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Abstract 12 

This  work aims to develop materials for flexible concrete pavements as an alternative to asphalt 13 

concrete or polymer-bound rubber surfaces and presents a study on steel fibre reinforced 14 

rubberised concrete (SFRRuC). The main objective of this study is to investigate the effect of 15 

steel fibres (manufactured and/or recycled fibres) on the fresh and mechanical properties of 16 

rubberised concrete (RuC) comprising waste tyre rubber (WTR). Free shrinkage is also 17 

examined. The main parameters investigated through ten different mixes are WTR and fibre 18 

contents. The results show that the addition of fibres in RuC mixes with WTR replacement 19 

substantially mitigates the loss in flexural strength due to the rubber content (from 50% to 9.6% 20 

loss, compared to conventional concrete). The use of fibres in RuC can also enable the 21 

development of sufficient flexural strength and enhance strain capacity and post-peak energy 22 

absorption behaviour, thus making SFRRuC an ideal alternative construction material for flexible 23 

pavements. 24 

Keywords: Recycled fibres; Rubberised concrete; Steel fibre concrete; Rubberised steel fibre 25 

concrete; Hybrid reinforcement; Flexible concrete; Flexible pavements. 26 
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1. Introduction and Background 27 

Road pavements and slabs on grade are constructed either with flexible asphalt or rigid concrete. 28 

Flexible pavements can better accommodate local deformations, but lack the durability of 29 

concrete which is by nature much stiffer. A flexible concrete pavement could combine the 30 

advantages of both types of pavements, however, requires a radical change in how it is 31 

constructed. Rubberised concrete which can be design to have stiffness values similar to that of 32 

asphalt, can be used as an alternative construction material for flexible pavements. It is well 33 

known, however, that the use of rubber in substantial enough quantities can also adversely affect 34 

all of the other mechanical properties of Portland-based concrete. Furthermore, virgin rubber 35 

aggregates are significantly more expensive than natural aggregates. To address these issues, this 36 

study aims to use recycled materials derived from waste tyre rubber (WTR) not only to provide 37 

economically and structurally sound alternatives, but also to enable the development of a 38 

sustainable flexible concrete pavement solution. 39 

 40 

1.1 Waste tyre materials 41 

According to The European Tyre Recycling Association [1], approximately 1.5 billion tyres are 42 

produced worldwide each year and a quarter of this amount is arisen in EU countries.  It is also 43 

estimated that for every tyre brought to the market, another tyre reaches its service life and 44 

becomes waste.  The European Directive 1991/31/EC [2] introduced a set of strict regulations to 45 

prevent the disposal of waste tyres in landfills as a means of preventing environmental pollution 46 

and mitigating health and fire hazard [3-5]. As a result, in the EU any type of waste tyre disposal 47 

in the natural environment has been banned since 2006. The European Directive 2008/98/EC [6] 48 

has also established a disposal hierarchy leading to a serious effort for effective waste tyre 49 

management, minimising energy consumption.  50 
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Typical car or truck tyres comprise 75-90% rubber, 5-15% high-strength corded steel wire and 51 

5-20% polymer textile. WTR is currently used as fuel, in particular in cement kilns. It is also used 52 

in applications, such as synthetic turf fields, artificial reefs, sound proof panels, playground 53 

surfaces and protective lining systems for underground infrastructure [7, 8]. While these 54 

applications make a positive contribution to recycling WTR, demand with respect to the volume 55 

of waste tyres is still small. Since cement-based materials constitute the largest portion of 56 

construction materials worldwide, recycling WTR in concrete is a positive way to respond to the 57 

environmental challenge and to the significant redundant volumes of waste materials.  58 

 59 

1.2 Rubberised concrete 60 

In the past two decades, several studies have investigated the addition of WTR in concrete, but 61 

only recently for structural applications [9-12]. Concretes containing rubber particles present high 62 

ductility and strain capacity, increased toughness and energy dissipation [11, 13, 14]. These 63 

properties, along with the material’s high impact and skid resistance, sound absorption, thermal 64 

and electrical insulation [5, 15-17] make rubberised concretes (RuC) a very attractive building 65 

material for non-structural applications.  66 

 67 

Despite the good mechanical properties of rubber, production of RuC has several important 68 

drawbacks: (a) reduction in workability associated with the surface texture of the rubber particles 69 

[3, 11, 18, 19], (b) increased air content as the rough and non-polar surface of rubber particles 70 

tend to repel water and increase the amount of entrapped air [20-22], and (c) reduction in the 71 

compressive strength (up to approximately 90% reduction with 100% replacement of natural 72 

aggregates), tensile strength and stiffness [11, 23]. The reduction in mechanical properties is 73 

mainly attributed to the lower stiffness and higher Poisson’s ratio of rubber (nearly 0.5) compared 74 
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to the other materials in the mixture, and the weak bond between cement paste and rubber 75 

particles [21, 24, 25]. One of the potential alternatives to enhance the mechanical performance of 76 

RuC is the addition of fibres. 77 

 78 

1.3 Steel fibre reinforced concrete using recycled fibres 79 

The steel cord used as tyre reinforcement is a very high strength cord of fine wires (0.1- 0.3 mm). 80 

The same cord is currently being used in limited volumes to reinforce concrete in high value 81 

security applications, such as vaults and safe rooms. At the same time when extracted from tyres, 82 

the cord is either discarded or at best re-melted. Commercially available steel fibre reinforcement 83 

for concrete comprises thin fibres with a diameter ranging from 0.3 to 1 mm and  has a sizable 84 

market mainly in tunnel and slabs on grade applications. Hence, it is natural to consider tyre wire 85 

for concrete applications [26], as using recycled tyre steel fibres (RTSF) from waste tyres, instead 86 

of manufactured steel fibres (MSF), can reduce costs and positively contribute to sustainability 87 

by reducing the emissions of CO2 generated from manufacturing steel fibres [27, 28]. Recently, 88 

many studies have examined the use of recycled steel fibres in concrete [27, 29-32]. By assessing 89 

mechanical properties, most of these studies confirm the ability of classified RTSF to reinforce 90 

concrete. 91 

 92 

1.4 Steel fibre reinforced rubberised concrete 93 

Despite the fact that there are many studies on RuC and SFRC, there are very few studies 94 

examining the effect of using steel fibres and rubber particles together in concrete, and most of 95 

these focus on cement-based mortars or self-compacted concrete (SCC) [33-37]. Turatsinze et al. 96 

[33] investigated the synergistic effect of MSF and rubber particles, in particular replacing sand 97 

in cement-mortars. They observed that the addition of steel fibres improved the flexural post-98 
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cracking behaviour, while the addition of rubber (up to 30% by volume of sand) significantly 99 

increased the deflection at peak load. Ganesan et al. [35] studied the influence of incorporating 100 

crumb rubber and MSF in SCC. Compared to conventional SCC, they reported a 35% increase 101 

in flexural strength when 15% of sand (by volume) was replaced with crumb rubber and 0.75% 102 

(by volume) fraction of steel fibres was added. Xie et al. [36] conducted an experimental study 103 

on the compressive and flexural behaviour of MSF reinforced recycled aggregate concrete with 104 

crumb rubber. They found that as the amount of rubber content was increased, the reduction in 105 

the compressive strength was smaller compared to other studies, and they attributed this 106 

behaviour to the inclusion of steel fibres. They also concluded that steel fibres played a significant 107 

role in enhancing the residual flexural strength, which was slightly affected by the increase in 108 

rubber content. Finally, Medina et al. [37] examined the mechanical properties of concrete 109 

incorporating crumb rubber and steel or plastic fibres coated with rubber. They observed that 110 

concrete with rubber and fibres presents better compressive and flexural behaviour as well as 111 

impact energy absorption than plain rubberised concrete. 112 

 113 

To the best of the authors' knowledge only limited information is available on the mechanical 114 

behaviour of steel fibre reinforced rubberised concrete (SFRRuC) where both fine and coarse 115 

aggregates are replaced with rubber particles in significant volumes (exceeding 20% by volume 116 

of total aggregates) and further studies are needed to understand its performance where much 117 

larger rubber volumes are used. Large volumes of rubber are necessary to achieve more flexible 118 

concrete pavements. In addition, the behaviour of SFRRuC in which RTSF are used alone or in 119 

a blend with MSF, has not been studied yet.  120 

 121 
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This study investigates the fresh properties as well as the compressive and flexural behaviour of 122 

several SFRRuC mixes with the aim of developing optimized mixes suitable for pavement 123 

applications. Coarse and fine aggregates are partially replaced by different sizes and percentages 124 

of tyre rubber particles and various dosages and blends of steel fibres, MSF and/or RTSF, are 125 

used as fibre reinforcement.  Details of the experimental programme and the main experimental 126 

results are presented and discussed in the following sections. This study contributes to the 127 

objectives of the EU-funded collaborative project Anagennisi (http://www.anagennisi.org/) that 128 

aims to develop innovative solutions to reuse all waste tyre components.  129 

 130 

2. Experimental Programme 131 

2.1 Parameters under investigation 132 

The parameters assessed in this study were: (i) the rubber content used as partial replacement of 133 

both fine and coarse aggregates (0%, 20%, 40% or 60% replacement by volume), and (ii) steel 134 

fibre content (0 or 20 kg/m3 MSF + 20 kg/m3 RTSF, or 40 kg/m3 RTSF). A total of 10 different 135 

mixes were prepared. For each mix, three cubes (150 mm-size), three cylinders (100 mm-136 

diameter and 200 mm-length), and three prisms (100x100 mm-cross section and 500 mm-length) 137 

were cast. The cubes and cylinders were used to obtain the uniaxial compressive strength and the 138 

compressive stress-strain curve, respectively, whereas the prisms were cured in different 139 

conditions to evaluate free shrinkage strain (autogenous and drying) and then subjected to three-140 

point bending. Table 1 summarises the different mix characteristics and the ID assigned to the 141 

mixes. The mix ID follows the format NX, where N denotes the amount of rubber content used 142 

as partial replacement of both fine and coarse aggregates (0, 20, 40 or 60%), while X represents 143 

the type of steel fibre reinforcement and can be either P, BF or RF (Plain, Blend of Fibres or 144 

Recycled Fibres, respectively). For instance, 60BF is the rubberised concrete mix that contains 145 
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60% of rubber particles as conventional aggregate replacement and consists of blend fibres (20 146 

kg/m3 MSF and 20 kg/m3 RTSF). 147 

 148 

Table 1. Concrete mix ID, and quantities of rubber and steel fibres added in each mix 149 

Mix 
No.  

Mix ID 
% Rubber replacing 

aggregates by volume 

Fine 
rubber 
(kg/m3) 

Coarse 
rubber 
(kg/m3) 

 MSF 
(kg/m3) 

RTSF 
(kg/m3) 

Fine Coarse   
1 0P 0 0 0 0 0 0 
2 0BF 0 0 0 0 20 20 
3 0RF 0 0 0 0 0 40 
4 20P 20 20 49.5 60.4 0 0 
5 20BF 20 20 49.5 60.4 20 20 
6 40P 40 40 99 120.9 0 0 
7 40BF 40 40 99 120.9 20 20 
8 60P 60 60 148.5 181.3 0 0 
9 60BF 60 60 148.5 181.3 20 20 
10 60RF 60 60 148.5 181.3 0 40 

 150 

 151 

2.2 Materials and mix preparation 152 

2.2.1 Materials 153 

2.2.1.1 Rubberised concrete 154 

A high strength commercial Portland Lime Cement CEM II-52.5 N containing around 10–15% 155 

Limestone in compliance with BS EN 197-1 [38] was used as binder. The coarse aggregates used 156 

comprised natural round river washed gravel with particle sizes of 5-10 mm and 10-20 mm 157 

[specific gravity (SG)=2.65, absorption (A) =1.2%]. The fine aggregates used comprised medium 158 

grade river washed sand with particle sizes of 0-5 mm (SG=2.65, A=0.5%). Pulverised fuel ash 159 

(PFA) and silica fume (SF) were used as partial replacement of cement (10% by weight for each) 160 

to enhance the fresh and mechanical properties of the mixes. Plasticiser and superplasticiser were 161 

also added to improve cohesion and mechanical properties (mix details are given in Section 162 

2.2.2).  163 
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The rubber particles used in this study were recovered through the shredding process of waste 164 

tyres at ambient temperature and where obtained from two different sources. As depicted in 165 

Figure 1a, the fine rubber particles were provided in the ranges of 0-0.5 mm, 0.5-0.8 mm, 1-2.5 166 

mm and 2-4 mm and were used in the concrete mix in the ratio 12:12:32:44 of the total added 167 

fine rubber content, while the course rubber particles were supplied in the ranges of 4-10 mm and 168 

10-20 mm and were utilized in the concrete mix in the ratio 50:50 of the total added course rubber 169 

content. Figure 2 presents the particle size distribution of the natural aggregates (NA) and rubber 170 

particles used, obtained according to ASTM-C136 [39]. To limit the influence of rubber size on 171 

concrete particle packing, conventional aggregates were replaced with rubber particles of roughly 172 

similar size distribution to minimise the impact on the packing of the concrete mix constituents. 173 

A relative density of 0.8 was used to calculate the mass of rubber replacing natural aggregates, 174 

as determined using a large rubber sample that was accurately cut and measured. 175 

 176 

 177 

 178 

Figure. 1 a)Rubber particles, b) MSF and RTSF used in this study and c) length distribution 179 

analysis of RTSF 180 

a)

b) c)
Fibre length



 

   9 
 

 181 

 182 

Figure. 2 Particle size distribution for conventional aggregates and rubber 183 

 184 

Table 2 reports the physical properties of the coarse aggregates (5-20 mm) and the coarse rubber 185 

particles (4-20 mm), obtained through a series of tests: (a) particle density and water absorption 186 

according to EN 1097-6 [40], (b) loose bulk density according to EN 1097-3 [41], and (c) particle 187 

shape-flakiness index according to EN 933-3 [42]. The physical properties of the fine aggregates 188 

and fine rubber particles were not evaluated due to difficulties in performing the tests on fine 189 

rubber particles as they floated when submerged in water.  190 

 191 

As it was not possible to complete the flakiness tests for all particle sizes, in the end this 192 

information was not used directly in the mix design. It should be noted though that the higher 193 

flakiness influenced the optimisation of the mix design and more fines and supplementary 194 

materials were necessary, as reported in [11]. 195 

 196 
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Table 2. Physical properties of coarse aggregates and coarse rubber particles 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

2.2.1.2 Steel Fibres 205 

The MSF were crimped type steel fibres with a length of 55 mm, diameter of 0.8 mm and tensile 206 

strength of 1100 MPa. The RTSF were cleaned and screened fibres (typically containing < 2% 207 

of residual rubber) and had lengths in the range of 15-45 mm (at least 60% by mass), diameters 208 

<0.3 mm and tensile strength of 2000 MPa. Figure 1b presents both types of fibres (MSF and 209 

RTSF) used in this study and Figure 1c illustrates the length distribution of the RTSF based on a 210 

digital optical correlation method that combines photogrammetry and advanced pattern 211 

recognition to determine the length of individual fibre from high speed image of free falling 212 

dispersed fibres [43].  213 

 214 

2.2.2 Mix design 215 

The mix design used in this experimental study (adopted from Raffoul et al. [11]) was optimised 216 

to be used for typical concrete bridge piers targeting a compressive strength of  60 MPa (cylinder), 217 

and suited the replacement of 0%, 20%, 40% and 60% of WTR without excessive degradation in 218 

fresh and mechanical properties. The optimised mix proportions for 0% rubber content 219 

(conventional concrete), are shown in Table 3.  220 

Physical properties/Type of 
rubber 

Rubber - 
Source 1 
4-10 mm 

Rubber -
Source 2 

10-20 mm 

Natural 
aggregates 
5-10 mm 

Natural 
aggregates  
10-20 mm 

Apparent particle density, kg/m3 1136 1103 2685 2685 

Oven-dried density, kg/m3 1032 1090 2599 2599 

Saturated and surface-dried 
particle density, kg/m3 

1123 1101 2631 2631 

Water absorption after 24h, % 5.3-8.8 0.8-1.3 1.2 1.2 

Bulk specific gravity 1.1 1.1 2.6 2.6 

Bulk density,  kg/m3 454 485 1511 1583 

Flakiness index 6.64 17.48 7.05 9.7 
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Table 3. Concrete mix proportions (without rubber content) 221 

Material Quantity 

CEM II – 52.5 MPa 340 kg/m3 

Silica fume (SF) 42.5 kg/m3 

Pulverised fuel ash (PFA) 42.5 kg/m3 

Natural fine aggregates 0-5 mm 820 kg/m3 

Natural coarse aggregates 5-10 mm 364 kg/m3 

Natural coarse aggregates 10-20 mm 637 kg/m3 

Water 150 l/m3 

Plasticiser  2.5 l/m3* 

Superplasticiser  5.1 l/m3 

*It was increased at higher amounts of rubber and fibres were added to the concrete (2.5-4.75 l/m3) 222 

 223 

2.2.3 Mixing, casting and curing procedure 224 

A 200 litre pan mixer was used for all mixes. The procedure used for mixing the concrete started 225 

with conventional aggregates dry mixed for 30 seconds together with the rubber particles. 226 

Subsequently, half of the total amount of water was added and mixed for about 1 minute. The 227 

mix was allowed to rest for 3 minutes allowing the conventional aggregates to get saturated. After 228 

that, the cementitious materials (Portland cement, silica fume and fly ash) were added, followed 229 

by the remaining water and the chemical admixtures. The fresh concrete was finally mixed for 230 

another 3 minutes. For those concrete mixes with steel fibres, fibres were manually integrated 231 

into the concrete during mixing at the last mixing stage.  232 

 233 

The concrete fresh properties, including slump, air content and fresh density, were then assessed 234 

for each mix according to the standardised methods described in EN 12350Ǧ2 [44], EN 12350Ǧ7 235 

[45], and EN 12350Ǧ6 [46], respectively. The concrete specimens were cast in plastic cube (150 236 

mm) and cylinder moulds (100x200 mm), and prismatic steel moulds (100x100x500 mm) 237 

according to EN 12390-2 [47] and EN 14651 [48]. The specimens were cast in two layers and 238 
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vibrated (25s per layer) on a vibrating table. After casting, specimens were covered with plastic 239 

sheets to prevent moisture loss, and left under standard laboratory conditions for 48h until 240 

demoulding. The specimens were then kept in a mist room (21 C േ 2 and 95 േ 5% relative 241 

humidity (RH)) for 28 days, except for the prisms used for shrinkage measurements that were left  242 

in the mist room for 7 days and then stored in a control room (24 C േ 2 and 42 േ 5 RH) for 50 243 

days. After the curing period, the specimens were kept under standard laboratory conditions (20 244 

C േ 2 and 50 േ 5 RH) until testing.  245 

 246 

3. Test set-up and procedure 247 

3.1 Compression testing 248 

Prior to testing, the top faces of the cylinders were cut and ground according to EN 12390-3 [49]. 249 

For the RuC cylinders, extra measures were taken to prevent local failure during testing by 250 

confining their two ends with high-ductility post-tensioned straps, as proposed by Garcia et al. 251 

[50]. Axial compression tests were performed on concrete cubes and cylinders according to EN 252 

12390Ǧ3 [49] under monotonic loading until failure. For all tested cylinders, the compression tests 253 

were performed using a servo-hydraulic universal testing machine with a load capacity of 1000 254 

kN. The load was applied on the cylinders at a displacement rate of 0.3 mm/min. The local axial 255 

strain was measured using two diagonally opposite strain gauges at mid-height.  The global axial 256 

strain was measured using three laser sensors, with an accuracy of 40µܭ, placed radially around 257 

the specimens (120o apart) using two metallic rings. The metallic rings were attached to the 258 

specimens using four clamp screws, covering the middle zone of the cylinder and resulting in 100 259 

mm gauge length. The tests on cubes were carried out using a standard compression machine 260 

with a load capacity of 3000 kN at a loading rate of 0.4 MPa/s. 261 
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3.2 Three-point bending tests 262 

The flexural behaviour of the concrete specimens was assessed by performing three-point 263 

bending tests using an electromagnetic universal testing machine with a load capacity of 300 kN.  264 

A detailed schematic of the test setup is provided in Figure 3. The loading point allowed for both 265 

the in-plane and out-of-plane rotation of the prism. Two LVDTs were mounted at the middle of 266 

a yoke (one on each side) as suggested by the JCI [51] to measure the net deflection at mid-span.  267 

 268 

Figure. 3 Schematic representation of the flexural test set-up 269 

 270 

A clip gauge of 12.5 mm-length was fixed at the middle of the bottom side of the prism, where a 271 

5 mm-wide and 15 mm-deep notch had been sawn. The clip gauge measurement (crack mouth 272 

opening displacement -CMOD) was used to control the loading rate as suggested by RILEM [52]. 273 

All tests were performed under a rate of 50 ȝm/min for CMOD ranging from 0 to 0.1 mm, 200 274 

ȝm/min for CMOD ranging from 0.1 to 4 mm, and 8000 ȝm/min for CMOD higher than 4 mm.  275 

 276 

3.3 Free-shrinkage  277 

The autogenous and drying shrinkage tests were performed according to EN-126174 [53]. 278 

However, to avoid issues of fibre alignment along the mould boundaries, the size of the prismatic 279 
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specimens was increased from 40x40x160 mm (as suggested by the standard) to 100x100x500 280 

mm. Specimens were demoulded two days after casting and fitted with steel “Demec” points 281 

(locating discs) using plastic padding. Two Demec points were fixed 300 mm apart on each of 282 

the vertical (as cast) sides of the prism.  283 

 284 

The first strain measurement was recorded after 30 minutes to allow for the hardening of the 285 

adhesive. For autogenous shrinkage, the specimens were kept in a mist room with controlled 286 

temperature and humidity conditions (21 oC േ 2 and 95 േ 5% RH) and measurements were taken 287 

at the ages of 1, 2, 3 and 7 days after demoulding. For drying shrinkage, specimens were stored 288 

in a chamber with controlled temperature and humidity conditions (24 oC േ 2 and 40 േ 5 RH) 289 

and measurements were taken at the ages of 10, 14, and 28 and 56 days after demoulding.  290 

 291 

4. Experimental Results and Discussion 292 

4.1 Fresh state properties 293 

4.1.1 Workability 294 

To assess the workability of rubberised concrete, most researchers (including the authors of this 295 

paper) use the slump test which appears to be a consistent and easy-to-apply method in practice 296 

[3, 7, 10, 11, 19]. Table 4 shows the slump results of all mixes as well as their corresponding 297 

slump classes, all of which fulfil the consistency requirements as described in pavement design 298 

standard BS EN 13877-1[54] and the normative reference BS EN 206-1 [55] either for fixed-299 

form or slip-form (class S1) paving . The desired slump class was targeted to be at least S3 (slump 300 

≥ 90 mm), by modifying the plasticiser dosage which was increased proportionally to the amount 301 

of rubber and steel fibres in each mix. All mixes achieved the targeted slump, however, the 302 
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workability for mixes 60BF and 60RF was quite low (40 and 35 mm, respectively) although high 303 

amounts of plasticiser and superplasticiser were added (4 per m3 and 5.1 per m3 of concrete, 304 

respectively). Nevertheless, this low workability did not raise any issues during handling, placing 305 

or finishing of the mixes due to the high rubber dosage (60%). No signs of segregation, bleeding 306 

or excessive “balling” were observed in any of the mixes. 307 

 308 

Table 4. Fresh concrete properties for all concrete mixes 309 

 310 

The results show that slump decreases with the addition of steel fibres, and further decreases with 311 

the inclusion of rubber, even though the amount of plasticiser was increased proportionally. By 312 

comparing the slump values of the control mix with the SFRC mixes without rubber (0BF and 313 

0RF), it can be seen that fibres caused a slump drop of 18.8% for both SFRC mixes. This decrease 314 

may be caused by increased friction between the RTSF, which have a large specific surface area, 315 

and the concrete constituents during mixing. Additionally, the tendency of steel fibres to 316 

agglomerate also has an adverse effect on workability.  317 

 318 

Mix 
No. 

Mix ID 
Extra plasticiser 

added 
L/m3 

Slump 
(mm) 

Slump 
 class 

Air 
content 

% 

Bulk  
density 
(kg/m3) 

Theoretical 
density 
(kg/m3) 

1 0P 0 240 S5 1.35 2406 2426 

2 0BF 0 195 S4 1.5 2452 2454 

3 0RF 0 195 S4 1.15 2447 2454 

4 20P 0.25 200 S4 1.9 2258 2211 

5 20BF 0.5 170 S4 3 2269 2239 

6 40P 0.5 170 S4 3.15 2046 1996 

7 40BF 1 130 S3 3.35 2086 2025 

8 60P 1 150 S3 2.35 1869 1780 

9 60BF 1.5 40 S1 3.35 1889 1811 

10 60RF 1.5 35 S1 4.15 1884 1811 
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The slump of the RuC mixes without steel fibres, 20P, 40P and 60P, also decreased by 16.6%, 319 

29.1% and 37.5%, respectively, in comparison to the control mix. The surface shape and texture 320 

of rubber appear to have increased friction compared to conventional aggregates. Furthermore, 321 

fine impurities (i.e. rubber dust and fluff) on the rubber particles may also have reduced the free 322 

water in the fresh concrete mix.  323 

 324 

The combined effects of both steel fibres and rubber on reducing the workability can be clearly 325 

seen from the slump values of SFRRuC mixes, 20BF, 40BF, 60BF and 60RF, where the slump 326 

significantly dropped by 29.1%, 45.8%, 83.3% and 85.4%, respectively, in comparison to the 327 

control mix.  328 

 329 

4.1.2 Air content and unit weight 330 

Air content has been shown to increase with the addition of fibres and/or rubber in concrete [56, 331 

57] and a similar trend is observed in this study. As indicated in Table 4, the air content (entrapped 332 

air) in the concrete in general rises when increasing the rubber content, and further increases with 333 

the addition of fibres (except for mixes 0RF and 60P which can be considered outliers). The 334 

increase in the air content is possibly due to the rough and non-polar surface of rubber particles 335 

which tend to repel water and increase the amount of entrapped air in the mix. The large specific 336 

surface area of the fibres and their tendency to occasionally agglomerate can also contribute to 337 

increase air entrapment. 338 

 339 

It was expected that the air content of the concrete mix with a blend of fibres (MSF and RTSF) 340 

would be less than the air content of the concrete mix with RTSF alone as the blend fibres mix 341 

has lower amount of fibres, hence lower specific surface area of fibres. However, as shown in 342 
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Table 4, there is no clear trend in this respect and more work is needed before firm conclusions 343 

can be made. 344 

 345 

From Table 4, it is clear that, as expected, the measured density of the concretes assessed 346 

significantly decreases with increasing rubber content. Although this was mainly due to the lower 347 

specific gravity of rubber particles (0.8) compared to the specific gravity of fine and coarse 348 

aggregates (2.65), density was also slightly affected by the increase in air content. On the other 349 

hand, the addition of steel fibres resulted in a marginal increase in the density (in both 350 

conventional and RuC) due to the higher specific gravity of steel fibres (7.8). The last column in 351 

Table 4 presents the theoretical density of each mix, assuming that there is no air content. A good 352 

correlation between the theoretical and experimental values is observed. The measured density 353 

values dropped by 148-215 kg/m3 for each 20% addition of rubber replacement, whereas the 354 

theoretical decline was 215 kg/m3. The difference between these two is attributed to air content 355 

and the assumed specific gravity value used for rubber (0.8), which might not be accurate for all 356 

rubber particles used, as tyres arise from various sources.  357 

 358 

4.2 Compressive behaviour 359 

The mean (average from three cubes and three cylinders, respectively) compressive strength and 360 

elastic modulus values are shown in Table 5. The modulus of elasticity values were obtained by 361 

using the secant modulus of the stress-strain curves (from 0 to 30% of the peak stress) similar to 362 

fib 2010 model code [58]. Standard deviation values are given in brackets below the mean values. 363 

 364 

 365 

 366 



 

   18 
 

Table 5. Mechanical properties of all concrete mixes tested under compression 367 

 368 

Mix ID  0P 0BF 0RF 20P 20BF 40P 40BF 60P 60BF 60RF 

Age of testing 
(days)  

30 30 31 31 32 32 33 33 34 34 

Cube strength  
(MPa) 

78.2 
(4.5) 

93.7 
(3.5) 

101.5 
(2.9) 

51.1 
(1.5) 

52.0 
(3.0) 

23.3 
(0.2) 

25.1 
(1.6) 

10.6 
(0.5) 

11.7 
(1.4) 

11.9 
(0.2) 

Cylinder strength  
(MPa) 

68.9 
(20.7) 

94.8 
(7.0) 

78.8 
(5.0) 

33.1 
(5.1) 

33.9 
(4.4) 

10.8 
(0.4) 

16.5 
(1.4) 

7.6 
(1.0) 

8.2 
(1.4) 

7.8 
(0.3) 

Modulus of elasticity 
(GPa) 

44.3 
(4.0) 

43.0 
(1.2) 

45.7 
(1.2) 

30.7 
(5.1) 

20.0 
(0.0) 

22.0 
(5.3) 

17.3 
(1.5) 

8.0 
(0.0) 

8.3 
(1.5) 

4.7 
(1.2) 

 369 

4.2.1 Cube strength 370 

It can be observed that the addition of steel fibres in conventional concrete increases the 371 

compressive strength by 20% when a blend of MSF and RTSF (20 kg/m3 and 20 kg/m3) is used, 372 

and by 30% when only RTSF is used (40 kg/m3). Steel fibres enhanced the compressive strength 373 

by controlling the tensile transverse strains developed, due to the Poisson effect during axial 374 

loading, thus delaying micro-crack coalescence and eventually unstable propagation that causes 375 

compression failure. RTSF are particularly effective in this respect, possibly due to their random 376 

geometry and better distribution in the mix due to their small diameters. 377 

 378 

The replacement of fine and coarse aggregates with rubber particles had, as expected, a significant 379 

adverse effect on the compressive strength. The drop in the compressive strength, with respect to 380 

the control mix, was around 35%, 70% and 86% for mixes with 20%, 40% and 60% aggregate 381 

replacement, respectively. The reduction in compressive strength can be mainly attributed to the 382 

lower stiffness and higher Poisson ratio of rubber compared to conventional aggregates, and the 383 

weak bond between cement paste and rubber [20, 21]. Under axial load, rubber particles develop 384 

large lateral deformations (due to Poisson effect) which cause lateral  tensile stresses and micro-385 
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cracks in the cement paste, thus accelerating the unstable propagation of cracks and causing 386 

failure at a lower load compared to conventional concrete. The differences in elastic 387 

characteristics and possibly poor bonding conditions between cement paste and rubber particles 388 

may also lead to uneven stress distribution in the concrete. 389 

 390 

The addition of fibres into the RuC mixes did not have a significant effect on the compressive 391 

strength. Compared to the RuC mixes that had the same amount of rubber and did not contain 392 

fibres, the increase in the compressive strength as a result of the addition of MSF and/or RTSF 393 

was 1.7% for 20BF, 7.6% for 40BF, 10% for 60BF and 12% for 60RF. This indicates that the 394 

compressive strength of the SFRRuC is dominated by the amount of rubber, while sensitivity to 395 

steel fibre content is very low.  396 

 397 

4.2.2 Stress-strain characteristics 398 

Figure 4 shows representative axial stress-strain curves (up to the peak stress) for selected tested 399 

cylinders. As there are considerable local strain variations and global bending issues, the 400 

cylinders that displayed better agreement between global and local axial strains and lower level 401 

of bending during loading were chosen. As pointed out by other researchers [11, 25], there is a 402 

very high variability in the recorded results, mainly due to large accidental bending, resulting 403 

from uneven bearing surfaces and/or due to the non-uniform distribution of the rubber particles 404 

in the concrete mass.  405 
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 406 

Figure. 4 Stress-strain curves of the concrete assessed  407 

 408 

It can be seen from Table 5 and Figure 4 that as the rubber content increases, the peak stress and 409 

the initial slope of the stress-strain curves substantially decreases. For the applications considered 410 

in this study (i.e. concrete pavements and slabs on grade), the loss in compression strength is not 411 

as important as the increase in deformability, provided that sufficient flexural strength is 412 

maintained. 413 

 414 

Figure 5 shows that the modulus of elasticity of rubberised concretes (ERuC) without fibre 415 

addition, normalised with respect to the control concrete mix (Econtrol), reduces with an increased 416 

rubber content. Such reduction in stiffness can be attributed to the lower stiffness of rubber 417 

particles (compared to conventional aggregates) and to the higher air content, as confirmed in 418 

section 4.1.2. An exponential curve is also shown to provide an equation for the estimation of 419 

modulus of elasticity. The reduction in elastic stiffness may be undesirable in some structural 420 

applications, but it can help develop new structural solutions, in particular at the soil structure 421 

interaction level. 422 
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 423 

Figure 5. Correlation between the normalized modulus of elasticity of rubberised concretes as a 424 

function of rubber aggregate content 425 

 426 

As shown in Table 5, the effect of steel fibres on compressive stiffness is not conclusive. 427 

However, steel fibres overall tend to increase the peak stress and corresponding strain (apart from 428 

mix 20BF). This enhancement is expected due to the steel fibre ability to control the development 429 

of transverse deformations.  430 

 431 

The addition of rubber and steel fibres had a more significant effect on the failure mode (Figure 432 

6). Whilst the plain concrete specimens failed in a sudden and brittle manner, the RuC specimens 433 

failed in a much more ductile manner. This can be attributed to the relatively low elastic modulus 434 

of the rubber particles, which increases the deformation capacity before cracking, but also to the 435 

tensile resistance of rubber aggregates. The RuC specimens with steel fibres exhibited more (and 436 

thinner) vertical cracks at failure, compared to the ones without fibres. This suggests that ductility 437 

was also improved somewhat by adding fibres.  438 
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 439 

Figure 6. Typical compression failure of tested concrete cylinders 440 

 441 

4.3 Flexural behaviour  442 

The failure mode was the same for all specimens and a typical example is shown in Figure 7; a 443 

single crack initiated at the notch of the mid-span section and propagated vertically towards the 444 

compression zone. 445 

 446 

 447 

Figure 7. Photograph showing a typical flexural failure of the tested concrete prisms  448 

 449 

The mean values (average of three prisms) of strain capacity, flexural strength and elastic 450 

modulus are shown in Table 6. The elastic theory was used to determine the flexural modulus of 451 

elasticity by using the secant modulus of the load-deflection curves (from 0 to 30% of the peak 452 

load). 453 

Crack tip
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Table 6. Mechanical properties of all concrete mixes tested in flexural 454 

Mix ID  0P 0BF 0RF 20P 20BF 40P 40BF 60P 60BF 60RF 
Age of  testing 

(days)  
60 60 61 61 62 62 63 63 64 64 

Flexural strength 
(MPa) 

7.3 
(0.2) 

9.2 
(0.8) 

9.5 
(0.7) 

5.6 
(0.1) 

6.9 
(0.9) 

3.7 
(0.4) 

6.6 
(0.4) 

2.6 
(0.2) 

5.5 
(0.1) 

4.2 
(0.3)   

Modulus of elasticity 
(GPa) 

46.8 
(2.1) 

47.5 
(1.0) 

48.3 
(3.34) 

29.3 
(2.31) 

34.0 
(3.1) 

18.3 
(2.6) 

23.5 
(5.9) 

8.1 
(1.6) 

8.3 
(1.1) 

10.1 
(2.5) 

Strain capacity, įfmax 
(mm) 

0.04 
(0.01) 

0.06 
(0.02) 

0.22 
(0.07) 

0.05 
(0.01) 

0.26 
(0.32) 

0.06 
(0.01) 

1.34 
(0.21) 

0.14 
(0.03) 

1.32 
(0.74) 

0.55 
(0.36) 

 455 

4.3.1 Flexural Strength 456 

Flexural strength values are compared in Figure 8. The addition of steel fibres enhanced the 457 

flexural strength by 26% for 0BF and 30% for 0RF, with respect to the control mix. This 458 

improvement was anticipated as the steel fibres act as flexural reinforcement. 459 

 460 

Figure 8. Flexural strength of the tested concrete mixes 461 

 462 

Consistent with the reported by other authors [25, 36, 59], replacing the fine and coarse 463 

aggregates with rubber particles had an adverse effect on flexural strength. The flexural strength 464 
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of the RuC mixes without fibres, 20P, 40P and 60P, was 23%, 49% and 64% lower than that of 465 

the conventional concrete, respectively. As for the compressive strength, the reduction in flexural 466 

strength may be attributed to the lack of good bonding conditions between the rubber particles 467 

and the cement paste, as well as the low stiffness and higher Poisson’s ratio of rubber (nearly 0.5) 468 

compared to conventional aggregates [20, 21]. The high Poisson’s ratio means that the rubber 469 

once in tension will contract faster than concrete in the lateral direction, facilitating loss of bond. 470 

The low stiffness also means that the rubber contributes very little in tension at the low strain at 471 

which the cement matrix cracks. 472 

 473 

The addition of steel fibres in the RuC resulted in a substantial enhancement of its flexural 474 

strength, therefore mitigating the adverse effect of partially replaced natural aggregates by 475 

recycled rubber particles. By comparing the flexural strength of the SFRRuC mixes, 20BF, 40BF, 476 

60BF and 60RF, with the flexural strength of the RuC mixes without fibres, 20P, 40P and 60P, 477 

it is noted that the flexural strength was increased by 23%, 78%, 111.5% and 61.5%, respectively. 478 

Although the flexural strength gain of the 60RF mix is not as high as the 60BF mix, it still 479 

provides sufficient flexural strength for SFRRuC pavements and slabs on grade and can 480 

potentially lead to more sustainable solutions by eliminating the need for virgin materials. 481 

 482 

Figure 9 shows the normalised compressive and flexural strength for all mixes, with respect to 483 

the control mix (concrete without fibres and/or rubber). It is clear that the loss in compressive 484 

strength as a result of the addition of rubber is more pronounced than the flexural strength loss. 485 

Even without the fibres, the loss in flexural resistance of the RuC is less than the loss in 486 

compressive strength; this indicates that the rubber is making a modest contribution to the tensile 487 

capacity of the concrete in tension. When fibres are added, the tensile resistance is further 488 
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enhanced and hence, considerable flexural resistance is developed even when large volumes of 489 

rubber are present.  490 

 491 

 492 

Figure. 9 Normalised strength as a function of rubber volume in the concrete 493 

 494 

4.3.2 Modulus of elasticity 495 

The values obtained from the flexural tests are in general similar to those from the compressive 496 

tests. As expected, there is a small increase (up to 3%) in the elastic modulus when fibres are 497 

added. A significant reduction in the elastic modulus is also found for the RuC mixes, with the 498 

decrease being almost proportional to the amount of rubber content. In particular, the modulus of 499 

elasticity of the RuC mixes without fibres, 20P, 40P and 60P, was 37.4%, 60.9% and 82.7% 500 

lower than that of the control mix, respectively. The addition of steel fibres into RuC mixes 501 

recovered only marginally part of the modulus of elasticity loss. This confirms that, within the 502 

elastic domain, the inclusion of rubber particles plays a dominant role on flexural stiffness, 503 

whereas the steel fibres make a minimal contribution.  504 
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4.3.3 Strain capacity 505 

The flexural strain capacity was assessed by examining the stress-deflection curves. The 506 

deflection įfmax corresponding to the peak stress, fmax, is taken as a relevant indicator of strain 507 

capacity [33].  It is evident from table 6 that the strain capacity is enhanced by the addition of 508 

fibres. For instance, the įfmax value for the control mix, 0P, was 0.04 mm, while the įfmax values 509 

for 0BF and 0RF mixes were 0.06 and 0.22 mm, respectively. This enhancement can be explained 510 

by the bridging action of the fibres.  The strain capacity of the RTSF mix, 0RF, was higher than 511 

that of the blend fibres mix, 0BF, possibly due to the larger number of RTSF fibres bridging the 512 

cracks. 513 

 514 

The strain capacity also increases with higher rubber contents in the concrete. Compared to the 515 

control mix, 0P, the įfmax of the RuC mixes was increased by 25%, 50% and 250% for 20P, 40P 516 

and 60P, respectively. Turatsinze et al. [33] explained such behaviour by the ability of rubber 517 

particles to reduce stress concentration at the crack tip, thus delaying the coalescence and 518 

propagation of micro-cracks. Mixes with steel fibres and rubber developed the highest strain 519 

capacity values, indicating a synergy between rubber and steel fibres in enhancing strain capacity. 520 

 521 

4.3.4 Residual flexural strength and energy absorption behaviour 522 

The load versus deflection curves shown in Figure 10 confirm that the post-peak branches of the 523 

SFRC prisms without rubber were significantly enhanced as a result of the inclusion of fibres.   524 

The fibres continue bridging the cracks and resisting their opening even after the peak load, 525 

dissipating energy through the pull-out mechanism. 526 

 527 
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 528 

Figure. 10 Average stress versus deflection curves for all concrete mixes studied 529 

 530 

Although rubber particles had an adverse effect on the flexural strength of the concrete prisms, 531 

they improved slightly the post-peak energy absorption. This enhancement can be explained by 532 

the ability of the rubber particles to undergo large deformation in tension and promote high 533 

energy absorption. As a result of the interlocking and friction at fibre–matrix and fibre-rubber 534 

interfaces, steel fibres substantially enhanced the post-peak energy absorption and dissipation of 535 

RuC mixes, which at large displacements show higher flexural capacity than the specimens 536 

without rubber.  537 

 538 

As expected, concrete prisms with a blend of fibres (MSF and RTSF) show superior post-peak 539 

energy absorption behaviour than those with RTSF alone. RTSF are overall better distributed and 540 

in general help control micro-cracks, while MSF are better at controlling cracks once they open 541 



 

   28 
 

and develop. Though the difference in performance is not obvious for normal concrete in Figure 542 

10, this is well demonstrated at 60% rubber content when the 60BF controls the cracks much 543 

better than 60RF. In another study [43], the mixes with blend fibres are shown to outperform both 544 

the RTSF and MSF only mixes.  545 

 546 

To further examine the post-peak energy absorption behaviour of the mixes, the residual flexural 547 

strength (fRi) and the characteristic residual flexural strength values (fRi,c) were obtained (see 548 

Table 7) at given intervals of CMOD (0.5, 1.5, 2.5, 3.5) according to RILEM recommendation 549 

[52]. The residual flexural strength can be considered a measure of toughness or even ductility of 550 

the SFRC mixes. Higher values of fR,i mean higher post-cracking load carrying capacity and 551 

higher ductility. The characteristic residual flexural strength fRi,c accounts for the variability of 552 

the residual flexural strength results. SFRRuC mixes showed a lower rate of reduction in residual 553 

strength than FRC mixes. This may be attributed to the presence of rubber particles that prolong 554 

the crack path and increase the contact area of the failure surface with the rubber particles, which 555 

make some contribution to the tensile strength, but also enable the steel fibres to engage better 556 

across the crack.  557 

 558 

Table 7. Residual and characteristic flexural strength values of concrete assessed 559 

Mix 
No.  

Mix ID  
fRi (MPa) fRi, c (MPa) fib (2010) classification 

fR1 fR2 fR3 fR4 fR1,c fR2,c fR3,c fR4,c fR3,c/fR1,c Class 

1 0P - - - - - - - - - - 
2 0BF 8.1 5.3 3.5 2.7 6.1 3.5 2.4 1.2 0.39 - (< 0.5) 
3 0RF 8.4 5.2 3.7 2.8 8.3 4.7 2.9 1.8 0.35 - (< 0.5) 
4 20P - - - - - - - - - - 
5 20BF 6.5 6.6 5.4 4.3 4.4 4.9 3.3 2.3 0.75 4.4b 
6 40P - - - - - - - - - - 
7 40BF 5.9 6.4 6.4 5.4 4.9 5.8 5.6 4.6 1.14 4.9d 
8 60P - - - - - - - - - - 
9 60BF 5.1 5.4 5.3 4.7 4.4 5.2 5.1 3.8 1.16 4.4d 
10 60RF 4.1 3.7 3.1 2.6 3.6 3.2 2.8 2.6 0.78 3.6b 

* a if 0.5 fR3,c/fR1,c 0.7; b if 0.7 ≤ fR3,c/fR1,c ≤0.9; c if 0.9 ≤ fR3,c/fR1,c ≤1.1;d if 1.1 ≤ fR3,c/fR1,c ≤3;e if ≤fR3,c/fR1,c 560 
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According to fib model code [58] for structural applications with normal and high-strength 561 

concrete, SFRC can be classified according to the post-cracking residual strength (considering 562 

the value of fR1,c), and the ratio fR3,c/fR1,c. The higher the value of fR1,c and/or the ratio fR3,c/fR1,c, 563 

the higher the class. As observed in Table 7, mixes 40BF and 60BF show the best overall 564 

performance among all mixes, whereas SFRC mixes (without rubber) can not be classified as 565 

their fR3,c/fR1,c ratio is less than 0.5. Nevertheless, all SFRC mixes (conventional and rubberised) 566 

fulfilled the requirements of EN 14889-1 [60] – 1.5 MPa at 0.5 mm CMOD and 1.0 MPa at 3.5 567 

mm CMOD – and could be used for practical applications.  568 

 569 

The aim of this study is to develop a more flexible Portland cement concrete pavement. However, 570 

as flexible pavement standards/specifications relate to asphalt concrete, it is not possible to use 571 

them for a direct comparison, though the flexural performance of SFRRuC is far superior to that 572 

of asphalt concrete. Hence, SFRRuC pavements, though flexible, should comply with 573 

standards/specifications for rigid pavements. The major issue here is that the rigid pavement 574 

standards relay on the compressive and flexural strengths. Though all SFRRuC mixes studied 575 

here meet the flexural strength characteristics, as described in pavement design standard BS EN 576 

13877-1[54], not all of them can meet the compressive requirements. However, provided that 577 

durability requirements are met, this should not be a big issue but would require modification on 578 

the standard. 579 

 580 

4.4 Free shrinkage behaviour 581 

Typical curves of total shrinkage versus time are shown in Figure 11. The vertical dotted line 582 

shown at 8 days indicates the start of drying shrinkage. The values predicted according to 583 
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Eurocode 2 [61] for conventional concrete (accounting for temperature and humidity) are also 584 

included for comparison.  585 

 586 

Both conventional concrete and SFRC mixes show lower autogenous and drying shrinkage 587 

strains than those predicted by Eurocode 2 (EC2).  The difference between predicted and actual 588 

values for these mixes can be attributed to the presence of high quantities of silica fume and fly 589 

ash, not accounted for in the Eurocode 2 equation. It is also clear that the addition of rubber 590 

increases the overall shrinkage strains at 57 days by 15.5% for 20P, 59% for 40P and 127% for 591 

60P. This increase in free shrinkage strain with increasing rubber content is due to the lower 592 

stiffness of rubber particles compared to conventional aggregates, which reduces the overall 593 

internal restrain. The higher porosity and diffusivity of rubberised concrete prims can also 594 

contribute to increasing the rate of moisture loss and accelerating drying shrinkage.  595 

 596 

 597 

Figure. 11 Total free shrinkage for all concrete mixes 598 
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5  Conclusions 599 

This study assessed the fresh state and mechanical properties of steel-fibre reinforced rubberised 600 

concretes (SFRRuC), in which waste tyre rubber partially replaced aggregates, and blends of 601 

manufactured and recycled tyre steel fibres were used as reinforcement. Based on the 602 

experimental results, the following conclusions can be drawn:  603 

 The replacement of conventional aggregates with rubber particles reduces workability and 604 

unit weight, and increases air content of the fresh concrete mixes. Steel fibres further 605 

lower workability and increase air content, whilst marginally increasing unit weight.  606 

 The mechanical properties (compressive and flexural strength, as well as the modulus of 607 

elasticity) decrease with increasing rubber content. Steel fibres in appropriate amounts 608 

(up to 40 kg/m3) enhance the mechanical properties of conventional concrete (up to 30% 609 

compressive strength) and provide modest increases in the modulus of elasticity. 610 

 Free shrinkage strain increases with increasing rubber content as a result of the lower 611 

stiffness of rubber particles. 612 

 In rubberised concrete, the addition of steel fibre reinforcement mitigates the loss in 613 

flexural strength (from 50% to 9.6% loss, compared to conventional concrete) and slightly 614 

improves compressive strength and modulus of elasticity (up to 12.5% and 28.4%, 615 

respectively), hence, they are an important component when RuC is to be used for 616 

structural purposes.  617 

 Concrete strain capacity and post-peak energy absorption behaviour are enhanced by the 618 

addition of fibres and are further improved by the inclusion of rubber, completely 619 

transforming the flexural performance of RuC and enabling it to resist structural loads. 620 

 A high performance (class d according to fib 2010 model code [58]) and highly flexible 621 

steel fibre reinforce rubberised concrete can be produced with 60% rubber content and 622 
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blended fibres (20 kg/m3 of MSF and 20 kg/m3 of RTSF), suitable for pavement 623 

applications. 624 

It is concluded that SFRRuC is a promising candidate material for use in structural concrete 625 

applications with increased toughness and flexibility requirements, such as road pavements and 626 

slabs on grade. Future work should be directed towards investigating the long-term performance 627 

of this innovative concrete in aggressive environments. 628 
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