

This is a repository copy of *Experimental quantification of intrusion volumes due to transients in drinking water distribution systems*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/135683/

Version: Supplemental Material

Article:

Jones, S.L. orcid.org/0000-0003-1443-2253, Shepherd, W., Collins, R. et al. (1 more author) (2019) Experimental quantification of intrusion volumes due to transients in drinking water distribution systems. Journal of Pipeline Systems Engineering and Practice, 10 (1). 04018026. ISSN 1949-1190

https://doi.org/10.1061/(ASCE)PS.1949-1204.0000348

This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://doi.org/10.1061/(ASCE)PS.1949-1204.0000348

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Table 1. Average Recorded Values of Initial Conditions. 'Q' is the desired initial system flow rate (l/s) and 'H' is the desired initial system pressure head (m). Standard deviations for flow rate and pressure head are 0.02 l/s and 0.03 m, respectively.

Experiment Code	Desired	Desired	Water		Gravel	
	Flow	Pressure	Flow	Pressure	Flow	Pressure
	Rate (l/s)	Head (m)	Rate (l/s)	Head (m)	Rate (l/s)	Head (m)
'Q1 H20'	1	20	1.16	20.05	1.01	20.05
'Q2 H20'	2	20	1.97	20.03	2.01	20.07
'Q3 H20'	3	20	3.06	20.04	3.01	20.06
'Q4 H20'	4	20	4.04	20.06	4.04	20.09
'Q2 H10'	2	10	2.03	10.04	2.01	10.07
'Q2 H20'	2	20	1.97	20.03	2.01	20.07
'Q2 H30'	2	30	2.07	30.07	2.01	30.05
'Q2 H40'	2	40	1.99	40.05	2.01	40.03