
This is a repository copy of Towards a framework for writing executable natural language 
rules.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/135863/

Version: Accepted Version

Proceedings Paper:
Barmpis, Konstantinos, Kolovos, Dimitrios orcid.org/0000-0002-1724-6563 and Hingorani, 
Justin (2018) Towards a framework for writing executable natural language rules. In: 
Modelling Foundations and Applications - 14th European Conference, ECMFA 2018, Held 
as Part of STAF 2018, Proceedings. 14th European Conference on Modelling Foundations
and Applications, ECMFA 2018 Held as Part of STAF 2018, 26-28 Jun 2018 Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics) . Springer , FRA , pp. 251-263. 

https://doi.org/10.1007/978-3-319-92997-2_16

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Towards a framework for writing executable

natural language rules

1Konstantinos Barmpis, 1Dimitrios Kolovos, and 2Justin Hingorani

1Department of Computer Science,
University of York, United Kingdom

2JC Chapman LTD
Suite 4, 12 Jenner Av. London W3 6EQ

1{konstantinos.barmpis, dimitris.kolovos}@york.ac.uk
2justin@jcchapman.com

Abstract. The creation of domain-specific data validation rules is com-
monly performed by the relevant domain experts. Such experts are often
not acquainted with the low-level technologies used to actually execute
these rules and will hence document them in some informal form, such
as in natural language. In order to execute these rules, they need to be
transformed by technical experts into a relevant executable language,
such as SQL. The technical experts in turn are often not familiar with
the business logic these rules are depicting and will thusly have to col-
laborate with the business experts to gain insight into the semantics of
the rules. This paper presents an approach for writing financial data
validation rules in constrained natural language, that can then be auto-
matically transformed and executed against the data they are referring
to. In order to achieve this, we use the Xtext framework for creating
the editor where business experts can create their rules that can then be
transformed into executable constraints. We evaluate this approach in
terms of its extensibility, coverage and verboseness with respect to the
business rules sent to specific UK banks submitting data under one of
the Bank of England’s annual reviews.

1 Introduction

Organizations will commonly communicate their policies in natural language, be
it internally to their staff and stakeholders or externally to interested parties. As
natural language is inherently vague, for achieving consistency and amenability
to computer-based processing it needs to be either written in or converted to a
formal notation. A common approach is to introduce domain experts (in the do-
main the data these policies are written against is stored) to convert the natural
language documents into the appropriate executable form. This introduces an-
other level of risk as the domain experts will have to interpret these documents,
introducing formal meaning to an inherently informal description. As such, the
domain experts may have to consult the business experts themselves in order
to gain a better understanding, leading to a large increase in both company
resources used as well as error-prone cross-domain knowledge transfer.



2 Konstantinos Barmpis, Dimitrios Kolovos and Justin Hingorani

Another approach is to write the policies themselves in a form more amenable
to automation, but also retaining the ability for them to be written by business
experts. In this paper we introduce a constraint natural language (CNL) for
expressing constraints providing the benefits of machine-readable content whilst
also being closely resemblant of natural language itself. This allows data vali-
dation rules to be written by non-technical stakeholders without the need for
the technical experts; this allows each expert to focus on their respective fields,
avoiding any additional risk.

The remainder of the paper is structured as follows: Section 2 discusses tools
and methodologies of a CNL-based approach to business rules and Section 3
introduces the Open Rules Platform (ORP), a framework for writing valida-
tion rules in CNL. ORP is a commercial product from JC Chapman1 that was
produced as part of a knowledge transfer partnership (KTP) program2 in collab-
oration with the University of York. Section 4 discusses the results obtained by
using ORP in an industrial use-case and finally Section 5 concludes and mentions
future lines of work.

2 Background and Related Work

The development and use of constrained natural language, also referred to as
controlled natural language or controlled language, has been extensively inves-
tigated over the past decade. This section presents the main state-of-the-art
practices and technologies and discusses the approach taken by the Open Rules
Platform. As it is assumed that the reader is familiar with model-driven engi-
neering practices like model transformation and domain-specific languages and
editors, such information is omitted.

2.1 Constrained Natural Language

One of the most popular standards used to create such business rules in con-
strained natural language is the Semantics of Business Vocabulary and Business
Rules (SBVR). This specification by the Object Management Group (OMG)
covers two aspects: Vocabulary (natural language ontology) and Rules (elements
dictating policy) [1]. Rules are composed of facts that rely on concepts which
are made up of terms. Each term expresses a business concept and a fact can
make assertions regarding this concept. Since SBVR does not use any specific
language to express these concepts in a concrete fashion (it uses the notion of
a “semantic formulation” to describe structure), it is left to the creator to de-
cide the scope and expressiveness of any language conforming to this standard.
As SBVR supports both formal and informal expressions, covering both aspects
of the formalist vs naturalist approach to constrained natural language [2], it
is down to the SBVR-based languages to decide which way they lean towards.

1 http://www.jcchapman.com/
2 http://ktp.innovateuk.org/



Towards a framework for writing executable natural language rules 3

For example SBVR Structured English leans heavily towards the formal side
whilst RuleSpeak 3leans towards a more natural form of constrained natural
language [1].

There are various tools with languages conforming to the SBVR standard,
such as RuleCNL [3] and others [4–6], that vary in their expressiveness and
ease of use. As good as SBVR is at introducing structure to constrained natural
languages, its inherent complexity means that for smaller dialects the overhead
of following the standard may overshadow its usefulness. As such, even though
the Open Rules Platform is heavily inspired by SBVR as well as languages using
it, it does not formally abide by the standard, instead deciding to keep a more
minimalist language metamodel, more amenable to extension.

3 Executable Natural Language Rules

This section presents the architecture and design of the OR platform. Since the
platform uses multiple tools and technologies, we briefly introduce them, focusing
on how each technology contributes to the system. Finally we discuss the various
metamodels used by the OR platform, in order to provide more insight into how
the system behaves.

3.1 Architecture

Figure 1 shows an overview of the OR system and below we detail the technolo-
gies used:

– Eclipse Modeling Framework (EMF) [7]. This framework is used to facilitate
the creation of meta-models that encode the abstract syntax of the developed
CNL.

– Xtext [8]. This framework is used to define a textual concrete syntax for
the CNL. It offers various (semi-)automatically generated artefacts such as
a rich editor for writing statements in this syntax as well as an API for this
functionality, which can be used to create web-based editors offering similar
capabilities.

– Epsilon [9]. This framework is used to transform CNL models into executable
representations (e.g. SQL, EVL). Epsilon comprises a family of languages for
performing various model management operations, underpinned by a com-
mon model connectivity layer that can access various modeling technologies
(like EMF, relational databases or spreadsheets).

– CNL/Mapping metamodels. These metamodels (defined in EMF) are pro-
vided to the CNL Xtext parser in order to provide the structure for gen-
erating rules models as well as a mapping model from the relevant CNL
documents. More details on these artefacts is given in Section 3.2.

3 http://www.rulespeak.com/en/



4 Konstantinos Barmpis, Dimitrios Kolovos and Justin Hingorani

Fig. 1: Architecture of the Open Rules Platform



Towards a framework for writing executable natural language rules 5

– Rules/rules domain/mapping CNL documents. These structured text docu-
ments, adhering to the CNL grammar, encode rules/constraints for a par-
ticular domain/metamodel of interest. The domain document will contain
the terminology used by that domain, which can then be used by the CNL
document to write rules for that domain. As such, changing to another do-
main is as simple as creating a new domain document, and will not affect
any part of the CNL syntax other than offering new a new domain to write
rules against.

– CNL parser. This component parses CNL rules expressed in the language’s
concrete syntax (aka CNL documents), into in-memory models that conform
to the CNL metamodel, that will then be consumed by the transformation
engine (Epsilon).

– Generators. Generators consume models and produce executables for a spe-
cific back-end and its configuration. These models can be either:
– The rules/domain/mapping models themselves, whereby a model to text
transformation is performed to produce executable code from the models.
– Back-end specific models representing the technologies used to store the
data (such as an SQL model that would conform to a metamodel of the
Sequel language). Back-end metamodels will be used for a model to model
transformation of the rules/domain/mapping models into a back-end specific
model that can then be consumed by a generator to produce executable code.
This approach has not been implemented but can have merit, as discussed
in Section 5.

– Executables. These are specific to the runtime environment of the end-user
such as a MySQL relational database with a specific runtime configuration.

– Back-ends. This is the actual data against which the generated rules will be
run against.

3.2 Design

Two metamodels underpin the OR system: that of the CNL itself and that of the
various configurations and mappings required to trace elements from the data
itself to the rules written in CNL.

CNL Metamodel The CNL metamodel captures the abstract syntax of the
language. As such it does not contain any information about how the CNL will
look like but what types of elements it can contain. As such, it is the responsibility
of the Xtext parser to convert CNL documents into models conforming to this
metamodel, which can then be automatically consumed (in this case by Epsilon)
to produce executables. Figure 2 shows a simplified version of the metamodel;
important metaclasses are briefly introduced below:

– ConstrainedNaturalLanguageRules. Contains a list of validation rules and/or
a list of CNL metadata. This root element allows any CNL document to
either contain the rules, the metadata (domain the rules are written against)
or both.



6 Konstantinos Barmpis, Dimitrios Kolovos and Justin Hingorani

ConstrainedNaturalLanguageRules

ValidationRules

ScopedRulesMatchScopedRule

MatchingRule
variableName : EString

Rule
name : EString
isActive : EBoolean
message : EString

CNLRule

GPLRule
code : EString

Expression

BaseExpression

MetaData

MetaValue
name : EString

Enumerations Types

rules

0..*

metadata

0..*

rules
0..*

matches

0..*

rule
0..1

astRoot

1..1

legalValues

0..*

Fig. 2: Simplified CNL Metamodel

– ScopedRules. The first type of rule, where one or more rules are written
against a single scope (domain element, found in the metadata document).

– MatchScopedRules. The second type of rule, where a single rule is written
against sub-collections of data defined in the matches. These collections can
be of the same or different scopes, allowing rules to link queries of multiple
domain elements together into a single rule.

– CNLRule. A rule written against elements in the metadata domain, in con-
strained natural language. It contains a root element of the abstract syntax
tree used to define it (after it is parsed into such a tree by the CNL parser).

– GPLRule. A rule written against elements in the metadata domain, in a
programming language. It contains a String with the relevant syntax con-
forming to the language (in an unaltered state from the original CNL docu-
ment). The responsibility of correctly defining this rule lies with the person
writing the document as this rule is directly passed on to a relevant parser
without change. This type of rule allows for arbitrarily complex expressions
which would otherwise not be expressible in CNL to be written in the same
document as the natural language rules themselves.

– Expression. The common supertype for all abstract syntax elements a rule
can be made up of, such as comparison, arithmetic (summation, difference,
multiplication and division), logical (and / or), unary and other simple bi-
nary expressions.

– MetaValue. Common supertype for defining domain metadata.



Towards a framework for writing executable natural language rules 7

Mapping Metamodel As different back-ends can require slight variations of
similar concepts (such as wrapping identifiers or escaping special characters), a
set of configuration options allows abstracting the most commonly found ones
from having to be hard-coded into the generators themselves. These include,
for example, converting names to lowercase, specifying special characters that
enclose identifiers or strings, other special characters that may need to be sub-
stituted, etc.

Since it is unlikely that the domain used to create the CNL rules will be
a perfect match with the actual data it is validating, the mapping metamodel
is also tasked to map various CNL-domain elements to their appropriate data-
domain siblings:

– 1 to 1 mappings. Such mappings denote a single feature in the CNL is
mapped onto a single feature in the back-end. This mapping is handled
directly by the generator, without the need to introduce any new transfor-
mation or other overhead.

– 1 to n mappings. Such mappings denote that a single feature in the CNL
needs to be mapped to a list of features in the back-end. The values from
this list will be then aggregated (in the order provided by the list), using one
of the AggregationOperations available in the mapping model, returning a
single result.

– Logical Mappings. As different back-ends may use different symbols for de-
noting equality, negation or other logical and comparison operators, the
technology-specific versions can be provided here, in case they differ from
the defaults (for example if SQL uses = instead of == for equality).

These manipulations are used by any Epsilon Generation Language (EGL)
generator that generates executables (such as the EVL or the SQL generators
provided in the use-case presented in Section 4). Any time an identifier (type,
feature, variable) is passed to the EGL generator (through the CNL model it is
using as its source for code generation), the following may occur, for example:

– A simple mapping (from the mapping model) to replace the identifier with
a new one.

– Replacing or removing special characters.
– Converting strings to lowercase.

Generators These components take a CNL model (after it has been mapped
using the appropriate mapping model conforming to the metamodel presented
above) and generate appropriate execution-level code to be run against the stored
data. Such generators can be produced either using a model to model or a model
to text transformation:

Using a model to text transformation is recommended when there are a
lot of static text regions that need to be frequently repeated. This provides the
freedom to create optimal execution-level code, but may end up being non-trivial
to maintain, should the static regions end up becoming too verbose.

Using a model to model transformation is relevant when an appropriate meta-
model and unparser of the execution language is available.



8 Konstantinos Barmpis, Dimitrios Kolovos and Justin Hingorani

Generic EVL generator This generator produces code written in the Epsilon
Validation Language. The generation mainly comprises transforming the rule
abstract syntax tree into the appropriate expression in EVL. This generator can
run against any data format supported by the Epsilon framework, such as EMF
models, XML documents, Spreadsheets, Relational Databases, etc. Nevertheless,
since it is a generic layer it may not be able to be fully optimized against all such
technologies and alternative generators may need to be used for performance
reasons.

Optimized native SQL generator Since SQL has a substantially different struc-
ture to EVL, a native generator provides full control over how a CNL model is
converted to executable code to be run against a relational database. This al-
lows tackling of issues such as type correctness by using the database metadata
(instead of having to compare each relevant data item to a type), allows effec-
tive use of derived tables and merging etc. Preliminary tests have shown that
for certain classes of validation rules this can greatly outperform a nave EVL
generator, and that it can be up to an order of magnitude faster than writing
inefficient SQL (further investigation onto this is required, as detailed in Section
5).

Web-based validation Xtext offers a generated web-based API for writing
CNL rules on a web-client and executing a program on these rules on the server
side, returning a document containing relevant execution information. Using one
of the abovementioned generators, we can perform validation of the provided
rules against data stored on the server. This would execute the following (on the
server side, after receiving the CNL document from the client):

– The input CNL model is transformed using the relevant mapping model to
an in-memory transformed CNL model.

– The transformed CNL model is used to generate the appropriate execution-
level code to run against the stored data.

Currently the EVL generator is used to produce EVL code which will run against
data stored on an Excel spreadsheet, but both the generator used and the data
connector can be replaced if necessary with the appropriate ones. The EVL code
is executed against the data, getting back violations for each of the rules. The
violations are formatted into a report document which is then returned to the
client, providing feedback on offending elements (if any).

4 Evaluation

In this section we present the empirical results obtained when evaluating the
OR system against a domain-specific use-case.



Towards a framework for writing executable natural language rules 9

4.1 Use-case

Annually the Bank of England (BoE) produces a large set of rules that specified
UK banks follow to submit data as part of one of the BoE’s annual reviews.
These rules help ensure the submitted data is consistent with the BoE’s expec-
tations and cover a variety of different aspects such as retail risk, commercial
risk, operational risk, etc. These rules are provided in a mixture of natural lan-
guage and procedural statements and are written so that domain experts can
understand them, hence are not amenable to machine consumption in any way.
In order for these rules to be executed against the actual data the bank holds,
they have to be understood by a domain expert and then a technical expert
will have to write the appropriate low-level code representing these rules. This
process requires stakeholders with different expertise to collaborate and can in-
troduce further risk as the two interpretation steps need to be in line with one
another.

4.2 Coverage

As a first criterion for evaluating the OR platform for this use-case, we classified
BoE’s rules into 8 categories and then analyzed the coverage of the OR platform
with respect to the total number of rules. This was done to estimate the actual
coverage of the OR system as it would not have been feasible within the scope of
this project to convert all 3668 rules into CNL to execute them; as such random
sampling of each category has been performed.

category description count

type/enum check this rule only contains a single type or enumera-
tion check

1556

comparison this rule only contains a single comparison 315
comparison+logic this rule only contains a combination of compari-

son and logical operators
40

using variables/functions this rule requires comparison/logical operations
across tables

1534

duplicate check this rule requires all values of a field to be different 17
multi-key match this rule requires multiple fields to be treated as

a key to a search
99

enumeration sub-matching this rule requires that the legal values of a field are
determined by the current value of another field

27

complex rule this rule is too complex to classify 80

3668

Table 1: Classification of Business Rules

Table 1 presents these categories in more detail. Here, we can see that the
large majority of rules fall under either simple type/enumeration checks or elab-



10 Konstantinos Barmpis, Dimitrios Kolovos and Justin Hingorani

orate rules requiring the use of variables and functions (matching rules), often
across different domain elements. from the remaining rules, the 80 complex rules
are noteworthy as it was decided that attempting to further classify them or to
convert them to CNL was not efficient. Instead, these rules are flagged as com-
plex and meant to be executed through the use of GPL rules that are written in
the target language used to execute against the data itself. Finally, the category
of enumeration sub-matching is not yet supported, even though such a feature
can be added in further iterations of the tool, as mentioned in Section 5.

As such, we achieve 97% coverage (as we don’t currently offer CNL expres-
siveness for complex rules and enumeration sub-matching rules), whilst opening
the possibility (through the use of GPL rules) for any rule to be written in the
CNL document regardless, in order to ensure that a single document contains
all the rules that need to be executed, regardless of whether they can be actually
expressed in CNL.

4.3 Verboseness

The second criterion used to evaluate the OR platform is the verboseness of the
rules, when written in CNL. Should the CNL form of the rules be disproportion-
ate to the complexity of the rule (the size of the rule written in the execution
language) then it may be unreasonable to expect them to be written by domain
experts as it will become tedious to write extremely long CNL rules. As such,
we compare the size in characters (ignoring whitespaces) of various rules written
in CNL with the rule written in both EVL as well as SQL, as a representative
sample of verboseness.

category cnl1 cnl2 evl1 evl2 sql1 sql2

type/enum check 33 57 86 111 202 215
comparison 51 184 118 327 116 405

comparison+logic 131 139 209 243 139 154
using variables/functions 314 447 522 703 568 740

duplicate check 55 58 226 241 116 119
multi-key match 63 89 487 627 163 187

Table 2: Rule character count ignoring spaces

Table 2 shows the relevant character count for two representative rules writ-
ten for each of the categories the tool supports. CNL written in the ORP frame-
work is much less verbose than the SQL it would require to execute against data
in relational databases (in this case a MySQL database) and less verbose than
EVL constraints written in Epsilon. Considering both the EVL and SQL were
generated by the tool and as such attempt to be as minimal as possible (as they
do not care about human readability at all), we have gained confidence that



Towards a framework for writing executable natural language rules 11

writing rules in CNL will require less effort than the same rule written by the
relevant expert in EVL or SQL.

Below we see how the type/enum check constraint annotated as cnl1 looks
like:

1 in a Branch the country must be in Europe

Similarly for the comparison+logic cnl1 constraint:

1 in a MortgageAgreement

2 when the beginningDate exists and the initialEndingDate exists

3 then the beginningDate must be before or by the initialEndingDate

4.4 Extensibility

The final criterion used to evaluate the OR platform is its extensibility. Since
the system claims to offer domain-agnostic CNL capabilities for writing rules in
any domain, we need to gain some confidence that this can be feasible. As such,
extensibility can be broken down into three distinct categories:

– Language extensibility. Since the OR platform offers a constrained form of
English for expressing rules, this category considers how easy it is to alter this
constrained subset should a new type of (English) expression be required or
should a new type of executable expression be required (such as the example
of the enumeration sub-matching rules in the coverage example, which are
not currently expressible in CNL).
– Regarding extending the subset of English supported by the CNL, this
would require adding the new expressions in the Xtext parser that reads the
CNL document and creates the relevant model. Since adding new English
phrases is unlikely to affect the model itself but rather only the parser,
we believe that the OR platform is extensible in this regard as only one
component of the system needs to be adapted to add this functionality.
– Regarding the extending of the semantic expressions offered by the OR
platform, this would require the extension of the CNL metamodel to include
these new concepts, as well as the extension of the Xtext parser to include
a way to express these rules in English. As the adaption of two different
interconnected components is required to achieve this, we consider this to
be a task of moderate difficulty for an extender of the tool.

– Domain extensibility. If rules need to be written in a different domain, a
domain document will have to be created detailing the various concepts in
that domain and their relevant features. These concepts will then be usable
in the CNL document describing the rules written for that domain. Since
the CNL document is not bound to a specific set of concepts but to another
document which will describe these concepts, we believe it is natural to
change from one domain to another without much effort.

– Execution technology extensibility. This category considers whether it is pos-
sible to change the data storage technology and still be able to execute CNL



12 Konstantinos Barmpis, Dimitrios Kolovos and Justin Hingorani

rules. The execution layer of the OR platform is de-coupled from the lan-
guage itself, as the data can be accessed either through the Epsilon model
connectivity layer (whilst generating EVL rules), or through the use of a new
generator that takes the rule document alongside the domain and mapping
documents and produces executable code for the required storage technol-
ogy. As such, we have gained confidence that the OR platform is extensible
with respect to use of other data storage technologies.

Overall extending the OR platform for these three categories will require
adding/changing only one component in most cases (with two components need-
ing to be changed when new types of semantic expressions need to be added).

5 Conclusions and Further Work

Concluding, we have presented ORP and its CNL, aimed at offering executable
validation rules written in natural language. We have evaluated this framework
in a real-world case-study using a subset of the Bank of England’s business
rules and have obtained promising results in both the areas of coverage and
verboseness, whilst qualitative evaluation of extensibility is also promising.

The tool can be extended to provide advanced features to cover even more
types of rules, such as: n to 1 mappings; such mappings denote multiple fields in
the CNL needing to be mapped onto a single field in the data schema (that needs
to be disaggregated appropriately). Simple numerical disaggregations (such as
each CNL field containing an equal (numerically) subdivision of the target field)
can be performed within the CNL itself without the need for further informa-
tion, but any complex expression-based mapping will need to be presented and
incorporated into the mapping model. Reference resolution; to tackle data nor-
malization, references need to be navigated using unique identifiers of elements.
This navigation may require extra information such as naming conventions of
the target object (such as using a foreign key with a different column name to
the original, in a relational database, etc.).

Finally, investigating the applicability of using model-to-model transforma-
tions to various back-end technologies through an appropriate metamodel and
unparser (for example using an SQL metamodel and an SQL unparser to con-
vert a CNL model into an executable SQL model) can provide insight into this
alternative approach.

Acknowledgments

This research was part supported by Innovate UK through its Knowledge Trans-
fer Partnership (KTP) program and JC Chapman LTD.



Towards a framework for writing executable natural language rules 13

References

1. Silvie Spreeuwenberg and Keri Anderson Healy. Sbvr’s approach to controlled nat-
ural language. In Norbert E. Fuchs, editor, Controlled Natural Language, pages
155–169, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

2. Peter Clark, William R. Murray, Phil Harrison, and John Thompson. Naturalness
vs. predictability: A key debate in controlled languages. In Norbert E. Fuchs, editor,
Controlled Natural Language, pages 65–81, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

3. Paul Brillant Feuto Njonko, Sylviane Cardey, Peter Greenfield, and Walid El Abed.
Rulecnl: A controlled natural language for business rule specifications. In Brian
Davis, Kaarel Kaljurand, and Tobias Kuhn, editors, Controlled Natural Language,
pages 66–77, Cham, 2014. Springer International Publishing.

4. G. Aiello, R. D. Bernardo, M. Maggio, D. D. Bona, and G. L. Re. Inferring business
rules from natural language expressions. In 2014 IEEE 7th International Conference
on Service-Oriented Computing and Applications, pages 131–136, Nov 2014.

5. Paul Brillant Feuto Njonko and Walid El Abed. From natural language business
requirements to executable models via sbvr. In 2012 International Conference on
Systems and Informatics (ICSAI2012), pages 2453–2457, May 2012.

6. P. B. Feuto, S. Cardey, P. Greenfield, and W. E. Abed. Domain specific language
based on the sbvr standard for expressing business rules. In 2013 17th IEEE In-
ternational Enterprise Distributed Object Computing Conference Workshops, pages
31–38, Sept 2013.

7. Marcelo Paternostro Dave Steinberg Frank Budinsky and Ed Merks. EMF: Eclipse
Modeling Framework (2nd Edition). Addison-Wesley Professional, 2008.

8. Moritz Eysholdt and Heiko Behrens. Xtext: Implement your language faster than
the quick and dirty way. In Proceedings of the ACM International Conference Com-
panion on Object Oriented Programming Systems Languages and Applications Com-
panion, OOPSLA ’10, pages 307–309, New York, NY, USA, 2010. ACM.

9. Kolovos, D.S., Rose, L., Garcia, A.D. and Paige, R.F. The Epsilon Book. 2008.


	Towards a framework for writing executable natural language rules

