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We report a new nonlinear phenomenon discovered in the classical problem of thermal convection
in rapidly rotating, self-gravitating, internally heated Boussinesq fluid spheres. When linear con-
vective instability (the most unstable mode of convection) is in the form of an axially symmetric,
equatorially antisymmetric torsional oscillation, its equatorial symmetry must be broken by non-
linear effects and, consequently, the key properties of the primary solution bifurcating from the
instability cannot be predicted on the basis of linear solutions at the onset of convection. We reveal
that, when the supercritical Rayleigh number is in the vicinity of its critical value, the primary
nonlinear solution is in the form of an axially symmetric, equatorially nonsymmetric, latitudinally
propagating wave whose amplitude varies periodically, representing a new nonlinear pattern of ther-
mal convection in rotating fluid spheres.

PACS numbers: 47.54.+r,47.27.te,92.60.Ek

I. INTRODUCTION

A well-known classical problem in fluid dynamics is
thermal convection in rapidly rotating, self-gravitating,
internally heated Boussinesq fluid spheres or spherical
shells [see, for example, 1–8]. The problem is character-
ized by the three physical parameters: the Rayleigh num-
ber Ra, the Prandtl number Pr and the Ekman number
E. The Rayleigh number Ra is effectively the ratio of
destabilizing buoyancy forces to the Coriolis and dissi-
pative force, the Prandtl number Pr provides a measure
of the relative importance of viscous and thermal diffu-
sion, and the Ekman number E is related to the ratio
of viscous forces to the Coriolis force. For applications
to many planetary fluid systems like the Earth’s liquid
core, the Ekman number E is usually extremely small
E ≪ 1 and the Prandtl number Pr is moderately small
while some astrophysical fluid systems like the solar con-
vection zone are marked by extremely small sizes of the
Prandtl number Pr [see, for example, 9].
It is well understood that the physically preferred

mode of convective instability in rapidly rotating spheres
for moderate values of Pr is in the form of axially nonsym-
metric, equatorially symmetric and azimuthally drifting
columnar rolls [2, 4] while the physically preferred con-
vection mode for small Prandtl number is in the form
of axially nonsymmetric, equatorially symmetric and az-
imuthally traveling thermal-inertial waves [3]. In both
the cases, the flow, for example, its azimuthal compo-

nent φ̂ · u at the onset of convection with Ra = (Ra)c,
where (Ra)c denotes the critical Rayleigh number, can
be expressed as

φ̂ · u(r, θ, φ, t) = F (r, θ)ei(mφ+ωt), (1)

where spherical polar coordinates (r, θ, φ) with unit vec-

tors (r̂, θ̂, φ̂) and θ = 0 at the axis of rotation are
adopted, m denotes the azimuthal wavenumber of con-
vective instability with m ≥ 1, the function F (r, θ) obeys
the equatorial parity F (r, θ) = F (r, π−θ), and ω denotes
the frequency of the instability which is small for colum-
nar rolls [2] but of order unity for thermal-inertial waves
[3]. Near the threshold 0 < [Ra − (Ra)c]/(Ra)c ≪ 1,
the key nonlinear property of convection is largely pre-
dictable on the basis of linear solutions: the primary so-
lution bifurcating from the instability has constant am-
plitude with constant kinetic energy, is axially nonsym-
metric and equatorially symmetric, and contains a weak
zonal flow [see, for example, 5, 10].

Sanchez et al. [11] showed unexpectedly, via careful
numerical simulation under a poloidal and toroidal de-
composition, that the physically preferred mode of con-
vection in a special regime of the Prandtl number Pr with
the stress-free boundary condition is in the form of axi-
ally symmetric (invariant under rotation about the axis of
rotation), equatorially antisymmetric, and temporally os-
cillatory (in the form of oscillatory fluid motion). This is
referred to as the convective torsional instability. Zhang
et al. [12] derived an asymptotic solution of the torsional
instability in rapidly rotating fluid spheres, showing that
its azimuthal component at the onset of convection can
be expressed as

φ̂ · u(r, θ, φ, t) = G(r, θ)eiωt, (2)

where the function G obeys the equatorial symmetry
G(r, θ) = −G(r, π − θ). The linear asymptotic solu-
tion [12] is in satisfactory quantitative agreement with
the corresponding numerical solution [11]. It should be
stressed that (2) is profoundly different from (1): (2) rep-
resents axially symmetric, equatorially antisymmetric,
oscillatory flows while (1) describes axially nonsymmet-
ric, equatorially symmetric, azimuthally traveling waves.
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When linear convective instability (the most unstable
mode) is in the form of axially symmetric and equa-
torially antisymmetric oscillation described by (2), its
nonlinear developments near the threshold 0 < [Ra −
(Ra)c]/(Ra)c ≪ 1 cannot be predicted on the basis of
the result of linear stability analysis. This is because the
equatorial symmetry at the onset of convection must be
broken by nonlinear effects even near the threshold and
the kinetic energy of the primary solution, in contrast to
the equatorially symmetric wave described by (1), must
be time-dependent. By performing careful numerical
simulation near the threshold 0 < [Ra− (Ra)c]/(Ra)c ≪
1, we reveal that the primary nonlinear solution near the
threshold of the convective torsional instability is in the
form of an axially symmetric, equatorially nonsymmetric
and latitudinally propagating nonlinear wave whose am-
plitude varies periodically, representing a new nonlinear
phenomenon in the classical problem of thermal convec-
tion in rapidly rotating fluid spheres. In what follows we
begin by presenting the governing equations of the prob-
lem in §2 which is followed by the discussion of the result
of nonlinear convection in §3. A summary and some re-
marks are presented in §4.

II. MATHEMATICAL FORMULATION

Consider the problem of thermal convection in a
Boussinesq fluid sphere of radius ro with constant ther-
mal diffusivity κ, thermal expansion coefficient α and
kinematic viscosity ν [see, for example, 1, 2, 4]. The
fluid sphere rotates uniformly with constant angular ve-
locity ẑΩ in the presence of its own gravitational field
−γr, where γ is a positive constant and r is the position
vector. The whole sphere is heated by a uniform distribu-
tion of heat sources, producing the unstable conducting
temperature gradient −βr, β being a positive constant.
When β is sufficiently large, convective instability takes
place and drives fluid motion in the sphere.
Upon employing the radius of the sphere ro as the

length scale, 1/Ω as the unit of time and βr4oΩ/κ as the
unit of temperature fluctuation, the problem of thermal
convection is governed by the dimensionless equations

∂u

∂t
+ u ·∇u+ 2ẑ× u = −∇p+ RaΘr+ E∇

2
u, (3)

(Pr/E)

(

∂Θ

∂t
+ u ·∇Θ

)

= u · r+∇
2Θ, (4)

∇ · u = 0, (5)

where t is time, Θ represents the deviation of the temper-
ature from its static distribution, p is the total pressure
and u is the three-dimensional velocity field. All the vari-
ables are non-dimensional. The three non-dimensional
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FIG. 1: Average kinetic energy density Ekin as a function of
Ra for E = 10−3 and Pr = 0.01. Three different branches
are identified: Branch A for axially symmetric and latitudi-
nally propagating waves, Branch B for axially nonsymmetric,
equatorially symmetric and azimuthally traveling waves, and
Branch C for the latitudinally propagating waves modulated
by the azimuthally traveling waves.

parameters, the Rayleigh number Ra, the Prandtl num-
ber Pr and the Ekman number E, are defined as

Ra =
αβγr4o
Ωκ

, Pr =
ν

κ
, E =

ν

Ωr2o
.

We focus on perfectly conducting, impenetrable and
stress-free boundary conditions given by

∂(φ̂ · u/r)
∂r

=
∂(θ̂ · u/r)

∂r
= r̂ · u = Θ = 0. (6)

Our numerical analysis, for the purpose of simulating
nonlinear convection in the whole sphere, adopts a spher-
ical shell marked by a very small inner core whose radius
ri is given by ri/ro = 0.001.

III. LATITUDINALLY PROPAGATING WAVES

According to both the numerical analysis [11] and the
asymptotic analysis [12], the torsional convective insta-
bility (which is axially symmetric, equatorially antisym-
metric, and temporally oscillatory) is physically preferred
in rapidly rotating spheres in a special regime of the
Prandtl number. It is found in the asymptotic analy-
sis [12] that E ≤ 10−3 is sufficiently small to be in the
asymptotic regime in the sense that an asymptotic solu-
tion with E ≤ 10−3 shows a satisfactory agreement with
the corresponding fully numerical solution. Our numeri-
cal simulation is therefore to concentrate on a moderately
small Ekman number E = 10−3 that would be sufficiently
small for the purpose of illustrating a new nonlinear con-
vection phenomenon in rotating spheres. Several com-
putations at E = 10−4 are also performed to confirm a
similar behavior to that for E = 10−3.
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FIG. 2: Kinetic energy density Ekin(t) of nonlinear convection
as a function of time for three typical values of the Rayleigh
number, Ra = 7.99, 9.0, 11.0 for E = 10−3 and Pr = 0.01.

To help understand the new nonlinear phenomenon re-
ported in this paper, it is desirable to provide a brief re-
view of the torsional convective instability at the onset of
convection. The leading-order linear solution, described
by its pressure p0, its velocity u0 and its temperature Θ0

in rapidly rotating spheres, is given by

p0 = A
(

3

2
− 3r2 +

5

2
r2 cos2 θ

)

r cos θ cos
2t√
5
,(7)

r̂ · u0 = −A3
√
5

4

(

1− r2
)

cos θ sin
2t√
5
, (8)

θ̂ · u0 = −A3
√
5

4

(

2r2 − 1
)

sin θ sin
2t√
5
, (9)

φ̂ · u0 = −A15

8
r2 sin 2θ cos

2t√
5
, (10)

Θ0 = A
∑

l,q

2πPl(cos θ)jl(βlqr)
[

(βlq)2 + i(2/
√
5)Pr/E

]

×
∫ π

0

∫ 1

0

r · u0Pl(cos θ)jl (βlqr) r
2 sin θ dr dθ, (11)

where A represents a small amplitude, jl denotes the
spherical Bessel function of the first kind, Pl is the Leg-
endre function, βlq with q = 1, 2, 3, . . . are solutions of
jl (βlq) = 0 and ordered such that 0 < βl1 < βl2 <
βl3 < . . . . Note that the convective instability is axi-
ally symmetric (∂/∂φ = 0), equatorially antisymmetric

φ̂ · u0(r, θ, t) = −φ̂ · u0(r, π − θ, t), and temporally os-
cillatory (∂/∂t ̸= 0). Note also that the solution (7)–
(11) represents the most unstable mode of convection in
some regime of the parameters [11]. For E = 10−3 and
Pr = 0.01, the torsional convective instability, accord-
ing to the asymptotic analysis, takes place at the critical
Rayleigh number (Ra)c = 7.8 with the critical frequency
ωc = 0.89.
We are mainly concerned with the property of the pri-

mary nonlinear solution when the Rayleigh number Ra is
slightly supercritical, i.e., 0 < (Ra− 7.8)/7.8 ≪ 1, where
E and Pr are fixed. It is significant to notice that the lin-

ear solution (7)–(11) is equatorially antisymmetric but
this symmetry is not allowed by the governing nonlin-
ear equations (3)–(5). This is why the primary nonlinear
solution at 0 < (Ra− 7.8)/7.8 ≪ 1 must break the equa-
torial symmetry of the linear solution (7)–(11) and why
weakly nonlinear convection in connection with the tor-
sional convective instability can be spatially complicated.
To measure the amplitude of convection, we introduce
the kinetic energy density Ekin of the flow u defined as

Ekin(t) =
3
8π

∫ 2π

0

∫ π

0

∫ 1

0
|u(t)|2r2 sin θ dr dθ dφ. An exten-

sive numerical simulation for E = 10−3 and Pr = 0.01 is
carried out for many different values of Ra. The results
of the simulation are summarized in Figure 1 where the
three different branches of nonlinear solutions are iden-
tified. We focus on Branch A, the primary nonlinear
solution bifurcating from the torsional convective insta-
bility. Kinetic energy densities Ekin of a typical primary
solution as a function of time obtained for Ra = 7.99 –
which belongs to Branch A in Figure 1 – are presented in
Figure 2. It can be seen that the kinetic energy Ekin(t)
of the primary solution changes periodically with a pe-
riod of about T = 7.1 as suggested by (7)–(11). The
corresponding spatial structure as a function of time is
depicted in Figure 3 in a meridional plane. The primary
nonlinear solution is marked by the four key features: (i)
the convective flow is still axially symmetric; (ii) it is
neither equatorially antisymmetric nor equatorially sym-
metric; (iii) it represents latitudinally propagating non-
linear waves; and (iv) its amplitude varies periodically.
Given that the linear azimuthal flow is in the form of sim-
ple oscillatory flow, φ̂·u0 ∼ r2 sin 2θ cos 2t

√

5
for Ra = 7.8 ,

the complicated latitudinally propagating waves depicted
in Figure 3 for Ra = 7.99 are unexpected.

This new form of nonlinear convection occurs only in a
range of small supercritical Rayleigh numbers. When the
Rayleigh number increases further, the axially symmetric
convection in Figure 3 is replaced by the axially nonsym-
metric, equatorially symmetric and retrogradely travel-
ing wave with azimuthal wavenumber m = 1, which is
labeled as Branch B in Figure 2. The property of Branch
B is well understood: it represents non-axisymmetric
and azimuthally traveling waves whose dominant spatial
structure is essentially the same as that of the linear so-
lution at the onset of convection; the flow has constant
kinetic energy (which is shown in Figure 2 for Ra = 9.00);
and its spatial structure is time-independent in a drift-
ing frame. When the Rayleigh number increases even
further, the secondary solution is to be replaced by the
tertiary solution, labeled by Branch C in Figure 1, which
is neither axially symmetric nor equatorially symmetric.
The tertiary solution is, as expected, characterized by a
mixed feature of the primary and secondary solutions:
a typical tertiary solution is presented in Figure 2 for
Ra = 11.00.
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FIG. 3: Contours of φ̂ · u in a meridional plane at 12 differ-
ent instants in one period for E = 10−3 and Pr = 0.01 at
Ra = 7.99, showing the axially symmetric (∂/∂φ = 0) and
latitudinally propagating nonlinear waves.

IV. SUMMARY AND REMARKS

We have unveiled a new nonlinear phenomenon in the
classical problem of thermal convection in rapidly rotat-
ing, self-gravitating, internally heated Boussinesq fluid
spheres. In a parameter regime marked by Pr/E ≈ 10
and E ≪ 1 [11, 12], the most unstable mode of convec-
tion is characterized by axially symmetric, equatorially
antisymmetric torsional oscillation. We have shown that,

when the Rayleigh number Ra is in the vicinity of its crit-
ical value, weakly nonlinear convection is in the form of
axially symmetric, equatorially nonsymmetric and lati-
tudinally propagating waves depicted in Figure 3. The
latitudinally propagating wave represents a new pattern
of nonlinear convection in the problem of thermal con-
vection rapidly rotating fluid spheres.

It was P.H. Roberts [1] who first discussed the possi-
bility of equatorially antisymmetric convective instabil-
ity in rapidly rotating, self-gravitating, internally heated
Boussinesq fluid spheres. After nearly fifty years, both
the numerical analysis [11] and the asymptotic analysis
[12] have revealed that the equatorially antisymmetric
mode can be indeed physically preferred in some regime
of the physical parameters. In contrast to the equatori-
ally symmetric mode [see, for example, 2, 4] whose pri-
mary bifurcation solution has the same equatorial sym-
metry, we have demonstrated that the equatorially an-
tisymmetric torsional oscillation [11, 12] merely repre-
sents a linear state of thermal convection: even weakly
nonlinear effects in real physical systems would destroy
the equatorial symmetry described by (7)–(11) and lead
to the latitudinally propagating waves in rotating fluid
spheres depicted in Figure 3.
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