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a b s t r a c t

Increasing energy price and emission reduction requirements are new challenges faced by modern

manufacturers. A considerable amount of their energy consumption is attributed to the machining en-

ergy consumption of machine tools (MTE), including cutting and non-cutting energy consumption (CE

and NCE). The value of MTE is affected by the processing sequence of the features within a specific part

because both the cutting and non-cutting plans vary based on different feature sequences. This article

aims to understand and characterise the MTE while machining a part. A CE model is developed to bridge

the knowledge gap, and two sub-models for specific energy consumption and actual cutting volume are

developed. Then, a single objective optimisation problem, minimising the MTE, is introduced. Two

optimisation approaches, Depth-First Search (DFS) and Genetic Algorithm (GA), are employed to

generate the optimal processing sequence. A case study is conducted, where five parts with 11e15

features are processed on a machining centre. By comparing the experiment results of the two algo-

rithms, GA is recommended for the MTE model. The accuracy of our model achieved 96.25%. 14.13% and

14.00% MTE can be saved using DFS and GA, respectively. Moreover, the case study demonstrated a

20.69% machining time reduction.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

An enormous amount of energy (549 quadrillion Btu in 2012) is

consumed annually worldwide with an estimated increase of 1.4%

per year, and the global energy-related carbon dioxide (CO2)

emissions are expected to rise from 32 billionmetric tons in 2012 to

36 billion metric tons in 2020 [1]. A large proportion (approxi-

mately 25%) is attributable tomanufacturing [2,3], and reducing the

manufacturing energy consumption and CO2 emissions becomes

significant for alleviating the energy crisis and environmental

pollution [4e6]. Machine tools are the basic devices in

manufacturing that consume considerable amounts of energy

[3,7,8]. According to statistics from the U.S energy information

administration, the electricity consumption of machine tools has

accounted for above 50% of the total manufacturing electricity

consumption [3,9]. Thus, reducing the energy consumption of

machine tools has attracted a large amount of attention from both

academic research and industrial applications [10,11].

The first step toward reducing the energy consumption of ma-

chine tools is to understand and characterise their energy con-

sumption [12]. In particular, a considerable amount of energy that is

consumed by machine tools is attributable to the energy con-

sumption of a machine tool by completing a feasible processing

plan for a specific part (MTE) [8], and theMTE can be divided to two

types: the cutting and non-cutting energy consumption (CE and

NCE) [4,13]. The NCE is defined as the energy consumption during

run-time operations, including the tool path, tool change and

change of spindle rotation speed [14]. The energy consumed when

Abbreviation: ACV, actual cutting volume [cm3]; BTT, bottom-to-top; CE, cutting

energy consumption of the machine tool [J]; DFS, Depth-First Search; GA, Genetic

Algorithm; IEP, inclusion-exclusion principle; MTE, machining energy consumption

of the machine tool [J]; NCE, non-cutting energy consumption of the machine tool

[J]; SEC, specific energy consumption [J/cm3]; SI, supplementary information.
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a part is actually cut by a machine tool can be defined as the CE [15].

It has been proved that the values of both CE and NCE are affected

by the feature processing sequence of a part [8,14,15]. Finding the

sequence that results in the smaller value of the NCE has been

proved to be an effective energy consumption reduction approach,

and modelling work for the NCE has been developed by Hu [14].

However, the potential for this approach to reduce the CE has not

been well explored, and the understanding of the CE is not suffi-

cient in existing research. Usually, the CE accounts for above 60% of

the total MTE [8,16].

The CE can be modelled by multiplying the specific energy

consumption (SEC) with the actual cutting volume (ACV) [15,17].

The feature processing sequence of a part can affect the value of the

CE, because the ACV for a feature can vary if any of its preceding

features on the processing sequence are replaced by another

feature, while the SEC for the features is different [18,19]. In the

existing modelling work for the CE, there are some insufficiencies.

For example, the energy of the machine tool is consumed for the

axial feeding, spindle rotation, coolant spray, and additional load

losses while cutting the features, but these energy portions have

not been added to the SEC model, which harm the model's accu-

racy. Moreover, the mathematic relationship between the pro-

cessing sequence and the ACV of each feature has not been

developed in the CE model, and it is a challenging work to

dynamically reflect the relationship. Bridging important gaps and

insufficiencies to model and optimise the CE within the MTE has

motivated this research, and the proposed solutions are the main

contributions of this paper.

Based on the above, this study aims at understanding and

characterising the CE and at integrating the developed CE model

with the existing NCE model to obtain the completed MTE model.

To improve the accuracy, two sub-models have been developed to

Nomenclature

Feature sequencing problem

i, k indices for the features in a part and the positions in a

feature sequence

n number of the actual features in a part

Fi i-th feature in a part

FC a finite set of n features of a part, FC ¼ fFig
n
i¼1

F a finite set of nþ 2 features of a part in a machining

environment, F ¼ fFig
nþ1
i¼0 , FC3F

Fp a specific feature in a part

F0, Fnþ1 virtual features to denote the start position and end

position of a tool while machining

W width of a groove

w, h diameter and depth of a hole

H depth of a hole with its interactive volume included

Sk feature at the k-th position of a sequence

S a finite set to indicate all of the positions of the features

in a sequence, S ¼ fSkg
nþ2
k¼1

Energy consumption

Es total MTE based on a specific feature sequence [J]

E
ðSk;Skþ1Þ
non NCE between the feature at the k-th position and the

feature at the kþ 1-th position of the sequence [J]

EFicut CE for the feature Fi [J]

ESkcut CE for the feature at the k-th position [J]

SECi specific energy consumption for the feature Fi [J/cm
3]

vi actual cutting volume for the feature Fi [cm
3]

Pi cutting power of themachine tool for the feature Fi [W]

MRRi material removal rate for the feature Fi [cm
3/s]

ai, ei, fi milling depth [mm], milling width [mm], feed rate

[mm/tooth], tooth

Ni, ri number and spindle rotation speed [rpm], respectively,

for the feature Fi
Di drilling diameter for the feature Fi. [mm]

PMCi, PAFi, PSRi material removal power, axial feeding power and

spindle rotation power of the machine tool,

respectively, for the feature Fi [W]

CM coefficient in the material milling power model

vsi cutting speed for the feature Fi [m/min]

wM , yM , xM , uM exponent of cutting speed, feed rate, milling

depth and milling width, respectively, in the

material milling power model

CD coefficient in the material drilling power model

zD, yD exponent of drilling diameter and feed rate,

respectively, in the material drilling power model

PXFi, PYFi, PZFi feeding power of the X-axis, Y-axis and Z-axis,

respectively, while cutting the feature Fi [W]

vfi feeding speed for the feature Fi [mm/min]

ai angle between the feeding direction of the tool and the

X-axis while cutting the feature Fi
Vi cutting volume for the feature Fi with its interactive

volume included [cm3]

Gj cutting volume for the feature at the j-th position with

its interactive volume included [cm3]

j1, j2, jðM�1Þ indices for the specific positions in a feature

sequence

M maximum number of the features that interact with

one another simultaneously in the part

Machining time

Ts total machining time based on a specific feature

sequence [s]

T
ðSk;Skþ1Þ
non non-cutting time between the feature at the k-th

position and the feature at the kþ 1-th position of the

sequence [s]

TSk
cut cutting time for the feature at the k-th position of the

sequence [s]

Machine tool related parameters

PCS, P0 coolant spray power and standby power of the

machine tool [W]

AXF , AYF , A
U
ZF , A

D
ZF quadratic coefficient in the feeding power

model of X-axis, Y-axis, Z-axis upward and Z-

axis downward, respectively

BXF , BYF , B
U
ZF , B

D
ZF monomial coefficient in the feeding power

model of X-axis, Y-axis, Z-axis upward and Z-

axis downward, respectively

BriSR, C
ri
SR monomial coefficient and constant in the spindle

rotation power model at the rotation speed of ri

Algorithms

N number of the chromosomes at an iteration
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describe the SEC and ACV of the features. Based on the fact that the

feature processing sequence of a part can affect the value of the

MTE, this article investigates a novel management approach to

reduce the MTE by merely adjusting the processing sequence,

without purchasing additional energy-saving and energy-recycling

devices. An MTE model based on arbitrary feature sequences has

been further developed. The single objective optimisation in this

research is to minimise the MTE for processing a part. Depth-First

Search (DFS) and Genetic Algorithm (GA) are modified and used

as optimisation approaches to search for the optimal feature

sequence. Based on case studies, the developed models and opti-

misation approaches are demonstrated, compared and discussed.

In this study, it is assumed that all of the required processing for a

part can be finished on a single machine tool.

In the remainder of this paper, the background and motivation

are given in the next section. The problem description and the

model for the MTE are presented in Section 3. In Section 4, the

working procedures of the developed algorithms for solving the

aforementioned optimisation problem are described. Case studies

are conducted to demonstrate the developed models and optimi-

sation approaches in Section 5. In Section 6, the results are

compared and discussed. In addition, the consequence of the MTE

minimisation on the machining time is analysed and discussed.

Finally, a brief summary and a description of future work are given

in Section 7.

2. Background and motivation

To understand the MTE, Hu [14] developed the mathematic

models to depict the NCE, including the energy of the machine tool

consumed for the tool path, tool change and change of spindle

rotation speed; however the CE has not been considered. Sheng

et al. [15] analysed the effects of the processing sequence of the

features on the CE, and the CE wasmodelled bymultiplying the SEC

with the ACV. Further, the basic CE model was improved by

imposing manufacturing constraints [18] and realising automatic

identification of the features [19].

In the existing CE model, there are some insufficiencies on

modelling the SEC and ACV, which harm the model's accuracy. For

example, in the SEC model, the energy of the machine tool

consumed for standby operation, axial feeding, spindle rotation,

coolant spray and additional load losses has not been included, but

these energy portions are required and account for more than 50%

of the total energy consumption while cutting [20,21]. To improve

the accuracy of the SEC model, much related experiment research

has been conducted. For example, the standby power and coolant

spray power of machine tools were accurately measured by a

standardised start-up procedure [22,23]. The power models for

spindle rotation and axial feeding were expressed as a piecewise

linear function and a quadratic function, respectively, and the co-

efficients in these models were derived by linear regression [24,25].

Considering the additional load losses, the relationship between

the material removal power and the process parameters was

described by a generic exponential model, and coefficients of seven

CNC machine tools were derived by multiple linear regressions

[21]. These studies can be used as references for improving the SEC

model. In addition, the research on modelling the ACV is still scarce

in previous CE models, and it is necessary to develop a mathe-

matical model to reflect the effects of the processing sequence on

the ACV of each feature. Based on the previous research, there is

still no accurate model for the CE within the MTE.

After developing the MTE model, optimisation approaches can

be employed to reduce the MTE. It has been discovered that the

processing sequence of the features can affect the machining time

[26], quality [27] and energy consumption [15] while machining a

specific part. Based on this discovery, many research studies have

been conducted to reduce the machining time and improve the

machining quality by adjusting the processing sequences of the

features [27e30]. However, the application of the feature

sequencing approach for reducing the MTE is still scarce, even

though the manufacturing energy reduction gains more and more

importance in modern manufacturing. Optimisation approaches

such as deterministic algorithms and meta-heuristics have been

employed to search for the optimal processing sequence of the

features, which results in the minimisation of the machining time.

These studies can be used as references for minimising the MTE.

Deterministic algorithms such as dynamic programming and

branch-and-bound were employed to accurately find the global

optimal solution [28,31,32]. However, they are normally suitable for

solving small-to-medium sized problems with less than 20 fea-

tures, due to the sharply increased computation time for larger

problems [28]. For example, when the number of features in a part

increased from 13 to 16, the computation time of a deterministic

algorithm dramatically increased from 29.95 s to 1464.7 s [28]. In

comparison, the computation time of a meta-heuristic increased

from 0.81 s to only 1.66 s [33]. Thus, meta-heuristics have become

increasingly popular because they consume much shorter compu-

tation time for large problems. Bhaskara Reddy [26] proved that

Genetic Algorithm (GA) can effectively solve the time focused

feature sequencing problems. In our article, GA is selected as an

optimisation approach. However, finding the global optimal solu-

tion is not guaranteed when using meta-heuristics. The global

optimal solution is required to be used as the benchmark for

comparing the solution quality and computation time. Thus, Depth-

First Search (DFS), as a deterministic algorithm, is used to deliver

the global optimal solution.

According to the literature reviewed, the understanding and

modelling for theMTE, in particular the CE, is still not sufficient. The

existing CEmodel is not accurate. Accordingly, this presented paper

contributes to improving the CE model by developing two accurate

sub-models (SEC and ACV model). Specifically, the SEC model is

improved by considering the energy of the machine tool consumed

for the standby operation, axial feeding, spindle rotation, coolant

spray and additional load losses. The ACV model is improved by

considering the effects of the processing sequence on the ACV of

each feature. Then, the developed CE model is integrated with the

existing NCE model to obtain the completed MTE model. Based on

the MTE model, this article investigates a novel and economical

management approach to reduce the MTE by merely adjusting the

processing sequence of the features in a specific part. Optimisation

approaches based on DFS and GA are first adopted and compared to

search for the optimal processing sequence of the features that

results in the minimisation of the MTE. The proposed solutions for

modelling and optimising the CE and MTE are the main contribu-

tions of this paper, and they are introduced in the following

sections.

3. Problem statement and modelling

Considering a part that has n features, a finite set FC ¼ fFig
n
i¼1

can be employed to denote these features. Because the start and

end positions of the tool affect the value of the MTE, they are

defined as two virtual features for the part, denoted by F0 and Fnþ1,

respectively. Hence, in the machining environment, there are nþ 2

features for an n-feature part, which are denoted as a finite set

F ¼ fFig
nþ1
i¼0 . The FC is the subset of the F ðFC3FÞ.

In Fig. 1, a part with two features is used as an example to show

that different processing sequences of the features can result in

different values of the MTE. The two features (a groove and a hole)

L. Hu et al. / Energy 121 (2017) 292e305294



of this part are denoted as F1 and F2, and they aremilled and drilled,

respectively. The start and end positions of the tool, which are

virtual features, are denoted as F0 and F3. Two sequences of features

can be used to process this part: F0 � F1 � F2 � F3 and

F0 � F2 � F1 � F3. The cutting volume of F1 and F2 are labelled by

solid blue lines and dashed red lines, respectively, in Fig. 1. Some of

the parameters about the cutting volume of these two features are

given in Fig. 2. The areas filled with purple net are the interactive

volume between the F1 and F2. The tool paths of the two sequences

are labelled by solid black lines and dashed black lines, respectively,

in Fig. 1. The power profiles of a machine tool when processing the

part according to the aforementioned two sequences are shown in

Fig. 3. The power profiles are developed based on the measured

data and the prediction method by Jia [16] and Dahmus and

Gutowski [20].

In Fig. 3, the areas filled with horizontal blue lines and vertical

red lines represent the CE for milling F1 and drilling F2, and the

blank areas represent the NCE for the non-cutting operations such

as the tool path and tool change. The total MTE to complete a

feasible processing plan for a specific part is considered to be the

sum of the CE and the NCE. The NCE for these two sequences are

different, because both of their tool paths and tool change times are

different according to Fig. 1, and the effect of the feature processing

sequences on the NCE can be found in Ref. [14]. This research fo-

cuses on the effect of the sequences on the CE. Following the above

example, the CE for the sequence F0 � F1 � F2 � F3 is calculated by

summing the CE for milling the F1 and drilling the F2 [18], as

follows:

E1 ¼ SEC1 � v1 þ SEC2 � v2 (1)

where SEC1 and SEC2 are the specific energy consumption [J/cm3]

for F1 and F2, and v1 and v2 are the actual cutting volume [cm3] for

F1 and F2 under the sequence F0 � F1 � F2 � F3, as shown in

Fig. 2(c). When the sequence is changed to F0 � F2 � F1 � F3, the

milling volume for F1 will decrease while the drilling volume for F2
will increase. As a result, the CE for milling F1 decreases while the

CE for drilling F2 increases, as reflected by the size change of the

areas filled with horizontal and vertical lines between Fig. 3(a) and

(b). More specifically, according to the dimensional parameters in

Figs. 1 and 2(a), the milling volume for F1 decreases

ðH � hÞ � p�w2=4 while the drilling volume for F2 increases

ðH � hÞ � p�w2=4, and the changed cutting volume for both F1
and F2 is equal to the interactive volume between them, as shown

in Fig. 2(b) and (d). Thus, the CE for the sequence F0-F2-F1-F3 be-

comes the following:

E2 ¼ SEC1 �

�

v1 �
ðH � hÞ � p�w2

4

�

þ SEC2 �

�

v2

þ
ðH � hÞ � p�w2

4

�

: (2)

According to Equations (1) and (2), SEC1 and SEC2 should be

calculated to compare the CE for these two sequences. For example,

if SEC1 < SEC2, the CE for the sequence F0-F1-F2-F3 will be less than

that for the F0-F2-F1-F3 (E1 < E2).

Following the example, the aim of this research is to determine

the optimal feature processing sequence for a part that minimises

the total MTE. Because there are nþ 2 features for an n-feature part

in the machining environment, a finite set S ¼ fSkg
nþ2
k¼1 is employed

to indicate all of the positions of the features in a sequence. Sk in-

dicates the feature at the k-th position of a sequence. For example,

Sk ¼ Fp indicates the feature at the k-th position of a sequence is the

feature Fp. For any part, the feature at the 1-st position and nþ 2-th

position is F0 (S1 ¼ F0) and Fnþ1 (Snþ2 ¼ Fnþ1), respectively. Then,

the objective function for minimising the MTE based on a specific

feature sequence can be expressed as follows:

Fig. 1. A two-feature part with two possible processing sequences.

L. Hu et al. / Energy 121 (2017) 292e305 295



Fig. 2. The cutting volume of two features for two different processing sequences.

Fig. 3. Power profiles of two different sequences: (a) F0 � F1 � F2 � F3; (b) F0 � F2 � F1 � F3 .
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minimise Es ¼
X

nþ1

k¼1

E
ðSk;Skþ1Þ
non þ

X

nþ1

k¼2

ESkcut (3)

where Es is the total MTE based on a specific feature sequence;

E
ðSk;Skþ1Þ
non is the NCE between the feature at the k-th position and the

feature at the kþ 1-th position of the sequence, and the detailed

model for E
ðSk;Skþ1Þ
non can be found in Ref. [14]; ESkcut is the CE for the

feature at the k-th position of the sequence. It is given that the

feature at the k-th position is Fi (Sk¼Fi). Then, the ESkcut is expressed

as:

ESkcut ¼ EFicut ¼ SECi � vi (4)

where EFicut is the CE for the feature Fi; SECi and vi are the specific

energy consumption [J/cm3] and the actual cutting volume [cm3]

for the feature Fi, respectively, which are modelled in Section 3.1

and 3.2.

The constraints of the model are developed according to the

precedence constraints among the features. A feasible feature

sequence, namely, a feasible solution for the mathematic model,

must satisfy all of the constraints. The total MTE for the corre-

sponding feature sequence is set to infinity “∞” once any feature

and its pre or post features in a sequence violate any constraint.

3.1. Modelling the specific energy consumption (SEC) for the feature

The SEC is defined as the energy consumption of the machine

tool for removing 1-cm3 material [17,34]. The SEC for the feature Fi
can be modelled [17,35] as:

SECi ¼
Pi

MRRi
(5)

where Pi is the cutting power [W] of the machine tool for the

feature Fi, and MRRi is the material removal rate [cm3/s] for the

feature Fi. MRRi is calculated according to the cutting method. For

example, if it is milling, the MRRi is calculated as:

MRRiðmillingÞ ¼
ai � ei � fi � Ni � ri

60� 1000
(6)

where ai, ei, fi, Ni and ri are the milling depth [mm], milling width

[mm], feed rate [mm/tooth], tooth number of the cutter and spindle

rotation speed [rpm], respectively, for milling the feature Fi. If it is

drilling, the MRRi is calculated as:

MRRiðdrillingÞ ¼
fi � ri � p� D2

i

4� 60� 1000
(7)

whereDi and fi are the drilling diameter [mm] and feed rate [mm/r]

for drilling the feature Fi.

In Equation (5), Pi can be divided to five portions: the material

removal power, axial feeding power, spindle rotation power,

coolant spray power and standby power [16,25]. The standby po-

wer and coolant spray power of a machine tool are constant and

remain the same while cutting different features, as labelled with

P0 and PCS, respectively, in Fig. 3. The material removal power, axial

feeding power and spindle rotation power of a machine tool are

variable while cutting different features. Thus, Pi is expressed as

follows:

Pi ¼ PMCi þ PAFi þ PSRi þ PCS þ P0 (8)

where PMCi, PAFi and PSRi are the material removal power, axial

feeding power and spindle rotation power, respectively, for the

feature Fi; and PCS and P0 are the coolant spray power and standby

power of the machine tool, which are obtained by actual

measurement.

In Expression (8), PMCi is modelled according to the cutting

method. For example, if the cutting method is milling, then amodel

in Ref. [36], which considers the additional load losses for milling

and has high reliability, can be employed and is expressed as:

PMCiðmillingÞ ¼ CM$v
wM

si
$f yM
i

$axM
i
$euM

i
(9)

where CM is the coefficient in the material milling power model,

and vsi is the cutting speed [m/min] for the feature Fi; wM , yM , xM
and uM are the exponent of the cutting speed, feed rate, milling

depth andmillingwidth, respectively, in thematerial milling power

model. The coefficient and exponents are obtained by statistical

analysis based on experiment data. If the cutting method is drilling,

then amodel in Ref. [16], which considers the additional load losses

for drilling and has high reliability, can be employed and is

expressed as:

PMCiðdrillingÞ ¼ CD$D
zD
i
$f

yD
i

$ri (10)

where CD is the coefficient in the material drilling power model; zD
and yD are the exponent of the drilling diameter and feed rate,

respectively, in the material drilling power model.

In Expression (8), PAFi is modelled according to the feeding

speed, the type of machine tool and the feeding direction. For a 3-

axial machine tool in the rectilinear feeding direction, PAFi can be

modelled by the sum of the feeding power of all of the axes [16], as

follows:

PAFi ¼ PXFi þ PYFi þ PZFi (11)

where PXFi, PYFi and PZFi are the feeding power of the X-axis, Y-axis

and Z-axis, respectively, while cutting the feature Fi. By comparing

several models for the axial feeding power [25], a quadratic model

in Ref. [36], which has the highest accuracy, is employed. The

models for PXFi, PYFi and PZFi are similar. For example, following [36],

PXFi can be modelled as:

PXFi ¼ AXF �
�

vfi cosai

�2
þ BXF �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

vfi cosai

�2
r

(12)

where AXF and BXF are the quadratic and monomial coefficients in

the model, respectively, which can be obtained by quadratic

regression based on experiment data; vfi is the feeding speed [mm/

min] for the feature Fi; and ai is the angle between the feeding

direction of the tool and the X-axis while cutting the feature Fi.

In Expression (8), a linear equation in Ref. [36], which has a high

accuracy [25], is employed and modified to model the PSRi, as

follows:

PSRi ¼ BriSR � ri þ Cri
SR (13)

where BriSR and Cri
SR are the monomial coefficient and constant in the

model at the rotation speed of ri, respectively, which are obtained

by linear regression based on the experiment data.

3.2. Modelling the actual cutting volume (ACV) for the feature

The ACV for the feature Fi is a variable that involves the change

of its position in the sequence caused by the volumetric interaction,

as analysed in the aforementioned two-feature part. Even if the
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feature Fi is located at a specific position, its ACV varies with the

change of its previous features in the sequence, and this charac-

teristic greatly increases the computation time to obtain the ACV

for each feature in an arbitrary sequence. Considering the impact of

the sequence of a feature on its cutting volume due to the volu-

metric interaction with the previous features, the inclusion-

exclusion principle (IEP), which is a famous and effective combi-

natorial method and counting technique for determining the car-

dinality of a set [37e39], is employed to model the ACV for the

feature Fi at the k-th position of the sequence, as shown in

Expression (14). The basic idea of the application of the IEP is that

the cutting volume for the feature Fi with all of its interactive vol-

ume included is counted first, and then, the interactive volume

with its previous features is excluded to obtain the ACV.

vi ¼ Vi �
X

2�j1 < k

�

�

�Gj1∩Vi

�

�

�þ
X

2�j1 < j2 < k

�

�

�Gj1∩Gj2∩Vi

�

�

��…

þ ð � 1ÞM�1
X

2�j1 < j2 <…< jðM�1Þ < k

�

�

�Gj1∩…∩GjðM�1Þ∩Vi

�

�

�: (14)

In this expression, vi is the ACV for the feature Fi; Vi is the cutting

volume for the feature Fi with its interactive volume included,

which is equal to the cutting volume for the feature Fi from the

blank to the objective feature, as shown in Fig. 2(c) and (d). Gj is the

cutting volume for the feature at the j-th position with its inter-

active volume included, and ∩ is the operator for calculating the

interactive volume between the features. Here, j1, j2 and jðM�1Þ are

the indices for the specific positions in the feature sequence, which

are integers. The index for the position cannot be 1, because G1

indicates the cutting volume for the feature at the 1-st position

while the corresponding feature is the virtual feature F0, which

does not have a volume.M is the maximum number of the features

that interact with one another simultaneously in the part.

4. Solution algorithms

To alleviate the computation burden and reduce the computa-

tion time in searching for the optimal processing sequence of the

features, two solution algorithms, including Depth-First Search

(DFS) and Genetic Algorithm (GA), are employed, by using mini-

misation of the MTE as the objective. DFS is selected as one of the

solutions because it can always accurately find the global optimal

solution in each run. In comparison, GA normally consumes less

time to reach the optimal or near-optimal solution; however,

finding out the global optimum is not guaranteed. Hence, experi-

ments are delivered in Section 5 to compare the performance of the

two algorithms in solving the aforementioned problem in terms of

the solution quality and computation time.

4.1. Depth-First Search (DFS)

DFS is a type of enumeration algorithm that uses the tree

traversal technique, which visits a path in a search tree as far as

possible prior to backtracking and visiting the next path [40]. The

computation efficiency of DFS is effectively improved by a pruning

operation to avoid visiting an inferior path. A flowchart of DFS can

be found in Ref. [41].

At the beginning of DFS, a search tree that can cover all of the

possible paths (processing sequences of the features of a part) is

generated and any feasible path can be regarded as the initial upper

bound. The nodes (features) of the search tree are visited based on

the depth-first searching strategy [42]. If the visited node is not

qualified, DFS prunes and backtracks to a previous node. If the

visited node is qualified and is the end of the path, the upper bound

will be updated. Then, DFS prunes and backtracks to a previous

node. If the visited node is qualified but is not the end of the path,

DFS continues to visit the next node. After pruning and back-

tracking, DFSwill checkwhether the stopping conditions have been

met or not. If the stopping conditions are met, the latest upper

bound will be reported, and DFS stops; otherwise, the next node

will be visited. The stopping conditions can be that all of the nodes

of the search tree have been visited.

4.2. Genetic Algorithm (GA)

GA is a robust heuristic stochastic searching method that imi-

tates the natural evolutionary process by combining “survival of the

fittest” to generate offspring [43]. The weak solutions in each

generation are more likely to be replaced by the offspring, and

finally, the optimal or near-optimal solutions are generated to solve

the optimisation problem [26]. A flowchart of GA can be found in

Ref. [44].

At the beginning of GA, an initial population is randomly

generated with a size of N chromosomes as the first generation. For

our research, a chromosome represents a sequence of the features,

encoded by integer coding [45]. Each gene in the chromosome

represents a specific feature. During the generational process,

chromosomes are selected to reproduce a new generation through

a fitness-based evaluation by a fitness function [46]. The fitness

function is defined as the genetic representation and used to

evaluate the quality of each chromosome in the population [47]. In

our research, the fitness function is the reciprocal of the Expression

(3) as: Fitness ¼ 1
Es
¼ 1

Pnþ1

k¼1
E
ðSk ;Skþ1 Þ

non þ
Pnþ1

k¼2
E
Sk
cut

. The chromosomes that

have a higher fitness can have a higher probability to be selected

through a selection operator: the proportional roulette wheel se-

lection [48]. Then, the next generation of the chromosomes is

generated from the selected chromosomes through the GA opera-

tors of (1) Crossover: an exchange of sections between chromo-

somes and (2) Mutation: a random modification on the

chromosome [26]. Specifically, the partially mapped crossover

(PMX) [49] and the swap mutation [50] are adopted as the cross-

over operator and the mutation operator, respectively. This gener-

ational process is repeated until a stopping condition has been met.

The stopping condition can be the specified maximum generation

number that is reached.

5. Case study

A prismatic part named part C, which has 13 actual features, is

used in this case study, and part C is made of 45#Steel. In the

context of this research, total 15 features are considered for this

case, which are F1 (plain), F2 (stair), F3 (groove), F4 (depression), F5
(notch), F6 (notch), F7 (hole), F8 (hole), F9 (hole), F10 (hole), F11
(hole), F12 (hole), F13 (hole) and 2 virtual features F0 and F14, as

shown in Fig. 4. A machining centre (XHF-714F) is employed to

process part C, and the cutters for milling and drilling are W400F-

FS (4 teeth) and NACHI SD8, respectively. The experiment setup for

the power data collection on the XHF-714F is shown in Fig. 5. The

standby power and coolant spray power of XHF-714F are shown in

Table 1, which are obtained by experiment measurement. The co-

efficients in the power models of the spindle rotation and axial

feeding are listed in Table 2, which are obtained by regression based

on the experiment data. Table 3 lists the coefficients and exponents

in the material removal power model under specific cutting con-

ditions, which are also obtained by regression. The milling and

drilling parameters for part C are listed in Tables 4 and 5, which are

obtained from the process files. On such a basis, the MTE for each

feature in part C can be calculated.
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This case aims at sequencing the features in part C for the

minimum MTE. According to Expression (3), the objective function

is expressed as:

minimise Es ¼
X

14

k¼1

E
ðSk ;Skþ1Þ
non þ

X

14

k¼2

ESkcut :

The values of E
ðSk ;Skþ1Þ
non are obtained from Table 6. Table 6 shows

the NCE between the features in part C, and the detailed calculation

method can be found in Ref. [14].

In the objective function, the calculation of ES6cut is taken as an

example. It is given that the feature at the 6-th position is F2

(S6¼F2). According to Expression (4), the ES6cut is:

ES6cut ¼ EF2cut ¼ SEC2 � v2 ¼ 13217:2� 12:43 ¼ 164:29KJ

where SEC2 and v2 are the SEC and ACV for feature F2, respectively.

The detailed calculation procedures for SEC2 and v2 are provided in

Section S.1 of the Supplementary Information (SI).

In particular, the value of ES6cut may change once the feature at the

6-th position of the sequence is not F2 or the features at the 2-nd

position, 3-rd position, 4-th position and 5-th position are not F1,

Fig. 4. A drawing of part C with 13 features and 2 virtual features.

Fig. 5. A diagram of experiment setup for the power data acquisition.

Table 1

Standby power and coolant spray power of XHF-714F.

Item Power [W]

Standby power P0 371.0

Coolant spray power PCS 233.0
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F4, F10 and F11. For example, F2 is still located at the 6-th position

while the features prior to F2 are changed to F1, F4, F10 and F12. As a

result, the value of ES6cut is increased to 174.66 KJ. This characteristic

greatly increases the computation time to find the optimal solution.

Based on the data and models above and in Section S.1 of the SI,

two solution algorithms, including Depth-First Search (DFS) and

Genetic Algorithm (GA), are employed as optimisation approaches.

DFS and GA used in this research are developed on Dev Cþþ 5.11.0

software with the programming language Cþþ. The computing

platform is Intel (R) Core (TM) i7-2630 QM CPU with 2.00 GHz

frequency; 4.00 GB RAM; Windows 7 (64bit) operating system. For

part C, the developed DFS always returns the global minimumMTE,

which is 1246.10 KJ, after 2399 iterations. A computation time of

DFS is 907.7 s, and the global optimal feature sequence is F0 � F1�

F2 � F9 � F10 � F11 � F12 � F13 � F7 � F8 � F5 � F6 � F3 � F4 � F14.

The searching process of DFS is provided in Section S.2 of the SI.

The parameter values used in GA are obtained by fine tuning,

and their values are as follows: population size ¼ 100; crossover

probability ¼ 0:9; mutation probability ¼ 0:05; and iteration

Table 2

Coefficients in the power models of spindle rotation and axial feeding.

Item Coefficient

Monomial coefficient and constant in the spindle rotation power model (BriSR, C
ri
SR) (0 < ri � 2200) (0.086, 14.76)

Monomial coefficient and constant in the spindle rotation power model (BriSR, C
ri
SR) (2200 < ri � 3000) (0.0186, 164.97)

Quadratic coefficient in the feeding power model of X-axis, Y-axis, Z-axis upward and Z-axis downward

(AXF , AYF , A
U
ZF , A

D
ZF )

(5 � 10�7, �1 � 10�6, �5 � 10�7, �1 � 10�7)

Monomial coefficient in the feeding power model of X-axis, Y-axis, Z-axis upward and Z-axis downward

(BXF , BYF , B
U
ZF , B

D
ZF )

(0.0491, 0.043, 0.059, 0.0461)

Table 3

Coefficients and exponents in the material removal power models.

Item Coefficient/exponent

Coefficient in the material milling power model CM 4.044

Exponent of cutting speed, feed rate, milling depth and milling width in the material milling power model (wM , yM , xM , uM) (0.958, 0.798, 0.923, 1.000)

Coefficient in the material drilling power model CD 0.095

Exponent of drilling diameter and feed rate in the material drilling power model (zD , yD) (1.675, 0.856)

Table 4

Milling parameters for 6 features in part C.

The i-th feature Cutting Speed vsi [m/min] Feed rate fi [mm/tooth] Feeding speed vfi [mm/min] Milling depth ai [mm] Milling width ei [mm] Spindle speed ri [rpm]

F1 114.354 0.07 728 1 10 2600

F2 96.761 0.05 440 2 6 2200

F3 96.761 0.05 440 1.5 5 2200

F4 96.761 0.05 440 2 5 2200

F5 , F6 96.761 0.05 440 1.5 6 2200

Table 5

Drilling parameters for 7 features in part C.

The i-th feature Drilling diameter Di [mm] Feed rate fi [mm/r] Feeding speed vfi [mm/min] Drilling depth Hi [mm] Spindle speed ri [rpm]

F7 , F8 8 0.08 48 10 600

F9 12 0.08 40 15 500

F10 , F11 , F12 , F13 10 0.08 48 12 600

Table 6

Non-cutting energy consumption (NCE) between the features in part C.

Energy [J] F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

F0 3103.3 2532.3 11460.0 10634.1 11266.1 11507.8 15496.6 15383.0 17213.0 15511.5 15700.0 16193.5 16092.5 ∞

F1 ∞ 1566.1 12070.9 11245.1 11877.1 12118.7 16107.5 15993.9 17824.0 16122.5 16310.9 16804.4 16703.4 611.0

F2 2182.7 ∞ 12628.9 11803.1 12435.1 12676.7 16665.5 16551.9 18382.0 16680.5 16868.9 17362.4 17261.5 1169.0

F3 11504.6 10933.5 ∞ 1090.1 1007.6 967.2 15131.2 15017.6 17119.7 15365.3 15553.7 16047.2 15946.3 379.2

F4 11965.4 11394.3 2392.8 ∞ 2440.6 2425.4 15592.0 15478.4 17580.5 15826.1 16014.5 16508.0 16407.1 840.0

F5 12698.6 12127.6 2354.1 2370.0 ∞ 1667.1 16325.3 16211.7 18313.8 16559.3 16747.8 17241.3 17140.3 1573.2

F6 12784.5 12213.4 2354.1 2370.0 1667.1 ∞ 16411.1 16297.5 18399.6 16645.2 16833.6 17327.1 17226.2 1659.1

F7 13105.8 12534.7 12695.8 11870.0 12502.0 12743.6 ∞ 5871.1 17451.0 15477.4 15665.9 16159.4 16058.4 1235.8

F8 12992.2 12421.1 12582.2 11756.4 12388.4 12630.0 5871.1 ∞ 17337.4 15363.8 15552.3 16045.8 15944.8 1122.2

F9 14012.2 13441.1 13874.2 13048.4 13680.4 13922.0 16640.9 16527.3 ∞ 15386.0 15574.4 16067.9 15966.9 1144.4

F10 13199.6 12628.6 13008.8 12183.0 12815.0 12813.7 15556.4 15442.8 16274.9 ∞ 5926.5 6485.6 6384.7 804.3

F11 13388.1 12817.0 13197.3 12371.4 13003.4 13245.1 15744.8 15631.2 16463.4 5926.5 ∞ 6384.7 6485.6 992.8

F12 13881.6 13310.5 13690.8 12864.9 13496.9 13738.6 16238.3 16124.7 16956.9 6485.6 6384.7 ∞ 5926.5 1486.3

F13 13780.6 13209.6 13589.8 12763.9 13395.9 13637.6 16137.3 16023.7 16855.9 6384.7 6485.6 5926.5 ∞ 1385.3

L. Hu et al. / Energy 121 (2017) 292e305300



¼ 300. By running the developed GA 50 times, it sometimes returns

the global minimum MTE (1246.10 KJ) after 300 iterations. A

computation time of GA is 2.468 s, and the corresponding feature

sequence is the same as the optimum produced by DFS. The

searching process of GA for the global optimum is provided in

Section S.2 of the SI. For this specific optimisation problem, GA

usually stops converging within 75 iterations. However, in most of

the performed runs, GA can only return the near-optimal solutions.

For example, a near-minimum MTE that GA can get is 1248.69 KJ,

and the corresponding feature sequence is F0 � F1 � F2 � F9 � F4
�F3 � F6 � F5 � F7 � F8 � F11 � F12 � F13 � F10 � F14. It also con-

sumes less computation time (2.355 s) to get the near-optimal

solution. The searching process of GA for the near-optimum is

provided in Section S.2 of the SI. The comparisons of DFS and GA for

the 13-feature part C in these 50 trials are summarised in Table 7.

The developed models and optimisation approaches are also

tested and validated on four parts with 11, 12, 14 and 15 actual

features, respectively, as shown in Fig. 6. The results from using DFS

and GA for optimising the feature sequence of these parts are

compared and summarised in Table 7. According to the optimisa-

tion results, GA has a 30% or less possibility of finding the global

optimal solution, and it frequently returns a near-optimal solution

due to the nature of meta-heuristics. The deterministic algorithm,

DFS, can always find the global optimal solutions in each trial, so

DFS performs better than GA in terms of the solution quality for all

parts. The solution quality of GA is only slightly inferior to the

solution quality of DFS, but its computation time is much less than

that of DFS. For example, the median MTE that was obtained by GA

for part C is only 0.149% [(1247.95e1246.10)/1246.10] inferior to the

solution obtained by DFS, but its computation time is approxi-

mately 99.73% [(907.7e2.426)/907.7] less than that of DFS. More-

over, when the number of features in a part is increased, the

superiority of GA in terms of the computation time becomes more

prominent. For example, when the number of features in the part is

increased from 11 to 15, the computation time of DFS increases

from 5.870 s to an intolerable 173700 s. In comparison, the

computation time of GA increases from 1.807 s to only 3.182 s. In

summary, GA is recommended as the better optimisation approach

for our problem because GA requires much less computation time

with little sacrifice in the solution quality.

6. Results and discussion

In this section, the developed CE model and optimisation ap-

proaches are compared with the results presented in the literature,

and their superiorities are discussed and validated. In addition, the

consequence of the MTE minimisation on the machining time is

analysed and discussed.

6.1. Comparison and verification of the model accuracy

To compare and verify the accuracy of the developed CE model,

Table 7

The comparisons of DFS and GA for five parts.

Algorithms Part A Part B Part C Part D Part E

Number of features 11 12 13 14 15

DFS Minimum MTE achieved [KJ] 1202.92 1229.25 1246.10 1262.85 1279.69

Percentage of getting minimum 100% 100% 100% 100% 100%

Computation time [s] 5.870 67.65 907.7 11490 173700

GA Minimum MTE achieved [KJ] 1202.92 1229.25 1246.10 1262.85 1279.69

Percentage of getting minimum 16% 30% 22% 8% 10%

Median MTE of 50 trials [KJ] 1203.13 1230.06 1247.95 1265.36 1282.42

Computation time [s] 1.807 2.113 2.426 2.815 3.182

Fig. 6. The diagram of four parts.
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the calculation and measurement of CE for drilling a hole F1 on the

machining centre (XHF-714F) is illustrated. The drilling parameters

for F1 are the following: drilling diameter: 8 mm; drilling depth:

10 mm; feed rate: 0.08mm/r; and spindle speed: 550 rpm. Based on

our CE model, the EF1cut (Estimated) is 11780.3J, and the detailed

calculation is provided in Section S.3 of the SI.

Next, a CE model developed by Yin et al. [19] is compared. Based

on this model, EF1cut is calculated as:

SEC1ðComparedÞ ¼ 2400� f�0:3
1 ¼ 5120:2J

.

cm3;

EF1cutðComparedÞ ¼ SEC1 � v1 ¼ 5120:2� 0:503 ¼ 2573:7J:

Then, the experiment setup in Fig. 5 is used to measure and

record the actual power and energy consumption of XHF-714F

while drilling the F1. The measured information is shown in

Figs. 7 and 8.

By analysing the fluctuations in the power values that are

recorded in the database, the time interval for drilling the F1 is

(27.4s, 41.4s), as shown in Fig. 7. By querying the energy

consumption data while drilling the F1, the values of the energy

consumption are 16569.1J at the beginning time (27.4s) and

28808.7J at the end time (41.4s), as shown in Fig. 8. Thus, the

measured energy consumption for drilling the F1 is:

EF1cutðMeasuredÞ ¼ 28808:7� 16569:1 ¼ 12239:6J:

Then, the accuracy of our CE model for the F1 can be calculated

by making a comparison between the estimated and measured

values, as follows:

ADM ¼ 1� j12239:6� 11780:3j=12239:6 ¼ 96:25%:

Similarly, the accuracy of the CE model developed by Yin et al.

[19] for the F1 can be calculated as:

AEM ¼ 1� j12239:6� 2573:7j=12239:6 ¼ 21:03%:

Thus, the accuracy of our developed CE model (96.25%) is higher

than that of the existing model (21.03%). However, it is more time-

consuming and labour-intensive to develop our model, because it is

required in our model to collect and process the energy

Fig. 7. Measured power of the machine tool while cutting a feature.

Fig. 8. Measured energy consumption of the machine tool while cutting a feature.
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consumption data of the machine tool such as axial feeding, spindle

rotation, coolant spray and additional load losses. Although the CE

model by Yin et al. [19] is not accurate, it is more effortless and

easier to be developed without any experiments. While selecting a

CE model for an industrial application, a trade-off between the

model accuracy and simplification should be made.

6.2. Comparison of sequencing approaches

The proposed optimisation approaches are compared with the

existing approaches for reducing the MTE, and the traditional

technique Bottom-to-Top (BTT) [51] is selected as an existing

approach. For example, the processing sequence of the features for

part C, which is generated by the BTT, is F0 � F10 � F8 � F13 � F5�

F3 � F9 � F4 � F11 � F7 � F12 � F2 � F6 � F1 � F14. The MTE for this

sequence is 1451.12 KJ. In comparison, the MTE for the sequence

that is generated by our proposed optimisation approach DFS is

1246.10 KJ. Therefore, 14.13% [(1451.12e1246.10)/1451.12] MTE can

be saved by using the developed DFS compared to the BTT tech-

nique. By comparing the processing sequence generated by DFS

with that of BTT, the sequence by DFS has a shorter tool path and

fewer tool change times, and it tends to process the features with

lower SEC in priority. These contribute to saving the MTE. Further,

the processing sequences generated by GA and BTT are also

compared. Considering the near-optimal solutions that are gener-

ated by GA, 14.00% [(1451.12e1247.95)/1451.12] MTE can be saved

by using the developed GA. In summary, both DFS and GA are

effective optimisation approaches for reducing the MTE.

6.3. Machining time reductions benefit from MTE minimisation

In a real manufacturing circumstance, it is unrealistic to only

reduce the MTE without controlling the machining time, which

would cause a machine tool tardiness problem. Thus, the conse-

quence of the MTEminimisation on the machining time is analysed

and discussed. By referring to Expression (3), the machining time

based on a specific feature sequence can be expressed as:

Ts ¼
X

14

k¼1

T
ðSk;Skþ1Þ
non þ

X

14

k¼2

TSkcut

where T
ðSk;Skþ1Þ
non is the non-cutting time between the feature at the

k-th position and the feature at the kþ 1-th position of the

sequence; and TSkcut is the cutting time for the feature at the k-th

position of the sequence. Then, the machining time based on the

optimal processing sequence of part C, which results in the MTE

minimisation, is calculated as follows:

TsðMTE minimisationÞ ¼
�

T
ðF0 ;F1Þ
non þ T

ðF1 ;F2Þ
non þ T

ðF2 ;F9Þ
non þ T

ðF9 ;F10Þ
non

þ T
ðF10;F11Þ
non þ T

ðF11;F12Þ
non þ T

ðF12;F13Þ
non

þ T
ðF13;F7Þ
non þ T

ðF7;F8Þ
non þ T

ðF8;F5Þ
non þ T

ðF5;F6Þ
non

þ T
ðF6 ;F3Þ
non þ T

ðF3 ;F4Þ
non þ T

ðF4 ;F14Þ
non

�

þ
�

TF1cut

þ TF2cut þ TF9cut þ TF10cut þ TF11cut þ TF12cut þ TF13cut

þ TF7cut þ TF8cut þ TF5cut þ TF6cut þ TF3cut

þ TF4cut

�

¼ 1188:9s:

In comparison, a processing sequence of part C without the

energy-saving consideration is generated by the BTT technique, and

the machining time for this sequence is calculated as:

Ts ðBTT techniqueÞ ¼ 1499:1s

The calculation procedure for TsðMTE minimisationÞ and

TsðBTT techniqueÞ are similar, and the measured time data and

calculation for TsðMTE minimisationÞ are taken as example in

Section S.4 of the SI. In this case, 20.69% [(1499.1e1188.9)/1499.1] of

the machining time reductions benefit from the MTEminimisation.

However, it is not guaranteed that the MTE minimisation can al-

ways lead to the machining time reduction, because the machining

time is not strictly proportional to the MTE [21]. For example, when

a feature sequence with the minimum machining time is changed

to a sequence with the minimum MTE, its machining time can in-

crease. Thus, when optimising the processing sequence of the

features for a specific part, the trade-off between the minimum

machining time and MTE should be researched in the future.

7. Conclusions and future work

It has been approved that both the cutting and non-cutting

energy consumption of the machine tool (CE and NCE) can be

reduced by sequencing the features of a part to be processed at the

process planning stage. However, sequencing features to reduce the

CE has not been well explored in previous research, and the CE

accounts for more than 60% of the total machining energy con-

sumption of the machine tool (MTE). In particular, the energy of the

machine tool consumed for the axial feeding, spindle rotation,

coolant spray and additional load losses while cutting features has

not been added to the specific energy consumption (SEC) model,

which harms the CE model's accuracy. Moreover, the mathematic

relationship between the processing sequence and the actual cut-

ting volume (ACV) of each feature has not been developed in the CE

model. To bridge important gaps and address insufficiencies in the

CE model, more accurate sub-models for the SEC and ACV are

developed. Based on the above, a mathematic model is developed

for the single objective optimisation problem that minimises the

MTE. Then, two algorithms, including Depth-First Search (DFS) and

Genetic Algorithm (GA), are employed and compared as optimisa-

tion approaches to minimise the MTE. Because DFS can always find

the global optimal solution accurately, the results obtained by GA

can be validated.

In the case study, the optimal and near-optimal sequences for

five parts with 11e15 actual features have been found. According to

the optimisation results, GA usually returns a near-optimal solu-

tion. In comparison, the deterministic algorithm, DFS, can always

find the global optimal solutions. Thus, DFS performs better than

GA in terms of the solution quality for all of the parts. In these

cases, the solution quality of GA is only slightly inferior to that of

DFS, but its computation time is much less than that of DFS. For

example, the median MTE obtained by GA for part C is only 0.149%

inferior to the solution obtained by DFS, but its computation time is

approximately 99.73% less than that of DFS. Moreover, when the

number of features in a part is increased to 15, the superiority of GA

in terms of the computation time becomes more prominent. Thus,

GA is recommended between DFS and GA based on the experiment

results.

A machining experiment is conducted to validate the accuracy

of the developed CE model. The results show that the accuracy of

our model can achieve 96.25%, which is higher than that of an

existing model. To compare the effectiveness of the optimisation

approaches, the proposed DFS and GA are compared with a

traditional technique, Bottom-to-Top (BTT), in reducing the MTE.

For part C, 14.13% and 14.00% MTE can be saved by using DFS and

GA, respectively, compared to the BTT. Moreover, the consequence
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of the MTE minimisation on the machining time is discussed. In

the case study, 20.69% of the machining time reductions benefit

from the MTE minimisation. However, it is not guaranteed that the

MTE minimisation can always result in the machining time

reduction.

In the presented research, it is very labour-intensive to acquire

and process the time and power data of the machine tool for

modelling the MTE. Thus, the automation for the data acquisition

and process can be improved. For the optimisation approach, DFS

consumes too much time for the medium-to-large sequencing

problem, although it can always find the global optimal solution.

Comparatively, GA normally consumes less time, however, it usu-

ally returns a near-optimal solution. Thus, an algorithm that has a

good balance between the computation speed and solution quality

can be researched. The single objective is a limitation. Other opti-

misation objectives, including machining time, quality and cost,

should be considered while optimising the MTE. In the future,

research on combining the proposed energy-aware feature

sequencing method with the product design software, such as

SolidWorks, Pro/E, UG and CATIA, will be conducted to realise its

industrial application better.
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