how it can eventually turn XML
into a human-readable and editable textual model representation format
for particular classes of models.

1 Introduction

Depending on the nature of a modelling language and the preferences of the
engineers that work with it, models conforming to the language can be edited
using graphical (e.g. diagram-based, tree-based, table-based), textual, or hybrid
notations. Previous work has made the case for the value of text-based model
representations as a means of leveraging existing powerful text editing tools and
file-based version control systems [1]. In scenarios where text-based model editing
is preferable for a new Domain-Specific Language (ie. metamodel), engineers are
presented with two options.

– Define a bespoke textual syntax for the modelling language using frameworks
such as Xtext, Spoofax, or EMFText;

– Use a generic syntax such as OMG’s Human-Usable Textual Notation (HUTN)
[2] or XML Metadata Interchange (XMI) [3].

The first approach can produce a tailored and concise syntax but requires
substantial expertise and upfront development effort, and incurs a maintenance
cost over time as the underlying framework/IDE evolves. The second approach
on the other hand, does not require an investment in bespoke tool development,
but comes at the cost of a more verbose and repetitive textual syntax. To a large
extent, this is due to the rigidness of existing parsers for such generic textual



syntaxes. Existing parsers for XMI and HUTN require exact lexical equivalence
between names defined in the metamodel (e.g. type and attribute names) and
tokens found in serialised models and fail even upon the smallest inconsistency.

In this paper we propose a novel approach for parsing structured XML doc-
uments into in-memory models that conform to Ecore metamodels1. Instead
of requiring exact lexical equivalence, the proposed approach uses approximate
matching to map XML element and attribute names to metamodel types and
their structural features. We use XML as an example structured format; the
proposed approach is trivially portable to other textual formats such as HUTN,
JSON and YAML.

The rest of the paper is organised as follows. Section 2 presents our flexible
XML parsing algorithm with the help of a running example and discusses an
open-source implementation of the algorithm (Flexmi) and supporting tooling,
Section 3 presents the results of empirical evaluation experiments on the scala-
bility and the practicality of the proposed algorithm, Section 4 discusses related
work, and Section 5 concludes the paper and provides directions for further work
on this topic.

2 Fuzzy Reflective Parsing

In this section, we present a novel flexible algorithm (parser) for parsing an XML
document into an in-memory model that conforms to an Ecore metamodel. It is
worth noting that the parser requires input XML documents to be well-formed2.

The parser performs a depth-first traversal of the elements of the XML doc-
ument, in which each element is visited exactly once. Before encountering the
root element of the document, the parser expects to find an nsuri processing in-
struction (see line 2 in Listing 1.2) that declares the unique identifier (namespace
URI) of the Ecore metamodel that the model is an instance of. In its current
form, the parser supports only models that conform to a single Ecore meta-
model (EPackage), but it is trivially extensible to support models conforming to
multi-EPackage metamodels.

The parser uses a (initially empty) stack, to keep track of its position during
the depth-first traversal of the XML document. When the root element of the
XML document is encountered, the parser computes the string similarity3 of the
tag of the element with all instantiable (i.e. non-abstract) EClasses in the meta-
model and selects the EClass with the maximum similarity. An instance of that
EClass is created, is set as a top-level element in the in-memory representation
of the model, and is pushed to the stack.

The parser then proceeds in a recursive depth-first manner to visit the de-
scendants of the root element. When it encounters a new XML element, it follows
the algorithm displayed in Listing 1.1. When it encounters the closing tag of an

1 Ecore is the metamodelling language of the Eclipse Modelling Framework.
2 https://www.w3.org/TR/REC-xml/#sec-well-formed
3 In this work we use Levenshtein’s string editing distance [4] to compute string sim-

ilarities, however, other algorithms can also be used for this purpose.



XML element, it pops the top item of the stack (as discussed in Listing 1.1, this
may be a model element, a containment slot, or null). A step-by-step discussion
of the execution of the algorithm on a sample XML document is provided below.

The algorithm presented in Listing 1.1 explains how XML elements are
mapped to model elements but does not discuss how the attributes of XML
elements are mapped to attributes and non-containment references of the re-
spective model elements; this is delegated to the set_attribute_values function
which is invoked in lines 23 and 36, and is presented in Listing 1.3. A running
example follows in Section 2.1.

Listing 1.1. Algorithm executed when the start tag of a new XML element is encoun-
tered by the parser

1 procedure fuzzy_parse(xml_element, stack)

2 let parent = stack.peek()

3 if parent is a model element then

4 let parent_model_element = parent

5

6 if xml_element has no attributes and only text then

7 /* xml_element is interpreted as an attribute value */

8 let attr = the attribute of the parent_model_element’s EClass with the

highest string similarity to the name of the xml_element

9 let parent_model_element.attr = textual content of the xml_element, cast

appropriately

10 push null to the stack

11 end

12 else if xml_element has no attributes then

13 /* xml_element is interpreted as a containment slot */

14 let reference = the containment reference of the parent_model_element’s

EClass with the highest string similarity to the tag of the

xml_element

15 push a containment slot that encapsulates the parent_model_element and

the reference to the stack

16 end

17 else /*The element has attributes*/

18 /* xml_element is interpreted as a model element */

19 let candidate_types = all types of parent_model_element’s containment

references, and their sub-types

20 let new_model_element_type = the EClass from candidate_types with the

highest string similarity to the name of the xml_element

21 let reference = the first reference of the EClass of parent_model_element

that has a compatible type with new_model_element_type

22 let new_model_element = new instance of new_model_element_type

23 call set_attribute_values (new_model_element, xml_element)

24 if the reference is single-valued then

25 set the value of the reference to new_model_element

26 else

27 add new_model_element to the list of values of the reference

28 end if

29 push new_model_element to the stack

30 end

31 else if parent is a containment slot then

32 /* xml_element is interpreted as a model element */

33 let containment_slot = parent

34 let new_model_element_type = the EClass with the highest similarity to the

tag of the xml_element, chosen from the EClasses that are subtypes of

the type of the reference of containment_slot (including the reference

type itself )

35 let new_model_element = new instance of new_model_element_type

36 call set_attribute_values (new_model_element, xml_element)

37 if the containment_slot’s reference is single-valued then

38 set the value of the reference of containment_slot’s model element to

new_model_element

39 else



40 add new_model_element to the list of values of the reference

41 end

42 end

43 end procedure

Fig. 1. Messaging System Metamodel

2.1 Running Example

This section presents the application of the algorithm of Listing 1.1 on the XML
document illustrated in Listing 1.2. The Ecore metamodel that corresponds to
the http://messsaging namespace URI in line 2 of the XML document is pre-
sented in Figure 1. During its application, the algorithm performs the following
steps:

Listing 1.2. Example XML document
1 <?xml version="1.0"?>

2 <?nsuri http://messaging?>

3 <sys>

4 <u name="tom">

5 <box q="15">

6 <in>

7 <msg from="mary" subject="Hello Tom">

8 <body>

9 Fuzzy parsing is

10 so cool.

11 </body>

12 </msg>

13 </in>

14 </box>

15 </u>

16 <u name="mary">

17 <box q="20">

18 <out>

19 <msg to="tom, irene" t="Hello everyone"/>

20 </out>

21 </box>

22 </u>

23 </sys>



1. In line 2 of the XML document, the parser encounters the nsuri processing
instruction, through which the XML document declares that it should be
parsed as an instance of the http://messsaging Ecore metamodel (illustrated
in Figure 1);

2. In line 3, the parser encounters the sys element. As discussed above, since
the parser’s stack is empty, it knows that it is at the root of the document
and as such it calculates the similarity of the tag name (sys) against the
names of all instantiable classes in the metamodel and decides that System
is the closest match. As such, it creates an instance of System, places it as a
top-level element of the model and pushes it to the stack.

3. In line 4, the parser encounters the u XML element. It peeks at the stack
and sees that the top item is a model element (the instance of System that
was created in the step above). Since the new XML element has attributes
and complex children, as specified in line 39 of Listing 1.1, the parser at-
tempts to convert it into a new model element. Since u is contained under
a System element, according to the metamodel, its only two possible types
are Parameter and User. Using string similarity, the parser decides that u is
closer to User, creates an instance of the latter, adds it to the users reference
of the System instance, and pushes it to the stack;

4. In line 5, the parser encounters the box XML element and behaves similarly
to step 3: it creates an instance of Mailbox, adds it to the values of the
mailbox reference of the User created in step 3, and pushes it to the stack.
Here it’s worth noting that since according to the metamodel only instances
of Mailbox can be contained under instances of User, the actual tag of the
element (box ) is irrelevant. As such, if the Mailbox was to be renamed in an
evolved version of the metamodel (e.g. to Channel), the parser would still
construct a valid model;

5. In line 6, the parser encounters the in XML element. It peeks at the stack
and sees that the top element is a model element (the instance of Mailbox
created in the previous step). Since the in element has complex children but
no attributes, according to line 12 of Listing 1.1, it treats it as a containment
slot. As such it compares its tag name against the names of containment
references in the Mailbox type (incoming and outgoing) and selects incoming
as the closest match. It then encapsulates the incoming reference and the
Maibox element into a containment slot object and pushes the latter to the
stack;

6. In line 7, the parser encounters the msg element. It peeks at the stack and
sees that the top element is the containment slot pushed in the previous
step. As such, according to line 31 of Listing 1.1, it treats the msg element
as a model element that needs to be added to the containment slot (i.e. to
the incoming messages of the Mailbox created in step 4). Similarly, to step
4, the tag name of the XML element is irrelevant since there is only one type
of model elements that can be contained under the incoming reference. As
such, if the name of the Message class was to change in a revised version of
the metamodel, the parser would still produce a valid model;



7. In line 8, the parser encounters the body XML element. It peeks at the stack
and sees that the top element is the Message model element pushed in step
7. Since the body element does not have attributes and only has textual
content, the parser treats its content as an attribute value. It identifies the
actual attribute to be populated (body) by comparing the string similarity
of the tag of the element against the names of all attributes in the Message
class. Finally, it pushes null to the stack as no further elements exist under
the body element;

8. In lines 11-15 the parser encounters the close tags of the elements started in
lines 4-8 and for each close tags it pops the top item of the stack. After these
lines are processed the top element of the stack is the instance of System
pushed in step 2;

9. Lines 16-22 are processed in a very similar manner to lines 4-15, with the
main difference being that the out element in line 18 is interpreted as a
containment slot for the outgoing reference of class Mailbox – in contrast
to step 5 where the in element was interpreted as a slot for the incoming
reference.

2.2 Processing XML Attribute Values

Once the parser has determined that an XML element needs to be transformed
into a model element, beyond instantiating the new model element, it also at-
tempts to use the attributes of the XML element to populate the values of
EAttributes and non-containment EReferences of the new model element. The
first step of this process involves computing an optimal assignment of XML at-
tributes to EAttributes and EReferences of the new model element (i.e. deciding
which attribute will be mapped to which feature). This is an instance of the as-
signment problem – as every attribute in the XML element needs to be assigned
to at most one EAttribute or EReference of the new model element – which the
parser solves using the Hungarian method [5].

Once the optimal assignment between XML attributes and EAttributes/ERef-
erences has been identified, the next step is to use the values of the prior to
populate the values of the latter. This is achieved using the algorithm in List-
ing 1.3. Briefly, for multi-valued features the value of the XML attribute is first
split using comma (,) as a separator and is then processed as follows. If the
mapped feature is an EAttribute, then each fragment is cast to the datatype
of the EAttribute and is set/added to the latter’s value. For example when the
algorithm processes line 17 of the Listing 1.2, it matches the q attribute to the
quota feature of EClass Mailbox, it converts the value of q into an integer, and
it then assign the quota attribute of the mailbox to it. Type casting errors are
recorded so that they can be reported to clients of the algorithm.

If the mapped feature is an EReference, the algorithm temporarily records
an unresolved reference. All unresolved references collected at this stage are
attempted to be resolved after the entire XML document has been processed
by the algorithm. References are resolved by matching against the IDs of model
elements of compatible types. The ID of a model element is determined as follows:



– If the EClass of the model element has an EAttribute marked as ID4, the
ID of the model element is the value of that EAttribute;

– Else the ID of the model element is the name of its ID or name EAttribute
(if one exists);

– In all other cases the model element is assigned an internal ID and cannot
be referenced by other elements.

Listing 1.3. Algorithm that maps XML element attribute values to values of EAt-
tributes and non-containment EReferences

1 procedure set_attribute_values(xml_element, model_element)

2 let assignment = the assignment with the maximum total similarity

3 foreach xml_attribute of the xml_element do

4 let feature = the corresponding feature of the xml_attribute in the

assignment

5 if feature is not null then

6 let value = the value of the xml_attribute

7 if feature is an EAttribute then

8 if the feature is single-valued then

9 set the value of the feature to value (typecast)

10 else

11 let values = split value by comma

12 set the value of the feature to values (typecast)

13 end

14 end

15 else /* the feature is an EReference */

16 if the feature is single-valued then

17 create an unresolved reference

18 else

19 let values = split value by comma

20 foreach value in values do

21 create an unresolved reference

22 end

23 end

24 end

25 end

26 end

27 end procedure

2.3 Implementation

We have implemented the flexible reflective parsing algorithm discussed above
on top of the Eclipse Modelling Framework, in the form of an implementa-
tion of EMF’s Resource interface. The implementation (Flexmi) is available as
open-source software under the permissive Eclipse Public License under https:
//github.com/kolovos/flexmi. Flexmi also comprises a dedicated editor
which provides syntax highlighting and error reporting facilities.

3 Evaluation

Having presented the flexible reflective parsing algorithm in Section 2, in this
section we report on the results of benchmarking the Flexmi prototype that im-
plements it. Through this evaluation, we wish to assess 1) how the algorithm

4 This is a modifier provided by Ecore, which is orthogonal to the name of an EAt-
tribute



scales with increasing XML document sizes, and 2) whether the overhead im-
posed by the algorithm is prohibitive for practical use.

To conduct this evaluation, we implemented a model generator that produces
different sizes of synthetic XML documents that are meant to be parsed as Ecore
metamodels. We used the generator to produce models containing between 217
and 218,338 model elements (EPackages, EClasses, EAttributes, EReferences
and EDataTypes), linked through both containment and non-containment refer-
ences. We then transformed the generated models into an XMI representation so
that we can compare the performance of the proposed flexible parsing algorithm
with that of the EMF-based XMI parser in order to assess the magnitude of the
overhead imposed by the nature of flexible parsing.

The results obtained through our benchmarks are displayed in the line chart
of Figure 2. The x-axis of the chart represents the number of model elements,
while the y-axis represents the time (in miliseconds) that the parsers required
in order to parse models containing these elements. We can observe that Flexmi
1) scales linearly with the size of the model, and 2) is around 5.2 times slower
than the XMI parser that ships with EMF.
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Fig. 2. Benchmark Results: Flexmi vs. XMI

3.1 Threats to Validity

For this empirical evaluation, we have used synthetic models that conform to
an existing metamodel (Ecore). Conceivably, the performance of the algorithm
on manually crafted models conforming to different metamodels could differ
although, analytically, we see no reason for this. Evaluating the algorithm on
manually crafted models is currently not feasible due to the unavailability of an
existing data set, as this is a newly introduced approach to model parsing.

4 Related Work

While we are not aware of prior work that addresses the problem of loading
models in a flexible manner in the context of MDE, repairing and recovering from



parsing errors is also studied in the XML community, where parsing is a core
operation performed before an XML document can be navigated, queried, and
manipulated. Generally speaking we can classify errors in XML documents in two
main categories, namely well-formedness violations and structural invalidities. A
well-formedness violation occurs when an XML document does not conform to
the syntax production rules and the constraints defined in the XML specification
[6], while structural invalidity occurs when the tree corresponding to an XML
document is not accepted by the automaton associated with its schema.

Verifying well-formedness of XML is straightforward to do by using a stack
in linear time. Automatically repairing a malformed XML document is more
challenging though. In [7] the authors propose a dynamic programming algorithm
which computes the edit distance between a malformed and its corresponding
well-formed document. Such approaches can be complementary to our approach,
since we assume that the input XML documents are well-formed.

On the other hand verifying and repairing structural invalidities is more de-
manding. First the similarity between the XML document and its corresponding
schema must be calculated. Then the minimum number of tree edit operations,
which make the document under consideration valid with respect to the schema,
is calculated. Finally, generation of edit sequence operations is performed.

In [8, 9] an algorithm is presented for measuring the similarity between an
XML document d and its corresponding schema D. This is done by measuring
the common and the extra fragments between the two. In [10] the edit distance
is defined as the minimum cost of all edit sequences transforming d into a valid
document. A detailed survey of the different approaches for measuring similarity
between an XML document and its schema is provided in [11].

The problem for measuring the minimum number of tree edits for making a
tree valid with respect to a tree grammar is described for the first time in [12].
However, the algorithm proposed in this paper applies only to ranked trees.
which is not the case of XML trees. In [13] the authors propose an algorithm for
structural repairs of XML document with respect to single type tree grammars.
Finally, [13, 14] propose an algorithm for automatically computing a set of edit
operation sequences between an XML document and a tree grammar.

5 Conclusions

In this paper, we have presented a novel flexible reflective algorithm that can
parse XML documents into in-memory models conforming to an Ecore meta-
model. We have also discussed an open-source implementation of the algorithm
and used it to evaluate its efficiency against the XMI parser provided by EMF.
The results of our empirical evaluation show that the proposed algorithm scales
linearly with the size of the XML document and that its overhead of flexible
parsing is not prohibitive for practical use.

The main limitation of the proposed approach, in its current form, is that
models loaded using Flexmi cannot be programmatically modified and persisted
again as the parser does not memorise the mapping between XML element and



attribute names and the model elements/structural feature values it has pro-
duced from them. We plan to add such memorisation capabilities in future iter-
ations of this work. We also plan to systematically investigate additional string
similarity algorithms, beyond [4], and assess their suitability for flexible parsing.
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