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The largest, at the moment, statistics of 7 × 106 η → 3π 0 decays, based on 6.2 × 107 η mesons produced in

the γp → ηp reaction, has been accumulated by the A2 Collaboration at the Mainz Microtron, MAMI. It allowed

a detailed study of the η → 3π 0 dynamics beyond its conventional parametrization with just the quadratic slope

parameter α and enabled, for the first time, a measurement of the second-order term and a better understanding

of the cusp structure in the neutral decay. The present data are also compared to recent theoretical calculations

that predict a nonlinear dependence along the quadratic distance from the Dalitz-plot center.
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I. INTRODUCTION

For decades, theη → 3π decay has attracted much attention

from theoretical and experimental studies as it gives access to

fundamental physical constants. This decay, which is forbidden

by isospin symmetry, mostly occurs due to the difference in the

mass of the u and d quarks, with Ŵ(η → 3π ) ∼ (md − mu)2

[1]. Therefore, a precision measurement of this decay can

be used as a sensitive test for the magnitude of isospin
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breaking in the Quantum Chromodynamics (QCD) part of

the Standard Model (SM) Lagrangian. At the same time, the

actual η → 3π dynamics involve a strong impact from ππ

final-state interactions, and the md − mu magnitude cannot

be approached without a precise experimental measurement

of the η → 3π Dalitz plots, the density of which provides

the information needed. Theoretical calculations of strong-

interaction processes at low energy, which could typically be

performed by using chiral perturbation theory (χPTh) [1–3],

were not very successful at describing the η → 3π density

distributions observed experimentally. The main reason was

in the final-state rescattering effects, the calculation of which

turned out to be more reliable with dispersion relations [4,5] but

still insufficient to describe the experimental data. Meanwhile,

the experimental progress in both the precise determination of

the ππ phase shifts [6–8] and high-statistics data on the η →
3π0 and η → π+π−π0 decays [9–14] renewed the interest

in theoretical studies of the η → 3π decay [15–22], which

also included the extraction of the quark-mass ratio, Q2 =
(m2

s − m̄2
ud )/(m2

d − m2
u) with m̄ud = (mu + md )/2, from the

data.

The function describing the density of the η → 3π Dalitz

plot follows the standard parametrization for three-body decay,

which is a polynomial expansion of |A(s1,s2,s3)|2 around

the center of the Dalitz plot, where si = (Pη − pi)
2, with

p2
i = M2

i . The parameters are usually normalized to be dimen-

sionless. The standard variables introduced for the η → 3π de-

cay are then X =
√

3(T1 − T2)/Qη =
√

3(s2 − s1)/(2mηQη)

and Y = 3T3/Qη − 1 = 3((mη − mπ0 )2 − s3)/(2mηQη) − 1,

where Ti is the kinetic energy of pion i in the η rest

frame, and Qη = mη − 3mπ0 for the neutral decay and Qη =
mη − 2mπ± − mπ0 for the charged decay. In addition, another

dimensionless variable z = X2 + Y 2 = 6
∑3

i=1(Ti + mπ0 −
mη/3)2/Q2

η = ρ2/ρ2
max was introduced to describe the η →

3π0 Dalitz-plot density in terms of the quadratic distance, ρ2,

from the plot center. For the neutral η decay, its polynomial

expansion

A(s1,s2,s3) ∼ 1 + α′
3∑

i=1

(si − s0)2 + β ′
3∑

i=1

(si − s0)3

+ γ ′
3∑

i=1

(si − s0)4 + · · · , (1)

with s0 = mη/3 − mπ0 , results in [16,17]

|A(X,Y )|2 ∼ 1 + 2αz + 2β(3X2Y − Y 3) + 2γ z2 + · · · ,

(2)

where parameters α′, β ′, and γ ′ are complex in general, and

parameters α, β, and γ are real. Representing X =
√

z cos(φ)

and Y =
√

z sin(φ) as polar coordinates with respect to the

Dalitz-plot center, Eq. (2) can be rewritten as

|A(X,Y )|2 ∼ 1 + 2αz + 2βz3/2 sin(3φ) + 2γ z2 + ..., (3)

where angle φ = arctan(Y/X).

Due to the low energies of the decay pions, π0π0 rescat-

tering in η → 3π0 is expected to be dominated by S waves.

Such an assumption leads to the conventional leading-order
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FIG. 1. Dalitz plot and its z = X2 + Y 2 = ρ2/ρ2
max distribution

for the phase-space η → 3π 0 decay.

parametrization |A(z)|2 ∼ 1 + 2αz [23] of the η → 3π0 am-

plitude, with only the quadratic slope parameter α, which was

used in all previous measurements. Rather than fitting two-

dimensional Dalitz plots, those measurements were based on

the deviation of measured z distributions from the correspond-

ing distributions obtained from the phase-space simulation of

the η → 3π0 decay, which is illustrated for both the Dalitz plot

and z distribution in Fig. 1.

The current value for the η → 3π0 quadratic slope param-

eter, α = −0.0318 ± 0.0015, which is given in the Review

of Particle Physics (RPP) [23], is based on ten measurements

[9–11,24–30]. The results of those measurements are plotted

in Fig. 2 along with values from various calculations [2–4,16–

19,21,31].

As shown in Fig. 2, all experimental results obtained with

comparably large statistics are in good agreement within their

uncertainties, and the earlier theoretical calculations contradict

experimental data more than the most recent.

The result with the best accuracy, (α = −0.0322 ±
0.0012stat ± 0.0022syst, obtained by the A2 Collaboration at

MAMI, was based on 3 × 106 observed η → 3π0 decays [11].

Significant attention in that work was dedicated to a search

for a possible cusp structure in the spectra below the π+π−

threshold. Based on the ππ scattering length combination a0 −
a2, extracted from the analysis of K → 3π decays [32], and

calculations within the framework of nonrelativistic effective

field theory (NREFT) [15], the cusp effect was expected to

be visible in the m(π0π0) spectrum, reaching ∼1% at the

2π0 threshold with respect to the spectrum in the case of the

cusp absence. This calculation used the η → π+π−π0 results

from KLOE [12] to describe the charge-decay amplitude,

assuming the isospin limit to connect it to the neutral decay.

In principle, the predicted cusp magnitude should not change

much even in the case of isospin breaking. However, the

expected cusp structure was not confirmed experimentally

in Ref. [11]. At the same time, the statistical accuracy of

data points in the measured z distribution made it possible

to indicate that the conventional leading-order parametrization

|A(z)|2 ∼ 1 + 2αz was not sufficient for the proper description

of the η → 3π0 decay amplitude. This indicates that the

contributions from the higher-order terms in Eq. (3) need to

be checked as well. The cusp structure cannot be described

by polynomial expansion but, similar to the NREFT, the

cusp range can be parametrized in the density function as

065203-2
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FIG. 2. Comparison of the experimental data [9–11,24–30] (plotted by black points), which were used in the RPP [23] to obtain the averaged

value (shown by the vertical lines) for the η → 3π 0 quadratic slope parameter α, to each other and to various calculations [2–4,16,17,19,21,22,31]

(colored points). Ref. [2] gives the magnitude of α for the analysis made in Ref. [1], in which its value was not given.

ρ(s) = Re
√

(1 − s/4m2
π± ), which results in ρ(s) = 0 for s �

4m2
π± [33]. Then the density function is given by

|A|2 ∼ 1 + 2αz + 2βz3/2 sin(3φ) + 2γ z2 + · · ·

+ 2δ

3∑

i=1

ρ(si), (4)

where the factor 2 in front of the cusp term is added for the

consistency with the other terms.

A better determination of the η → 3π decay parameters,

needed for a precise determination of light-quark mass ratios,

was recently the focus of many theoretical works. In Ref. [16],

a detailed study of the η → 3π decays within the framework

of the modified NREFT, in which final-state interactions were

analyzed beyond one loop including isospin-breaking correc-

tions, resulted in the extraction of the Dalitz-plot parameters

for both the charged and neutral decays. The values obtained

for the parametrization of the neutral decay with Eq. (3),

α = −0.0246(49), β = −0.0042(7), and γ = 0.0013(4), indi-

cated nonzero contributions for the higher-order terms. Other

η → 3π0 calculations, involving parameter β, used a unitary

dispersive model [18,19], in which substraction constants were

fixed by fitting recent high-statistics η → π+π−π0 data from

WASA-at-COSY (1.74 × 105 decays) [13] and KLOE (4.7 ×
106 decays) [14]. In contrast to Ref. [16], the latter calculations

predicted a value of β consistent with zero. Another recent

dispersive analysis [21] of the η → 3π decay amplitudes, in

which the latest η → π+π−π0 data from KLOE [14] were

also fitted to determine subtraction constants, predicted a

nonlinear z dependence for η → 3π0, which turned out to be in

good agreement within the uncertainties with the measured z

dependence from Ref. [11]. However, no numerical predictions

were provided for the higher-order terms of Eq. (3). The most

recent η → 3π calculation, which used the extended chiral

Khuri-Treiman dispersive formalism [22], showed that the

effect from the two light resonances f0(980) and a0(980) in

the low energy region of the η → 3π decay is not negligible,

especially for the neutral mode, and improves the description

of the density variation over the Dalitz plot. The η → 3π0

parameters obtained in Ref. [22] from their fitted amplitude,

α = −0.0337(12) and β = −0.0054(1), also predict nonzero

contributions for the 2βz3/2 sin(3φ) term.

Obviously, a better comparison of the experimental data

with the recent η → 3π0 calculations, going beyond the

leading-order parametrization, should now be based on de-

scribing the two-dimensional density distribution of measured

Dalitz plots, rather than on one-dimensional z distributions.

To obtain reliable experimental results for the parametriza-

tion with Eq. (4), a new measurement of the η → 3π0

Dalitz plot, with even higher statistical accuracy, is very

important.

In this paper, we report on a new high-statistics measure-

ment of the η → 3π0 Dalitz plot, which is based on 7 × 106

detected decays. The A2 data used in the present analysis were

taken in 2007 (Run I) and 2009 (Run II). Compared to the

previous analysis of Run I reported in Ref. [11], the present

analysis was made with an improved cluster algorithm, which

increased the number of η → 3π0 decays reconstructed in Run

I from 3 × 106 to 3.5 × 106. The γp → ηp → 3π0p → 6γp

data from Run I and Run II used in this work were previously

used to measure the γp → ηp differential cross sections, the

analysis of which was recently reported in Ref. [34]. The

new η → 3π0 results were obtained with the parametrization

involving the higher-order terms of the Dalitz-plot density

function and the cusp term. The NREFT framework from

Ref. [35] was also used to check whether the present η → 3π0

data can be described together with the KLOE η → π+π−π0

data [14], assuming the isospin limit. The experimental spectra

are also compared to recent theoretical calculations that predict

a nonlinear dependence along the quadratic distance from the

Dalitz-plot center.

065203-3



S. PRAKHOV et al. PHYSICAL REVIEW C 97, 065203 (2018)

II. EXPERIMENTAL SETUP

An experimental study of the η → 3π0 decay was con-

ducted via measuring the process γp → ηp → 3π0p → 6γp

with the Crystal Ball (CB) [36] as a central calorimeter and

TAPS [37,38] as a forward calorimeter. These detectors were

installed in the energy-tagged bremsstrahlung photon beam

of the Mainz Microtron (MAMI) [39,40]. The photon ener-

gies were determined by the Glasgow tagging spectrometer

[41–43].

The CB detector is a sphere consisting of 672 optically iso-

lated NaI(Tl) crystals, shaped as truncated triangular pyramids,

which point toward the center of the sphere. The crystals are

arranged in two hemispheres that cover 93% of 4π , sitting

outside a central spherical cavity with a radius of 25 cm,

which holds the target and inner detectors. In this experiment,

TAPS was initially arranged in a plane consisting of 384 BaF2

counters of hexagonal cross section. It was installed 1.5 m

downstream of the CB center and covered the full azimuthal

range for polar angles from 1◦ to 20◦. Later on, 18 BaF2

crystals, covering polar angles from 1◦ to 5◦, were replaced

with 72 PbWO4 crystals, allowing for a higher count rate in

the crystals near the photon-beam line. More details on the

energy and angular resolution of the CB and TAPS are given

in Refs. [11,44].

The present measurement used electron beams with ener-

gies of 1508 and 1557 MeV from the Mainz Microtron, MAMI-

C [40]. The data with the 1508-MeV beam were taken in 2007

(Run I) and those with the 1557-MeV beam in 2009 (Run II).

Bremsstrahlung photons, produced by the beam electrons in

a 10-μm Cu radiator and collimated by a 4-mm-diameter Pb

collimator, were incident on a liquid hydrogen (LH2) target

located in the center of the CB. The LH2 target was 5 cm and

10 cm long in Run I and Run II, respectively. The total amount

of material around the LH2 target, including the Kapton cell

and the 1-mm-thick carbon-fiber beamline, was equivalent to

0.8% of a radiation length X0, which was essential to keep the

material budget as low as possible to minimize the conversion

of final-state photons.

The target was surrounded by a Particle IDentification (PID)

detector [45] used to distinguish between charged and neutral

particles. The PID consists of 24 scintillator bars (50 cm long,

4 mm thick) arranged as a cylinder with the middle radius of

12 cm.

In Run I, the energies of the incident photons were analyzed

up to 1402 MeV by detecting the postbremsstrahlung electrons

in the Glasgow tagged-photon spectrometer (Glasgow tagger)

[41–43], and up to 1448 MeV in Run II. The uncertainty in

the energy of the tagged photons is mainly determined by the

segmentation of the tagger focal-plane detector in combination

with the energy of the MAMI electron beam used in the experi-

ments. Increasing the MAMI energy increases the energy range

covered by the spectrometer and also has the corresponding

effect on the uncertainty in Eγ . For both the MAMI energy

settings of 1508 and 1557 MeV, this uncertainty was about

±2 MeV. More details on the tagger energy calibration and

uncertainties in the energies can be found in Ref. [43].

The experimental trigger in Run I required the total energy

deposited in the CB to exceed ∼320 MeV and the number of

so-called hardware clusters in the CB (multiplicity trigger) to

be two or more. In the trigger, a hardware cluster in the CB

was a block of 16 adjacent crystals in which at least one crystal

had an energy deposit larger than 30 MeV. Depending on the

data-taking period, events with a cluster multiplicity of two

were prescaled with different rates. TAPS was not included in

the multiplicity trigger for these experiments. In Run II, the

trigger threshold on the total energy in the CB was increased

to ∼340 MeV, and the multiplicity trigger required three or

more hardware clusters in the CB.

III. DATA ANALYSIS

The η → 3π0 decays were measured via the process γp →
ηp → 3π0p → 6γp from events having six or seven clusters

reconstructed by a software analysis in the CB and TAPS

together. Seven-cluster events were analyzed by assuming

that all final-state particles were detected, and six-cluster

events by assuming that only the six photons were detected,

with the recoil proton going undetected. The offline cluster

algorithm [46] was optimized for finding a group of adjacent

crystals in which the energy was deposited by a single-photon

electromagnetic (e/m) shower. This algorithm also works well

for recoil protons. The software threshold for the cluster

energy was chosen to be 12 MeV. Compared to the previous

η → 3π0 analysis of Run I [11], the cluster algorithm was

improved for a better separation of e/m showers partially

overlapping in the calorimeters, which is especially important

for processes with large photon multiplicity in the final state

and for conditions of the forward energy boost of the outgoing

photons in the laboratory system. At the same time, the cluster

algorithm has also to be efficient for reconstructing one photon

splitting into two nearby e/m showers. The new optimization

of the cluster algorithm was needed to improve its efficiency

for higher energies of MAMI-C. Particularly for the process

γp → ηp → 3π0p → 6γp, its reconstruction efficiency was

improved by ∼17%, compared to the previous analysis [11].

The event identification was based on a kinematic fit, the

details of which, including the parametrization of the detector

information and resolutions were given in Ref. [11]. Many

other details of the event selection in the present work are also

very similar to the previous analysis. To test the γp → ηp →
3π0p → 6γp hypothesis, 15 combinations are possible to pair

six photons into three neutral pions. To reduce the number of

combinations tested with the kinematic fit, invariant masses

of cluster pairs for each combination were tested prior to

fitting. For seven-cluster events, where seven combinations are

possible to select the proton cluster, this number was reduced

by a cut on the cluster polar angle, the value of which is limited

by the recoil-proton kinematics in the laboratory system. The

events for which at least one pairing combination satisfied the

tested hypothesis at the 1% confidence level, CL, (i.e., with a

probability greater than 1%) were selected for further analysis.

The pairing combination with the largest CL was used to recon-

struct the reaction kinematics. The combinatorial background

from mispairing six photons into three pions was found to

be quite small and could be further reduced by tightening a

selection criterion on the kinematic-fit CL. Misidentification of
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the proton cluster with the photons was found to be negligibly

small for seven-cluster events. The six-cluster sample, which

includes ∼20% from all detected η → 3π0 decays, had a small

contamination from events in which one of the photons, instead

of the proton, was undetected. Because such misidentification

mostly occurred for clusters in TAPS, those events were

successfully removed, based on the cluster’s time-of-flight

information, which provides good separation of the γp → ηp

recoil protons from photons in the present energy range.

To minimize systematic uncertainties in the determination

of experimental acceptance, Monte Carlo (MC) simulations of

the production reaction γp → ηp were based on the actual

spectra measured with the same data sets [34]. The η →
3π0 decay was generated according to phase space (i.e.,

with the slope parameter α = 0). The simulated events were

propagated through a GEANT (version 3.21) simulation of the

experimental setup. To reproduce the resolutions observed in

the experimental data, the GEANT output (energy and timing)

was subject to additional smearing, thus allowing both the sim-

ulated and experimental data to be analyzed in the same way.

Matching the energy resolution between the experimental and

MC events was achieved by adjusting the invariant-mass reso-

lutions, the kinematic-fit stretch functions (or pulls), and proba-

bility distributions. Such an adjustment was based on the analy-

sis of the same data sets for reactions that could be selected with

the kinematic fit practically without background from other

reactions (namely, γp → π0p, γp → ηp → γ γp, and γp →
ηp → 3π0p were used). The simulated events were also tested

to check whether they passed the trigger requirements.

For η → 3π0 decays, physical background can only come

from the γp → 3π0p events that are not produced from

η decays. As shown in Ref. [47], those 3π0 events are

mostly produced via baryon decay chains, with a smaller

fraction from γp → K0
S�+ → 3π0p. For selected γp →

ηp → 3π0p events, this background is negligibly small near

the η production threshold, and reaches ∼4% near beam energy

Eγ = 1.4 GeV. Because of the complicated dynamics of these

background processes, they cannot be reproduced precisely

with the MC simulation in order to be used for the background

subtraction, and additional selection criteria have to be applied

instead to reduce the remaining background to a level � 1%.

The initial level of the direct 3π0 background under the

η → 3π0 peak can be seen in the m(3π0) invariant-mass

distributions for events selected at CL > 1% by testing the

γp → 3π0p → 6γp hypothesis, which has no constraint on

the η mass. These distributions are shown in Fig. 3. It was

checked that the level of the direct 3π0 background � 1%

in the η → 3π0 data sample could be reached by requiring

CL > 1.5% for the γp → ηp → 3π0p → 6γp hypothesis

along with rejecting events having Eγ > 1.3 GeV.

There are two more sources of background remaining in

the selected γp → ηp → 3π0p → 6γp events and which

could directly be subtracted from the experimental spectra. The

first background is due to interactions of the bremsstrahlung

photons in the windows of the target cell. The evaluation of

this background is based on the analysis of data samples that

were taken with the target cell emptied of liquid hydrogen. The

weight for the subtraction of empty-target spectra is usually

taken as a ratio of the photon-beam fluxes for the data samples
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FIG. 3. m(3π 0) invariant-mass distributions for events selected at

CL > 1% by testing the γp → 3π 0p → 6γp hypothesis for the data

of Run I (left) and Run II (right).

with the full and the empty target. Because, in the present ex-

periments, the amount of empty-target data were much smaller

than with the full target, the subtraction of this background

would cause larger statistical uncertainties. It was checked that,

for the selection criteria used, the fraction of the empty-target

background is � 1%, and this background mostly contains

actual η → 3π0 decays that were just produced in interactions

with the target-cell material. Thus, the subtraction of the

empty-target background was neglected in the present analysis.

The second background was caused by random coinci-

dences of the tagger counts with the experimental trigger.

It mostly includes γp → ηp → 3π0p → 6γp events recon-

structed with random Eγ , resulting in poorer χ2 and resolution

after kinematic fitting. The subtraction of this background was

carried out by using event samples for which all coincidences

were random (see Ref. [11] for more details). The fraction

of random background was 6.7% for Run I, and 6.9% for

Run II. The actual background samples included much more

events to diminish the impact from statistical fluctuations in

the distributions used for the subtraction.

IV. RESULTS AND DISCUSSION

The full Dalitz plot obtained from ∼7 × 106 η → 3π0

decays of Run I and Run II is shown in Fig. 4(a). Because

there are three identical particles in the final state, variables X

and Y can be determined in six different ways, with the same

value for variable z and different angle φ from Eq. (3). Each

of these six combinations in X and Y goes into six different

sextants, repeating the density structure every 60 degrees. The

difference between those sextants is only in their different

orientation with respect to each other and to the plot binning.

Also, this Dalitz plot is symmetric with respect to the Y axis.

In principle, one sextant is sufficient to analyze the Dalitz-plot

shape and to obtain the corresponding results with proper

statistical uncertainties. Such a sextant plot, obtained for the

angle range 30◦ < φ < 90◦, is shown in Fig. 4(b). As seen,

this sextant plot has bins with limited physical coverage not

only along the external edge but also along angle φ = 30◦. To

avoid any dependence of the results on such an effect and on

the sextant orientation with respect to the plot binning, one half

of the Dalitz plot (X < 0 or X > 0) can be used to analyze its

shape. Because half of the plot has three entries per event, the

parameter errors from fitting to such a plot must be multiplied

by the factor of
√

3 to reflect the actual experimental statistics.
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FIG. 4. Comparison of the experimental η → 3π Dalitz plots: (a) the full η → 3π0 plot (six entries per decay) from the present analysis of

∼7 × 106 decays; (b) one sextant of the η → 3π 0 plot (one entry per decay) for the angle range 30◦ < φ < 90◦ in Eq. (3); (c) the η → π+π−π 0

plot (without boundary bins) from the KLOE analysis of ∼4.7 × 106 decays [14].

To obtain the η → 3π0 plots shown in Figs. 4(a) and 4(b),

the plots with the measured decays from Runs I and II were

divided by the corresponding plots obtained from the analysis

of the γp → ηp → 3π0p MC simulations for those data sets.

Because η → 3π0 decays were generated as phase space, the

ratio of the experimental and the MC plots provides both the

acceptance correction for the full area and the cancellation

of the phase-space factor coming from the limited physical

coverage, which is typical for boundary bins. Then those

boundary bins can be treated in the same way as the inner

bins while fitting the acceptance-corrected Dalitz plots with

density functions. The only difference from the inner bins is in

using X and Y coordinates averaged inside the boundary bins

over the available phase space, instead of taking the bin centers.

To combine the acceptance-corrected plots from different data

sets (namely from Runs I and II), their normalization should

be done in the same way. In the present analysis, an identical

normalization was made by taking the weight of the MC Dalitz

plot as the ratio of the event numbers in the experimental and

the MC plots.

As shown in Fig. 4(a), the largest density of events is

accumulated in the center of the η → 3π0 Dalitz plot, with

a smooth decrease of a few percent toward the plot edge.

To compare such a structure with the charged decay, the

acceptance-corrected η → π+π−π0 Dalitz plot from KLOE

[14] (with excluded boundary bins) is illustrated in Fig. 4(c),

showing a sharp decrease in its density from the smallest Y to

the largest. In the present work, this η → π+π−π0 plot was

used to check whether it could be described together with the

η → 3π0 data within the NREFT framework [35], assuming

the isospin limit.

The advantage of analyzing the η → π+π−π0 decay is the

fact that the X and Y variables can be defined uniquely. Then

the experimental raw (i.e., uncorrected for the acceptance)

Dalitz plot can be fitted with the corresponding plots of the

phase-space MC events weighted with the density-function

terms. Because the weights are calculated from the generated

variables, but filling the MC plots is done according to the

reconstructed variables, such a fit takes into account both

the experimental acceptance and resolution. For the η →
3π0 decay, the X and Y generated in one sextant could be

reconstructed in another sextant, which allows proper fitting

a sextant of the raw Dalitz plot with the density function

dependent only on z (which is the same for all pairs of X and

Y ) but not on φ. Therefore, all fits with the higher-order terms

were made only for the acceptance-corrected Dalitz plots. The

sensitivity of the results to the experimental resolution, which

could be determined by comparing to the fits to the raw Dalitz

plots, was only checked for the leading-order parametrization.

The traditional z distributions, which were used in all pre-

vious measurements of the slope parameters α, were obtained

individually for Run I and Run II. Similar to the individual

Dalitz plots, their normalization was based on the ratio of

the total number of events in the experimental and the MC

distributions, which allows the proper combination of the

two independent measurements. The individual z distributions

from Run I and Run II are compared in Fig. 5(a) with each other

and with the earlier A2 data from Ref. [11], demonstrating good

agreement within their statistical uncertainties. The combined

z distribution, shown in Fig. 5(b), has a statistical accuracy

in its 30 data points that appears to be sufficient to reveal the

deviation from a linear dependence.

The ratios of the experimental m(π0π0) invariant-mass

distributions to phase space, in which a cusp structure is

expected to be seen, were obtained in the same way as the

z distributions. The agreement of the individual m(π0π0)

distributions from Runs I and II, and the earlier A2 data from

Ref. [11], can be seen in Fig. 6(a). The combined m(π0π0)

distribution is shown in Fig. 6(b), significantly improving the

statistical accuracy in the cusp region, compared to the previous

measurement [11].

In addition to fitting the present η → 3π0 data with the

density function from Eq. (4), the NREFT framework from

Ref. [35] was used to check whether the neutral-decay data can

be fitted well together with the KLOE η → π+π−π0 data [14]

by assuming the isospin limit. Next, the solely η → 3π0 data

were fitted in the same framework by assuming isospin break-

ing. In Ref. [35], the decay amplitude is decomposed into up

to two loops, A(η → 3π ) = Atree + A1−loop + A2−loop, with

the tree amplitude complemented by final-state interactions

of one and two loops. The tree amplitudes are parametrized

as Atree(η → 3π0) = K0 + K1(T 2
1 + T 2

2 + T 2
3 ) and Atree(η →

π+π−π0) = L0 + L1T3 + L2T
2

3 + L3(T1 − T2)2, where Ti =
Ei − mπ is the kinetic energy of pion i in the η rest frame.

For the conventional Dalitz plot variables, the tree ampli-

tudes can be rewritten as Atree(η → 3π0) = u0 + u1z and
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FIG. 5. Experimental z distributions obtained (a) individually from Run I (blue circles) and Run II (red triangles), and (b) the combined

results (black triangles). The earlier A2 data from Ref. [11] are depicted in (a) by green open squares. The NREFT calculation by the Bonn

group [16] is shown in (a) by the black long-dash-dotted line. The prediction from the dispersive analysis by the Bern group [21] is shown in (a)

by the magenta long-dashed line with an error band. The prediction based on the extended chiral Khuri-Treiman formalism [22] is shown

in (a) by the black dotted line. The fit of the combined z distribution with the leading-order term (fit no. 2 in Table I) is shown in (b) by the cyan

long-dashed line. The fits of the Dalitz-plot sextant with Eq. (4), namely nos. 4 and 6 from Table I, are shown in (b) by the yellow solid and the

green dashed lines, respectively. The isospin-limit results from fitting both the present η → 3π0 and KLOE’s η → π+π−π 0 [14] data within

the NREFT framework from Ref. [35] are shown by the blue dash-dotted line. The isospin-breaking results from fitting solely the η → 3π0

data within the same NREFT framework are shown by the red dotted line.

Atree(η → π+π−π0) = v0 + v1Y + v2Y
2 + v3X

2, where, at

the tree level, the quadratic slope parameter is α = u1/u0, and

the coefficients ui and vi are strictly connected to Ki and Li ,

respectively. Note that the shape of the actual η → 3π0 Dalitz

plot is determined by the total amplitude; therefore, a measured

α could be different from the ratio u1/u0 of the tree-amplitude

coefficients. The coefficients Ki and Li (or ui and vi) are also

involved in the calculation of A1−loop and A2−loop for both the

neutral and charged decays. The cusp structure below 2mπ±

appears in A(η → 3π0)1−loop, and the cusp sign and magnitude

is mostly determined by the scattering length combination

a2 − a0 [32] and the η → π+π−π0 tree-amplitude coefficients

Li . In the isospin limit, the coefficients of the tree amplitude

for the neutral decay can be rewritten via the coefficients of

the charged decay: K0 = −(3L0 + L1Qη − L3Q
2
η) and K1 =

−(L2 + 3L3) [15], with Qη = mη − 3mπ0 . The isospin-limit

fit to both the η → 3π0 and η → π+π−π0 Dalitz plots has

only five free parameters (Li=1,2,3 and two normalization

parameters), with fixed L0 = 1. The η → 3π0 data can also be

fitted independently of the η → π+π−π0 decay by assuming

isospin breaking, which requires the addition of K0 and K1 as

free parameters, but leaves just one normalization parameter.

Consistency of the present results for z and m(π0π0) with

theoretical calculations that predict a nonlinear z dependence
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FIG. 6. Ratios of the experimental m(π 0π 0) invariant-mass distributions to phase space obtained (a) individually from Run I (blue circles)

and Run II (red triangles), and (b) the combined results (black triangles). The earlier A2 data from Ref. [11] are depicted in (a) by green open

squares. The NREFT calculation by the Bonn group [16] is shown in (a) by the black long-dash-dotted line. The prediction from the dispersive

analysis by the Bern group [21,33] is shown in (a) by the magenta long-dashed line. The prediction based on the extended chiral Khuri-Treiman

formalism [22] is shown in (a) by the black dotted line. The combined m(π 0π 0) distribution is compared in (b) to the results of fitting a sextant

(30◦ < φ < 90◦) of the acceptance-corrected η → 3π 0 Dalitz plot with the density function of Eq. (4): fits no. 1 (cyan long-dashed line), no.

4 (yellow solid line), and no. 6 (green dashed line) in Table I. The isospin-limit results from fitting both the present η → 3π0 and KLOE’s

η → π+π−π 0 [14] data within the NREFT framework from Ref. [35] are shown by the blue dash-dotted line. The isospin-breaking results

from fitting solely the η → 3π 0 data within the same NREFT framework are shown by the red dotted line.
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TABLE I. Results from fitting to the acceptance-corrected sextant (ACS), 30◦ < φ < 90◦, of the η → 3π 0 Dalitz plot with the density

function of Eq. (4) are considered as the main results, and from the other fits as their cross checks. The results for the leading-order parametrization

were also obtained for the acceptance-corrected z (ACZ) distribution and the same sextant of the raw (RawS) Dalitz plot. The result errors

from fitting to the acceptance-corrected half (ACH), −90◦ < φ < 90◦, of the Dalitz plot are multiplied by the factor of
√

3, correcting for three

entries per event. The results from fitting to the independent data of Run I and Run II are added to illustrate systematic effects due to different

experimental conditions. For convenience, calculations involving the higher-order terms are listed as well.

Fit no. Data used χ 2/ndf α β γ δ

1 ACS 1.247 −0.0302(8) – – –

2 ACZ 1.239 −0.0304(9) – – –

3 RawS 1.213 −0.0321(9) – – –

4 ACS 1.119 −0.0280(9) −0.0058(8) – –

5 ACS 1.117 −0.0231(33) −0.0053(8) −0.0057(37) –

6 ACS 1.106 −0.0265(10) −0.0074(10) – −0.0176(68)

7 ACS 1.108 −0.0248(34) −0.0071(12) −0.0021(40) −0.0160(74)

8 ACH 1.330 −0.0302(8) – – –

9 ACH 1.182 −0.0265(10) −0.0073(10) – −0.0169(67)

10 ACH 1.182 −0.0247(33) −0.0070(12) −0.0023(40) −0.0152(73)

11 ACS, Run I 1.212 −0.0300(11) – – –

12 ACS, Run II 1.210 −0.0304(12) – – –

13 ACS, Run I 1.130 −0.0256(15) −0.0083(14) – −0.0247(95)

14 ACS, Run II 1.154 −0.0274(15) −0.0065(14) – −0.0103(97)

15 ACS, Run I 1.133 −0.0246(47) −0.0081(17) −0.0013(56) −0.0237(104)

16 ACS, Run II 1.156 −0.0251(48) −0.0061(17) −0.0030(58) −0.0080(106)

Calculation no. Ref. – α β γ –

1 [16] – −0.0246(49) −0.0042(7) γ = 0.0013(4) –

2 [19] – −0.025(4) 0.000(2) – –

3 [22] – −0.0337(12) −0.0054(1) – –

[16,21,22] is illustrated in Figs. 5(a) and 6(a). The results of fits

to the present data with various density functions, including

the NREFT fits, are depicted in Figs. 5(b) and 6(b). The fit

results with the density function from Eq. (4) are also listed

in Table I for different combinations of the density-function

terms involved in a particular fit.

Fit no. 1 in Table I was made to a sextant (30◦ < φ < 90◦) of

the acceptance-corrected Dalitz plot with the density function

including only the leading-order term. Fit no. 2 was similar,

but to the acceptance-corrected z distribution as in all previous

measurements. As shown, the values obtained there for α

are practically the same and are in agreement within the fit

errors with the RPP value α = −0.0318 ± 0.0015 [23]. The

magnitudes of the fit χ2/ndf values indicate that the use of the

leading-order term only may be insufficient for a good descrip-

tion of the η → 3π0 decay. Fit no. 2 is shown in Fig. 5(b) and

fit no. 1 in Fig. 6(b) by the cyan long-dashed lines, confirming

that it is not sufficient to use only the leading-order term. Fit

no. 3 in Table I was made to the same sextant of the raw Dalitz

plot with the technique taking both the acceptance and the

experimental resolution into account (see the text above). This

fit results in a slightly better χ2/ndf value and a slightly larger

quadratic slope, which was expected because of some smearing

of the acceptance-corrected distributions by the experimental

resolution. In the end, the difference between the α results

for the acceptance-corrected and the raw distributions can be

considered as the magnitude of its systematic uncertainty due

to the limited experimental resolution.

Fit no. 4 in Table I, which also involves the next density-

function term 2βz3/2 sin(3φ), does improve the χ2/ndf value,

whereas including the 2γ z2 term in fit no. 5 practically does

not. In addition, the parameters α and γ in fit no. 5 become

strongly correlated, which results in large fit errors for them.

Fit no. 4, shown in Figs. 5(b) and 6(b) by the yellow solid line,

demonstrates a quite decent description of the z and m(π0π0)

distributions, except in the region where the cusp is expected.

As shown in the m(π0π0) distribution, the 2βz3/2 sin(3φ) term

curves the spectrum up at the lowest masses, which is opposite

to the effect expected from the cusp. In the z distribution,

the same term causes a kink up at z ≈ 0.75, which again is

opposite to the effect expected from the cusp [11,15]. As shown

in Figs. 5(a) and 6(a), the calculation within the framework

of the modified NREFT [16] predicts a behavior that is very

similar to fit no. 4, but with a smaller general slope. This can be

explained by a smaller quadratic slope, α = −0.0246(49), and

positive γ = 0.0013(4) from Ref. [16]. However, because of

the large uncertainty in the calculated α, it is still in agreement

with the corresponding value from fit no. 4. In contrast to the

calculation from Ref. [16], the prediction based on the extended

chiral Khuri-Treiman formalism [22] lies below the experi-

mental data points, which is mostly determined by the lar-

ger quadratic slope, α = −0.0337(12). At the same time, the

predictions for the 2βz3/2 sin(3φ) term, β = −0.0042(7) [16]

and β = −0.0054(1) [22], are both in decent agreement with

the corresponding value from fit no. 4. The experimental value

for γ cannot be determined reliably in order to be compared

with the prediction from Ref. [16].

As seen from fit no. 6 in Table I, further improvement in

the description of the η → 3π0 data was reached by adding

the 2δ
∑3

i=1 ρ(si) term, which allows a cusp parametrization
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to be included in the density function. Such a fit results in a

slightly smaller quadratic slope, compared to fit no. 4, but also

in a stronger 2βz3/2 sin(3φ) term. In Figs. 5(b) and 6(b), fit no.

6, which is shown by the green dashed line, demonstrates good

agreement with both z and m(π0π0) distributions. Based on the

results of fit no. 6, the contributions from the 2βz3/2 sin(3φ)

and the cusp terms partially cancel each other in the z and

especially in the m(π0π0) distribution. Though, according to

the result of fit no. 6 for the cusp term, the magnitude of the

cusp effect at m(π0π0) = 2mπ0 is almost 1%, its visibility

here is strongly diminished by the 2βz3/2 sin(3φ) term. The

understanding of such a feature became possible due to fitting

the η → 3π0 Dalitz plot based on high experimental statistics.

The isospin-limit NREFT fit to the present η → 3π0 data

together with KLOE’s η → π+π−π0 Dalitz plot [14] is shown

in Figs. 5(b) and 6(b) by the blue dash-dotted line. As shown in

the m(π0π0) distribution, the major deviation of this fit from

the data is in the cusp region, which is much more prominent

in the fit curve. The description of the z distribution devi-

ates from the data as well. The cusp magnitude obtained at

m(π0π0) = 2mπ0 is close to 1%, which is similar to the corre-

sponding result of fit no. 6 in Table I. The discrepancy seems to

come from inability of the isospin-limit fit to describe properly

the 2βz3/2 sin(3φ) term. Though the isospin-limit NREFT

fit results in a good description of the charged decay, with

χ2/ndf = 1.072, it gives χ2/ndf = 1.290 for the neutral decay.

The numerical results for Li were obtained as L0 = 1(0), L1 =
−4.004(31), L2 = −41.55(31), and L3 = 5.28(14), with Ki

recalculated from Li as K0 = −2.322(7) and K1 = 25.71(73).

The isospin-breaking NREFT fit solely to the present η →
3π0 data, which is shown in Figs. 5(b) and 6(b) by the red

dotted line, resulted in a much better description of the neutral

decay, χ2/ndf = 1.112, with the numerical results for Ki and

Li as K0 = −1.4171(32),K1 = 25.32(29), L0 = 1(0), L1 =
−1.36(44), L2 = −109.5(5.0), and L3 = −121.0(8.2). Also,

as shown in Figs. 5(b) and 6(b), the isospin-breaking NREFT

fit practically repeats the behavior of fit no. 6 in Table I, which

was made with the density function of Eq. (4).

A comparison of the results from the two NREFT fits

indicates a strong isospin breaking between the charged and

the neutral η → 3π decays, unless the NREFT framework

in Ref. [35] could be improved for a better simultaneous

description of both decay modes. As illustrated in Figs. 5(a)

and 6(a), a recent dispersive analysis by the Bern group [21,33],

in which the η → π+π−π0 data [14] were used to determine

subtraction constants, did provide predictions that described

the η → 3π0 data well.

The results of this work provide a strong indication that the

parametrization of the η → 3π0 decay with only the leading-

order term is insufficient, and the RPP value α = −0.0318 ±
0.0015 [23] reflects a combined effect from higher-order terms

and the cusp structure. As the results listed in Table I show,

the values obtained for the quadratic slope parameter become

smaller when the higher-order terms and the cusp are added,

and those values for α are also closer to recent calculations

reported in Refs. [16,18,19] (see also Fig. 2).

The exact systematic uncertainties in the results for α

and for the other parameters are difficult to estimate reliably

because the results themselves depend on the number of

density-function terms included in the fit. The systematic effect

due to the limited experimental resolution was discussed above

for a fit with the leading-order term only (no. 3 in Table I).

The sensitivity of the results to the sextant orientation with

respect to the plot binning and to additional boundary bins

was checked with fits to other sextants and to half of the Dalitz

plot. All those tests demonstrated practically identical results,

after multiplying the half-plot errors by the factor of
√

3 to

correct for three entries per event (fits nos. 8–10 in Table I).

The magnitudes of systematic effects for all parameters could

also be understood by comparing fits to the independent data

of Run I and Run II, which were taken with different MAMI

beam energy and current, target length (resulting in different

angular resolution), DAQ trigger, energy resolution of the

calorimeters, etc. Those fits are listed as nos. 11–16 in Table I.

As shown, the largest differences between the results from

Runs I and II were observed for parameters γ and δ; however,

all results obtained from the different data sets are in agreement

within the fit errors. The magnitude for parameter γ cannot

be determined reliably from the experimental data because of

the large correlation with parameter α. Therefore, the value

obtained for α with the 2γ z2 term omitted actually reflects the

combined effect from those two terms.

According to the present analysis, the density function

of Eq. (4) with only three parameters is sufficient for a

good description of the experimental η → 3π0 Dalitz plot.

The values obtained for these three parameters are α =
−0.0265(10stat)(9syst), β = −0.0074(10stat)(9syst), and δ =
−0.018(7stat)(7syst), where the main numbers come from fit

no. 6 in Table I, and the systematic uncertainties are taken

as half of the differences between the results of fit nos. 13

and 14. The new result for the quadratic slope parameter α

strongly indicates that its absolute value is smaller by ≈ 20%,

compared to the previous measurements using the leading-

order term only. The magnitude of the 2βz3/2 sin(3φ) term is

found to be different from zero by ∼5.5 standard deviations.

The cusp magnitude obtained at m(π0π0) = 2mπ0 from the

2δ
∑3

i=1 ρ(si) term is close to 1%, but with an uncertainty

greater than 50%. This result is consistent with the prediction

for the η → 3π0 cusp magnitude made within the NREFT

model [15].

The data presented in this work are expected to serve as a

valuable input for new refined analyses by theoretical groups,

which are interested in a better understanding of η → 3π

decays and extracting the quark-mass ratios from such data.

V. SUMMARY AND CONCLUSIONS

The largest, at the moment, statistics of 7 × 106 η → 3π0

decays, based on 6.2 × 107 η mesons produced in the γp →
ηp reaction, has been accumulated by the A2 Collaboration at

the Mainz Microtron, MAMI. The results of this work provide

a strong indication that the parametrization of the η → 3π0

decay with only the leading-order term is insufficient, and the

RPP value for α reflects the combined effect from higher-order

terms and the cusp structure, whereas the actual quadratic slope

is smaller by ≈ 20%. According to the analysis of the η → 3π0

Dalitz plot, the cusp magnitude at m(π0π0) = 2mπ0 is about

1%, but its visibility is strongly diminished by the second-order
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term of the density function, the magnitude of which is found to

be different from zero by ∼5.5 standard deviations. The fits to

the present η → 3π0 and KLOE’s η → π+π−π0 data within

the NREFT framework indicate a strong isospin breaking

between the charged and the neutral decay modes. At the

same time, the predictions based on the most recent dispersive

analysis by the Bern group, in which the η → π+π−π0 data

were used to determine subtraction constants, were found to

be in good agreement with the present η → 3π0 data. The data

points from the experimental Dalitz plot and the ratios of the

z and m(π0π0) distributions to phase space are provided as

Supplemental Material to the paperl [48].

ACKNOWLEDGMENTS

The authors acknowledge the excellent support of the

accelerator group and operators of MAMI. We thank H.

Leutwyler, G. Colangelo, and B. Kubis for fruitful discus-

sions and constant interest in our work. This work was

supported by the Deutsche Forschungsgemeinschaft (SFB443,

SFB/TR16, and SFB1044), DFG-RFBR (Grant No. 09-02-

91330), the European Community-Research Infrastructure

Activity under the FP6 “Structuring the European Research

Area” program (Hadron Physics, Contract No. RII3-CT-

2004-506078), Schweizerischer Nationalfonds (Contracts No.

200020-156983, No. 132799, No. 121781, No. 117601, No.

113511), the U.K. Science and Technology Facilities Council

(STFC 57071/1, 50727/1), the U.S. Department of Energy (Of-

fices of Science and Nuclear Physics, Awards No. DE-FG02-

99-ER41110, No. DE-FG02-88ER40415, No. DE-FG02-01-

ER41194) and National Science Foundation (Grants No. PHY-

1039130, No. IIA-1358175), INFN (Italy), and NSERC of

Canada (Grant No. FRN-SAPPJ-2015-00023). A. Fix ac-

knowledges additional support from the Tomsk Polytechnic

University competitiveness enhancement program. We thank

the undergraduate students from Department of Physics of

Mount Allison University and from Institute for Nuclear Stud-

ies of The George Washington University for their assistance.

[1] J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 539 (1985).

[2] J. Bijnens and J. Gasser, Phys. Scr., T 99, 034 (2002).

[3] J. Bijnens and K. Ghorbani, J. High Energy Phys. 11 (2007) 030.

[4] J. Kambor et al., Nucl. Phys. B 465, 215 (1996).

[5] A. Anisovich and H. Leutwyler, Phys. Lett. B 375, 335

(1996).

[6] G. Colangelo, J. Gasser, and H. Leutwyler, Nucl. Phys. B 603,

125 (2001).

[7] R. Kamiński, J. R. Peláez, and F. J. Ynduráin, Phys. Rev. D 77,

054015 (2008).

[8] R. García-Martín, R. Kamiński, J. R. Peláez, J. Ruiz de Elvira,

and F. J. Ynduráin, Phys. Rev. D 83, 074004 (2011).

[9] W. B. Tippens et al., Phys. Rev. Lett. 87, 192001 (2001).

[10] M. Unverzagt et al., Eur. Phys. J. A 39, 169 (2009).

[11] S. Prakhov et al., Phys. Rev. C 79, 035204 (2009).

[12] F. Ambrosino et al., J. High Energy Phys. 05 (2008) 006.

[13] P. Adlarson et al., Phys. Rev. C 90, 045207 (2014).

[14] A. Anastasi et al., J. High Energy Phys. 05 (2016) 019.

[15] C. O. Gullström, A. Kupść, and A. Rusetsky, Phys. Rev. C 79,

028201 (2009).

[16] S. P. Schneider, B. Kubis, and C. Ditsche, J. High Energy Phys.

02 (2011) 028.

[17] K. Kampf, M. Knecht, J. Novotný, and M. Zdráhal, Phys. Rev.

D 84, 114015 (2011).

[18] P. Guo, I. V. Danilkin, D. Schott, C. Fernández-Ramírez, V.

Mathieu, and A. P. Szczepaniak, Phys. Rev. D 92, 054016 (2015).

[19] P. Guo, I. V. Danilkin, D. Schott, C. Fernández-Ramírez, V.

Mathieu, and A. P. Szczepaniak, Phys. Lett. B 771, 497 (2017).

[20] M. Kolesár and J. Novotný, Eur. Phys. J. C 77, 41 (2017).

[21] G. Colangelo, S. Lanz, H. Leutwyler, and E. Passemar, Phys.

Rev. Lett. 118, 022001 (2017).

[22] M. Albaladejo and B. Moussallam, Eur. Phys. J. C 77, 508

(2017).

[23] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40,

100001 (2016).

[24] D. Alde et al., Z. Phys. C 25, 225 (1984).

[25] A. Abele et al., Phys. Lett. B 417, 193 (1998).

[26] M. N. Achasov et al., JETP Lett. 73, 451 (2001).

[27] M. Bashkanov et al., Phys. Rev. C 76, 048201 (2007).

[28] C. Adolph et al., Phys. Lett. B 677, 24 (2009).

[29] F. Ambrosino et al., Phys. Lett. B 694, 16 (2011).

[30] M. Ablikim et al., Phys. Rev. D 92, 012014 (2015).

[31] B. Borasoy and R. Nissler, Eur. Phys. J. A 26, 383 (2005).

[32] J. R. Batley et al., Eur. Phys. J. C 64, 589 (2009).

[33] Heinrich Leutwyler (private communication).

[34] V. L. Kashevarov et al., Phys. Rev. Lett. 118, 212001 (2017).

[35] M. Bissegger, A. Fuhrer, J. Gasser, B. Kubis, and A. Rusetsky,

Phys. Lett. B 659, 576 (2008).

[36] A. Starostin et al., Phys. Rev. C 64, 055205 (2001).

[37] R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991).

[38] A. R. Gabler et al., Nucl. Instrum. Methods Phys. Res. A 346,

168 (1994).

[39] H. Herminghaus et al., IEEE Trans. Nucl. Sci. 30, 3274 (1983).

[40] K.-H. Kaiser et al., Nucl. Instrum. Methods Phys. Res. A 593,

159 (2008).

[41] I. Anthony et al., Nucl. Instrum. Methods Phys. Res. A 301, 230

(1991).

[42] S. J. Hall et al., Nucl. Instrum. Methods Phys. Res. A 368, 698

(1996).

[43] J. C. McGeorge et al., Eur. Phys. J. A 37, 129 (2008).

[44] E. F. McNicoll et al., Phys. Rev. C 82, 035208 (2010).

[45] D. Watts, Proceedings of the 11th International Conference on

Calorimetry in Particle Physics, Perugia, Italy, 2004 (World

Scientific, Singapore, 2005), p. 560.

[46] S. Prakhov et al., Phys. Rev. C 80, 025204 (2009).

[47] P. Aguar-Bartolomé et al., Phys. Rev. C 88, 044601 (2013).

[48] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevC.97.065203 for the data points from the

experimental Dalitz plot and the ratios of the z and m(π 0π 0)

distributions to phase space.

065203-10


