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This letter reports a first quantitative analysis of the contribution of higher partial waves in the charge 
symmetry breaking reaction dd → 4Heπ0 using the WASA-at-COSY detector setup at an excess energy of 
Q = 60 MeV. The determined differential cross section can be parametrized as dσ /d� = a + b cos2 θ∗, 
where θ∗ is the production angle of the pion in the center-of-mass coordinate system, and the results for 
the parameters are a =

(

1.55 ± 0.46(stat)+0.32
−0.8 (syst)

)

pb/sr and b =
(

13.1± 2.1(stat)+1.0
−2.7(syst)

)

pb/sr. 
The data are compatible with vanishing p-waves and a sizable d-wave contribution. This finding should 
strongly constrain the contribution of the � isobar to the dd → 4Heπ0 reaction and is, therefore, crucial 
for a quantitative understanding of quark mass effects in nuclear production reactions.

 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Within the Standard Model of elementary particles isospin sym-
metry is violated via quark mass differences as well as electromag-
netic effects [1–3]. On the hadronic level this is reflected, for exam-
ple, by the proton–neutron mass difference. It is due to quark-mass 
effects that the proton is lighter than the neutron and, therefore, 
stable. The observation of isospin violation (IV) in hadronic reac-
tions in principle allows one to study the effects of quark masses. 
However, most experimental signatures of IV are dominated by the 
pion mass difference mπ0 −mπ± , which is to a very good approx-
imation of purely electromagnetic origin. An exception are observ-
ables that are charge symmetry breaking (CSB). Charge symmetry, 
a subgroup of isospin symmetry, is the invariance of the Hamil-
tonian under rotation by 180◦ around the second axis in isospin 
space that interchanges up and down quarks. The charge symme-
try operator does not interchange charged and neutral pion states, 
and the pion mass difference does not enter (see, e.g., [4]). On the 
basis of theoretical approaches with a direct connection to QCD, 
like lattice QCD and chiral perturbation theory (ChPT), it is, there-
fore, possible to link quark-mass effects to hadronic observables.

While CSB observables have the advantage of being directly 
related to quark-mass differences, their smallness poses an ex-
perimental challenge. First precision measurements of CSB were 
reported for the reaction dd → 4Heπ0 at beam energies very close 
to the reaction threshold [5] and, at the same time, via a non-
vanishing forward–backward asymmetry in np → dπ0 [6]. Both 
results triggered a series of theoretical investigations. The signal 
of the latter measurement was shown to be proportional to the 
quark-mass-induced part of the proton–neutron mass difference up 
to next-to-leading order in ChPT [7,8]. This became possible by the 
adaption of ChPT to pion production reactions in Ref. [9]. The for-
malism has recently been pushed to next-to-next-to-leading order 
for s-waves [10,11]. The contribution of p-waves has been investi-
gated in Ref. [12]. For a recent review see Ref. [13].
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For the reaction dd → 4Heπ0 the four-nucleon interaction in 
initial and final state adds an additional facet. First steps to-
wards a theoretical understanding of this reaction were taken in 
Refs. [14,15]. Additional CSB effects from soft photons in the ini-
tial state have been studied in Refs. [16,17]. The focus in that 
work has been on s-waves in the final state, since no experimen-
tal information on higher partial waves was available at that time. 
However, such information is important, since it will allow one to 
constrain the contribution from the � resonance that is known to 
provide the bulk of the p-wave contributions in the isospin con-
serving pp → dπ+ reaction [18–20] — without this, a quantitative 
control of higher order operators for the reaction at hand appears 
impossible. A first measurement with WASA was inconclusive due 
to limited statistics [21]. Thus, there are no theoretical predictions 
for higher energies and/or higher partial waves yet. In this paper, 
data are presented for the first time that quantify the contribution 
of higher partial waves to the reaction dd → 4Heπ0 .

2. Experiment

The ten-week-long experiment was performed at the Cooler 
Synchrotron COSY [22] of the Institute for Nuclear Physics at the 
Forschungszentrum Jülich in Germany. The particles produced in 
the collisions of a deuteron beam with a momentum of pd =

1.2 GeV/c (Q = 60 MeV) with frozen deuteron pellets were de-
tected in the modified WASA facility [23]. The setup consisted of 
forward and central detectors, where the 4He ejectiles and the 
photons from the π0 decay were detected, respectively. For this 
experiment the forward detector was optimized for a time-of-flight 
(TOF) measurement. Several layers of the original detector were re-
moved to introduce a free flight path of more than 1.5 m. This 
modification provides access to an additional, independent observ-
able for energy calibration and particle selection — in the previous 
measurement [21] these were based only on the correlation of en-
ergy losses in the detector layers. The new setup consisted of an 
array of straw tubes for precise tracking and three layers of plastic 
scintillators for energy reconstruction and particle identification: 
two 3 mm thick layers of the forward window counter, used as 
start detectors, and the 20 mm thick layer of the forward veto ho-
doscope, used as a stop detector. Photons from the π0 decay were 
detected in the central electromagnetic calorimeter and discrimi-
nated from charged particles by means of a veto signal from the 
plastic scintillator barrel located inside the calorimeter.

The main trigger required a high energy deposit in at least one 
element of the first and the second layer of the forward window 
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counter and at least one cluster originating from a neutral particle 
in the central detector.

3. Analysis

The signature of the dd → 4Heπ0 reaction is a forward-going 
4He particle and two photons from the decay of the π0 . The only 
other channel with 4He and two photons in the final state is the 
double radiative capture reaction dd → 4Heγ γ as an irreducible 
physics background. A further source of background is the isospin 
symmetry conserving dd → 3Henπ0 reaction with a more than 
four orders of magnitude larger cross section [24]. The suppres-
sion of this reaction is challenging since 3He and 4He have similar, 
given the detector resolution, energy losses in the forward window 
counters. Compared to dd → 3Henπ0 , the direct two photon pro-
duction in dd → 3Henγ γ is suppressed by a factor of α2 (with α
being the fine-structure constant) and can be neglected.

The energy loss in the forward window counters and TOF have 
been used to reconstruct the kinetic energy of the outgoing 3He
and 4He particles by matching their patterns to Monte Carlo sim-
ulations. The full four-vectors have been obtained using in addi-
tion the azimuthal and polar angles reconstructed by the forward 
tracking detector. For the further analysis at least one track in the 
forward detector and at least two reconstructed clusters of crystals 
with energy deposited by neutral particles in the central detector 
have been required.

The final candidate events have been selected by means of a 
kinematic fit. The purpose of the fit was to improve the precision 
of the measured kinematic variables and to serve as a selection cri-
terion for background reduction. For the assumed reaction hypoth-
esis the measured variables were varied within the experimental 
uncertainties until certain kinematic constraints were fulfilled, here 
the overall momentum and energy conservation. For every event 
the dd → 3Henγ γ and dd → 4Heγ γ hypotheses have been tested 
separately. No additional constraint on the invariant mass of the 
two photons has been imposed, in order to be able to measure 
the signal yield using the two-photon invariant-mass distribution. 
In case of more than one track in the forward detector or more 
than two neutral clusters in the central detector (caused by event 
pileup or low energy satellites of the main photon clusters) the 
combination with the smallest χ2 from the fit has been chosen.

The reduction of the dd → 3Henπ0 background by four orders 
of magnitude has been mainly achieved using a cut on the two-
dimensional cumulative probability distribution from the kine-
matic fits, analogously as described in Ref. [21]. The cut has been 
optimized by maximizing the statistical significance of the π0 sig-
nal in the final missing mass plot.

The four-momenta obtained from the kinematic fit of the dd →
4Heγ γ hypothesis have been used to calculate the missing mass 
mX for the reaction dd → 4HeX as a function of the center-of-mass 
production angle θ∗ of the π0 . In Fig. 1 the missing mass spectra 
for the four angular bins within the detector acceptance (−0.9 ≤
cos θ∗ ≤ 0.4) are presented. On a smooth background from double 
radiative capture dd → 4Heγ γ two significant peaks are visible. 
One of these, originating from the signal reaction dd → 4Heπ0 , 
is located at the π0 mass of 0.135 GeV/c2 . The other one corre-
sponds to misidentified events from the background reaction dd →
3Henπ0 and is shifted by the 3He− n binding energy. The missing 
mass spectra have been fitted with a linear combination of the fol-
lowing high-statistics Monte Carlo templates: (i) dd → 4Heγ γ as-
suming a 3-body phase-space distribution, (ii) dd → 3Henπ0 using 
the model from [24], and (iii) the two-body reaction dd → 4Heπ0 . 
For each cos θ∗ bin, a fit of the Monte Carlo templates to the data 
has been performed with the constraint that the sum of the fitted 
templates has to fit the overall missing mass spectrum. As result, 

Fig. 1. Missing mass for the dd → 4HeX reaction for the four angular bins of the 
production angle of the pion in the center-of-mass system. The spectrum is fitted 
with a linear combination of the simulated signal and background reactions: double 
radiative capture dd → 4Heγ γ (green dashed line), plus dd → 3Henπ0 (blue dotted 
line), plus dd → 4Heπ0 (red solid line). The fit excludes the missing mass region 
below 0.11 GeV/c2 . (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

the π0 peak from the dd → 4Heπ0 reaction contains 336 ± 43
events in total.

In the course of the fit the Monte Carlo templates have been 
modified in two ways. In the missing mass spectra, the background 
originating from misidentified dd → 3Henπ0 is slightly shifted in 
comparison to data. This shift can be attributed to systematic dif-
ferences in the simulated detector response for 4He and misiden-
tified 3He. With a cut efficiency close to 10−4 the latter mainly 
originate from the tails of the corresponding distributions. Never-
theless, the shape of background contribution is well described. 
Therefore, this mismatch has been compensated by introducing an 
angle-dependent scaling factor in the missing mass mX as free 
parameter. The obtained factors (from backward to forward an-
gles) are within the range of 1.005–0.972. The second modifica-
tion concerns the missing mass spectrum below 0.11 GeV/c2 in 
the most backward angular bin. This region is dominated by the 
dd → 4Heγ γ reaction, which has been simulated using 3-body 
phase space. This model, however, underestimates the contribution 
in that region. The dominating background from the dd → 3Henπ0

reaction at higher missing masses prevents describing all contribu-
tions precisely enough to verify more advanced models. For a con-
sistent description in all angular bins, for the final fit the missing 
mass range below 0.11 GeV/c2 has been excluded in all angular 
bins.

For the final acceptance correction, the dd → 4Heπ0 gener-
ator with the angular distribution obtained in this analysis has 
been used. The integrated luminosity has been calculated us-
ing the dd → 3Henπ0 reaction, based on a measurement with 
WASA at pd = 1.2 GeV/c [24]. It equals to (37.2 ± 3.7(norm) ±
0.1(syst)) pb−1 , which is about 7.5 times larger than the value 
from the previous measurement with WASA reported in Ref. [21].

The stability of the results has been tested against variations of 
all selection cuts, according to method described in Ref. [25]. Out 
of these, the only statistically significant effect has been observed 
with the variation of the cumulative probability distribution cut 
and added as systematic uncertainty. The sensitivity of the overall 
fit has been checked by varying the fit parameters, especially the 
linear scaling factor in mX , and using smooth analytic functions to 
reproduce the shape of background at low missing masses. No sig-
nificant change in the result has been observed while maintaining 
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the goodness-of-fit in the peak region. Thus, no systematic uncer-
tainty has been assigned here. The error on the normalization to 
the dd → 3Henπ0 reaction has been propagated to the final result.

4. Results

Fig. 2 presents the obtained differential cross section. Since 
identical particles in the initial state require a forward–backward 
symmetric cross section, it has been fitted using the function 
dσ /d� = a + b cos2 θ∗ resulting in:

a =

(

1.55± 0.46(stat)+0.32
−0.8 (syst)

)

pb/sr, (1a)

b =

(

13.1± 2.1(stat)+1.0
−2.7(syst)

)

pb/sr. (1b)

Both parameters have an additional, common systematic uncer-
tainty of about 10% from normalization.

The total cross section obtained as the integral of the function 
fitted to the angular distribution amounts to:

σtot =

(

74.3± 6.8(stat)+1.2
−10.1(syst) ± 7.7(norm)

)

pb. (2)

Fig. 3 shows the resulting momentum dependence of the reaction 
amplitude (p/pπ0 )σtot including the data from Ref. [5]. Here, pπ0

is the momentum of the pion and p is the incident-deuteron mo-
mentum, both in the center-of-mass system.

The cross sections are systematically smaller than the results 
reported in Ref. [21], however, consistent within errors. In view 
of the limited statistics a decisive analysis of this difference is 
difficult. As most probable reason our studies identified the im-
plementation of nuclear interactions of 3He in the Monte Carlo 
simulations. It was found that this effect was not properly taken 
into account in the analysis of the previous data. This resulted in 
an increased (simulated) detection efficiency for the normalization 
reaction and, consequently, in a too low luminosity. As the effect is 
the largest for the stopping layer, the analysis of the current data 
set is less sensitive as it is based on a TOF measurement and does 
not rely on energy correlations only.

For a further analysis of the differential cross section in terms 
of partial waves in the final state, the formalism from Ref. [26] has 
been used. Considering only s- and p-waves the parameter b can 
be written as:

b = −
pπ0

p

2

3
|C |2p2

π0 , (3)

where C is the p-wave amplitude. Note that the symmetry of the 
initial state requires that only partial waves of the same parity in-
terfere. Up to this order, p-waves contribute with a negative sign 
corresponding to a maximum at θ∗ = 90◦ in the angular distribu-
tion. The observed minimum can only be explained extending the 
formalism to d-waves in the final state. Therefore, these data es-
tablish for the first time the presence of a sizable contribution of 
d-waves to the dd → 4Heπ0 reaction, which have so far not been 
considered in the theoretical calculations.

A consistent description that includes d-waves has to consider 
terms up to fourth order in pion momentum. Following Ref. [26]
the differential cross section can be written as:

dσ

d�
=

pπ0

p

2

3

(

|A0|
2 + 2Re(A∗

0A2)P2(cos θ∗)p2
π0

+ |A2|
2P2

2(cos θ∗)p4
π0 + |C |2 sin2 θ∗p2

π0

+ |B|2 sin2 θ∗ cos2 θ∗p4
π0

)

. (4)

Fig. 2. Angular distribution of the dd → 4Heπ0 reaction at Q = 60 MeV. The result 
of the fit up to second order in cos θ∗ is shown with a dotted curve. The systematic 
errors of the fit are presented as a gray band. The horizontal error bars indicate the 
bin width.

Fig. 3. The dd → 4Heπ0 reaction amplitude squared (p/pπ0 )σtot as a function of 
η = pπ0/mπ0 . The circles represent the results from [5], the square corresponds to 
the final result for the total cross section from this work, and the triangle represents 
the cross section from the previous WASA measurement [21]. Note that the result 
from [21] has been obtained assuming pure s-wave. The error bars show the com-
bined statistical and systematic uncertainties. For the results obtained with WASA 
the error bars with subtracted common uncertainty originating from normalization 
are also presented. The dotted curve indicates the momentum dependence of the 
total cross section from Eq. (5) with the fitted amplitudes from Eq. (6).

Here, A0 is the s-wave amplitude, A2 and B are the d-wave am-
plitudes, and P2 is the second order Legendre polynomial. The 
corresponding expression for the total cross section reads:

σtot =
pπ0

p

8π

3

(

|A0|
2 +

2

3
|C |2p2

π0 +
1

5
|A2|

2p4
π0 +

2

15
|B|2p4

π0

)

.

(5)

Since a full fit with four independent amplitudes and one rela-
tive phase is outside the scope of the presented data, quantitative 
results can only be obtained using additional constraints. An unbi-
ased determination of the amplitudes is not possible under these 
circumstances, thus, the focus is on the correlations between them.

If one assumes that the amplitude A0 does not carry any 
momentum dependence, it can be extracted from the results in 
Ref. [5] where s-wave is by far dominating. The obtained value 
is |A0|thr = (5.74 ± 0.38(stat)) (pb/sr)1/2 , which can then be used 
as fixed parameter in the fit of the angular distribution at Q =

60 MeV. Furthermore, systematic studies of the behavior of the fit 
with respect to B and the relative phase δ between A0 and A2

(i.e., ℜ{A∗
0A2} = |A0||A2| cos δ) show that the data are not sen-

sitive to |B| and δ, which have comparatively large errors and 
are consistent with zero. For example, the fit with the param-
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eters |A2|, |B|, |C | free and δ fixed to zero results in |B| =
(

150+130
−420(stat)

)

(pb/sr)1/2 (GeV/c)−2 , and the fit with |A2|, δ, |C |

free and |B| fixed to zero results in δ = 0 ± 0.66(stat). Moreover, 
the parameters |C | and |A2| from both fits are consistent within 
the uncertainties. Consequently, both |B| and δ have been fixed to 
zero.

From the final fit of the angular distribution at Q = 60 MeV
with all described constraints the following amplitudes have been 
extracted:

|A2| =

(

258+50
−42(stat)

+45
−38(syst)

+37
−12(norm)

) (pb/sr)1/2

(GeV/c)2
, (6a)

|C | =

(

6+9
−21(stat)

+3
−10(syst)

+10
−5 (norm)

) (pb/sr)1/2

GeV/c
. (6b)

The asymmetric statistical errors are a consequence of the non-
linearity of the fit function.

Fig. 4 shows a correlation plot between the parameters |C | and 
|A2|. The center point marked with a cross shows the result from 
Eq. (6). The shaded areas indicate the 68% and 95% confidence re-
gions. The dotted line shows the dependence of the central values 
for |C | and |A2| on |A0| — some values for |A0| are shown explic-
itly in the figure. The minimal total χ2 as a function of the fixed 
value of |A0| is presented in Fig. 5. At |A0| = 5.81 (pb/sr)1/2 the 
p-wave contribution given by the parameter |C | vanishes. A further 
increase of |A0| still keeps |C | at 0 at the cost of the goodness-
of-fit. One can see that the fit to the data has the tendency to 
maximize |A0| and, thus, minimize |C |. This maximum value of 
|A0| is consistent with the one obtained from Ref. [5] supporting 
the assumption of a momentum independent s-wave amplitude. 
Furthermore, when |C | vanishes and |A0| has its maximum value, 
the corresponding minimal |A2| value still significantly differs from 
zero. Even if one allows |A0| to drop with increasing momentum, 
this is compensated by larger values of |C | to maintain the total 
cross section. At the same time the value of |A2| also increases, 
i.e., the d-wave contribution would become even larger.

5. Summary

In summary, this letter reports for the first time a successful 
measurement of higher partial waves in the differential cross sec-
tion of the charge symmetry violating reaction dd → 4Heπ0 . The 
data with a minimum at θ∗ = 90◦ can be understood only by the 
presence of a significant d-wave contribution in the final state. At 
the same time they are consistent with a vanishing p-wave. Ex-
isting theoretical calculations to describe the reaction dd → 4Heπ0

within Chiral Perturbation Theory are limited to s-wave pion pro-
duction. There are first considerations to extend these efforts to 
p-waves in the final state, however, the presented data show that 
this is not sufficient.

It is well known from phenomenology as well as studies us-
ing effective field theory that the � isobar plays a crucial role in 
pion production reactions, especially for partial waves higher than 
s-wave [18–20]. Since isospin conservation does not allow for the 
excitation of a single � in the dd state, the appearance of promi-
nent higher partial waves in dd → 4Heπ0 might point at an isospin 
violating excitation of the � isobar. This indicates that a theoret-
ical analysis of the data presented in the letter should allow for 
deep insights not only into the dynamics of the nucleon–nucleon 
interaction but also into the role of quark masses in hadron dy-
namics.

Fig. 4. Correlation plot for the parameters |C | and |A2| determined from the fit of 
the angular distribution of dd → 4Heπ0 at Q = 60 MeV. The center point marked 
with the cross shows the result from Eq. (6). The shaded areas indicate the 68% and 
95% confidence regions. The dotted line shows the influence of a variation of |A0|

on |C | and |A2|, with the circle points representing the results for the indicated 
values of |A0|.

Fig. 5. Minimal total χ2 from the fit of the angular distribution of dd → 4Heπ0 at 
Q = 60 MeV as a function of the fixed value of the s-wave amplitude |A0|. The 
dotted line indicates the value of |A0| for which the p-wave contribution given by 
the parameter |C | vanishes. A further increase of |A0| still keeps |C | at 0 at the cost 
of the goodness-of-fit.
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