

This is a repository copy of Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/135530/</u>

Version: Accepted Version

Article:

Durdziński, PT, Ben Haha, M, Bernal, SA et al. (13 more authors) (2017) Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements. Materials and Structures, 50 (2). 135. ISSN 1359-5997

https://doi.org/10.1617/s11527-017-1002-1

© 2017, RILEM. This is a post-peer-review, pre-copyedit version of an article published in Materials and Structures. The final authenticated version is available online at: https://doi.org/10.1617/s11527-017-1002-1. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Outcomes of the RILEM round robin on degree of reaction of slag and fly
2	ash in blended cements
3	
4	Authors
5	Paweł T. Durdziński ¹ , Mohsen Ben Haha ² , Susan A. Bernal ³ , Nele De Belie ⁴ , Elke Gruyaert ⁴ , Barbara
6	Lothenbach ⁵ , Esperanza Menéndez ⁶ , John L. Provis ³ , Axel Schöler ⁵ , Christopher Stabler ² , Zhijun Tan ³ ,
7	Yury Villagrán Zaccardi ^{4,7} , Anya Vollpracht ⁸ , Frank Winnefeld ⁵ , Maciej Zając ² , Karen L. Scrivener ¹
8	
9	¹ Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne, Station 12, CH-1015
10	Lausanne, Switzerland
11	² HeidelbergCement Technology Center GmbH, Rohrbacher Str. 95, 69181 Leimen, Germany
12	³ Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield
13	Building, S1 3JD Sheffield, UK
14	⁴ Magnel Laboratory for Concrete Research, Ghent University, Technologiepark Zwijnaarde 904, 9052
15	Ghent, Belgium
16	⁵ Laboratory for Concrete and Construction Chemistry, Empa, Swiss Federal Laboratories for Materials
17	Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
18	⁶ Eduardo Torroja Institute of Construction Science (IETcc-CSIC), C/. Serrano Galvache 4, 28033
19	Madrid, Spain
20	⁷ LEMIT-CONICET, 52 entre 121 y 122, 1900 La Plata, Argentina
21	⁸ Institute of Building Materials Research, RWTH Aachen University, Schinkelstr. 3, 52062 Aachen,
22	Germany
23	
24	Abstract
25	Working group 2 of the RILEM TC 238-SCM undertook a comparison of laboratories and techniques
26	for the quantification of the degree of reaction of supplementary cementitious materials in blended
27	cements. A common set of binary pastes of Portland cement with two slags, a calcareous and a siliceous
28	fly ash was tested in seven laboratories. Selective dissolution produced rather scattered and slightly
29	underestimated results due to imperfect corrections. The analysis of portlandite consumption was found
30	to significantly underestimate the reaction unless additional data from XRD and electron microscopy
31	was gathered to complete the corrections. Despite limited access to electron microscope among the
32	participants and thus only a small data set being collected, this technique appeared as one of the most
33	reliable. A lack of a strict protocol and excessive overlap of slag and C-S-H signals were the main reasons
34	behind the considerable scatter of the XRD-PONKCS results. The generated data showed that the
35	precision of determination of the degree of reaction of SCMs in cement is rather low and at best \pm 5 %.
36	
37	Keywords: Supplementary Cementitious Materials, Selective dissolution, Thermogravimetry, XRD,

38 SEM-image analysis

39 1 Introduction

40 Working group 2 of the RILEM TC 238-SCM: Hydration and microstructure of concrete with 41 supplementary cementitious materials (SCMs) undertook a comparison of the methods in several 42 laboratories, to determine the degree of reaction of slag and fly ash in composite cements. The 43 quantification of the degree of reaction of SCMs in hydrating cement is challenging and each of the 44 available methods has strengths and weaknesses. The currently available methodologies have recently 45 been summarized by the abovementioned committee in [1], but their actual inter-laboratory variation has 46 never been tested. For this study four techniques were chosen: (1) selective dissolution using EDTA for 47 slag cements and salicylic acid + HCl for fly ash cements, (2) analysis of the consumption of portlandite 48 content measured by thermogravimetry (TG), (3) X-ray powder diffraction (XRD) with PONKCS 49 refinement (partial or no known crystal structure) and (4) scanning electron microscopy with image 50 analysis (SEM-IA).

51

52 Selective dissolution of composite cement pastes aims to dissolve all paste components except the 53 unreacted SCM, which can then be quantified. In practice, a part of the slag or fly ash is dissolved while 54 some hydrates and unreacted clinker remain. Despite corrections, large, non-quantifiable, systematic 55 errors may remain and lead to spread in results [1].

56

57 An analysis of the SCM reaction from the consumption of portlandite was studied by mass-balance [1]. 58 The degree of reaction of an SCM is calculated from the stoichiometric amount of silica required from 59 the SCM to react with the portlandite. The errors are mainly related to the fact that the Ca/Si ratio of the 60 C-S-H changes in the presence of reacting SCMs and that the uncertainty of portlandite content measured 61 may propagate to a significant variation in the degree of reaction.

62

63 SEM-IA of epoxy impregnated polished sections uses backscatter electron images (BSE) and EDS maps 64 of the content of elements to extract areas in the images that correspond to anhydrous SCMs. The area 65 fraction of anhydrous SCMs in images is equal to their volume fraction in paste and is thus used to 66 calculate the degree of reaction. The critical issue lies in an accurate segmentation of the images. BSE 67 grey level of the SCMs is often similar to that of the hydrates and supplementary information may be 68 required from EDS maps of element content. Slags are rich in Mg, which facilitates their separation but 69 more sophisticated selection thresholds are needed to segment fly ash, with calcareous fly ash being the 70 most difficult to tackle [5]. Overestimation of the degree of reaction may be due to the presence of very 71 fine SCM particles, below or around the resolution of the microscope and because in images, the captured 72 sections of 3D features appear mostly smaller than the actual equatorial sections [6].

73

By coupling PONKCS [3] to the XRD-Rietveld analysis the different amorphous materials can be quantified from their diffuse scattering 'hump'. A separate scan of the amorphous component is used to calibrate a model, which relates the diffraction signal of this component to its content. An assessment of this relatively new technique to quantify SCMs in model mixes of slag, metakaolin, quartz and hydrated white cement showed excellent accuracy (2-3 wt.%) and precision (around 1 wt.%) [4]. However, in real 79 blended systems partial or entire overlap of the SCM signal with that of the main amorphous hydrate C-

80 S-H may lead to significant errors [1].

81

Binary pastes of Portland cement with two slags, a calcareous and a siliceous fly ash were prepared by the coordinating laboratory (EPFL) and sent out to other participants for analysis. As each participant followed their own protocols, the analysis of the collective data gave an idea of the maximum interlaboratory variability in the results, which should be universally applicable. This study assesses the accuracy, precision and feasibility of application of the four selected techniques to determine degree of reaction of slag or fly ash in composite cements.

88 2 Participants

89	Seven laboratories participated in this round robin test:
90	Laboratory of Construction Materials, EPFL, Switzerland
91	HeidelbergCement Technology Center GmbH, Germany
92	• Department of Materials Science and Engineering, The University of Sheffield, UK
93	Magnel Laboratory for Concrete Research, Ghent University, Belgium
94	Laboratory for Concrete and Construction Chemistry, Empa, Switzerland
95	Institute of Building Materials Research, RWTH Aachen University, Germany
96	Eduardo Torroja Institute of Construction Science (IETcc-CSIC), Spain
97	
98	The participants were given the freedom to choose the techniques to apply and to follow their own

99 protocols. The laboratories were assigned random letters A-G.

100 3 Materials

101 The materials used for the study were Portland cement (PC), two slags (S1 and S2), siliceous fly ash 102 (SFA), calcareous fly ash (CFA) and quartz (Q). The chemical composition and the phase composition 103 of the anhydrous materials are given in Table 1. The XRD-Rietveld refinement of clinker phases in 104 anhydrous PC was carried out on samples treated with salicylic acid/methanol (SAM) and with 105 KOH/sucrose. The two slags investigated were > 99% amorphous and of very similar chemical 106 composition. The particle size distributions of the anhydrous materials were measured by laser diffraction 107 in isopropanol suspensions (refractive index components: n = 1.70, k = 0.1, solvent 1.39) using 108 a Malvern MasterSizer S and are presented in Figure 1.

110 Table 1. Bulk chemical composition by X-ray fluorescence and phase composition by XRD-Rietveld

	S 1	S2	CFA	SFA	PC	Q		CFA	SFA	PC
Al ₂ O ₃	11.6	11.6	19.8	24.4	5.7	1.0	C ₃ S	-	-	66.2
SiO ₂	36.5	36.7	42.3	70.8	19.3	97.9	C_2S	2.5	-	7.0
CaO	40.8	38.9	20.7	0.1	63.7	0.0	C ₃ A	1.0	-	6.5
Na ₂ O	0.5	0.2	0.3	0.1	0.2	-	C_4AF	2.0	-	11.9
K_2O		0.7	1.5	0.6	1.2	0.8	Quartz	1.3	14.9	0.2
MgO	7.5	7.8	2.2	0.2	1.6	-	Calcite	-	-	0.7
Fe ₂ O ₃	1.4	0.5	8.2	2.2	3.6	0.0	Dolomite	-	-	0.4
SO ₃	2.1	2.8	1.4	-	3.2	-	Mullite	-	19.3	-
TiO ₂	-	0.9	0.7	1.5	0.3	0.0	CaO + Ca(OH)	1.7	-	0.2
P_2O_5	-	-	0.3	0.1	0.2	0.0	Anhydrite	1.8	-	4.6
Mn_2O_3	-	-	-	0.1	0.1	-	Arcanite	-	-	2.1
LOI			1 1		0.0	0.2	Destates			0.0
(1050°C)	-	-	1.1	-	0.8	0.2	Periciase	-	-	0.2
Sum	100.0	100.0	98.5	100.0	99.8	100	Amorphous	89.7	65.8	-

111

Figure 1. Particle size distributions determined by laser diffraction.

The study was carried out using paste samples, all of which were prepared by one laboratory. Binary composite cements were prepared with PC and 40 wt.% slag (PC-S1 and PC-S2) or 30 wt.% fly ash (PC-SFA and PC-CFA). Reference samples included neat PC and mixes of PC with 40 wt.% and 30 wt.% quartz inert filler (PC-Q40 and PC-Q30 respectively). The powders were mixed with water at a water/binder ratio 0.4 using a laboratory mixer at 1600 rpm. The pastes were cast in cylindrical polypropylene containers of 33 mm internal diameter and sealed-cured for 1, 7, 28 and 90 days. Additional samples were demoulded after 1 day and water-cured until 28 and 90 days in slightly larger

- 123 containers topped with a minimal amount of water. After curing, discs of around 2-3 mm thickness and
- 124 33 mm diameter were cut from the paste cylinders. These discs were stored in lots of six per 200 mL of
- 125 isopropanol for 7 days to stop hydration by solvent exchange. The isopropanol was replaced after 1 and
- 126 3 days of storage. The discs were then kept in vacuum desiccators (approx. 7 mbar) for 7 days to remove
- 127 the isopropanol. After that, the samples were sealed in vacuum bags and sent out to the participants. The
- 128 participants removed by gentle grinding prior to testing an outer layer of material from the samples, as it
- 129 may have carbonated during the transport and storage.

130 4 Methods

4.1 Selective dissolution of fly ash cement pastes with salicylic acid + HCl (D,E) and of slag cement
pastes with EDTA + TEA + DEA (D, E, F, G)

133 Selective dissolution was carried out in triplicate on anhydrous fly ashes and slags and on all their pastes.

134 Prior to dissolution the samples were ground to $<125 \,\mu$ m in lab D, $<63 \,\mu$ m in lab E, and $<90 \,\mu$ m in lab 135 F.

136

The dissolution of anhydrous cement, slags, fly ashes and the neat PC paste was carried out to determine the undissolved residue of these materials, which in the perfect case should be zero for the Portland cement and its paste and 100 wt.% for the SCMs. Details of the dissolution procedures are provided in further parts of this section. The results given in Table 2 show that only 70-80 wt.% of CFA remained undissolved, which makes it unacceptable for the determination of the degree of reaction by this method. The residue of slags was rather low, around 90 wt.%, but still acceptable.

143

Table 2. Residues after selective dissolution of the anhydrous materials and the Portland cement paste[wt.%].

Laboratory		D (RWTH)	E (Ghent)	F (Sheffield)
EDTA+TEA+DEA	Anhydrous cement	0.42	0.43 ± 0.13	0.10 ± 0.01
	PC paste	1.31		-
	S1	<mark>89.92</mark>	95.03 ± 0.14	92.20 ± 0.47
	S2	90.12	95.20 ± 0.73	92.20 ± 0.47
Salicylic acid + HCl	Anhydrous cement	<mark>1.18</mark>	<mark>0.92</mark>	-
	PC paste	<mark>0.96</mark>	<mark>0.82</mark>	-
	CFA	<mark>71.70</mark>	79.48 ± 0.54	-
	SFA	<mark>97.94</mark>	99.68 ± 0.25	-

¹⁴⁶

Unreacted fly ashes and PC-fly ash pastes in 2 ± 0.02 g samples were mixed for 30 min with 200 mL of HCl + salicylic acid + methanol, a method based on the European standard CEN/TR 196-4 (2007) for the determination of the composition of anhydrous blended cements. The acid solution was prepared from 41 mL HCl and 50 mg salicylic acid, made up to 1000 mL with methanol. The dissolution residues

151 were vacuum filtrated on pre-dried glass fibre filters, washed, dried at 100 °C and weighed. This

152 treatment dissolves sulfate-bearing phases like ettringite or monosulfate, which later precipitate as 153 gypsum and dehydrate to bassanite during the drying of the residue [7]. The SO₃ content in the residue 154 needed for the sulfate correction was determined by the combustion infrared detection technique. Values 155 expressed per 100 g of isopropanol-vacuum dried paste were converted to per 100 g of anhydrous binder 156 basis using bound water content measured by thermo-gravimetry (ignition loss at 600 °C):

157

$$m_{\text{per 100 g anhydrous binder}} = \frac{m_{\text{per 100 g paste}}}{\left(1 - m_{\text{H}_2\text{O bound}}\right)} = \frac{m_{\text{per 100 g paste}}}{m_{\text{TG residue at 600°C}}} \tag{1}$$

158

159 The degree of reaction of fly ash α was calculated as:

160

$$\alpha_{fly\,ash} = \frac{100fp - R_{b}(1 - bS_{b}) + R_{PC}(1 - f)(1 - bS_{PC})}{100fp} \cdot 100\%$$
⁽²⁾

161

= Mass fraction of fly ash in initial dry binder = 0.3. 162 f 163 = Mass fraction of fly ash undissolved by salicylic acid + HCl. р 164 R_b = Mass of residue from the PC-FA paste in g/100 g anhydrous binder. 165 R_{PC} = Mass of residue from the PC paste in g/100 g anhydrous binder. 166 b = Mass of bassanite formed from 1 g of $SO_3 = 1.813$. 167 = Mass of SO₃ in PC-FA paste residue in g/100 g of anhydrous binder. $S_{\rm h}$

- 168 S_{PC} = Mass of SO₃ in PC paste residue in g/100 g of anhydrous binder.
- 169

170 Unreacted slag and PC-S paste triplicate samples were subjected to EDTA-TEA-DEA attack. Based on 171 the procedure described by Lumley et al. [8], 93.0 g of disodium EDTA + 250 mL of TEA + 500 mL of 172 water + 173 mL of DEA were mixed and made up to 1000 mL with water. For each extraction test, 50 mL 173 of the above solution was diluted to approximately 800 mL with water and brought to a temperature of 174 20.0 ± 2 °C. Then 0.50 ± 0.02 g of dried and ground sample paste was weighed to the nearest 0.0001 g 175 and sprinkled over the surface of solution. The mixture of the solution and the ground sample was stirred 176 for 120 ± 5 min at the stated temperature. In laboratories D and E the dissolution residues were vacuum 177 filtrated on pre-dried glass fibre filters, washed, dried at 100 °C and weighed. In laboratory F the residues 178 were filtered under vacuum through a 90 mm diameter Whatman GF/C filter. This filter had been previously washed with 100 mL of distilled water, dried at 105 °C and weighed. The residue was washed 179 180 5 times with 10 mL lots of distilled water, dried at 105 °C for 1 hour and weighed to the nearest 0.0001 g. 181 The residues contained unreacted slag and undissolved hydrates, in particular hydrotalcite-like phases, which were accounted for as in [8] and the degree of reaction of slag α was computed as: 182

183

$$\alpha_{slag} = \frac{100 \, fp - R_b + R_{PC}(1 - f)}{f(100 \, p - h \, M_s)} \cdot 100\% \tag{3}$$

184

185 f = Mass fraction of slag in initial dry blend = 0.4.

186 p = Mass fraction of slag undissolved by EDTA.

187 R	b	= Mass	of re	sidue	from	the	PC-S	paste	in	g/100	go	of anl	nydrous	binder.
-------	---	--------	-------	-------	------	-----	------	-------	----	-------	----	--------	---------	---------

188 R_{PC} = Mass of residue from the PC paste in g/100 g of anhydrous binder.

189 h = Mass of dried hydrotalcite formed from 1 g of MgO in the slag glass = 2.35.

190 M_S = Mass fraction of MgO in the slag glass.

191 4.2 Consumption of portlandite measured by thermogravimetry (A, B, C, D, E, F)

192 A summary of the setups used by the participants for thermogravimetric experiments is given in Table 5 193 in appendix. In TG curves the mass loss around 450°C was assigned to water from the dehydroxylation 194 of portlandite. Because of the non-zero background mainly due to water lost from C-S-H the mass loss 195 from portlandite could not be quantified by a simple horizontal step. A tangential technique was used in 196 two variants: (1) a tangential step, in which the mass difference is calculated at the inflection point of the 197 DTG peak (A, D, F), and (2) a tangential step between the onset and the end of the DTG peak (B, C, E). 198 The amount of portlandite was computed by multiplying the obtained mass loss by the ratio of molar 199 mass of portlandite and of water = 74.09/18.02 and was expressed per 100 g of anhydrous binder using 200 equation (1).

201

Part of the CO_2 emitted during heating may come from carbonated portlandite, the amount of which can be calculated and added to the amount of portlandite quantified from the water loss. In this study, this correction was not made as the samples had been treated with isopropanol, which may also contribute to the CO_2 emitted and thus result in errors.

206

The degree of reaction of the SCMs was calculated based on the difference in the amount of portlandite between PC-SCM and PC-Q30/Q40 pastes. The use of quartz filler as the reference should correct for the physical effect of SCMs on the hydration of cement (filler effect), so the differences in portlandite should be related to the consumption of this phase by the reaction of the SCMs.

211

The mass-balance assumes that all Si dissolved from the SCM precipitates as C-S-H and that Ca for this
reaction is taken from portlandite and from the SCM itself. Thus, for 1 mole of Si reacted the number of
moles of Ca needed from portlandite are equal to:

215

$$\left(\frac{Ca}{Si}\right)_{C-S-H} - \left(\frac{Ca}{Si}\right)_{SCM} \tag{4}$$

216

217 and the absolute number of moles of Si reacted is equal to:

218

$$\alpha f \frac{W_{SiO_2,SCM}}{M_{SiO_2}} \tag{5}$$

220	α	= Degree of reaction of SCM.
221	f	= Mass fraction of SCM in initial dry blend, 0.3 for fly ash and 0.4 for slag.
222	W _{SiO2} ,SCM	= Mass fraction of silica in the reactive amorphous part of the SCM.

 M_{SiO_2} = Molar mass of silica = 60.08 g/mol.

224

The absolute number of moles of portlandite consumed by the SCM reaction is calculated from the thermo-gravimetric measurement and taking into account for CFA the portlandite present in this ash and the portlandite that forms from the C_2S and free lime in it:

228

$$\frac{\Delta m_{CH}}{M_{CH}} - 100f\left(\frac{m_{CH \text{ in SCM}}}{M_{CH}} + \frac{m_{CaO \text{ in SCM}}}{M_{CaO}} + \frac{m_{C_2S \text{ in SCM}}}{M_{C_2S}}\left(2 - \left(\frac{Ca}{Si}\right)_{C-S-H}\right)\right)$$
(6)

229

230 Δm_{CH} = Difference in the mass of portlandite between PC-SCM and PC-Q30/Q40, expressed in 231 g/100g anhydrous binder.

232 $m_{CH \text{ in SCM}}$ = Mass of portlandite in 100 g unreacted SCM.

233 $m_{Lime in SCM}$ = Mass of free lime in 100 g unreacted SCM.

- 234 $m_{C_2S \text{ in SCM}} = \text{Mass of } C_2S \text{ in 100 g unreacted SCM.}$
- 235 M_{CH} = Molar mass of portlandite = 74.09 g/mol.
- 236 M_{cao} = Molar mass of CaO = 56.08 g/mol.
- 237 M_{C_2S} = Molar mass of C₂S = 172.24 g/mol.

238 The value of 2 in the above equation corresponds to the Ca/Si ratio of C_2S .

239

Since $(4) \times (5) = (6)$, the degree of reaction can be expressed as:

241

$$\alpha = \frac{\frac{\Delta m_{CH}}{M_{CH}} - 100f\left(\frac{m_{CH \text{ in SCM}}}{M_{CH}} + \frac{m_{Lime \text{ in SCM}}}{M_{CaO}} + \frac{m_{C_2S \text{ in SCM}}}{M_{C_2S}}\left(2 - \left(\frac{Ca}{Si}\right)_{C-S-H}\right)\right)}{f\frac{w_{SiO_2,SCM}}{M_{SiO_2}}\left(\left(\frac{Ca}{Si}\right)_{C-S-H} - \left(\frac{Ca}{Si}\right)_{SCM}\right)} \cdot 100\%$$
(7)

2	12
24	+2

The $\left(\frac{ca}{si}\right)_{SCM}$ and $w_{SiO_2,SCM}$ were derived from the XRF bulk chemical composition data. A distinction was made between the reactive and the non-reactive part of the fly ashes studied. The theoretical composition of the reactive amorphous part was computed by subtracting from the bulk chemical composition the amounts of oxides corresponding to crystalline phases (Table 1). The reactive amorphous fraction was 0.897 for CFA and 0.658 for SFA. The $\left(\frac{Ca}{si}\right)_{SCM}$ and the $w_{SiO_2,SCM}$ were calculated from the theoretical composition of this fraction.

249

For the calculation of the degree of reaction of SCMs from the portlandite consumption it is necessary to know the Ca/Si ratio of the C-S-H. Published results [9–12] show that the Ca/Si ratio of the C-S-H in blended cements decreases with the reaction degree. However, this ratio cannot be simply taken from the published data. As shown in [12], the scatter of the Ca/Si ratios between mixes containing similar amounts of portlandite can vary in the range of \pm 0.1, which is too much. Thus, in this study the chemical composition of the C-S-H was measured by one of the laboratories following the SEM-EDS point

- analysis procedure of Famy *et al.* [13] recently improved by Rossen and Scrivener [14]. The results are shown in Table 3. It was difficult to obtain reliable data at 1 day of hydration, hence the Ca/Si ratios at 7-day hydration were also used for the analysis of the 1-day samples. The uncertainty of determination of Ca/Si ratio of the C-S-H using this technique was estimated around \pm 0.05. The resulting uncertainty
- 260 on the degree of reaction was rather low and, depending on hydration time, ranged from ± 0.3 % to \pm
- 261 2.6 % for slags, from ± 0.1 % to ± 0.4 % for SFA and from ± 0.2 % to ± 1.0 % for CFA.
- 262

263 The decreasing Ca/Si ratios in Table 3 indicate that besides the Ca from portlandite, a considerable 264 amount of Ca comes from the C-S-H formed at earlier stages of reaction. A dedicated correction requires 265 an additional measurement of the degree of reaction of C_3S and C_2S from the clinker and is discussed in 266 Section 5.3. The potential consumption of Ca to form AFt/AFm phases was not accounted for.

267

Table 3. Ca/Si ratios of the C-S-H used for the calculation of the degree of reaction of SCMs from portlandite consumption. Uncertainty of determination was estimated at ± 0.05 .

	1 day	7 days	28 days	90 days
PC-S1	1.82	1.82	1.77	1.72
PC-S2	1.82	1.82	1.75	1.72
PC-CFA	1.85	1.85	1.80	1.64
PC-SFA	1.85	1.85	1.76	1.64

270

271 4.3 SEM-image analysis (B, E)

Polished sections of epoxy-impregnated paste discs were coated with ~15 nm of conductive carbon and
analysed using SEM - image analysis. Details of the setups are given in the appendix Table 6. Unreacted
slag was quantified using BSE images and EDS maps of Mg (lab B) or Mg, Ca, Si (lab E) similarly to
[15]. Unreacted fly ash was segmented using high quality EDS maps of all main elements present, as in
[5]. The degree of reaction of the SCMs was computed as:

277

$$\alpha = \frac{S_0 - S_t}{S_0} \cdot 100\% \tag{8}$$

278

279 where S_0 is the initial fraction of the SCM and S_t is the fraction of unreacted SCM at time t.

281 X-ray powder diffraction measurements were carried out on anhydrous SCMs and on ground pastes using

the experimental setups summarized in Table 6. Experimental setup for electron microscopy and image

analysis.

	Instrument	kV	Analysed area	Signal	Noise filter
В	FEI Quanta 200	15	225 x 252x189 μm	BSE + Mg,	Hamming 25 px
	Bruker XFlash 4030 EDS		8 x 252x189 μm	HQ full element maps	Hamming 7 px
Е	ESEM XL-30 Philips	15	15 x 275x205 μm	BSE + Mg, Ca, Si	Median 2x2

284

Table 7 in appendix. Rietveld refinement with PONKCS analysis was carried out under conditions specified in Table 8 in appendix. The results of the refinements were recalculated to g/100g anhydrous binder using equation (1).

288 5 Results and Discussion

289 The degrees of reaction of the four SCMs studied are given in Table 4 and Figure 2. In the latter the 290 points correspond to the mean degree of reaction and the whiskers show min-max values. A global mean 291 was calculated as an average of means.

292

Table 4. Degrees of reaction of SCMs [%] measured by the techniques investigated. Shaded columns
correspond to water-cured samples. Selective dissolution of slags was based on EDTA + TEA + DEA
and that of fly ashes on salicylic acid + HCl.

1	Lab.			S	51					S	2					Cl	FA				SFA				
Days		1	7	28	90	28	90	1	7	28	90	28	90	1	7	28	90	28	90	1	7	28	90	28	90
	D		15	33	43				23	36	38			Not reliable, CFA too						4	2	17			
ive tion	Ε	1	15	24	34	29	40	10	18	24	41	26	38						6	12	12	23			
elect ssolu	F	7	17	39	61	47	85								mixture										
di S	G	9	16	32	31	37	38	18	25	38	34	41	34												
	Α	8	20	33	24	27	21	2	11	24	28	22	21	-2	2	15	18	9	23	0	0	5	8	4	8
ion	В	7	23	19	33	29	20	4	18	27	31	26	23	1	6	8	25	12	16	2	3	3	12	5	11
ndite consumpt	С	9	20	21		30		5	15	26		21		1	7	14		14		2	4	8		8	
	D		12	27	45				16	27	35				10	18	26				1	6	14		
	Ε	2	23	37	37	49	32	4	25	39	37	32	36	6	13	22	24	19	34	1	4	6	12	10	13
Portla	F	15	22	29	33	21	33	7	17	29	31	24	30	9	12	18	28	16	25	2	3	4	12	6	13
	G																								
. 1.	В	15	36	48	50	51		16	32	45	54	52		1	11	23	43	38		3	10	20	25	28	
SEM IA	Ε	12	33	38	55	51	64	22	45	49	64	52	57												
s	Α	-10	23	55	50	37	34																		
NKCS	В	4	25	38	37	40	30	11	36	48	48	47	53	9	12	24	25	25	32	0	16	19	24	21	30
O-C	С	11	32	44		45		3	13	22		33		19	24	48		46		5	17	22		25	
XRI	Ε	2	34	91	82	64	96	-12	44	56	99	86	89	-3	11	23	16	34	58	14	15	23	30	18	36

Figure 2. Comparison of mean and min-max degrees of SCM reaction measured. Selective dissolution did not work for the calcareous fly ash (PC-CFA) and for this material only one series of SEM-IA results was reported. The results for water-cured samples are not shown.

301 5.1 Precision and accuracy of the techniques studied

297

302 Precision of a technique comprises the uncertainty of measurement due to the technique itself and due to 303 the inter-laboratory scatter. Accuracy, on the other hand, demonstrates how far the results are shifted 304 from the actual degree of reaction. Because the actual degree of hydration of the SCMs remains unknown, 305 the accuracy can only be assessed by a comparison to the global mean and by analysing potential causes 306 of under-/over-estimated results. This will be discussed for each technique separately in further sections. 307

In this section the precision is assessed using pooled standard deviation. First, a standard deviation was calculated for each technique and testing time. It was then found that the obtained values did not change significantly with time and were thus pooled to calculate the final result, which is shown in Figure 3. All calculations were carried out at 90 % confidence interval. This means that, for example, the uncertainty of determination of the degree of reaction of slag using EDTA-based selective dissolution is between ± 7 % and ± 15 % reaction for 90 % of the results and that the most likely uncertainty was ± 10 % absolute. The upper and lower bounds are different as they are only symmetric in log-normal space.

Figure 3. Standard deviation of the determination of the degree of reaction of SCM using the techniques studied shown together with its 90 % confidence interval.

Figure 3 shows that on the overall the precision of determination of the degree of reaction using the techniques studied is rather low, at best \pm 4-5 %. This magnitude of uncertainty means that at one day of reaction the error is in the range of the measured degree of reaction and thus too large to allow comparison of different SCMs. Valid comparison can only be carried out from 7 days on when the signal to noise ratio becomes acceptable.

325

316

319

In the view of the combined inherent and inter-laboratory scatter, the most promising techniques seem to be the analysis of portlandite consumption and the electron microscopy. Selective dissolution techniques appear as less reliable followed by PONKCS, whose scatter was the most pronounced. Because the protocols differed between the laboratories, the reported ranges are expected to be universally applicable to any laboratory following the procedures studied.

331 5.2 Selective dissolution

Selective dissolution based on EDTA as a technique to determine the degree of reaction of slag has received significant criticism [1] mostly regarding an incomplete correction procedure of the dissolved part of slag and the undissolved aluminosilicate hydrates. In this study the results were corrected for the part of slag dissolved, although as pointed out in [1] this correction may only be valid for early hydration ages. This is because the EDTA-soluble part of slag is expected to be the most reactive in paste. The undissolved aluminosilicate hydrates were not taken into account, which most likely resulted in underestimation of the results.

339

The selective dissolution technique based on salicylic acid + HCl could not be applied to the calcareous fly ash due to its significant solubility in the acid mixture (20-30 wt.%). Nevertheless, the results obtained for the siliceous fly ash (0.5-2.0 wt.% soluble) seem to agree quite well with the other techniques. As only two laboratories reported on this method, it is not yet possible to make conclusive judgements on the precision of this approach. Certainly, more comparative data are needed. 345 5.3 Consumption of portlandite analysed by mass-balance

346 One of the main sources of scatter in the results of this technique is the scatter in portlandite content 347 measured. As reported before in [1], because the reaction of slags and calcareous fly ashes consumes 348 little portlandite, a measurement error of ± 2 g portlandite /100 g anhydrous binder can lead to a relative 349 change in the degree of SCM reaction of around 50 %. Thanks to data available from several laboratories, 350 we assess the uncertainty of determination of portlandite consumption to separate the inter-laboratory 351 variation from the inherent precision of the thermogravimetric technique. Figure 4 shows a statistical 352 analysis of the results of portlandite content measured by the different laboratories using a modified 353 Youden plot. A full description of construction and interpretation of Youden plots is given in [16]. To 354 prepare Figure 4A:

355

Compute the median of the absolute portlandite content for each mix and age.

- Compute the difference between each single measurement and its corresponding median.
- 356 357

358

• Assign randomly the computed differences as X or Y coordinate and plot the points. The number of points in the plot is half the number of measurements.

359

360

Figure 4. Modified Youden plots showing scatter of the thermogravimetric results [g/100 g of anhydrous
binder] around their median values: (A) absolute portlandite content, (B) difference in portlandite
between PC-SCM and PC-Q reference.

364

365 Such construction clearly shows that in the absolute portlandite content measured the most important 366 difference results from an inter-laboratory bias and more specifically the way the tangential method is 367 applied to quantify the mass loss due to portlandite dehydroxylation. However, the bias in data treatment 368 is cancelled when differences of portlandite content are plotted instead of absolute values in Figure 4B. 369 The scatter in this figure is about ± 1.5 g/100 g of anhydrous binder, which demonstrates the accuracy of 370 the TGA and was roughly similar for all the participant laboratories. This scatter corresponds to 371 a maximum relative error in degree of reaction of roughly 40 %; in absolute terms, ± 10 % for a degree 372 of reaction of slag estimated at 25 %, for example.

- A serious drawback of the calculation of SCM reaction by mass balance of portlandite consumption is that it neglects the calcium provided to the pozzolanic reaction from the C-S-H formed from clinker reaction. Decreasing Ca/Si ratios of the C-S-H measured in the presence of SCMs in Table 3 and in literature e.g. [9,17] show that the reaction of the SCMs not only forms new C-S-H with lower Ca/Si ratio, but also takes Ca from the existing C-S-H. This means that the consumption of portlandite observed corresponds to much more SCM reaction than it would if no calcium was provided from the C-S-H. Thus, it should not be surprising that the results obtained by analysis of portlandite consumption in Figure
- 381 2 are somewhat underestimated regardless of the SCM tested.
- 382

383 To account for the calcium provided from existing C-S-H it is necessary to measure the masses of C₃S 384 and C_2S reacted in the blended cement. One of the participant laboratories of this study carried out this 385 measurement using X-ray powder diffraction with Rietveld refinement. These masses were converted to 386 moles, sum of which is equal to the number of moles of C-S-H formed. The Ca/Si ratio of this C-S-H 387 was assumed to be 1.85, the same as in the fly ash systems at 1 day hydration and similar to what can be 388 observed in plain Portland cement pastes [18]. The amount of calcium provided to the SCM reaction was 389 then calculated as a difference between this Ca/Si ratio and that measured in Table 3. The degrees of 390 reaction of the SCMs obtained in the aforementioned laboratory before and after correction are shown in 391 Figure 5. Although the mean does not take into account the updated values, it can be clearly seen that the 392 correction delivers more realistic values. In PC-CFA the value at 90 days seems much overestimated 393 though. Indeed, overestimation, especially at later ages, may be due to Ca being incorporated in AFm 394 and AFt phases, which is not taken into account here.

395

396 Accounting for the Ca provided from existing C-S-H makes the calculated values sensitive to the 397 measured Ca/Si ratios of the C-S-H. The change of Ca/Si ratio by ± 0.015 would result in a change in the 398 degree of reaction of around ± 5 % to ± 10 % absolute.

400Hydration time [days]Hydration time [days]401Figure 5. Degrees of reaction measured in one laboratory using the analysis of portlandite consumption402before and after a correction, which estimates and takes into account the calcium provided to the reaction403of the SCM by existing C-S-H.

From the above data, it is clear that this seemingly easy technique actually requires much more effort than a mere measurement of the portlandite consumption. Electron microscopy has to be carried out to measure the evolution of the Ca/Si ratio of the C-S-H and XRD-Rietveld analysis is required to estimate the amount of C-S-H formed from the reaction of clinker. The portlandite content can be measured by XRD-Rietveld instead of thermo-gravimetry.

410

411 5.4 SEM-image analysis

412 SEM-IA based on the segmentation of BSE grey levels was able to quantify the reaction of slags and that 413 based on the segmentation of EDS full element maps according to [5] could measure the reaction of both 414 the slags and the fly ashes. An SEM-IA of EDS full element maps has a further advantage of being able 415 to resolve the reaction of different types of glass present in fly ash, which is impossible using the other 416 methods.

418 Compared to the results of the other techniques in Figure 2 the SEM-IA tends to overestimate the degrees 419 of hydration of S2 and those of S1 at early ages and CFA at 90 days. This is due to general drawbacks 420 of microscopy: problems resolving fine particles and because random cross-sections of 3-dimensional 421 features are equal or smaller than their actual equatorial cross-sections. Further, SEM analysis is much 422 less available and it requires significantly more time and resources than the other techniques. Collection 423 of a representative array of BSE images for a single sample and hydration time can take up to around 424 2 hours. Eight EDS high quality full element maps take around 4 hours to measure with a modern fast 425 detector, while this type of data collection is far more time-consuming with older or benchtop 426 instruments. Preparation of flat-polished sections can take several days and good polishing is essential 427 to successful SEM analysis.

428 5.5 *XRD-PONKCS*

Among the techniques studied, by far the largest variations were observed for the XRD-PONKCS. For PC-SFA the results of the different laboratories were much more comparable, most likely due to less overlap between the "humps" of SFA and C-S-H, but also because the degrees of reaction were lower. Some of the PONKCS results should have been discarded as nonsense outliers. It is clear that at the present state of development this technique cannot give reproducible results between laboratories due to different refinement techniques.

435

436 Contrary to the other techniques studied, there is no strict protocol of how PONKCS model phases should 437 be prepared and refined. The correct definition of the background is difficult, but limiting the number of 438 refined background parameters could improve the consistency of the results. Nevertheless, the major 439 problem seems to be the overlap of the SCM contribution with that of the C-S-H, which is particularly 440 important for slags. Indeed, in Figure 2 the variation of the PONKCS results was higher for slag mixes 441 and increased with hydration time, which seems to match with higher expected error due to more C-S-H 442 and less slag at higher hydration degrees. Published literature showed promising results of the PONKCS 443 method applied to synthetic mixes of SCMs and C-S-H [4], but it now seems that tackling real systems 444 is much more problematic. This problem may be even more important for low SCM replacement levels. 445 In the synthetic systems, for slag amounts below 10 wt.% at any hydration time the expected error was 446 2-3 wt.% and for the amounts below 5 wt.% the quantification was no longer valid. For an initial slag 447 content of 30 wt.% and 65% reaction after 90 days the remaining slag content would be around 10 wt.% 448 and the expected 3 wt.% error would translate to a variation in the degree of reaction of 10%. In real 449 systems, these values are expected to be much larger.

450

A decreased degree of reaction in PC-CFA after 90 days observed in Figure 2 may be due to another issue. The model of an amorphous SCM phase used for PONKCS analysis is prepared on an anhydrous SCM. However, fly ashes and in particular the calcareous ones may be composed of a variety of glasses reacting at different rates [5]. This difference in reaction would affect the shape of the amorphous background in XRD over the course of the reaction and lead to errors.

457 6 Conclusions

This study looked at four techniques: selective dissolution, analysis of the consumption of portlandite,
SEM-image analysis and XRD-PONKCS to determine the degree of reaction of two slags, a calcareous
and a siliceous fly ash in cement paste.

461

462 The gathered results show that the overall precision of the determination of the degree of reaction of 463 SCMs in cement is rather low and varies depending on the technique used. The most precise, analysis of 464 portlandite consumption and electron microscopy, offered at best an absolute uncertainty around ± 5 %. 465 In terms of accuracy, the techniques were inspected for causes of potential under-/over-estimation of the 466 degrees of reaction of SCMs.

467

Selective dissolution of slag cement pastes based on EDTA + TEA + DEA slightly underestimated the results compared to the other techniques, which is likely due to incomplete correction procedures. The analysis of siliceous fly ash cement pastes using salicylic acid + HCl seems to work fairly well, while it failed completely for the calcareous fly ash due to its high solubility in the acid mixture.

472

473 Portlandite consumption analysis was the most frequently reported technique. The inherent uncertainty 474 of determination of the portlandite content by thermo-gravimetry of around ± 1.5 g/100 g of anhydrous 475 binder leads to a scatter in the degree of reaction of roughly ± 5 % absolute. To avoid significant 476 underestimations from the mass balance analysis, it is necessary to take into account the decreasing Ca/Si 477 ratio of the C-S-H in the presence of reacting SCMs and the fact that calcium is provided to the reaction 478 not only by portlandite but also by the C-S-H formed previously in the reaction. With these factors 479 accounted for the degrees of reaction seem more realistic, but the complete approach requires additional 480 XRD and SEM measurements and remains sensitive to the Ca/Si ratio of the C-S-H.

481

BSE grey level analysis was used for slag cement pastes and that based on EDS full element maps successfully quantified the reaction of all the SCMs studied, including calcareous fly ash. SEM may overestimate the degrees of hydration due to the problem of resolving fine particles. SEM analysis requires more time and resources than the other techniques and little desktop SEM may fail to collect sufficient data.

487

488 Compared to previous promising results on anhydrous systems, PONKCS appeared as a rather low-489 precision technique for the determination of degree of reaction of amorphous SCMs in hydrating cement 490 pastes. So far, the only acceptable results were obtained for the siliceous fly ash cement paste. In terms 491 of accuracy, however, the mean values of the PONKCS analysis tend to match fairly well with the mean 492 results of the other techniques, notably for slag cements. This technique turns out to depend strongly on 493 analyst expertise and cannot be used as standard technique unless an improved, careful and strict protocol 494 is prepared and validated. The key issue seems to be the overlap between the contributions to amorphous 495 background from the SCM and the C-S-H. If these two contributions cannot be reproducibly resolved, 496 the use of PONKCS would have to be limited to materials not presenting this overlap.

497 Acknowledgements

- 498 The authors would like to acknowledge Bastien Le Gars Santoni and Alexandre Ouzia (EPFL,
- 499 Switzerland), Xinyuan Ke, Oday H. Hussein (U. Sheffield, UK), Salaheddine Alahrache (Empa,
- 500 Switzerland), Sandra De Buck and Tom Planckaert (UGent, Belgium), Ricardo García-Roves (IETcc-
- 501 CSIC) for their participation in the experiments.

502 Compliance with Ethical Standards

The participation of members of U. Sheffield (UK) was funded by the European Research Council under
the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement
#335928 (GeopolyConc).

506 Conflict of Interest

507 The authors declare that they have no conflict of interest.

508 References

- 509 [1] K.L. Scrivener, B. Lothenbach, N. De Belie, E. Gruyaert, J. Skibsted, R. Snellings, et al., TC
 510 238-SCM: hydration and microstructure of concrete with SCMs, Mater. Struct. 48 (2015) 835–
 511 862.
- 512 [2] I. Pane, W. Hansen, Investigation of blended cement hydration by isothermal calorimetry and
 513 thermal analysis, Cem. Concr. Res. 35 (2005) 1155–1164.
- 514 [3] N.V.Y. Scarlett, I.C. Madsen, Quantification of phases with partial or no known crystal
 515 structures, Powder Diffr. 21 (2006) 278–284.
- 516 [4] R. Snellings, A. Salze, K.L. Scrivener, Use of X-ray diffraction to quantify amorphous
 517 supplementary cementitious materials in anhydrous and hydrated blended cements, Cem. Concr.
 518 Res. 64 (2014) 89–98.
- 519 [5] P.T. Durdziński, C.F. Dunant, M. Ben Haha, K.L. Scrivener, A new quantification method based
 520 on SEM-EDS to assess fly ash composition and study the reaction of its individual components
 521 in hydrating cement paste, Cem. Concr. Res. 73 (2015) 111–122.
- 522 [6] K. Scrivener, Backscattered electron imaging of cementitious microstructures: Understanding
 523 and quantification, Cem. Concr. Compos. 26 (2004) 935–945.
- A. Vollpracht, W. Brameshuber, Investigations on ten years old hardened cement paste samples,
 in: Int. Rilem Conf. Mater. Sci., 2010: pp. 79–91.
- J.S. Lumley, R.S. Gollop, G.K. Moir, H.F.W. Taylor, Degrees of reaction of the slag in some
 blends with Portland cements, Cem. Concr. Res. 26 (1996) 139–151.
- F. Deschner, F. Winnefeld, B. Lothenbach, S. Seufert, P. Schwesig, S. Dittrich, et al., Hydration
 of Portland cement with high replacement by siliceous fly ash, Cem. Concr. Res. 42 (2012) 1389–
 1400.
- 531 [10] M. Whittaker, M. Zajac, M. Ben Haha, F. Bullerjahn, L. Black, The role of the alumina content
 532 of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland

533		cement-slag blends, Cem. Concr. Res. 66 (2014) 91-101.
534	[11]	J.E. Rossen, B. Lothenbach, K.L. Scrivener, Composition of C-S-H in pastes with increasing
535		levels of silica fume addition, Cem. Concr. Res. 75 (2015) 14-22.
536	[12]	J.E. Rossen, B. Lothenbach, K.L. Scrivener, Composition of C-A-S-H in matured blended
537		cement pastes, (In Preparation). (n.d.).
538	[13]	C. Famy, A.R. Brough, H.F.W. Taylor, The C-S-H gel of Portland cement mortars: Part I. The
539		interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy,
540		with some observations on C-S-H, AFm and AFt phase compositions, Cem. Concr. Res. 33
541		(2003) 1389–1398.
542	[14]	J.E. Rossen, K.L. Scrivener, Optimisation of SEM-EDS to determine C-S-H composition in
543		matured cement paste samples, Mater. Charact. (n.d.).
544	[15]	V. Kocaba, E. Gallucci, K.L. Scrivener, Methods for determination of degree of reaction of slag
545		in blended cement pastes, Cem. Concr. Res. 42 (2012) 511-525.
546	[16]	W.J. Youden, Graphical diagnosis of interlaboratory test results, Ind. Qual. Control. 15 (1959)
547		24–28.
548	[17]	B. Lothenbach, K. Scrivener, R.D. Hooton, Supplementary cementitious materials, Cem. Concr.
549		Res. 41 (2011) 1244–1256.
550	[18]	H.F.W. Taylor, Cement Chemistry, 1997.
551	[19]	E. Bonaccorsi, S. Merlino, A.R. Kampf, The Crystal Structure of Tobermorite 14 A
552		(Plombierite), a C-S-H Phase, J. Am. Ceram. Soc. 88 (2005) 505-512.
553		
554		
555	Appe	ndix1 – Experimental setups

- 556 Table 5. Experimental setup for the thermogravimetric experiments. In automated TGA experiments on
- 557 open crucibles, the crucibles wait for the measurement covered with Al lids.

	Instrument	Sample mass	Crucible	T range	Heating rate	Gas, flow
		[mg]		[°C]	[°C/min]	[mL/min]
А	Mettler Toledo TGA/SDTA 851e	20	open	40 - 980	20	N ₂ , 30
В	Mettler Toledo TGA/SDTA 851e	50	open	30 - 950	10	N ₂ , 30
С	Netzsch STA F449F3	30	open	30-1050	20	N ₂ , 20
D		RWTH				
Е	Netzsch STA 449F3	50	open	20 - 1100	10	N ₂ , 50
F	Perkin Elmer TGA 4000	20		30 - 1000	10	N ₂ , 40

559 Table 6. Experimental setup for electron microscopy and image analysis.

	Instrument	kV	Analysed area	Signal	Noise filter
В	FEI Quanta 200	15	225 x 252x189 μm	BSE + Mg,	Hamming 25 px
	Bruker XFlash 4030 EDS		8 x 252x189 μm	HQ full element maps	Hamming 7 px
Е	ESEM XL-30 Philips	15	15 x 275x205 μm	BSE + Mg, Ca, Si	Median 2x2

561 Table 7. Experimental setup for powder XRD measurements.

-	T	0 1	0. 1 1	с. С.	4 1 / .	m:	01.
	Instrument	Sample	Standard	Source	Angles/step	Time per	Slits
		loading			°2θ (CuKα)	step	
А	PANalytical X'Pert Pro	back	internal	45 kV 40 mA incident	5-70/0.017	57.15s	divergence
	MPD diffractometer +		20 wt.%	beam $CuK_{\alpha l}$		cumulated	0.5° anti-
	X'Celerator detector		TiO ₂	monochromator			scatter 1°
В	PANalytical X'Pert Pro	back	external	45 kV 40 mA	6-70 / 0.017	59.69s	divergence
	MPD diffractometer +		TiO ₂			cumulated	0.25°
	X'Celerator detector						
С	Bruker D8 Advance +	front	external	40 kV 40 mA	5-71 / 0.02	62s	divergence
	LynxEye silicon strip		NIST			cumulated	0.3° soller 4°
	detector		Cr_2O_3				
Е	Thermo Scientific ARL	side	internal	40 kV 30 mA	5-70 / 0.02	1s	Source
	X'tra diffractometer +		10 wt.%				L 1.30/R 2.12
	Peltier cooled detector		ZnO				Receiver
							L 0.90/R 0.30

563 Table 8. Conditions of the XRD-Rietveld refinement with PONKCS analysis

	А	В	С	Е						
Software	X'Pert HighScore	X'Pert HighScore	Topas V4.2	Topas Academic						
	Plus 4.1	Plus 4.1		V4.1						
Refined parameters										
Zero shift	Х	х	Х	X						
Background		Chebyshev 1st order	Chebyshev 3rd order	Chebyshev 12						
		and 1/X parameter		polynomial terms						
Phase scale factors		Х	Х	X						
Unit cell parameters		Up to 1% variation	х	Up to 1% variation						
Lorentzian peak broadening		х	х	Х						
Amorphous phase models										
Slag	HKL file	HKL file (P-42m)	HKL file (Ia-3d)	A pseudo-Voigt						
				peak						
Calibrated on	anhydrous PC-S2 mix	anhydrous slag	anhydrous slag							
Fly ash	n. a.	HKL file (P-1)	HKL file (Ima2)	A pseudo-Voigt						
				peak						
Calibrated on		anhydrous fly ash	anhydrous fly ash							
C-S-H	HKL file based on	Tobermorite 14Å	HKL file based on	One main and two						
	a synthetic C-S-H	crystal structure	a synthetic C-S-H	secondary pseudo-						
	with Ca/Si ratio of 1.6	[19]		Voigt peaks						
Refined on		corresponding 90-	PC-Q paste	PC-Q paste samples						
		day cured pastes	samples							