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ABSTRACT

This paper investigates the problem of condition monitoring

of complex dynamic systems, specifically the detection, lo-

calisation and quantification of transient faults. A data driven

approach is developed for fault detection where the multidi-

mensional data sequence is viewed as a stochastic process

whose behaviour can be described by a hidden Markov model

with two hidden states — i.e. ‘healthy / nominal’ and ‘un-

healthy / faulty’. The fault detection is performed by first

clustering in a multidimensional data space to define nor-

mal operating behaviour using a Gaussian-Uniform mixture

model. The health status of the system at each data point

is then determined by evaluating the posterior probabilities

of the hidden states of a hidden Markov model. This allows

the temporal relationship between sequential data points to be

incorporated into the fault detection scheme. The proposed

scheme is robust to noise and requires minimal tuning. A

real-world case study is performed based on the detection of

transient faults in the variable stator vane actuator of a gas tur-

bine engine to demonstrate the successful application of the

scheme. The results are used to demonstrate the generation

of simple and easily interpretable analytics that can be used

to monitor the evolution of the fault across time.

1. INTRODUCTION

As modern engineering systems become increasingly com-

plex, there has been a significant growth in the need for so-

phisticated condition monitoring procedures to ensure reli-

able operation. Condition monitoring can provide informa-

tion to support condition-based (rather than schedule-based)

maintenance so as to optimize operations and equipment up-

time, and maximize cost efficiency. This may involve a vari-
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mits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

ety of tasks such as fault detection and isolation, degradation

and anomaly identification, or prediction of impending fail-

ures.

The detection of incipient transient faults - faults that are ob-

served over a short time scale, the trend of which grow in

magnitude over time - is a particular challenge in condition

monitoring due to the short time scales and low magnitudes

by which a system deviates from its normal behaviour. Detec-

tion and monitoring of such faults is of great importance be-

cause they are often observed as a precursor to failure, which

may result in an unscheduled withdrawal from service to per-

form a maintenance action. Successful condition monitoring

can lead to pre-emptive fault diagnosis and accurate time to

failure estimates and hence reduce asset downtime by the op-

timisation of maintenance schedules.

Given the perfect analytical model of a system, detection

of abnormal transient behaviour can be easily performed by

residual analysis, see e.g. (Chen & Patton, 1999; Ping Li &

Kadirkamanathan, 2001; Ding, 2013; Isermann, 2011). In

practice, however, such systems often display complex non-

linear behaviour and it is often difficult, if not impossible,

to design a reliable analytical system model due to system

complexity, high dimensionality and multiple operating con-

ditions. In such a case, it may be more appropriate (or essen-

tial) to take a data-driven approach.

Data-driven techniques, often named as data mining or ma-

chine learning, make use of data collected during normal op-

eration, or specifically designed experiments, in order to build

statistical models of system behaviour. To detect anomalous

behaviour, many data-driven techniques require the existence

of target data - data known to contain faults - such techniques

are named supervised learning. However, it is often the case,

such as for safety critical systems (aero gas turbine engines

(GTEs), industrial power generation etc.) that a vast quan-

tity of data under nominal conditions is available but target
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data is very limited, or no such data exists. In this case we

must consider un-supervised/self-supervised learning. Under

this scenario the system’s normal behaviour is characterised,

deviation from which indicates a system fault, referred to as

novelty detection.

In recent years, data driven anomaly detection techniques

have become increasingly popular for transient fault detec-

tion (Chandola, Banerjee, & Kumar, 2009; Ge, Song, &

Gao, 2013; Pimentel, Clifton, Clifton, & Tarassenko, 2014).

A variety of schemes exist which can be broadly separated

into three categories: Reconstruction based, boundry based

and density based. Reconstruction based methods attempt to

model the underlying system behaviour. Fault detection is

achieved through monitoring the reconstruction error. Mod-

els can either be physics based or data-driven. Recently, much

interest has been seen in the use of deep neural networks (Yan

& Yu, 2015; Liao, Jin, & Pavel, 2016). The majority of DNN

methods require labelled training data, however, self super-

vised transient fault detection has been achieved using deep

auto-encoders (Suh, Chae, Kang, & Choi, 2016; Fan, Xiao,

Zhao, & Wang, 2018). Deep auto-encoders attempt to en-

code the input signals into a latent space which is then recon-

structed at the output. Reconstruction based methods suffer

from the presence of unmeasured disturbances and complex

system behaviours that may lead to residuals that are larger

than the magnitude of the fault behaviour to be detected, lim-

iting performance in many real world systems.

Boundary based methods construct a decision boundary to

classify normal/abnormal samples. These methods have been

dominated by sparse vector machines (SVMs) (Jena & Pan-

igrahi, 2014; Görnitz, Lima, Müller, Kloft, & Nakajima,

2017), where the boundary is constructed as the smallest hy-

persphere that contains the (majority) of the training data.

Density based methods test if a sample data point belongs

to the underlying data distribution in a probabilistic manner.

Simple aproaches are based on statistical outlier detection

(Barnett & Lewis, 1974). For more complex data distribu-

tions mixture models (McLachlan & Peel, 2004) and kernel

density estimators (Vincent & Bengio, 2003) can be used. In

both boundary and density based methods, the temporal char-

acteristics of anomalous data is not naturally incorporated. A

popular approach to include such time dependencies is the

hidden Markov model (HMM) (Bishop, 2006) where the sys-

tem is assumed to be a Markov pocess with hidden states. The

HMM has wide applicability and remains a topic of active re-

search (Görnitz, Braun, & Kloft, 2015; Li, Pedrycz, & Jamal,

2017).

Fleet level monitoring of asset condition poses a challenge

for all transient fault detection approaches. Each asset may

be designed to operate in the same manner, however, factors

such as ageing and environmental operating conditions lead

to significant variation in the statistics of collected data across

assets and through time. Defining nominal behaviour, from

which small transient deviations indicate a fault, hence be-

comes problematic. A further problem is that the collected

data is too large to be manually checked for faults and so can-

not be assumed to be healthy. In order to detect such faults,

data driven methods are required which do not depend on su-

pervised learning, can be tailored to represent each data set

individually, and do not rely on the existence of a healthy

data set.

This paper is concerned with the problem of developing meth-

ods for the detection and localisation of previously unseen

transient faults in unbalanced data sets, where normal be-

haviour can be well defined, but no a priori information about

fault modes is available. Training data may therefore con-

tain fault data samples. Significant variation in normal be-

haviour is observed across data sets, such that a global model

cannot be defined. The problem is addressed by the devel-

opment of a machine learning based method using Gaussian-

Uniform mixture models (G-UMMs) and HMMs. The pro-

posed scheme avoids the problems associated with time se-

ries models, either first principles or data driven, and unmea-

sured disturbances are characterised by the variance in the

G-UMM. Temporal information relating to anomalous be-

haviour is retained through the application of the HMM. The

method relies on the assumption that transient faults are ob-

served as outliers to the normal data distribution.

The developed condition monitoring scheme is demonstrated

using a case study based on the detection of transient faults

in the variable stator vane of an aero gas turbine engine. The

method is demonstrated to perform well for the detection of

synthetic faults incorporated into a real data set. Further re-

sults are presented showing the performance of the method

on a healthy data set as well as the detection of a real fault

event.

The rest of paper is organized as follows. In Section 2 the G-

UMM and HMM are introduced, and the transient detection

scheme is detailed. In Section 3 the variable stator vane sys-

tem is introduced and the relevant transient fault modes are

described. The results of the case study are given in Section

4. Finally, concluding remarks are made in Section 5.

2. METHODOLOGY

The method developed in this paper uses machine learning-

based techniques (Bishop, 2006) to perform transient fault

detection for complex systems. Specifically, Gaussian mix-

ture classification and HMMs are employed. In the remainder

of this section, these two techniques are introduced first, and

then the new fault detection method is presented.
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2.1. Gaussian mixture models (GMMs)

A mixture model is a statistical model for representing data

sets which display behaviour that cannot be well described by

a single standard distribution. It allows a complex probability

distribution to be built from a linear superposition of simpler

components. Gaussian distributions are the most common

choice as mixture components because of the mathematical

simplicity of parameter estimation as well as their ability to

perform well in many situations, particularly in the presense

of measurement noise (Dempster, Laird, & Rubin, 1977). A

GMM is a linear superposition of Gaussian densities of the

form (Bishop, 2006):

P (x) =

K
∑

k=1

πkN (x|µk,Σk) (1)

where P (x) denotes the probability density function over the

data x, N (x|µk,Σk) denotes the k’th Gaussian distribution

with mean µk and covariance Σk. πk is a weighting on each

component named the mixing coefficient. K is the total num-

ber of Gaussian mixtures. The GMM can be interpreted in

terms of discrete hidden or latent variables where the discrete

hidden variables can be viewed as defining assignments of

data points to specific components of the mixture, and hence

can be used to classify data as belonging to each distribution

with a given probability or ’responsibility’ denoted ri,k for

the i’th data point in x belonging to the k’th component.

The GMM can represent an arbitrarily complex distribution

given a sufficient quantity of Gaussian components. How-

ever, care must be taken to avoid over-fitting to the training

data, such that K should be kept sufficiently small (McKenzie

& Alder, 1994).

2.1.1. Robust classification with G-UMMs

Gaussian distributions and hence Gaussian mixture compo-

nents are well known to be non-robust (Mt, 2005). Outliers in

the data will skew the estimated distributions. Furthermore,

the transient behaviour to be detected will be observed as an

outlier to the normal data distribution by its very definition.

One method for enforcing robustness to outliers is to use a

mixture of Student-t distributions rather than Gaussians (Peel

& McLachlan, 2000), however, as shall be seen shortly, there

is a significant advantage in classifying outliers as separate

from the normal data distribution. On this basis a modifica-

tion is made to the mixture model by including a single uni-

form distribution component such that equation (1) becomes

P (x) =

K
∑

k=1

πkN (x|µk,Σk) + πK+1U(x|a, b), (2)

where U(x|a, b) denotes the uniform distribution over the in-

terval [a, b]. The Gaussian-Uniform mixture model has the

flexibility to assign outlying data points to the uniform distri-

bution with a large probability. The statistics of the Gaussian

distributions can then be estimated with little influence from

the outlying data points. The addition of the uniform hence

makes the model robust to the presence of outliers as well as

correctly classifying them as such.

The probability that a point is assigned to the uniform dis-

tribution, PU = U(x|a, b), is determined by the parameter

πK+1, to be estimated, as well as the choice of the interval

[a, b]. However, it is simpler both mathematically and intu-

itively to directly assign a probability value. When working

with probability distributions within the exponential family,

it is often convenient to consider log probabilities in order to

simplify the computations. This is the case with expectation

maximisation (EM) for GMMs (discussed in the following

section), as such it is also convenient to consider a log prob-

ability for the uniform distribution, log(PU ), which acts as a

tuning parameter which, along with the weight πK+1, affects

how outlying data points are classified. Increasing log(PU )
may cause more points to be assigned to the K + 1’th mix-

ture, and hence as outliers, and vice-versa.

The addition of the uniform distribution to the GMM has the

further property of collecting all outlying data points into a

single cluster. This property is necessary for the particular

implementation of the HMM used here. The interaction of

the uniform component and the HMM is discussed in Section

2.2.

An example of a G-UMM applied to a complex distribution

formed by the linear superposition of three bivariate Gaus-

sians in the presence of outliers is shown in Figure 1. The

true distribution (Left panel) is formed by sampling from each

Gaussian distribution and outliers are drawn from a uniform

distribution, underlying distributions are represented by 95%

confidence intervals (Black line). 200 data points are drawn

from each Gaussian distribution and 60 outliers are drawn

from a uniform distribution leading to a toal of 660 train-

ing data points. Gaussian distributions estimated by the G-

UMM (middle panel) are consistent with the true distribution,

leading to accurate assignment of outliers. The GMM (right

panel) fails to identify one of the true distribution components

leading to an extra Gaussian distribution taking responsibility

for some of the outliers. The example serves to demonstrate

the robust estimation of the GMM in the presence of outliers.

2.1.2. Parameter estimation

Training the G-UMM requires estimating the model param-

eters πk, µk and Σk for k = 1, . . . ,K + 1. A popular, and

commonly used method, for finding the maximum likelihood

solution for the parameter estimates of a GMM is the EM al-

gorithm (Dempster et al., 1977). Although many alternative

techniques exist (Redner, Walker, Mathematics, & Review,

1984; Nasios & Bors, 2006), the EM algorithm has significant

3



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Figure 1. The Gaussian-Uniform mixture model can remove the influence of outliers from the estimation of the Gaussian
distributions. A complex distribution in the presence of outliers is well characterised by a G-UMM allowing outliers to be
detected. The GMM fails to identify part of the data distribution.

advantages in its simplicity, computational complexity and

convergence properties (Xu & Jordan, 1996). Furthermore

the EM algorithm can be simply extended to estimate the pa-

rameters of the Gaussian-Uniform mixture model (Coretto &

Hennig, 2009).

The EM algorithm is guaranteed to converge to a local max-

imum but not a global one. The choice of initialisation can

have an influence on which local maxima the algorithm con-

verges to. It is therefore important to either make a sensible

choice for the initial mixture component assignment — i.e.

one that is close to some local optimum — or to randomly

initialise and perform multiple runs over the algorithm. A

sensible choice for the initial mixture components may be

available from prior knowledge of the data, otherwise it is

common to use a K-means based clustering algorithm such

as the well known K-means++ (Arthur & Vassilvitskii, 2007).

A number of alternatives and their advantages, including op-

tions for random initialisation, are discussed in (Blömer &

Bujna, 2016). The optimality of the local maxima on conver-

gence can be assessed by observation of the log likelihood,

such that multiple runs over the same data set can be directly

compared.

Once the model has been trained by estimating the model pa-

rameters, the classification of each data point into the differ-

ent G-UMM clusters can be considered as the observed state

of the system.

2.2. Hidden Markov models (HMMs)

The HMM was first developed for speech recognition

(Rabiner, 1989), since then, it has been extended to a wide

variety of applications such as fault detection (Smyth, 1994),

pattern recognition (Baldi & Brunak, 2001; Bishop, 2006)

and health prognosis (Liu, Dong, & Peng, 2012). A HMM is

a statistical model for a doubly embedded stochastic process

with an underlying stochastic process (Markov chain) being

unobservable (i.e. hidden), and this underlying hidden pro-

cess can only be observed through another stochastic process

which produces a sequence of observations (Rabiner, 1989),

here referred to as classes. In the context of fault detection

and condition monitoring, the state sequence of the system to

be monitored is the assumed hidden process that needs to be

estimated for each data point, i.e. the health state of the sys-

tem - healthy or faulty. The classes may be some quantifiable

operating condition of the engine, or it could be the output of

some classification procedure (such as a mixture model).

The HMM is justified under the following two conditions /

assumptions on the system:

i The Markov property of the hidden states, i.e. the hidden

state Xi of the system at sample i depends only on the

hidden state Xi−1 of the system at the previous sample

i− 1.

ii The conditional independence of the class given the sys-

tem hidden state, i.e. the class Yi at current sample i de-

pends only on the hidden state Xi at the current sample i

and not on the past system hidden states or observations.

Conceptually, this means that the current system hidden state

is linked to the previous hidden state by the conditional distri-

bution P (Xi|Xi−1), and hence to all previous hidden states.

The two properties can be expressed formally as follows:

P (Xi|Xi−1, · · · ,X1) = P (Xi|Xi−1) (3)

and

P (Yi|Xi, · · · ,X1,Yi−1, · · · ,Y1) = P (Yi|Xi) (4)

The HMM is illustrated by considering the pictorial represen-

tation given in Figure 2 within the context of fault detection.

The system’s hidden states to be estimated are shown by the

black circles. There are two hidden states: either ‘Nominal’

or ‘Faulty’. The coloured circles represent the classes.

4
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Start

Class 1

Nominal Fault

Observed 

classes

Hidden

states

Initial

state

0.99

0.99

0.5

0.5

0.01

0.01

0.7
0.2

0.1
0.6

0.399

0.001

Class 2

Class 3

Figure 2. Pictorial representation of the Hidden Markov
Model in the context of fault detection

The black arrows between the hidden states represent the

probability of a transition between hidden states at any given

sample, conditional on the hidden state at the previous sam-

ple. These probabilities are collected into the transition ma-

trix, A, with elements

ajp = P (Xi = sp|Xi−1 = sj) j, p = 1, · · · , n. (5)

where n is the number of hidden states, in the current example

n = 2 with s1 = ‘Nominal’ and s2 = ‘Fault’.

The black arrows connecting the Hidden states to the classes

represent the emission probabilities - the probability that an

observation is made, conditional on the hidden state the sys-

tem is in at the current sample. These probabilities are col-

lected in the emission matrix B with elements

bjk = P (Yi = ok|Xi = sj)
j = 1, · · · , n and k = 1, · · · ,m

(6)

where m is the number of the distinct observation symbols,

in the current example, m = 3 with o1 = ‘Class 1’, o2 =
‘Class 2’ and o3 = ‘Class 3’.

Finally, the probability of starting in any given hidden state

is represented by the black arrows connecting the initial state

labelled ’start’ and the hidden states. These probabilities are

given by the vector S0

For the example illustrated in Figure 2 the transition and

emission matrices and the initial state vector are given by

A =

[

0.99 0.01
0.5 0.5

]

, B =

[

0.6 0.399 0.001
0.1 0.2 0.7

]

,

(7)

S0 =

[

0.99
0.01

]

(8)

respectively.

A HMM is defined by these three matrices (A, B, S0) which

can be estimated from a training data set using, for example,

the EM algorithm among others. However, if there is no la-

belled training data available, an alternative method for the

choice of these matrices shall have to be used. This choice of

matrices is problem specific and is discussed below.

Given the required matrices and a sequence of classes the

hidden states can be estimated. Two common methods for

performing the state estimation are the forward backward al-

gorithm (Rabiner, 1989) and the max-sum algorithm, also

named the Viterbi algorithm in the context of HMMs (Viterbi,

1967).

2.3. G-UMM - HMM based fault detection

The G-UMM and the HMM are combined to form an effec-

tive method for the detection of transient faults. Although the

method could be applied in the case where labelled training

data is available, here it assumes that this is not the case and

all learning must be self-supervised (i.e. the HMM matrices

are set based on labels generated by the G-UMM). Further-

more, we assume that the process data originates from a va-

riety of different assets whose data characteristics may vary.

The variation may be due to different degradation levels, envi-

ronmental variables or operating conditions. Such a scenario

is a common one in the real world: for example, a fleet of air-

craft may be built to the same specifications but will operate

with varied temperatures, levels of maintenance and compo-

nent age.

Firstly, the number of Gaussian components, K, is chosen,

and the G-UMM is initialised and trained on an input data

set (that may or may not contain any transient faults) in the

space of the raw signals or in an appropriate feature space. K

should be chosen sufficiently large, such that the G-UMM

can accurately describe the distribution of the data, while

remaining small enough to avoid over-fitting (Kim & Seo,

2014; McKenzie & Alder, 1994) and produce physically in-

terpretable clusters where possible to aid the setting of the

parameters of the HMM in the following step. The HMM

is used in order to include the temporal relationship into the

fault detection scheme. The G-UMM responsibilities, rik,

are the observed state of the HMM. In order to estimate the

HMM hidden states, the emission, transition and initial states

must be determined. The transient nature of the faults to be

detected implies that they are infrequent and occur over small

time scales. Even in a data set containing faults, the assump-

tion has been made that a large amount of healthy training

data exists such that there is significantly more healthy data

than fault data. Based on this, is is assumed that the num-

ber of faulty data points is negligible in comparison to the

number of healthy data points. The emission matrix values

relating to the healthy state are then given by the proportion

of data points in each of the classes, given by the G-UMM

mixing coefficients πk.

The elements of the transition and emission matrices, A and

B respectively, act as tuning parameters for the algorithm.

5
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Increasing the probability of the transition between states af-

fects the flexibility of the algorithm to assign the fault state to

a data point and vice-versa. The sensitivity of the algorithm

to these parameters is limited by incorporating the probabilis-

tic state assignment of the G-UMM into the HMM such that,

if the G-UMM determines that a data point is highly likely

to be in a certain state, then this large probability outweighs

those in the transmission and emission matrices. To achieve

this, a probabilistic class observation is considered. The class

observation is used as past of the propagation through the

forwards-backwards algorithm. The probability that a given

class is observed at sample i is

P (oi = k) = P (Yi,k = 1|x) = ri,k, (9)

exactly the G-UMM responsibility.

The probability of the system being in the j’th hidden state is

then given by

P (Oi = j) =
∑

k

P (oi = k)P (Yi,k|Xi,j) (10)

=
∑

k

ri,kbj,k (11)

The i’th hidden state probabilities are represented in matrix

form by a diagonal observation matrix, Oi with diagonal ele-

ments P (Oi = j), given by

Oi(ri) = diag(Br
T
i ), (12)

where ri = [ri,1, ri,2, ..., ri,K+1]. The forward-backward al-

gorithm then proceeds as normal, as described in (Rabiner,

1989).

The elements of the emission matrix, B, for the faulty state

as well as those for the transition matrix, A, are chosen based

on the application. Typically, the probability of observing an

outlier when in the faulty state will be much higher, guiding

the choice of values. The initial state vector is simply chosen

so as to be almost certain that the state sequence will start in

the healthy state.

X

U-GMM

i Y1:NYi X ixi

hidden

States(classes

Figure 3. G-UMM -HMM based fault detection

2.4. Summary of the transient fault detection scheme

The proposed fault detection procedure is shown pictorially

in Figure 3 and is summarised as follow:

1. Select appropriate system signals that well define the op-

erating behaviour.

2. Initialise the G-UMM by assignment of each data point

to an initial cluster.

3. Train the G-UMM in order to characterise the operating

region in the space of the selected signals and estimate

the G-UMM responsibilities

4. Assign HMM transition, emission and initial sate matri-

ces

5. Apply the HMM algorithm to the set of classes found by

the G-UMM classification in step 3 to estimate healthy

and faulty hidden states

3. CASE STUDY: VSVA TRANSIENT FAULT DETECTION

The system of interest for this study is the variable stator vane

actuator (VSVA) used in aero GTEs. Transient faults have

been observed in test bed data for the VSVA system in the

presence of a build up of friction, providing an example of the

type of fault of interest in this work. The VSVA shares many

behavioural characteristics, and hence fault modes, with other

controlled actuation systems components giving a wider ap-

plicability to the current study.

3.1. VSVA operation

The VSVA controls the position of the variable stator vanes

(VSVs) in a GTE in order to manage the efficiency and sta-

bility of the compressor system. Figure 4 shows a block dia-

gram of a VSVA for VSV position control. The operation of

the VSVA can be summarised as follows:

1. The demanded position of the VSV is set by the elec-

tronic engine controller (EEC) control architecture ac-

cording to estimates of air mass flow.

2. The VSVA position is measured by a linear variable

displacement transformer (LVDT) inside the VSVA and

continuously transmitted to the EEC.

3. The error between the demanded and measured position

is calculated and fed into a PID controller that sets the

demanded torque motor current (TMC).

4. The VSV torque motor (TM) controls the servo valve

allowing pressurised fuel to be fed to either side of the

actuator ram, moving the position of the VSV.

5. When the VSV reaches the correct angle the TM is in-

structed, via the EEC, to set the spool valve into the null

position by producing a holding current, preventing fur-

ther movement of the actuator.

The actuator can be considered to have three distinct oper-

ating modes, extending (moving in the forward direction),

6
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TMC

Figure 4. Block diagram of a VSVA

retracting (backwards direction) and approximately station-

ary. Note that a current is still required when the actuator is

stationary and to reject disturbances. The actuator provides

a larger force when it is extending than when it is retracting

such that the actuator moves at different velocities when mov-

ing in different directions. The velocity of the VSVA is also

dependant on the high pressure (HP) shaft speed.

3.2. Problem statement

Faults can occur in the components of the VSVA shown in

Figure 4. One of the potential fault modes that has been iden-

tified by an industrial partner relates to a build up of mechan-

ical friction in the system causing intermittent sticking. A

transient deviation from normal behaviour is observed when

the VSV becomes temporarily ‘stuck’ and unresponsive to its

driving control signal. Such faults occur in the event of an

actuator jam, due to mechanical friction, or the VSV con-

trol valve sticking, due to the build up of sediment in the

valve. In both cases, the error between the demanded and

measured VSVA position increases causing a large tracking

error. This results in the feedback control architecture in-

creasing the TMC with no resultant change in the measured

VSVA position signal. The fault mode is of particular inter-

est because it is common to many components of a GTE that

involve position tracking. Low levels of sticking are expected

and are observed in the healthy system. The fault detection

task must quantify the magnitude of a transient fault in order

to differentiate a developing fault from the baseline.

An example of such a transient fault observed in test-bed data

is shown in Figure 5. At the onset of the sticking event, the

demanded and measured position signals diverge, which re-

sults in the TMC decreasing to its minimum value, as shown

in Figure 5.

The G-UMM HMM method developed in this work is em-

ployed in order to localise transient faults to achieve a high

detection resolution, such that low magnitude/developing

sticking events can be identified. Once the faults have been

localised in the time series data then analytics can be gener-

ated. The interpretability of these analytics is essential such

that they can be used as an aid in diagnosis.

3.3. Choice of engine signals

It is important to select signals that maximise the amount of

information relating to the fault of interest, while also keep-

ing the dimensionality as small as possible. Two of the sig-

nals that are highly sensitive to the fault are the tracking error

(difference in the demanded and measured position of the ac-

tuator) and the VSV velocity (estimated from the measured

VSV position). The final signal that is chosen is the VSV

Torque Motor Current which drives the actuator movement.

3.4. G-UMM initialisation

The G-UMM is initialised by selecting the number of clus-

ters, K, and the initial assignment of data points to each clus-

ter. Here, the choice of initialisation is made using domain

knowledge. It is clear from a preliminary study of the data

that there are approximately three different underlying distri-

butions in the signal space chosen in Section 3.3, correspond-

ing to the three operating modes discussed in section 3.1. The

vast majority of the data is in the stationary mode; centred

around zero velocity, zero tracking error and the holding cur-

rent (approx. 16mA). The rest of the data falls into the extend-

ing and retracting modes depending on whether the velocity is

positive or negative. For this reason, the G-UMM algorithm

is initialised by assigning each data point into K = 3 clus-

ters defined by the following thresholds on the VSV veloc-

ity: VSV velocity < −0.01, −0.01 ≤ VSV velocity ≤ 0.01
and VSV velocity > 0.01, see Figure 6: Middle Panels. The

velocity thresholds are simply chosen by observation of the

VSVA velocity signal, such that positive, negative and near

zero velocities are separated into different clusters. It should

be noted that it is not necessary to fine tune this value, as it

has been found that a range of values within this region will

converge to the same local maxima. A random selection of

100 data points are assigned to the outlier distribution to en-

sure algorithmic stability.

The log probability level of the uniform distribution is set to

log(PU ) = −20, the value is chosen by trial and error for

7
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Figure 5. True ‘Sticking’ event - TMC (Red line) reaches its minimum value for over 3 seconds due to the large error in the
demanded (Pink line) and measured (Blue line) position signals.

one data set and then validated by observation on additional

data sets. It was found that values in this region (±10) led

to almost identical results. The weighting of the data points

performed by the algorithm is observed to have a large effect

on the distribution assignment, such that the algorithm is not

sensitive to small changes in the uniform probability distribu-

tion parameters.

3.5. Choice of HMM matrices

The matrices that define the HMM are chosen so that they

reflect the fault detection scenario as discussed in Section 2.3.

The matrices were chosen as follows

Transition matrix:

A =

[

0.99 0.01
0.5 0.5

]

(13)

Emission matrix:

B =

[

π1 π2 π3 π4

0.00001 0.05 0.05 0.89999

]

(14)

Initial state matrix:

S0 =

[

0.9999
0.0001

]

(15)

The choices are justified as follows: The transition matrix re-

flects a system in the healthy state is likely to remain in that

state, by choosing A11 ≫ A12, and has equal probability

of remaining or leaving the unhealthy state with A21 = A22.

The elements of the emission matrix in the fault state are cho-

sen from knowledge of the system. The probability of a data

point in the fault state being in the outlier cluster (B2,4) is

large because transient faults are observed as outliers to the

nominal distribution of the data. There is a smaller chance

that the fault will be found in the clusters at negative/positive

speeds (B2,2 and B2,3) and very little chance it will be in the

stationary cluster (B2,1, because these data points have a low

TMC and are not being commanded to move). It is assumed

that the system starts in the healthy state with large probabil-

ity (S0,(1,1) ≫ S0,(1,2)).

4. RESULTS OF VSVA TRANSIENT FAULT DETECTION

In this section results of a transient fault detection study are

given. Results are first given for a synthetically generated

fault and then a healthy data set. A simple analytic is chosen

to quantify the severity of the fault. The results of the initial

studies provide a threshold value for the analytic and assess

the ability to reject false positives. The threshold is then used

in order to detect a sticking event in real data. Training of the

G-UMM is performed in the space of the raw signals.

4.1. Synthetic fault study

In this section, results and discussion are given for the de-

veloped fault detection scheme applied to a real data set into

which synthetic faults have been injected.

4.1.1. Synthetic fault generation

Synthetic faults are injected into a time series data set con-

taining 15498 data points for a single real flight, see Figure 7

- Lower panels. A visual comparison to the true fault event

observed in Figure 5 shows that a good match is found be-

tween the synthetic faults and the true scenario

8



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Figure 6. Initialisation and training of the G-UMM - Clustering nominal data

Four faults of increasing duration are injected into the healthy

data set with a length of 1, 2, 4 and 5 seconds (4, 8, 16 and 20
data points respectively). Two example of the generated syn-

thetic faults are given in Figure 7. The magnitude of the fault

is dependent on the true behaviour of the demanded signal at

the fault location. It can be seen from Figure 8 that the faults

generate data points that fall outside of the normal operating

region of the engine in the space of the signals. The short-

est synthetic sticking event (1s) causes a divergence from ex-

pected behaviour that is of similar magnitude to observations

in real, healthy data and is not expected to be differentiable.

Note that some of the data points do fall inside this normal op-

erating region. In order to accurately compute the length of

the sticking event it is necessary to be able to identify these

data points.

4.2. Fault quantification and thresholding

Two analytic are used to describe the potential fault events

detected by the G-UMM HMM algorithm. The first analytic

is the length of the detected event, defined as the number of

consecutive samples for which the system is in the fault state

for each potential fault instance. The second is the cumu-

lative sum (CUSUM), over a potential fault location, which

quantifies the magnitude of a sticking event. The CUSUM

analytic is designed to provide an interpretable measure of

the magnitude of the individual sticking event such that it can

be monitored over time. The CUSUM is used to remove po-

tential sticking events of low magnitude, that are considered

to be part of the normal operating behaviour of the system.

A simple thresholding procedure is applied to both analytics,

9
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Figure 7. Two examples of a synthetic fault injected into a
flight test time series. The measured signal is held constant
over the region of ‘stick’ and the TMC increases/decreases in
response to the increased tracking error.

the thresholds are chosen based on observation of the data.

4.2.1. Synthetic fault results

The G-UMM is trained on the real data set with injected syn-

thetic faults using initialisation based on the VSVA velocity,

as described in Section 3.4. The elements of the HMM ini-

tial state, transition and emission matrices are assigned as in

Section 3.5 such that they are given by equations (13)-(15),

where the upper row of the emission matrix, B, relating to

the emission probabilities in the healthy state is calculated as

part of the G-UMM training phase.

The HMM is then applied to the series of classes estimated by

the G-UMM and the hidden states are estimated. The result

is shown in the space of the signals in Figure 10.

In total, 12 potential fault locations are detected by the al-

gorithm. The analytics calculated over these locations are

shown in Table 1. Of the 12 potential events that are de-

tected, four are related to the synthetic faults injected into the

system. The analytics relating to the true synthetic faults are

highlighted in bold.

4.2.2. Discussion of synthetic fault results

The G-UMM training in the presence of fault events assigns

clusters in the same operating regions as for the healthy data

Table 1. Generated analytics for the synthetic fault data set

Length CUSUM Threshold Alert

1 1 0.0282 ✗

2 2 0.0966 ✗

3 7 1.1730 ✓

4 13 1.5117 ✓

5 17 7.0798 ✓

6 1 0.0548 ✗

7 1 0.0586 ✗

8 1 0.0508 ✗

9 2 0.1037 ✗

10 1 0.0008 ✗

11 1 0.0358 ✗

12 1 0.0265 ✗

set, see Figure 9 in comparison with Figure 6. As before the

algorithm assigns the vast majority of the data to a cluster

in a small region of the signal space where the actuator is

approximately stationary.

This can be seen as the ‘elbow’ of the data distribution in Fig-

ure 9. There are two other branches of the data distribution

which can be attributed to the behaviour of the VSV when it

is moving in positive and negate directions. These two areas

contain significantly fewer data points in comparison. The

implication of this is that many clustering/classification algo-

rithms see the ‘elbow’ of the data distribution as containing

all the useful information and will see the remaining data as

unimportant for describing the data. For example, the SVM

is an alternative and very popular method for the classifica-

tion/clustering step. Experimentation has shown that due to

the described problem, the SVM must assign an extremely

large amount of support vectors (essentially all of the data

that is not in the ‘elbow’) causing the SVM to predict the out-

liers extremely poorly. In comparison, the G-UMM is able to

put a distribution over the main mass of the data set and fur-

ther distributions over the positive and negative VSV velocity

areas. This allows the whole data set to be characterised well.

The uniform distribution then facilitates the detection of out-

liers. A further advantage is the simplicity (both mathemati-

cally and computationally) of the algorithm.

A threshold on the length analytic is chosen as TL = 1
such that potential faults of length 1 are not considered. The

choice helps to reject any outliers that have been misclassi-

fied by the G-UMM HMM algorithm and which might have a

large CUSUM value despite having a short length. A thresh-

old value for the CUSUM analytic is chosen based on the

CUSUM values given in Table 1. The threshold, TCS , is cho-

sen by observation as TCS = 0.5, such that any CUSUM

value observed above this is considered to be a true fault

event caused by sticking in the actuator. As may be ex-

pected, more than the four synthetic sticking events are de-

tected. Of the four synthetic faults, all but the shortest (1s
stick) have a CUSUM of magnitude greater than the threshold

of TCS = 0.5, simply differentiating them from those that are
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Figure 8. Visualising synthetic faults in the space of the parameters

Figure 9. G-UMM Classification of outliers in faulty data.
The data distribution has been classified into three areas; Pos-
itive velocity (Green dots), negative velocity (Blue dots) and
near zero velocity (Red dots). Outliers have been assigned to
the uniform distribution (Pink dots).

Figure 10. Fault detection using HMMs: Detected faults in
the space of the input signals.

part of normal operation. The origin of these potential false

positives is the large probability that the producing data point

is in the outlier cluster. If the outlier has negligible proba-

bility of belonging to the normal distribution of the data, the

HMM may misclassify it as faulty. The length of the sticking

events is significantly longer for the synthetic faults than for

the falsely identified data points. Three of the four synthetic

sticking events can be detected wi th no false positives, as in-

dicated in Table 1. As expected, for the 1s synthetic sticking

event, the tracking error displayed over the duration of the

fault, and hence the CUSUM, is less than the threshold TCS

as well as at another detected event in the data that is part of

normal operation. This event is hence not differentiable from

behaviour considered as healthy. Investigating the competing

section of data, it is found that a significant tracking error and

large current is found at this point, indicating that the control

architecture is struggling to match the demanded position.

The length analytics does not match the length of the gener-

ated faults. This is because at the start of the faults the track-

ing error is indistinguishable from the noise in the healthy

signal and so the start point cannot be detected accurately.

Overall the method is found to work well for this synthetic

case study. The method detects a suitable level of potential

fault events from which a baseline level of health can be es-

tablished. Within these all of the synthetic faults under test

are located, although as expected the lowest level is not dis-

tinguishable from the base line.

4.3. Healthy data set study

The method is now employed over a data set containing 14

real test flights that are consecutive in time. The average num-

ber of training data points across all data sets is 36663. The

data set is not expected to show any sticking behaviour and

so is considered as normal for the purpose of this study.

4.4. Healthy data set study results

The G-UMM is trained individually for each flight, using only

the data from that flight data set, parameters are initialised as
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before. The HMM is then applied with matrices set as before.

The results show a reasonably uniform level of magnitude in

each of the analytics as can be seen in Figure 11. The number

of detected events fluctuates between 2 and 6 with flight 14

detecting a largest amount (6 events). The average length of

the sticking events is low, with no events with length greater

than 4. Recalling that the sampling frequency is 4Hz for this

data set, there are therefore no detected events lasting longer

than one second. The CUSUM analytic is also low for all

flights, with the maximum being less than 0.4. This gives us

confidence in the choice of threshold chosen in Section 4.2

since, as expected, all of the detected event are considered as

part of normal system behaviour based on the threshold.

Figure 11. Analytics for the fault detection applied scheme
applied to a set of 14 healthy flights.

4.4.1. Discussion of healthy data set results

In comparison to the synthetic faults in the previous exam-

ple the baseline level detected events for the healthy flights is

significantly less than all but the shortest (1s) synthetic fault.

This result gives us confidence in the ability to detect true

sticking events using a simple threshold on the CUSUM. Note

that the 1s synthetic fault in the previous example is compa-

rable to tracking delays found during normal operation.

4.5. Real sticking event results

The method is applied to the task of detecting a real stick-

ing event, pictured in Figure 5. G-UMM and HMM pa-

rameters/matrices are initialised as before. The threshold on

the CUSUM is set as determined in Section 4.2.2, namely

TCS = 0.5. The generated analytics are given in Table 2.

The true sticking event has been detected by the algorithm,

see Figure 12, and has been assigned a large CUSUM value

of 4.7161, see Table 2. All other potential events are assigned

a CUSUM value much less than the threshold and are hence

rejected.

Figure 12. Detected faults for the reall sticking event.

Table 2. Generated analytics for the real sticking event.

Length CUSUM Threshold Alert

1 1 0.0232 ✗

2 1 0.0212 ✗

3 1 0.0244 ✗

4 5 0.0907 ✗

5 1 0.0111 ✗

6 1 0.0233 ✗

7 1 0.0202 ✗

8 1 0.0197 ✗

9 1 0.0019 ✗

10 30 4.7161 ✓

4.5.1. Discussion of real sticking event results

The algorithm is successful in detecting the real sticking event

in the data. The assigned length and CUSUM analyics are

significantly larger than the respective thresholds. The true

sticking event. as well as the potential events that are de-

tected by the algorithm are of comparable magnitude to those

calculated in the synthetic data set study, see Table 1. The re-

sult gives further confidence in the algorithms ability to detect

transient sticking.

5. CONCLUSION

In this work a new fault detection scheme has been developed

for the detection of transient faults in time series data. The

scheme characterises the data using a G-UMM which in turn

provides the observed classes a HMM that has the ability to

predict the hidden state of the system, either healthy or faulty.

The G-UMM HMM fault detection scheme is shown to be

well suited to the task of condition monitoring in the case of

the detection of transient faults by application to a real world

case study. The case study considers the detection of transient

faults in the VSV of a GTE. Results are given for synthetic

faults, normal healthy data and a real fault event.

The results of the synthetic data study show that the devel-

oped method performs well at detecting transient faults of the

type investigated in this study. The data is relatively low fre-

quency (4Hz), limiting the detectability of faults over a very
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short time scale. Given a higher sampling frequency it is ex-

pected that much shorter time scale transients will be able to

be detected. The CUSUM of the synthetic faults given in Ta-

bles 1 and 2 indicate that the detected transient faults are eas-

ily differentiable from the base level of detection. This can

be seen by comparison of both the potential false positives,

also shown in Tables 1 and 2, and the study performed over

multiple real data sets, shown in Figure 11. For the case of a

real fault, the fault event is detected by the proposed scheme.

The developed method relies on the assumption that the data

is representative of the healthy behaviour of the system. How-

ever, it is possible that anomalous data is observed at normal

operation (due to, for example, unusual changes in operating

condition or large unmeasured disturbances), although such

examples are not observed in the given case study. In this

case post processing, via pattern recognition algorithms or

expert knowledge, is required to determine the cause of the

anomaly. The diagnosis should be fed back in to the process

in order to inform future decisions, and indicates a future di-

rection of this work.

The developed condition monitoring approach therefore

achieves a step change in capability for the presented VSVA

case study. The new approach provides capability in both

early detection of developing faults as well as in the ability to

generate interpretable analytics to quantify the health of the

system. The approach can be readily applied to a wider range

of applications in which normal operating behaviour can be

well defined by a G-UMM.
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