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Abstract We investigate the characteristics of magneto-acoustic surface waves propagating

at a single density interface, in the presence of an inclined magnetic field. For linear wave

propagation, the dispersion relation is obtained and analytical solutions are derived for small

inclination angle. The inclination of the field renders the frequency of the waves complex,

where the imaginary part describes wave attenuation, due to lateral energy leakage.

Keywords Waves · Dynamics · Magnetic fields

1. Introduction

The problem of wave propagation in solar and space plasmas is one of the most important

aspects of plasma dynamics. Waves can carry energy across different layers of the solar at-

mosphere and can dissipate their energy so they contribute to the process of plasma heating

in the upper atmosphere (see e.g. Einaudi, Chiuderi, and Califano, 1993; Erdélyi and Ballai,

2007; Arregui, 2015, etc.). During their progression, waves also carry the imprint of the en-

vironment in which they propagate. Therefore, their seismological study can reveal physical

parameters that cannot be measured directly or indirectly, such as magnetic field strengths in

the tenuous corona, magnitude of various transport coefficients, intrinsic self-organisation

of the plasma, etc. (see e.g. Antia, 1986; Gough et al., 1996; Gizon and Birch, 2005; An-

dries et al., 2009; De Moortel and Nakariakov, 2012; Mathioudakis, Jess, and Erdélyi, 2013;

Arregui, Oliver, and Ballester, 2018, etc.).

Often waves are propagating along magnetic field lines, which therefore act as tracers,

while the structuring of the magnetic fields guide waves along them. While plasma struc-

turing is often concurrent with the structuring of magnetic fields, there are several examples

where waves propagate along discontinuities present in plasmas, where the magnetic field
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is neither parallel nor perpendicular to these interfaces (e.g. sunspot penumbra, solar promi-

nences, solar wind, Earth’s magnetosphere, etc.). Observational and numerical findings con-

firm large-scale wave propagation along the transition region, for example EIT and Moreton

waves (see e.g. Moreton, 1960; Mann et al., 1999; Narukage et al., 2002; Ballai, Erdélyi,

and Pintér, 2005; Warmuth, 2015, and the references therein). In these regions of the solar

atmosphere, the ambient magnetic field is already mainly vertical. Large-scale propagating

waves could be generated by large-scale eruptions in the solar corona (e.g. coronal mass

ejections), or by the continuous buffeting of the transition region by solar spicules in the

region underneath the transition region (see e.g. Scullion et al., 2011).

Several studies have already dealt with the problem of wave propagation inclined to the

magnetic field (see e.g. Nakagawa, Priest, and Wellck, 1973; Zhugzhda and Dzhalilov, 1984;

Schwartz and Bel, 1984; Schunker and Cally, 2006; Schunker et al., 2008, etc.), but these

studies omitted the guided character of waves along discontinuities. Instead of consider-

ing a guided nature to waves, these studies either had no plasma structuring, or looked at

the transmission or reflection of the waves by an interface. Our research will focus on the

propagation of linear waves along interfaces inclined to the magnetic field.

Discontinuities in magnetised fluids are characterised by the fact that the properties of

the plasma change sharply from one equilibrium state to another. These interfaces should

be stable against any perturbation in the system, i.e. there is no fluid transport across such

structures, in their equilibrium. This translates to the requirement that, in the frame moving

together with the discontinuity, the normal component of any displacement is equal on both

sides of the interface. For a linear regime, depending on the physical quantities that have to

be continuous across discontinuities, we can distinguish three types of discontinuities. First,

contact discontinuities are discontinuities where the magnetic field intersects the interface,

for which the kinetic pressure (p), the magnetic field (B) and velocity (v) are continuous and

only mass density and temperatures are allowed to change. The lifetime of such discontinu-

ities is rather short, as in the absence of any restoring force, any displaced plasma element

can move freely, eventually leading to the disruption of the discontinuity. In contrast, for

tangential discontinuities, where the magnetic field does not intersect the interface, there is

the less strict condition that the total pressure (kinetic and magnetic) is conserved and that

only the normal component of the velocity is continuous. The density, kinetic pressure and

tangential component of the magnetic field can all be discontinuous at the interface. Finally,

for rotational discontinuities the magnetic field and plasma flows change direction but not

magnitude. This kind of discontinuity allows mass flow across the interface, but both the

density and the normal component of the velocity are constant.

The study of MHD waves along discontinuities has concentrated mainly on tangential

discontinuities and the literature of this problem is vast (including, for example Roberts,

1981; Hollweg, 1982; Ruderman, 1991; Jain and Roberts, 1991; Miles and Roberts, 1992;

Hau and Lin, 1995; Joarder and Nakariakov, 2006; Joarder, Ghosh, and Poria, 2009; Ballai,

Forgács-Dajka, and Douglas, 2011; Mather and Erdélyi, 2016; Zsámberger, Allcock, and

Erdélyi, 2018, etc.). The propagation characteristics of these waves are well established. On

the contrary, the nature of waves at contact discontinuities and their properties are not so

well understood.

Interfaces, such as the one investigated in the current paper, may also radiate energy to

the plasmas away from the interface. The concept of leaky waves under solar conditons

was already investigated by e.g. Wilson (1981), Spruit (1982), Cally (1987), Ruderman and

Roberts (2006), however, none of these included magnetic fields that were inclined to the

interfaces.

The structure of our paper is as follows: in Section 2, we introduce the equilibrium model

used throughout the rest of this paper and the mathematical formalism. Section 3 is devoted
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Figure 1 The plasma is

structured into two infinite

regions of constant density and

gas pressure, with a sharp

interface at z = 0. A constant

magnetic field crosses the

interface and is inclined at an

angle θ to the interface.

to the derivation of the general governing equation for the plasmas either side of the inter-

face, which is given for an arbitrary inclination of the magnetic field, by Equation 8. In order

to make analytical progress, in Section 4 we introduce the small inclination angle approx-

imation of the magnetic field, with respect to the interface and solutions to the governing

equations for either side of the interface are found, using a perturbation technique. The dis-

persion relation corresponding to this approximation is obtained in Section 5 and is given

in dimensional variables by Equation 29 and in dimensionless form by Equation 30. In Sec-

tion 6, solutions to the dispersion relation are determined, both analytically and numerically

and finally, our results are summarised and discussed in Section 7.

2. Initial Equilibrium

We aim to investigate the propagation of linear and compressible MHD waves along a

contact discontinuity in density and temperature, aligned with z = 0, with density and

temperature constant either side of this discontinuity. A constant magnetic field perme-

ates the plasma at an angle, θ , to the discontinuity in the (x, z) plane and has the form

B0 = B0(cos θ,0, sin θ). In our working model, with a tilted magnetic field, the restoring

force will be the tangential component of the Lorentz force, with magnetic tension acting

on any displacement transversal to the field and magnetic pressure acting on any displace-

ment that changes the magnetic field strength. The effect of gravity is neglected, and we

restrict ourselves to study the dynamics of two-dimensional perturbations in a 3D Cartesian

geometry. A schematic representation of the equilibrium configuration is shown in Figure 1.

The dynamics of waves can be described within the framework of ideal magnetohydrody-

namics (MHD). We assume that the perturbations of physical quantities are small compared

to their equilibrium values, therefore we can use the linearised version of the MHD system

of equations. All physical quantities (except velocity) will be written as a sum of their con-

stant equilibrium values and their perturbations, so that the density, pressure, magnetic field

and velocity are given by ρ0 + ρ, p0 + p, B0 + b and v, respectively.

The system of ideal linearised MHD equations for a homogeneous equilibrium, therefore,

can be written as

∂ρ

∂t
+ ρ0∇ · v = 0, (1)

∂p

∂t
= c2

0

∂ρ

∂t
, (2)

ρ0

∂v

∂t
= −∇p −

1

μ
∇(B0 · b) +

1

μ
(B0 · ∇)b, (3)
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where c0 = (γp0/ρ0)
1/2 is the adiabatic sound speed, γ is the adiabatic index, and μ is the

magnetic permeability of free space. In addition, the connection between the magnetic field

and the plasma fluid is ensured by the linearised, ideal induction equation,

∂b

∂t
= ∇ × (v × B0). (4)

Finally, the system of equations has to be supplemented with the solenoidal condition,

∇ · b = 0, as well as with the ideal gas law. These equations will be used in the next section

to derive the dispersion relation for waves propagating along the interface.

3. Governing Equation

In general the propagation of waves can be studied with the help of their dispersion relation,

i.e. the relation between the frequency of waves and the wavenumber, in terms of charac-

teristic speeds and quantities specific to the medium in which they propagate. First, general

solutions are found for the plasma regions either side of the interface, the dispersion relation

may be obtained after matching the solutions in the two regions, at the interface z = 0.

The mathematical procedure we employ in the present study would classify our task as

an eigenvalue problem. However, when comparing to an initial value problem investigation,

there are differences between a standard eigenvalue problem and the problem concerning

leaky waves. As pointed out by Ruderman and Roberts (2006), while standard eigenvalue

solutions correspond to the asymptotic behaviour of the time-dependent solutions, the leaky

mode solutions are instead intermediate asymptotics, where the time-scale is greater than

the period of the wave, but less than the attenuation time.

Let us begin by writing the momentum equation in terms of the inclination angle of the

equilibrium magnetic field, θ , as

ρ0

∂v

∂t
= −∇p −

1

μ
B0∇(bx cos θ + bz sin θ) +

1

μ
B0

(

cos θ
∂

∂x
+ sin θ

∂

∂z

)

b, (5)

where Bx = B0 cos θ , Bz = B0 sin θ . After differentiating the x and z components of this

equation with respect to time and using the energy and induction equations, we obtain two

equations for the horizontal and vertical velocity perturbations,

∂2vx

∂t2
=

(

v2
A sin2 θ + c2

0

)∂2vx

∂x2
+ v2

A sin2 θ
∂2vx

∂z2

− v2
A sin θ cos θ

∂2vz

∂x2
+ c2

0

∂2vz

∂x∂z
− v2

A sin θ cos θ
∂2vz

∂z2
,

∂2vz

∂t2
= −v2

A sin θ cos θ
∂2vx

∂x2
+ c2

0

∂2vx

∂x∂z
− v2

A sin θ cos θ
∂2vx

∂z2

+ v2
A cos2 θ

∂2vz

∂x2
+

(

v2
A cos2 θ + c2

0

)∂2vz

∂z2
,

where the Alfvén speed is given by vA = B0/(μρ0)
1/2.

All of the perturbed quantities will oscillate with frequency, ω, and real wavenumber, k.

Therefore, we take any perturbations to be of the form f = f̂ (z) exp[i(kx − ωt)], where
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f̂ is the amplitude of perturbations that depend on z. Next, we Fourier analyse the above

system of equations to arrive at the system of coupled differential equations,

[

ω2 − k2
(

v2
A sin2 θ + c2

0

)]

v̂x + v2
A sin2 θ

d2v̂x

dz2
+ k2v2

A sin θ cos θv̂z + ikc2
0

dv̂z

dz

− v2
A sin θ cos θ

d2v̂z

dz2
= 0, (6)

k2v2
A sin θ cos θv̂x + ikc2

0

dv̂x

dz
− v2

A sin θ cos θ
d2v̂x

dz2

(

ω2 − k2v2
A cos2 θ

)

v̂z

+
(

v2
A cos2 θ + c2

0

)d2v̂z

dz2
= 0. (7)

Since all coefficients in Equations 6 and 7 are constants, we can eliminate the component

of velocity parallel to the interface, v̂x to obtain a single fourth-order differential equation,

for the component of velocity perpendicular to the interface, v̂z,

c2
0v

2
A sin2 θ

d4v̂z

dz4
+ 2ikc2

0v
2
A cos θ sin θ

d3v̂z

dz3
+

[

ω2
(

c2
0 + v2

A

)

− k2c2
0v

2
A

]d2v̂z

dz2

− 2ik3c2
0v

2
A cos θ sin θ

dv̂z

dz
+

[

ω4 − ω2k2
(

c2
0 + v2

A

)

+ k4c2
0v

2
A cos2 θ

]

v̂z = 0. (8)

If the inclination of the magnetic field is omitted (i.e. θ = 0), we recover the governing

equation for compressional waves derived by Roberts (1981). Since we are looking for wave-

like behaviour, the solution of the above equation will be of the form v̂z ∼ exp[Ŵz]. Given

that the governing equation (Equation 8) is a fourth-order differential equation, the general

solution will be of the form

v̂z = C1e
Ŵ1z + C2e

Ŵ2z + C3e
Ŵ3z + C4e

Ŵ4z,

where Ci are constants and Ŵi are the roots of the characteristic equation

c2
0v

2
A sin2 θŴ4 + 2ikc2

0v
2
A cos θ sin θŴ3 +

[

ω2
(

c2
0 + v2

A

)

− k2c2
0v

2
A

]

Ŵ2

− 2ik3c2
0v

2
A cos θ sin θŴ +

[

ω4 − ω2k2
(

c2
0 + v2

A

)

+ k4c2
0v

2
A cos2 θ

]

= 0. (9)

The values of Ŵ will be used in Section 4 to determine the dispersion relation for the waves

propagating along the interface. We note that a similar equation is derived for the plasma

regimes both above and below the interface, with appropriate characteristic speeds.

We will show by contradiction that in order to obtain propagating solutions, Ŵ must be

complex. Let us assume that Ŵ is purely real, then the left-hand side of Equation 9 is a

complex analytical function and may therefore be split into real and imaginary parts as

u(ω, k) + iv(ω, k) = 0, (10)

where u and v are the real functions,

u(ω, k) = c2
0v

2
A sin2 θŴ4 +

[

ω2
(

c2
0 + v2

A

)

− k2c2
0v

2
A

]

Ŵ2

+
[

ω4 − ω2k2
(

c2
0 + v2

A

)

+ k4c2
0v

2
A cos2 θ

]

,
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v(ω, k) = Ŵ
[

2kc2
0v

2
A sin θ cos θŴ2 − 2k3c2

0v
2
A cos θ sin θ

]

.

In order for Equation 10 to be satisfied, we require that both functions u(ω, k) and v(ω, k),

are equal to zero simultaneously. Setting v(ω, k) = 0 gives the solutions Ŵ = 0,±k. The

solutions Ŵ = 0 is not a solution to u(ω, k) = 0. Substituting Ŵ = ±k into Equation 8 gives

ω = 0, so this is not a propagating solution. This proves that, in order for the wave to propa-

gate, Ŵ must be a complex quantity. The imaginary component of Ŵ represents an oscillatory

component to the variation of v̂z with respect to the transverse coordinate. This will intro-

duce energy flow into the system, either towards or away from the interface, for certain

solutions. Since no energy source is specified, this only makes physical sense if the energy

flow is away from the interface. These leaky wave solutions correspond to the case where

the group speed is positive above the interface and negative below and the effect of lateral

energy leakage is an attenuation of the waves.

4. Solving the Governing Equation – a Perturbation Technique

In order to make analytical progress, we assume that the angle between the magnetic field

lines and the interface is small and so the inclination induces only a small change to the

waves’ properties in each homogeneous semi-infinite volume, compared to the case with

parallel magnetic field. This allows us to make approximations in θ , letting cos θ ≈ 1 and

sin θ ≈ θ .

The governing equation of the quantity Ŵ, for small values of inclination angle, is given

by

c2
0v

2
Aθ2Ŵ4 + 2ikc2

0v
2
AθŴ3 +

[

ω2
(

c2
0 + v2

A

)

− k2c2
0v

2
A

]

Ŵ2 − 2ik3c2
0v

2
AθŴ + A = 0, (11)

where

A = ω4 − ω2k2
(

c2
0 + v2

A

)

+ k4c2
0v

2
A.

In order to physically account for the transition of perturbed quantities from one side of the

interface to the other one, we consider a thin boundary layer (embracing the interface), in

which the transition takes place, with width less than 2θ .

Despite the small angle, even the first term of Equation 11 is comparable to the other

terms, since it is multiplied by the highest derivative of v̂z, which can be large. Let us now

apply the method of dominant balance to find the roots of the fourth-order polynomial. First,

since some terms are smaller than others, they could not possibly be part of the dominant

balance and may be ignored. We are going to seek solutions in the form of an asymptotic

power series

Ŵ = Ŵ0 + θŴ1 + θ2Ŵ2 + · · · (12)

In leading order (i.e. terms proportional to O(1)), we obtain

[

ω2
(

c2
0 + v2

A

)

− k2c2
0v

2
A

]

Ŵ2
0 − A = 0, (13)

which means that

Ŵ0 = ±m, (14)
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where

m =

[

−
(ω2 − k2v2

A)(ω2 − k2c2
0)

(c2
0 + v2

A)(ω2 − k2c2
T )

]1/2

.

Interestingly, this quantity coincides with the effective wavenumber determined for magneto-

acoustic modes obtained by Roberts (1981) in the case of tangential discontinuity, if we

assume that m is real when ω is real. However, in the case of leaky modes, ω is complex

and so too is m, introducing an oscillatory behaviour in the z-direction. A similar expression

can be derived for the two plasma regions. For simplicity, we will introduce the subscripts

+ and −, to refer to equivalent parameters in the plasmas above and below the interface,

respectively. Hence, in the z < 0 region we will use m−, whereas in the upper region (z > 0),

we will use m+. Here, the signs of m− and m+ should be chosen in such a way that the real

parts of m− and m+ are positive. We choose the signs of Ŵ0 above and below the interface,

such that these match the solutions for the case of the parallel magnetic field, i.e. physical

solutions are given by

Ŵ0 =

{

m−, if z < 0,

−m+, if z > 0.

Equation 11 is a fourth-order polynomial and the remaining two roots must still be found.

This can be done by rescaling the problem. For some unknown exponent Q (to be deter-

mined), let us set in Equation 11,

Ŵ = θQy, (15)

where y is bounded and bounded away from zero as θ → 0. That is why Equation 11 be-

comes (after dividing by c2
0v

2
A)

θ4Q+2y4 + 2ikθ3Q+1y3 +
1

c2
T

(

ω2 − k2c2
T

)

θ2Qy2 − 2ik3θQ+1y + A′ = 0, (16)

where A′ = A/c2
0v

2
A and cT = c0vA/(c2

0 +v2
A)1/2. We will now find the correct value of Q by

using the principle of dominant balance, so that the rescaled equation is consistent as θ → 0,

if at least two terms correspond to the same power of θ (this is called balance). In addition,

the balance is dominant in the sense that every term not involved in the balance corresponds

to a higher power of θ , and therefore must be smaller than the balancing terms.

It can be shown that, when balancing the first three terms, the balance will occur for

Q = −1 and the balancing terms are proportional to O(θ−2) while the other terms are

∼O(1). With this value of Q we obtain

θ−2y4 + 2ikθ−2y3 +
1

c2
T

(

ω2 − k2c2
T

)

θ−2y2 − 2ik3y + A′ = 0. (17)

Multiplying the above equation by μ = θ2 we have

y4 + 2iky3 +
1

c2
T

(

ω2 − k2c2
T

)

y2 − 2ik3μy + A′μ = 0. (18)

Now, we write y also in the form of an asymptotic series in terms of μ as

y = y0 + y1μ + y2μ
2 + · · ·
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In the leading order, we obtain

y2
0

(

y2
0 + 2iky0 +

1

c2
T

(

ω2 − k2c2
T

)

)

= 0, (19)

which has four roots for y0, i.e.

y0A = y0B = 0, y0(C,D) = −
i

cT

(kcT ∓ ω).

The y0 = 0 solutions contradict our assumptions that y is bounded away from zero as θ → 0

and must be disregarded, so the remaining two solutions will be

y0(C,D) = −
i

cT

(kcT ∓ ω). (20)

Returning now to the original variables, the four roots of the polynomial in Ŵ are (in the

leading order)

ŴA = m +O(θ); ŴB = −m +O(θ);

ŴC = θ−1y0C +O(θ); ŴD = θ−1y0D+O(θ).

Higher-order terms in θ are neglected, as they are small compared to the leading-order terms.

Let us briefly discuss the form and sign of the last two roots. The key ingredient in both

expressions is y0(C,D) = − i
cT

(kcT ∓ ω). Since we are dealing with an inclined interface, as

mentioned earlier, we expect that modes will be leaky and the frequency of waves can be

written as ω = ωr + iωi . Introducing this expression into the form of y0(C,D) we obtain

y0C = −
ωi

cT

+
i

cT

(ωr − kcT ); y0D =
ωi

cT

−
i

cT

(ωr + kcT ). (21)

Since attenuation of waves due to leakage corresponds to ωi < 0, Equation 21 shows that

ℜ(y0C) > 0, while ℜ(y0D) < 0. To ensure that the group speed is positive above the interface

and negative below it, the physically acceptable solutions for y0C and y0D must have the

corresponding sign. Hence, for the z < 0 region we are going to use y0D , while in the region

above the interface we will need to use a similar root as y0C but written for the corresponding

characteristic speeds.

Once again, we use the subscripts + and − to refer to the upper and lower plasma regions

and so we write y0D , below the interface, as y− and y0C above the interface as y+. Therefore

the expression of v̂z in the lower (z < 0) region is

v̂z− = F−em−z + G−eθ−1y−z. (22)

The corresponding expression for vz, in the upper (z > 0) region is

v̂z+ = F+e−m+z + G+eθ−1y+z, (23)

where the critical speeds for the relevant plasma are used to determine m± and y± in that

region.

It is clear that, as θ → 0, the expressions for v̂z± do not approach the variables we would

obtain for the tangential discontinuity (for their expressions see, e.g. Roberts, 1981), due
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to the terms proportional to G±. As previously mentioned, the amplitude of the transversal

component of velocity varies over z in an oscillatory fashion, due to the complex nature

of the exponents. In fact, the amplitude of the z-component of the velocity increases as

the inclination angle decreases. Equally, the laterally oscillating leaking wave will have its

wavelength increasing proportionally to the inclination angle.

In a recent paper Ruderman et al. (2018) it was shown that, in the case of a tilted magnetic

field, the perturbed quantities do not show a simple transition from their values at the contact

discontinuity to the tangential discontinuity, as θ → 0, however, their averaged values tend

towards those corresponding to the tangential discontinuity. This averaging technique may

also be applied to the solutions found here for vz, confirming the above statement.

5. Dispersion Relation of Waves Along Discontinuities

Since four constants are involved in the two expressions of v̂z, four boundary conditions

will be needed to find the values of those constants and determine the dispersion relation.

As the magnetic field intersects the interface, this is a contact discontinuity and so we re-

quire continuity of both components of velocity, v̂x and v̂z, the kinetic pressure, p̂, and both

components of the magnetic field, b̂x and b̂z, respectively. In this equilibrium, continuity of

bz is implied by the continuity of v, so we have the correct number of boundary conditions

to find all unknowns.

First, we must find v̂x . Using the components of the momentum equation, we can find

that v̂x may also be written in terms of the same exponentials as v̂z, i.e.

v̂x± = f±F± exp(∓m±z) + g±G± exp(y±z),

where the expressions for f± and g± are given by

f± =
θv2

A±
(m2

± − k2) ∓ ikc2
0±m±

ω2 − k2c2
0±

, g± =
1

θ

v2
A±

y2
± − θkc2

0±y±

(ω2 − k2c2
0±)

=
1

θ
g′

±. (24)

The condition that the vertical component of velocity, v̂z, is continuous across the bound-

ary gives

F− + G− = F+ + G+. (25)

Continuity of the parallel component of velocity, v̂x , results in

θf−F− + g′
−G− = θf+F+ + g′

+G+. (26)

The condition that the parallel component of the magnetic field, bx , is continuous, gives

−θm−F− +
(

g′
− − 1

)

y−G− = θm+F+ +
(

g′
+ − 1

)

y+G+, (27)

to first order of θ . Finally, pressure balance across the interface gives

ρ−c2
0−

[

θ(ikf− + m−)F− +
(

ikg′
− + y−

)

G−

]

= ρ+c2
0+

[

θ(ikf+ − m+)F+ +
(

ikg′
+ + y+

)

G+

]

. (28)

Due to the particular choice of discontinuity, ρ−/ρ+ = c2
0+/c2

0−, so multipliers cancel in this

equation.
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These conditions may be written together as a matrix equation,

M

⎡

⎢

⎢

⎣

F−

G−

F+

G+

⎤

⎥

⎥

⎦

= 0,

where

M =

⎡

⎢

⎢

⎣

1 1 −1 −1

θf− g′
− −θf+ −g′

+

−θm− (g′
− − 1)y− −θm+ −(g′

+ − 1)y+

θ(ikf− + m−) ikg′
− + y− −θ(ikf+ − m+) −(ikg′

+ + y+)

⎤

⎥

⎥

⎦

.

We seek eigen-mode solutions, by solving the dispersion relation, which is given by the

equation

det(M) = 0. (29)

5.1. Dispersion Relation in Dimensionless Form

The two key parameters that can affect the characteristics of waves are the ratio between the

densities of the two plasma regions (d = ρ−/ρ+) and the plasma-β , defined as β = 2c2
0/γ v2

A.

That is why we determine the dispersion relation in terms of these two parameters and we

write the equations in their dimensionless form. We introduce the phase speed, relative to

the Alfvén speed of the lower plasma, as c̃ph = cph/vA− = ω/kvA−. Due to the particular

form of the magnetic field, we see that d = c2
0+/c2

0− = v2
A+/v2

A− and hence β− = β+ = β .

The effective wavenumbers in dimensionless form are

m2
−

k2
=

(γβ/2 − c̃2
ph)(1 − c̃2

ph)

γβ/2 − (γβ/2 + 1)c̃2
ph

,
m2

+

k2
=

(dγβ/2 − c̃2
ph)(d − c̃2

ph)

d2γβ/2 − d(γβ/2 + 1)c̃2
ph

,

and

y−

k
= −i − ic̃ph

√

γβ/2 + 1

γβ/2
,

y+

k
= −i + ic̃ph

√

γβ/2 + 1

dγβ/2
.

The ratios between tangential and transversal components of velocity are given in dimen-

sionless form by

f− =
θ(m2

−/k2 − 1) + iβm−/k

˜cph
2 − β

, f+ =
θd(m2

+/k2 − 1) − idβm+/k

˜cph
2 − dβ

,

g′
− =

y2
−/k2 − θβy−/k

c̃2
ph − β

, g′
+ =

dy2
+/k2 − θdβy+/k

c̃2
ph − dβ

.

In this new, dimensionless, form, the dispersion relation is now given by the equation

det
(

M′
)

= 0, (30)
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where

M′ =

⎡

⎢

⎢

⎣

1 1 −1 −1

θf− g′
− −θf+ −g′

+

−θ
m−

k
(g′

− − 1)
y−

k
−θ

m+

k
−(g′

+ − 1)
y+

k

θ(if− +
m−

k
) ig′

− +
y−

k
−θ(if+ −

m+

k
) −(ig′

+ +
y+

k
)

⎤

⎥

⎥

⎦

.

6. Numerical Solutions and Discussion of Results

In what follows, we solve the dispersion relation (Equation 30) numerically for varying den-

sity ratio and plasma-β . For simplicity, we choose to plot only forward propagating waves.

We should note here that in the present configuration, the symmetry between forward and

backward propagating waves is broken and this is due to the magnetic force that is perpen-

dicular to the equilibrium magnetic field, affecting the forward and backward propagating

waves in a different way. However, the differences between the dimensionless phase speed

of forward and backward propagating waves are small due to the chosen approximation

of small field inclination. It is very likely that significant differences may be obtained for

arbitrary angles, but this would require a full numerical investigation.

First, we plot the dispersion curves of forward propagating waves for a fixed density

ratio. In Figure 2, we set d = 0.1 (upper panel) and d = 10 (lower panel) and allow the

plasma-β to vary over two orders of magnitude covering the spectrum of possible values

in the solar atmospheric plasma. When the plasma above the interface is heavier (here d =

0.1) the dispersion relation allows the propagation of three modes. Mode (A) is present for

larger values of plasma-β (β > 0.6), with phase speed close to the sound speed of the upper

plasma, ce . The imaginary part of the solution increases in magnitude for higher values of

plasma-β , so that, for β = 10, the period is approximately half of the attenuation time. Since

the phase speed is higher than the Alfvén speed in the upper region, this mode must be a

highly attenuated fast mode. Its propagation speed increases with plasma-β .

Mode (B) is present for the entire range of plasma-β and the phase speed is, for most

of the range, close to the cusp speed of the plasma in the upper region, cT e , increasing to a

speed between the two cusp speeds for high plasma-β . For β → 0, we find that mode (B)

also tends to zero, meaning that we are dealing with a slow wave. The imaginary part of

the solution stays fairly steady, between 0 and −0.1, so these waves show a rather weak

attenuation.

Mode (C) is only present for β > 0.5, since for lower values of plasma-β solutions do

not satisfy the conditions set for the imaginary part of the frequency (they do not “leak-

out”). For β > 1, the phase speed of this mode decreases with increasing plasma-β , while

the imaginary part increases in magnitude greatly, so that, for β > 1, the period of the wave

is greater than the attenuation time, meaning that the expected life time of these modes is

rather short. This mode should be labelled a slow mode, as it is slower than either cusp

speeds, however, it shows a rather peculiar behaviour. Its phase speed does not increase with

plasma-β , a feature characteristic for slow waves. Due to their high attenuation, modes (A)

and (C) are unlikely to be observable, due to having an attenuation time much shorter than

the wave period, especially in the high-β regime.

In Figure 2b, we show solutions to the dispersion relation for d = 10 and we can see

two modes of propagation. Mode (A) has a phase speed between the sound and cusp speeds

in the upper plasma region, though is only present for β < 3, since for higher plasma-β the

mode is no longer a leaky mode. For low values of plasma-β , mode (A) tends to zero, so this
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Figure 2 The variation of the dimensionless phase speed of the waves, c̃ph, propagating along the interface

in terms of the plasma-β , for two values of density ratio. The real part is plotted in the upper panel and the

imaginary part in the lower panel. The characteristic speeds are also shown for reference, using thin lines:

the Alfvén (solid line), sound (dotted line) and cusp speeds (dashed line) for the regions above (green lines)

and below the interface (black lines).

is clearly a slow mode. In the region corresponding to β < 1, the attenuation of this mode

is very small, however, the attenuation rate increases with the value of plasma-β . At a value

of β = 2 the attenuation of the mode decreases again.



Propagation of Leaky MHD Waves at Discontinuities. . . Page 13 of 17  139 

Mode (B), similar to the mode (C) in Figure 2a, has phase speed close to the lowest value

of the cusp speeds for lower plasma-β and its phase speed decreases to zero around β = 1.

Again, based on its propagation speed we label this mode as a typical slow mode, however,

it has the same peculiar behaviour with respect to plasma-β . This mode, again, is highly

attenuated, especially for β > 1.

Figure 3 shows the variation of the solutions of the dispersion relation with density ratio,

for low and high values of plasma-β . In Figure 3a, we set β = 0.1 (a typical solar upper

solar atmospheric condition) and the numerical investigation of the dispersion relation re-

veals the existence of three modes, all with relatively small imaginary part, meaning these

modes are weakly attenuated. Mode (A) has phase speed below the cusp and sound speeds

of the plasma in the lower region and a small imaginary part, which decreases in magnitude

towards d = 1, at which point the imaginary part becomes zero. Mode (B) is a physical

solution for d > 0.8 and has phase speed very close to the cusp speed of the lower plasma

region. Although the dimensionless phase speed of these two modes are very similar in the

region where d = 1, they have a rather distinctive imaginary part. Mode (C) exists for d > 1

and has phase speed close to both the sound and the cusp speeds of the upper plasma and this

mode shows the largest attenuation among all possible modes. The d = 1 value corresponds

to the situation when the difference between the two regions disappear and there is no in-

terface. This situation was earlier studied by Cally and Schunker (2006) and the dispersion

relation for MHD waves in this context, for small inclination angle between the wave vector

and the magnetic field, may be easily solved to give cph ≈ c0 or vA. This agrees with the

value of mode (C) at this point and explains the decrease in attenuation of modes (A) and

(C), towards d = 1.

In Figure 3b, we plot the variation of the dimensionless phase speed of waves for a given

value of plasma-β (here taken to be 10) and we let the density ratio of the two regions

vary. This regime of parameters is more relevant to photospheric conditions. We can see, the

interface enables the propagation of two surface modes. Comparing these solutions to the

ones obtained for low-coronal conditions (i.e. β < 1) it is obvious that under photospheric

conditions these modes have a much stronger attenuation, the leakage of waves is more

accentuated in plasmas with β > 1. Mode (A) has phase speed very close to the sound speed

of the upper plasma region and an imaginary part to the solutions with fairly large amplitude,

which decreases towards zero, with increasing density ratio. Given its propagation speed,

this mode is a fast MHD mode. This mode does not exist when the plasmas in the upper

region becomes heavier. In this case, mode (A) does not satisfy the condition imposed on

the imaginary part of its frequency. Mode (B) shows a rather interesting characteristics as

its propagation speed is sub-Alfvénic for d < 1 (the Alfvén speed in the lower region is

taken as reference), and it becomes super-Alfvénic for d > 1. For the entire domain of its

definition, the propagation speed of waves stays close to the sound speed c0. Given the lower

phase speed and the smaller degree of attenuation, we suggest that mode (B) is a slow MHD

mode.

7. Conclusions

Our study considers the problem of waves propagating in a two-dimensional configura-

tion along an interface in the presence of an inclined magnetic field. For a small-angle

approximation, the dispersion relation is derived analytically, by employing the effective

wavenumbers and using a method of dominant balance. The effective wavenumbers are

shown to be complex, so wave amplitude decays laterally in an oscillatory pattern away from
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Figure 3 The variation of the dimensionless phase speed of the waves, c̃ph propagating along the interface

in terms of the density ratio, for two values of plasma-β . The real part is plotted in the upper panel and the

imaginary part in the lower panel. The characteristic speeds are also shown for reference, using thin lines:

the Alfvén (solid line), sound (dotted line) and cusp speeds (dashed line) for the regions above (green lines)

and below the interface (black lines).

the interface. The complex effective wavenumbers, in turn, give rise to complex solutions

for the frequency of the waves, which would give amplification or attenuation. However,

since no outside energy source exists in this situation, the only physical solutions are leaky

waves.
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Solutions to the dispersion relation, for varying density ratio and plasma-β , were found

numerically. The imaginary components to these solutions imply attenuation of the wave,

which corresponds to energy leaking away from the interface, towards |z| → ∞. We have,

hence, shown that the introduction of magnetic field inclination introduces energy flow to

the system, compared to the case with parallel magnetic field and so even a small angle be-

tween the interface and the magnetic field produces a qualitative change in the modes which

may propagate. Thus, a contact discontinuity in density and temperature in the presence of

an inclined constant magnetic field may support the propagation of surface leaky waves.

However, quantities averaged over a thin boundary layer do tend towards the solutions for

a tangential discontinuity, as the inclination angle tends towards zero, so the contact and

tangential discontinuity solutions are qualitatively comparable.

These results may also have considerable applications to the study of waves in the solar

atmosphere. In particular, the penumbra of sunspots have been shown to have highly in-

clined magnetic field lines and, at high resolution, running penumbral waves were detected

(see e.g. Giovanelli, 1972; Zirin and Stein, 1972). Understanding that the outer edge of the

sunspot may support leaky waves, more readily than trapped waves, could give a different

explanation to any observed damping of these running penumbral waves. While, inside the

sunspot, the sharp density variation is horizontal, in the outer edge of the penumbra and the

outer canopy, the sharp density gradient is vertical. It has been shown (in e.g. Jess et al.,

2013) that field inclination (from the horizontal) in the penumbra is 0 – 60◦, but also that

the field inclination in the magnetic canopy is 0 – 35◦. Hence, small-angle approximation

may have relevance to a much wider range of applications, especially across the solar tran-

sition region, where the density variation is sudden. This study may also be of particular

use for the investigation of transition region quakes (TRQs), since these waves have large

vertical length scales, so the transition region may be viewed as a single interface. When

considering TRQs as surface waves propagating along a density discontinuity, the fact that

interfaces with inclined fields can only support leaky waves may help to explain how energy

is transferred into the solar corona, through wave leakage.
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