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Abstract.

We review and compare the [Wheeler-Boettinger-McFadden Phys. Rev A 45, 1992] (WBM),

free energy based, phase field formulation of alloy solidification, with the grand potential

energy formulation (GPF) of [Plapp Phys. Rev E 84 2011] and so, by association, the two

phase approach of [Kim-Kim-Suzuki Phys. Rev. E 60 1999]. We ask what the effective

differences are between these approaches: are they equivalent? We then advocate an

approach that lies within the WBM scheme, yet remains consistent with the GPF. This has

the flexibility to apply, with some modification, to arbitrary bulk free energies, including

CALPHAD type descriptions such as Redlich-Kister relations for solution phases and sub-

lattice models for non-stoichiometric intermetallics. The proposed model avoids some

inherent complications implicit in the grand potential formulation, e.g. inverting the relation

between chemical potential and solute concentration.

Introduction

The phase field modelling of binary alloy solidification involves the specification of a free

energy functional, F, of the independent variables: phase Ԅ , concentration c, and temperature

T. Then, by specifying diffusion parameters the functional is optimally minimised to give the

dynamic equations for Ԅǡ c and T . Within this framework, the modelling of any given

material is centred on a description of the three diffusion parameters and the construction of

the free energy functional, F.
Data bases such as CALPHAD [CALPHAD 2002] provide free energy densities of particular

phases of matter as a function of c and T . Phase field modelling combines these bulk

densities with the phase parameter to give the bulk free energy of the combined mixture, so

that just as c provides the alloy concentration, Ԅ provides the proportion of the two phases at

any point in the domain.

In phase field the interface may be formally identified at the value of Ԅ ൌ ͲǤͷ intermediate

between the bulk values, here solid at 0, and liquid at 1. To maintain a finite and slowly value

of Ԅ at the interface, a gradient Ԅ and potential well are introduced, and in so doing can

accommodate measured surface energy parameters.



This paper is concerned with bulk free energy construction rather than surface energy

construction. Let us assume that we have two free energy densities for the two phases:݂ = ݂(ܿ,ܶ), ௌ݂ = ௌ݂(ܿ,ܶ). (1)

A natural way to combine these densities into a bulk free energy density, f, using Ԅ as a

weight is:

݂ = ݂(߶, ܿ,ܶ) = ߶ ݂ (ܿ,ܶ) + (1െ ߶) ௌ݂ (ܿ,ܶ). (2)

The driving force for phase change is thenడಳడథ = ݂ െ ௌ݂. (3)

This is independent of Ԅ and thus also, by implication, there is a force in the bulk. But we

know that the driving force for phase change can only originate at the surface (the bulk is

quite happy to remain in a metastable state). One way to address this issue is to introduce an

interpolation function, gሺԄሻ with gradients, gԢሺԄሻ, that vanish at the extreme values Ԅ ൌ Ͳǡͳ,
and write

݂ = ݃(߶) ݂(ܿ,ܶ) + ݃(1െ ߶) ௌ݂(ܿ,ܶ), (4)

where it is assumed g(0) = 0, g(1) = 1. A cubic function gሺԄሻ is often chosen because it

relates, a tanh shaped ߶� profile, ߶ = 1/2 ቂ1 + tanh ቀ௫ି௧ఋ ቁ�ቃ , in 1D, by ܸ ן ߶ሶ )(߶Ԣሺ݃ן ݂ െ ௌ݂). For pure metals ݂ െ ௌ݂ ൎ const, and at equilibrium, vanishes, but the WBM

model does not have an analogous feature. This led M. Plapp and others to explore the use of

the chemical potential, ߤ = డడ as a variable in order to define the bulk grand potential term߱ = ݃(߶)߱(ߤ,ܶ) + ݃(1െ ߶)߱ௌ(ߤ,ܶ) (5)

where ɘሺɊୣ , T) = ɘୗሺɊୣ, T) for equilibrium chemical potential .ߤ If we now impose the

propertyడఠಳ(థ,ఓ)డథ ቚఓୀఓ = 0,
(6)

we have a model which resembles the pure metal,డಳ(థ,ఓ)డథ ቚ்ୀ ் = 0.
(7)

There is a major stumbling block with this approach: data bases do not routinely give energy

densities in terms of chemical potential. However, this problem can easily overcome in

situations where the free energy densities, f and fୗ are quadratic in c, and indeed most if not

all application of the grand potential formulation use quadratic approximation about the

equilibrium concentrations of the true free energy densities.

The key to understanding the approach of [Plapp 2011] and co-workers is that, for each phase߱ = ݂ െ ܿ߱ௌߤ = ௌ݂ െ ௌܿௌߤ
(8)

Where the chemical potentials areߤ = డಽ( ಽ,்)డಽ , ௌߤ = డೄ( ೄ,்)డೄ . (9)



The new idea is to setߤ = ,ௌߤ (10)

and refer to this as the chemical potential, .ߤ These last equations allow us to find solutions,

c = cሺɊሻǡ cୗ = cୗሺɊሻ, and so allow us to write ɘ as a function of Ԅǡ Ɋ and T. There is a

subtlety here in that it appears, ɘ ് f െ Ɋ c, the true Legendre transformation from f to ɘ.

But we can, in principle, construct f from ɘ by using f ൌ ɘ  Ɋ c to find the equivalent free

energy construction. What we find is that the value of f intermediate between the pure phases

interpolate (as a function of Ԅ) in such a way as to have a common tangent throughout. If we

can show, therefore, that the Legendre transformation from free energy to grand potential

leaves the underlying system unchanged, it follows that using the approach of [Plapp 2011] is

equivalent to a specific manner of interpolation of the pure phases.

The relation between Grand potential and Free energy formulation in phase field

Assume the free energy is a functional of Ԅǡ cܨ =  ,߶,߶)݂ ܿ)ܸ݀ (11)

and the grand potential is a functional of ɗǡ Ɋȳ =  ,߰,߰)߱ ܸ݀(ߤ (12)

The relation between the two potentials is given by߱ = ݂ െ ܿߤ (13)

whereߤ = ܿߜܨߜ , ܿ = െ ߤߜȳߜ , (14)

As a consequence the functionals are relatedȳ = ܨ െ  ܿߤ ܸ݀ (15)

orܨ = ȳ +  ܿߤ ܸ݀ (16)

The transformation between the two potentials assumes that Ԅ ൌ ɗ, but we find it clearer to

keep the notation for the phase distinct becauseడడథቚ ് డడటቚఓ (17)

In fact߲߲߶ =
߲߲߰߶ ߲߲߰

+
߶߲ߤ߲ ߤ߲߲

=
߲߲߰
+

߶߲ߤ߲ ߤ߲߲
We also have߲߲߶ =

߲߲߰ +
߶߲ߤ߲ ,ߤ߲߲ (19)



Which impliesߜȳߜ߶ =
߲߲߱߶ െ  ڄ ߶߲߲߱

= ൬߲߲߱߰ +
߶߲ߤ߲ ߤ߲߲߱ ൰ െ  ڄ ൬ ߲߲߰߱ +

߶߲ߤ߲ ൰ߤ߲߲߱
=

߲߲߱߰ െ  ڄ ߲߲߰߱ +
߶߲ߤ߲ ߤ߲߲߱ െ  ڄ ൬ ߶߲ߤ߲ ߤ߲߲߱ ൰

=
߰ߜȳߜ +

߶߲ߤ߲ ߤ߲߲߱ െ  ڄ ൬ ߶߲ߤ߲ ߤ߲߲߱ ൰.
(20)

Applying this to Eq. (16) (in the second line below) givesߜܨߜ߶ =
߶ߜȳߜ +

ߜ ߶ߜܿߤ
= ൬ߜȳ߰ߜ +

߲߰ߤ߲ ߤ߲߲߱ െ  ڄ  ߶߲ߤ߲ ߤ߲߲߱ ൨൰+ ߶ߜ�ܿߤߜ
=

߰ߜȳߜ +
߶߲ߤ߲ ߤߜȳߜ െ  ڄ  ߶߲ߤ߲ ൨ߤߜȳߜ + ܿ ߶߲ߤ߲ െ  ڄ ܿ ߶߲ߤ߲

=
߰ߜȳߜ െ ߶߲ߤ߲ ܿ   ڄ  ߶߲ߤ߲ ܿ൨ + ܿ ߶߲ߤ߲ െ  ڄ ܿ ߶߲ߤ߲

=
߰ߜȳߜ

(21)

where we have assumed no gradient of Ɋ in ɘ (as is the case in [Plapp 2011]) so

thatߜȳߤߜ =
ߤ߲߲߱ (22)

We have allowed, though, that Ɋ = Ɋ(Ԅ,Ԅ, c). The above calculation infers that߶ሶ = െܯ ߶ߜܨߜ (23)

is identical toሶ߰ = െܯ ,߰ߜȳߜ (24)

since, clearly, Ԅሶ ൌ ɗሶ . If we can show that the equation for Ɋ is indistinguishable from the

standard equation for soluteሶܿ =  ڄ ܦ ߲݂߲ܿ , (25)

then we will have established that the GPF gives identical physics, and so an identical phase

profile to WBM. This is achieved by using the chain ruleሶܿ = ߲߲ܿ߰ ሶ߰ + ߤ߲߲ܿ ሶߤ
(26)

plus Eq. (25). Since there is no freedom to choose the coefficients of ɗሶ and ߶ሶ the

resulting equation for Ɋ must be equivalent to the equation for �ܿ . This might appear to

counter the claim in Plapp 2011 that the equilibrium phase profile is different in the two



formalisms. This paradoxical statement is resolved in the next section by a simple worked

example.

The paradox resolved by example

We have seen that the GPF is formally identical to WBM, and yet clearly [Plapp 2011]

claims that the two are different. The resolution of this is seen in the examples given in

[Plapp 2011] where the chemical potential, ૄ is not defined via ࣆ =
ࢉࣔࢌࣔ where ࢌ is defined as

in WBM. The definition of ࣆ in [Plapp 2011] can be made compatible with ࣆ =
ࢉࣔࢌࣔ by

changing the definition of .ࢌ When this is done, we see that GPF is identical with WBM.

Define example free energiesௌ݂ = (ܿ െ 0.25)ଶ݂ = (ܿ െ 0.75)ଶ + 0.1ܿ (27)

For our toy example we find using Eq. (8) that߱ = 0.625 െ ܿଶ߱ௌ = 0.5625 െ ܿௌଶ (28)

We can these to give two values of ܿܿ = 0.25 + ௌܿߤ0.5 = 0.7 + .ߤ0.5 (29)

These are then inserted into Eqs. (28) as follows߱൫ܿ(ߤ)൯ = 0.625 െ ܿଶ = െ0.25ߤ െ ൯(ߤ)ଶ߱ௌ൫ܿௌߤ0.25 = 0.5625 െ ܿௌଶ = 0.0725 െ ߤ0.7 െ 2^ߤ0.25 (30)

We can solve ߱(ܿߤ)) = ߱ௌ(ܿௌߤ) to obtain, for example, the slope of the common tangent

at equilibrium, Ɋୣ = 0.16111. The solute concentration is given by the relation Eq. (14)

givingܿ = 0.7 + 0.9߶ଷ െ 1.25߶ଶ + ,ߤ0.5 (31)

Which may be inverted to giveߤ = െ1.8߶ଷ + 2.7߶ଶ െ 1.4 + 2ܿ. (32)

Now using the Legendre transformation, ݂ = ߱ + ,ܿߤ we obtain
f = .81Ԅ െ 2.43Ԅହ + 1.8225Ԅସ െ 1.8Ԅଷ c
+ 2.7Ԅଶc + cଶ + 1.405Ԅଷ െ 2.1075Ԅଶ + .5625 െ 1.4c. (33)

It is instructive to examine this as a series of 11 superimposed plots at fixed values ofԄ א ሾͲǡͳሿ, shown below in blue, and to be compared with the equivalent WBM curves in red.



A direct approach to bulk free energy construction

We end with a more direct way of defining the free energy that is equivalent to the above, but

more flexible. Define݂(߶, ܿ) = ݃(߶)݂ҧ(߶, ܿ) + ݃(1െ ߶)݂ҧௌ(߶, ܿ), (34)

Where ݃(߶) = 3߶ଶ െ ʹ߶ଷ and the barred functions are translations of ݂ and � ௌ݂ along the

common tangent using ߶:݂ҧ(߶, ܿ) = ݂[ܿ െ ݃(1െ ߶)(ܿௌ െ ܿ)] + ݃(1െ ߶)([ ௌ݂(ܿௌ)െ ݂(ܿ)],݂ҧௌ(߶, ܿ) = ௌ݂[ܿ െ ݃(߶)(ܿ െ ܿௌ)] + ݃(߶)[ ݂(ܿ)െ ௌ݂(ܿௌ)]. (35)

We find that the functional gradients are found to be߲݂߲ܿ = ݃ ݂ᇱ(ܿ െ ݃ȟܿ + ȟܿ) + (1 െ ݃) ௌ݂ᇱ(ܿ െ ݃ȟܿ)߲݂߲߶ = ݃ᇱ( ݂(ܿ)െ ݃ȟܿ + ȟܿ)െ ௌ݂(ܿ െ ݃ȟܿ) െ ȟܿ ߲݂߲ܿ (36)

where ȟܿ = ܿ െ ܿௌ, and ܿ , ܿௌare the equilibrium, common tangent values. These relations

are, in principle, valid for any functions, ݂ , ௌ݂, and there is now no problem with function

inversion. However, the data base functions ݂ , ௌ݂ are not defined outside the intervalܿ א ሾͲǡͳሿ and so the above construction can only work if these functions can be extended

outside this range, for example, by constructing a quadratic function about the equilibrium

point with a common tangent and second derivative. A good alternative to this, which we

have implemented, is to keep the data base functions, ݂ , ௌ݂between ܿ and ܿௌand extend as

quadratic outside that range.

Conclusions

We have shown the equivalence of GPF and WBM phase field models, and that the apparent

difference lies with free energy construction. GPF modelling inevitably involves compromise

of the data base data in the metastable regions. Despite this, GPF modelling has many

attractive features, which explains its adoption in many multiphase models, e.g. [Choudhury

2015],
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