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Abstract

This work aims to develop materials for flexible concretgeep@nts as an alternative to asphalt
concrete or polymer-bound rubber surfaces and presentsdg en steel fibre reinforced
rubberised concrete (SFRRuUC). The main objective ofsthidyis to investigate the effect of
steel fibres (manufactured and/or recycled fibres) enftbsh and mechanical properties of
rubberised concrete (RuC) comprising waste tyre rubber (WTR)e Bhrinkage is also
examined. The main parameters investigated through ten differ@es are WTR and fibre
contents. The results show that the addition of fiboneRuC mixes with WTR replacement
substantially mitigates the loss in flexural strength dudeaubber content (from 50% to 9.6%
loss, compared to conventional concrete). The use oésfiin RuC can also enable the
development of sufficient flexural strength and enhastcain capacity and post-peak energy
absorption behaviour, thus making SFRRuC an ideal alteer@instruction material for flexible
pavements.

Keywords. Recycled fibres; Rubberised concrete; Steel fibre concrete; Rubberised steel fibre

concrete; Hybrid reinforcement; Flexible concrete; Flexible pavements.
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1. Introduction and Background

Road pavements and slabs on grade are constructedwatth@exible asphalt or rigid concrete.
Flexible pavements can better accommodate local deformatlut lack the durability of
concrete which is by nature much stiffer. A flexible c@te pavement could combine the
advantages of both types of pavements, however, requirasli@al change in how it is
constructed. Rubberised concrete which can be desigrveostiefness values similar to that of
asphalt, can be used as an alternative constructioerialaor flexible pavements. It is well
known, however, that the use of rubber in substantialginquantities can also adversely affect
all of the other mechanical properties of Portland-thasencrete. Furthermore, virgin rubber
aggregates are significantly more expensive than natural aggge@a address these issues, this
study aims to use recycled materials derived from wasteuipteer (WTR) not only to provide
economically and structurally sound alternatives, but &ds@nable the development af

sustainable flexible concrete pavement solution.

1.1 Waste tyre materials

According to The European Tyre Recycling Associaﬁn [1]lr@amately 1.5 billion tyres are
produced worldwide each year and a quarter of this amournsénan EU countries. It is also
estimated that for every tyre brought to the market, rematyre reaches its service life and
becomes waste. The European Directive 1991/3C [2] introdusetdbd strict regulations to

prevent the disposal of waste tyres in landfills as anmeapreventing environmental pollution

and mitigating health and fire hazdrd [B-5]. As a resulthé EU any type of waste tyre disposal

in the natural environment has been banned since. Zb@6European Directive 2008/98/EE [6]
has also established a disposal hierarchy leading toieusesffort for effective waste tyre

management, minimising energy consumption.
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Typical car or truck tyres comprise 75-90% rubber, 5-15% &iggngth corded steel wire and
5-20% polymer textile. WTHs currently used as fuel, in particular in cement kilh& &lso used
in applications, such as synthetic turf fields, ardficieefs, sound proof panglslayground
surfaces and protective lining systems for underground inficdste . While these
applications make a positive contribution to recycling Wii&nand with respect to the volume
of waste tyres is still small. Since cement-based madgeconstitute the largest portion of
construction materials worldwide, recycling WTR in conerista positive way to respond to the

environmental challenge and to the significant redundant velwieaste materials

1.2 Rubberised concrete

In the past two decades, several studies have investidedidition of WTR in concrete, but

only recently for structural applications [911€Joncretes containing rubber particles present high

ductility and strain capacity, increased toughness and enéssjpation . These

propertiesalong with the material’s high impact and skid resistangsound absorption, thermal

and electrical insulatioﬂiB-l‘] make rubberised concretes (RuC) a very attractiveirigy

material for non-structural applicatians

Despite the good mechanical properties of rupbpesduction of RuC has several important

drawbacks: (a) reduction in workability associated with thiasartexture of the rubber particles

, (b) increased air content aetrough and non-polar surface of rubber particles

tend to repel water and increabe amount of entrapped gir [20{22hd (c) reduction in the

compressive strength (up to approximately 90% reduction with l@@lacement of natural

aggregates), tensile strength and stiﬁn The reduction in mechanical properties is

mainlyattributed to the lower stiffness and higher Poisson’s ratio of rubber (nearly 0.5) compared
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to the other materials in the mixture, and the weak batdiden cement paste and rubber

particles . One of the potential alternatives to enhance the medig@cformance of

RuC is the addition of fibres.

1.3 Steel fibre reinforced concrete using recycled fibres

The steel cord used as tyre reinforcement is a vetystigngth cord of fine wires (0.1- 0.3 mm).
The same cord is currently being used in limited volumeeinforce concreten high value
security applications, such as vaults and safe roontbeAfame time when extracted from tyres,
the cord is either discarded or at best re-melted. Coomtigravailable steel fibre reinforcement
for concrete comprises thin fibres with a diametegiragfrom 0.3 to 1 mm and has a sizable
market mainly in tunnel and slabs on grade applications. Hei€®@atural to consider tyre wire
for concrete applicatio ’ 6], as using recycled tyeeldibres (RTSF) from waste tyres, instead
of manufactured steel fibores (MSF), can reduce costpasitively contribute to sustainability

by reducing the emissions of @@enerated from manufacturing steel fibﬁ . Recently,

many studies have examined the use of recycled steel'rﬁhnescreteif 129-34] By assessing

mechanical properties, most of these studies confirmiditieyaf classified RTSF to reinforce

concrete.

1.4 Steel fibre reinforced rubberised concrete

Despite the fact that there are many studies on RuC BR&C Sthere are very few studies

examining the effect of using steel fibres and rubber pesttogether in concrete, and most of

thesefocus on cement-based mortars or self-compactedet@en@CC) [33-37]Turatsinze et al.

investigated the synergistic effect of MSF and rulgaeticles, in particular replacing sand

in cement-mortars. They observed that the additiostedl fibres improved the flexural post-

4
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cracking behaviour, while the addition of rubber (up to 30% byme of sand) significantly
increased the deflection at peak load. Ganesan Ist@&tﬁ]ed the influence of incorporating
crumb rubber and MSHISCC. Compared to conventional SCC, they reported a 3&%ase

in flexural strength when 15% of sand (by volume) was ceplavith crumb rubber and 0.75%
(by volume) fraction of steel fibres was added. Xie e conducted an experimental study
onthe compressive and flexural behaviour of MSF reinforeeglaled aggregate concrete with
crumb rubber. They found that as the amount of rubbetlenbwas increased, the reduction in
the compressive strength was smaller compared to other sstuadid they attributed this
behaviour to the inclusion of steel fibres. They alsocluded that steel fibres played a significant
role in enhancing the residual flexural strength, which sWigdtly affected by the increase in
rubber content. Finally, Medina et 37] examined the machhproperties of concrete
incorporating crumb rubber and steel or plastic fibresecbatith rubber. They observed that
concrete with rubber and fibres presents better compreasd/dlexural behaviour as well as

impact energy absorption than plain rubberised concrete.

To the best of the authors' knowledge only limited infornmatsoavailable on the mechanical
behaviour of steel fibre reinforced rubberised concrete R8sl where both fine and coarse
aggregates are replaced with rubber particles in significdnimes (exceeding 20% by volume
of total aggregates) and further studies are needed to undetstamuiformance where much
larger rubber volumes are uséa@rge volumes of rubber are necessary to achieve maiielée

concrete pavements. In addition, the behaviour of SFRRuwich RTSF are used alone or in

a blend with MSF, has not been studied yet.
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This study investigates the fresh properties as well asoimpressive and flexural behaviour of
several SFRRuUC mixes with the aim of developing optimizexks suitable for pavement
applicationsCoarse and fine aggregates are partially replaced by diffeiz=s and percentages
of tyre rubber particles and various dosages and blendsalffibres, MSF and/or RTSF, are
usedasfibre reinforcement Details of the experimental programme and the mainrexpatal
results are presented and discussed in the followingosscThis study contributes to the
objectives of the EU-funded collaborative project Anager{hisp://www.anagennisi.org/) that

aims to develop innovative solutions to reuse all waseedymponents.

2. Experimental Programme

2.1 Parameters under investigation

The parameters assessed in this study were: (i) the robbint used as partial replacement of
both fine and coarse aggregates (0%, 20%, 40% or 60% replackyneolume), and (ii) steel
fibre content (@r 20 kg/n¥ MSF + 20 kg/m RTSF, or 40 kg/MRTSF). A total of 10 different
mixes were prepared. For each mix, three cubes (150 mm-tizeg cylinders (100 mm-
diameter and 200 mm-length), and three prisms (100x100 mmszossn and 500 mm-length)
were cast. The cubes and cylinders were used to obtain thealin@xipressive strength and the
compressive stress-strain curve, respectively, whereaspisms were cured in different
conditions to evaluate free shrinkage strain (autogeaondsirying) and then subjectexthree-
point bending Table 1 summarises the different mix characteristicstha ID assigned to the
mixes. The mix ID follows the format NX, where N denotesah®wunt of rubber content used
as partial replacement of both fine and coarse aggre(at2e, 40 or 60%), while X represents
the type of steel fibre reinforcement and can be eiheBF or RF (Plain, Blendf Fibres or
Recycled Fibres, respectivelyror instance, 60BF is the rubberised concrete mix thabamns

6



146  60% of rubber particles as conventional aggregate replacememoasets of blend fibres (20

147  kg/m*MSF and 20 kg/fmRTSF).

148
149 Table 1. Concrete mibD, and quantities of rubber and steel fibres added in each mix
) Fine Coarse
Mix U 1D arubber 'ePIACNG rubber rubber MSF  RTSF
No. 9areg y (kg/n?)  (kgin®)  (kg/m?)  (kg/n?)
Fine Coarse
1 oP 0 0 0 0 0 0
2 OBF 0 0 0 0 20 20
3 ORF 0 0 0 0 0 40
4 20P 20 20 49.5 60.4 0 0
5 20BF 20 20 49.5 60.4 20 20
6 40P 40 40 99 120.9 0 0
7 40BF 40 40 99 120.9 20 20
8 60P 60 60 148.5 181.3 0 0
9 60BF 60 60 148.5 181.3 20 20
10 60RF 60 60 148.5 181.3 0 40
150
151

152 2.2 Materials and mix preparation
153 2.2.1 Materials

154 2.2.1.1 Rubberised concrete

155 A high strength commercial Portland Lime Cement CEMAI5 N containing around 105%

156 Limestone in compliance with BS EN 19 was used as binder. The coarse aggregates used
157 comprised natural round river washed gravel with partidesspbf 5-10mm and 10-20 mm

158 [specific gravity (SG)=2.65, absorpti¢A) =1.2%] The fine aggregates used comprised medium
159 grade river washed sand with particle sizes of 0-5 mm (SG=2#55%). Pulverised fuel ash
160 (PFA) and silica fume (SF) were used as partial replaseaieement (10% by weight for each)
161 toenhance the fresh and mechanical properties of the rRikesiciser and superplasticiser were
162 also added to improve cohesion and mechanical propertigsd@tails are given in Section

163 2.2.2).
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The rubber particles used in this study were recovered thritwgbhredding process of waste
tyres at ambient temperature and where obtained fromdtffierent sources. As depicted in
Figure 1a, the fine rubber particles were provided in the rarige®& mm, 0.5-0.8 mm, 1-2.5
mm and 2-4 mm and were used in the concrete mix in the ¥atl2:32:44 of the total added
fine rubber content, while the course rubber particles werdisdpp the ranges of 4-10 mm and
10-20 mm and were utilized in the concrete mix in the &Qi60 of the total added course rubber
content Figure 2 presents the particle size distribution ohteiral aggregates (NA) and rubber
particles used, obtained according to ASTM-C [39]. To lingtibfluence of rubber size on
concrete particle packing, conventional aggregates wewegplith rubber particles of roughly
similar size distribution to minimise the impact on pgaeking of the concrete mix constituents.
A relative density of 0.8 was used to calculate the massbiser replacing natural aggregates,

as determined using a large rubber sample that was acgunat@ind measured.

100

- Frequency 90
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Figure. 1 a)Rubber particled)) MSF and RTSF used in this study and c) length distribution
analysis of RTSF
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Figure. 2 Particle size distribution for conventional aggregatas rubber

Table 2 reports the physical properties of the coarse gafg€5-20 mm) and the coarse rubber
particles(4-20 mm), obtained through a series of tests: (a) particlgitgeand water absorption
according to EN 1097-0], (b) loose bulk density according ta N3 , and (c) particle
shape-flakiness index according to EN 933-3 [42]. The physicpepies of the fine aggregates
and fine rubber particles were not evaluated due to diffesihi performing the tests on fine

rubber particles as they floated when submerged in water.

As it was not possible to complete the flakiness testsalfoparticle sizes, in the end this
information was not used directly in the mix design. tiudth be noted though that the higher

flakiness influenced the optimisation of the mix desigwl anore fines and supplementary

materials were necessary, as report [11].
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Table 2. Physical properties of coarse aggregates and coarse p#rbeles

Pryscal popetesTpe o Sorte . Ster N e
4-10 mm 10-20 mm 5-10 mm 10-20 mm

Apparent particle density, kgfm 1136 1103 2685 2685
Oven-dried density, kg/m 1032 1090 2599 2599
§2:tli‘§‘eteddeﬁggy,sig?ée'd”Ed 1123 1101 2631 2631
Water absorption after 24h, % 5.3-8.8 0.8-1.3 1.2 1.2
Bulk specific gravity 1.1 1.1 2.6 2.6
Bulk density, kg/m 454 485 1511 1583
Flakiness index 6.64 17.48 7.05 9.7

2.2.1.2 Steel Fibres

The MSF were crimped type steel fibres with a length of 85 diameter of 0.8 mm and tensile
strength of 1100 MPa. The RTSF were cleaned and screenesl (fypresally containing < 2%
of residual rubber) and had lengths in the range of 15-45antegst 60% by mass), diameters
<0.3 mm and tensile strength of 2000 MPa. Figure 1b presetitsypes of fiores (MSF and
RTSF) used in this study and Figure 1c illustrates the lengfttibdition of the RTSF based an
digital optical correlation method that combines phadognetry and advanced pattern

recognition to determine the length of individual fibre frbigh speed image of free falling

dispersed fibre3]

2.2.2 Mix design

The mix design used in this experimental study (adopted Raffoul et aI.]) was optimesl

to be used for typical concrete bridge piers targetimapacessive strength of 60 MPa (cylinder),
and suited the replacement of 0%, 20%, 40% and 60% of WiFRutiexcessive degradation in
fresh and mechanical properties. The optimised mix prapartifor 0% rubber content

(conventional concrete), are shown in Table 3.

10
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Table 3. Concrete mix proportions (without rubber content)

Material Quantity
CEM Il - 52.5 MPa 340 kg/nt
Silica fume (SF) 42.5 kg/nd
Pulverised fuel ash (PFA) 42.5 kg/nd
Natural fine aggregates Or3m 820 kg/ni
Natural coarse aggregates 5+t 364 kg/ni
Natural coarse aggregates 10r2 637 kg/ni
Water 150 I/
Plasticiser 2.5 I/m*
Superplasticiser 5.1 /P

*It was increased at higher amounts of rubber anddilveze added to the concrete (2.5-4.75)/m

2.2.3 Mixing, casting and curing procedure

A 200 litre pan mixer was used for all mixes. The procedure usedXorgtihe concrete started
with conventional aggregates dry mixed for 30 seconds togethbrting rubber particles.
Subsequently, half of the total amount of water was addedraxed for about 1 minute. The
mix was allowed to rest for 3 minutes allowing the convealiaggregates to get saturated. After
that, the cementitious materials (Portland cementasilime and fly ash) were added, followed
by the remaining water and the chemical admixtures. fid#h fconcrete was finally mixed for
another 3 minutes. For those concrete mixes with fiteek, fibores were manually integrated

into the concrete during mixing at the last mixing stage.

The concrete fresh properties, including slump, airertrénd fresh density, were then assessed
for each mix according to the standardised methods deddnitieN 123562 , EN 123507
, and EN 1235® , respectively. The concrete specimens were casasgtic cubg150
mm) and cylinder moulds (100x200 mm), and prismatic steel mo@@@x{00x500 mm)
according to EN 12390-@17] and EN 14[48]. The specimens were ¢asi layers and

11
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256
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261

vibrated (25s per layer) on a vibragitable. After casting, specimens were covered with plasti
sheets to prevent moisture loss, and left under standardatatyo conditions for 48h until
demoulding The specimens were then kept in a mist room’@% 2 and 95+ 5% relative
humidity (RH) for 28 days, except for the prisms used for shrinkageunsaents that were left
in the mist room for 7 days and then stored in a conbarh (24°C + 2 and 42+ 5 RH) for 50
days. After the curing period, the specimens were kept undetasthlaboratory conditions (20

‘C £ 2 and 50t 5 RH) until testing

3. Test set-up and procedure

3.1 Compression testing

Prior to testing, the top faces of the cylinders were cugemghd according to EN 1239049]
For the RuC cylinders, extra measures were taken temrdecal failure during testing by
confining their two ends with high-ductility post-tenséakstraps, as proposed by Garcia et al.
. Axial compression tests were performed on concngbesand cylinders according to EN
123903 under monotonic loading until failure. For all testglihders, hecompression tests
were performed using a servo-hydraulic universal testing machiheaioad capacity of 1000
kN. The load was applied on the cylindats displacement rate of 0.3 mm/min. The local axial
strain was measured using two diagonally opposite strain gaugd-beight. The global axial
strain was measured using three laser senstitsan accuracy of 4Gyl placed radially around
the specimens (12Gpart) using two metallic rings. The metallic rings watached to the
specimens using four clamp screws, covering the middle Zdhe oylinder and resulting in 100
mm gauge lengthThe tests on cubes were carried out using a standard cseiopresachine

with a load capacity of 3000 kat a loading rate of 0.4 MPal/s.

12
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3.2 Three-point bending tests

The flexural behaviour of the concrete specimens wasssesseby performing three-point
bending tests using an electromagnetic universal testingingawith a load capacity of 300 kN.
A detailed schematic of the test setup is provided in FiguTde loading point allowed for both
thein-plane and oubf-plane rotation of the prisnTwo LVDTs were mounted at the middle of

a yoke (one on each side) as suggested by thl [5Eptsune the net deflectionratd-span.

100 mm 100 mm

1 Yoke

Steel plate
5 mm thick

-~ Vertical LVDT

= o
E | | £
o f | o
- { i =
: |
' |
. R -y S50
L v
+ Steel rolier support Clip gauge
DIA (30 mm) COMD
100 mm d 300 mm ’ 100 mm

Figure. 3 Schematic representation of the flexural test set-up

A clip gauge of 12.5 mm-length was fixed at the middle of titeoin side of the prism, where a
5 mm-wide and 15 mm-deep notch had been sawn. The clip gaagenement (crack ouoth
opening displacement -CMOD) was used to control the loadiag@sssuggested by RILEETSZ]
All tests were performed underr@e of 50 um/min for CMOD ranging from 0 to 0.1 mm, 200

pm/min for CMOD ranging from 0.1 to 4 mm, and 8000 um/min for CMOD higher than 4 mm.

3.3 Free-shrinkage

The autogenous and drying shrinkage tests were performed agcdxodEN-126174]

However, to avoid isss®f fibre alignment along the mould boundarié size of the prismatic

13
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specimens was increased from 40x40x160 mss(ggested by the standard) to 100x100x500
mm. Specimens were demoulded two days after casting and fitfedteel“Deme¢ points
(locating discs) using plastic padding. Two Demec pointeviged 300 mm apart on each of

the vertical (as cast) sides of the prism

The first strain measurement was recorded after 30 minotelow for the hardening of the
adhesive For autogenous shrinkage, the specimens were kept in aawoist with controlled
temperature and humidity conditions (Z1+ 2 and 95t 5% RH) and measurements were taken
at the ages of 1, 2, 3 and 7 days after demoulding. Fargdsyirinkage, specimens were stored
in a chamber with controlled temperature and humiditydimms (24°C + 2 and 40+ 5 RH)

and measurements were taken at the ages of 10, 14, and 28 apd &fetademoulding

4. Experimental Results and Discussion

4.1 Fresh state properties
4.1.1 Workability

To assess the workability of rubberised concrete, mosaresers (including the authors of this
paper) use the slump test which appears to be a consisteaasyto-apply method in practice
. Table 4 shows the slump results of all mixes as well s ¢heresponding
slump classes, all of which fulfil the consistency regimients as described in pavement design
standard BS EN 13874] and the normative reference BS EN ﬁ-éither for fixed-
form or slip-form (class S1) paving he desired slump class was targeted to be at least SP(slum
> 90 mm), by modifying the plasticiser dosage which was isectaroportionally to the amount

of rubber and steel fibres in each mix. All mixes achievedtargeted slump, however, the

14
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workability for mixes 60BF and 60RF was quite low (40 and 35 mm, c&sply) although high
amounts of plasticiser and superplasticiser were added (dvpand 5.1 per fof concrete
respectively). Nevertheless, this low workability did noteany issues during handling, placing
or finishing of the mixes due to the high rubber dosage (60%).d%s sif segregation, bleeding

or excessive “balling” were observed in any of the mixes.

Table 4. Fresh concrete properties for all concrete mixes

Mix _ Extra plasticiser Slump Slump Air Bulk_ Theore_tical
No. Mix ID addesd (mm) class content density density
L/m % (kg/m?) (kg/m?)
1 oP 0 240 S5 1.35 2406 2426
2 0BF 0 195 S4 1.5 2452 2454
3 ORF 0 195 S4 1.15 2447 2454
4 20P 0.25 200 S4 1.9 2258 2211
5 20BF 0.5 170 S4 3 2269 2239
6 40P 0.5 170 S4 3.15 2046 1996
7 40BF 1 130 S3 3.35 2086 2025
8 60P 1 150 S3 2.35 1869 1780
9 60BF 1.5 40 S1 3.35 1889 1811
10 60RF 1.5 35 S1 4.15 1884 1811

The results show that slump decreases with the additisteel fibres, and further decreases with
the inclusion of rubber, even though the amount of iglast was increased proportionally. By
comparing the slump values of the control mix with th&kGFmixes without rubber (OBF and
ORF), it can be seen that fibres caugstimp drop of 18.8% for both SFRC mixes. This decrease
may be caused by increased friction between the RTSFh\uhie a large specific surface area,
and the concrete constituents during mixing. Additionallg tbndency of steel fibres to

agglomerate also has an adverse effect on workability.

15
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The slump of the RuC mixes without steel fibres, ,200P and 60P, also decreased by 16.6%,
29.1% and 37.5%, respectively, in comparison to the conixolThe surface shape and texture
of rubber appear to have increased friction compared to coonwahéggregates. Furthermore,
fine impurities (i.e. rubber dust and flutih the rubber particles may also have reduced the free

water in the fresh concrete mix.

The combined effects of both steel fibres and rubber on regltiee workability can be clearly
seen from the slump values of SFRRuC mixes, 2@BBF, 60BF and 60RF, where the slump
significantly dropped by 29%, 458%, 833% and 8%, respectively, in comparison to the

control mix.

4.1.2 Air content and unit weight

Air content has been shown to increase with the acdditidibres and/or rubber in Concr56
and a similar treng observed in this studys indicated in Table 4, the air content (entrapped
air) in the concrete in general rises when increasing the rgbbbéent, and further increases with
the addition of fibres (except for n@g ORF and 60P which can be considered outliereg
increase in the air content is possibly due to the rougmangolar surface of rubber particles
which tend to repel water and increase the amount of entrappiedhemix. The large specific
surface area of the fibres and their tendency to @otalty agglomerateanalso contribute to

increase air entrapment.

It was expected that the air content of the concretewitixa blendof fibres (MSF and RTSF)
would be less than the air content of the concrete nitkx RTSF alone as the blend fibres mix

has lower amount of fibres, hence lower specific suréaea of fibres. However, as shown in
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Table 4 there is no clear trend in this respect and more wankesled before firm conclusions

can be made.

From Table 4, it is clear that, as expected, the medsdensity of the concretes assessed
significantly decreasawith increasing rubber contertlthough this was mainly due to the lower
specific gravity of rubber particles (0.8) compared to theiipggravity of fine and coarse
aggregates (2.65), density was also slightly affected bindnease in air content. On the other
hand, the addition of steel fibres resulted in a malginerease in the density (in both
conventional and RuQlue to the higher specific gravity of steel fibres (7.8 Hst column in
Table 4 presents the theoretical density of each nsxnaisg that there is no air content. A good
correlation between the theoretical and experimentaksaki observed. The measured density
values dropped by 148-215 kdg/rfor each 20% addition of rubber replacement, whereas the
theoretical decline was 215 kginThe difference between these two is attributed to aireobn
and the assumed specific gravity value used for rubber @&)h might not be accurate for all

rubber particles used, as tyres arise from various sources

4.2 Compressive behaviour

The mean (average from three cubes and three cylindspgctively) compressive strength and
elastic modulus values are shown in Table 5. The moduleksticity values were obtained by
using the secant modulus of the stress-strain cuna® @rto 30% of the peak stress) similar to

fib 2010 model cod8}5tandard deviation values are given in brackets beloméaa values.

17



367
368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Table 5. Mechanical properties of all concrete mixes tested ucmi®pression

Mix 1D OP OBF ORF 20P 20BF 40P 40BF 60P 60BF G6ORF

Age of testing 30 30 31 31 32 32 33 33 34 34
(days)

Cube strength 782 93.7 1015 511 520 233 251 10.6 117 11.9
(MPa) 45) (35) (2.9) (L5 (30) (0.2 (1.6) (0.5 (L4) (0.2)

Cylinder strength 689 948 788 331 339 108 165 7.6 8.2 7.8
(MPa) (20.7) (r.0) (.0 »B.1) @4 @©4 @4 @O0 @4 (©3

Modulus of elasticity 44.3 43.0 457 30.7 20.0 220 17.3 8.0 8.3 4.7
(GPa) 40 @2 @12 (1) @O B3 (15 @©O @5 (@12

4.2.1 Cube strength

It can be observed that the addition of steel fibreganventional concrete increases the
compressive strength by 20% when a blend of MSF and RTSF (26 &gdn20 kg/r) is used,

and by 30% when only RTSF is used (40 kj)/1Bteel fibres enhanced the compressive strength
by controlling the tensile transverse strains developedialtiee Poisson effect during axial
loading, thus delaying micro-crack coalescence and eventusstghle propagation that causes
compression failure. RTSF are particularly effectivéhia respect, possibly due to their random

geometry and better distribution in the mix due to theglsdiameters.

The replacement of fine and coarse aggregates with rubtietgsahad, as expected, a significant
adverse effect on the compressive strength. The drbe icoimpressive strength, with respect to
the control mix, was around 35%, 70% and 86% for mixes with 20% and 60% aggregate
replacement, respectively. The reduction in compressigagih can be mainly attributed to the
lower stiffness and higher Poisson ratio of rubber coatpbty conventional aggregates, and the
weak bond between cement paste and ruOUnder axial load, rubber particles develop

large lateral deformations (due to Poisson effect) whicbec&ateral tensile stresses and micro-
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404

405

cracks in the cement paste, thus accelerating the umgtadypagation of cracks and caugsin
failure at a lower load compared to conventional concré&tee differences in elastic
characteristics and possibly poor bonding conditions letwement paste and rubber particles

may also lead to uneven stress distribution in therevec

The addition of fibres into the RuC mixes did not havegaificant effect on the compressive
strength. Compared to the RuC mixes that had the same tofouhber and did not contain
fibres, the increase in the compressive strength asudt 0f the addition of MSF and/or RTSF
was 1.7% for 20BF, 7.6% for 40BF, 10% for 60BF and 12% for 60RF.ifthisates that the
compressive strength of the SFRRuC is dominated by the ambrubber, while sensitivity to

steel fibre content is very low.

4.2.2 Stress-strain characteristics

Figure 4 shows representative axial stress-strain c(upds the peak stress) for selected tested
cylinders As there are considerable local strain variations aothag) bending issues, the
cylinders that displayed better agreement between gdwiohlocal axial strains and lower level
of bending during loading were chosen. As pointed out by mﬁmarcherﬁ], there ia
very high variability in the recorded results, mainly dudatge accidental bending, resulting
from uneven bearing surfaces and/or due to the non-unifornibdigin of the rubber particles

in the concrete mass.
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Figure. 4 Stress-strain curves of the concrete assessed

It can be seen from Table 5 and Figure 4 that as the rabbh&nt increases, the peak stress and
the initial slope of the stress-strain curves substgntiacreases. For the applications considered
in this study (i.e. concrete pavements and slabs on)gtaddoss in compression strength is not

as important as the increase in deformability, provided shdficient flexural strength is

maintained.

Figure 5 shows thathe modulus of elasticity of rubberised concre{&suc) without fibre
addition, normalised with respect to the control comamék (Econtro)), reduces with an incread
rubber content. Such reduction in stiffness can be attribbotéde lower stiffness of rubber
particles (compared to conventional aggregates) and thigher air content, as confirmed in
section 4.1.2. An exponential curve is also shown to provideqaation for the estimation of
modulus of elasticity. The reduction in elastic stiffnesay be undesirable in some structural
applications, but it can help develop new structural solutibngarticular at the soil structure

interaction level.
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function of rubber aggregate content

As shown in Table 5, the effect of steel fibres on c@sgve stiffnesss not conclusive
However, steel fibres overall tend to increase the paks and corresponding strain (apart from
mix 20BF). This enhancement is expected due to the steehfiility to control the development

of transverse deformations.

The addition of rubber and steel fibres lramore significant effect on the failure mode (Figure
6). Whilst the plain concrete specimens failed in a suddebréttid manner, the RuC specingen
failed in a much more ductile manner. This can be attrilotdk relatively low elastic modulus
of the rubber particles, which increases the deformatipadaity before cracking, but alsmthe
tensile resistance of rubber aggregaté®e RuC specimens with steel fibres exhibited more (and
thinner) vertical cracks at failure, compared to the ond®wi fibres. This suggests that ductility

was also improved somewhat by adding fibres.
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Figure 6. Typical compressiofailure of tested concrete cylinders

4.3Flexural behaviour

The failure mode was the same for all specimens and a tygiemple is shown in Figure 7; a
single crack initiated at the notch of the mid-spaniese@nd propagated vertically towards the

compression zone.

Figure 7. Photograph showing a typical flexural failure of thegdstoncrete prisms

The mean values (average of three prisms) of strgiaciy, flexural strength and elastic
modulus are shown in Table Bhe elastic theory was used to determine the flexural meail
elasticity by using the secant modulus of the load-didlecurves (from 0 to 30% of the peak

load).
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Table 6. Mechanical properties of all concrete mixes testdttxural

Mix 1D OP OBF ORF 20P 20BF 40P 40BF 60P 60BF G6ORF

Age of testing 60 60 61 61 62 62 63 63 64 64
(days)

Flexuralstrength 73 92 95 56 69 37 66 26 55 42
(MPa) 02) (0.8 (0.7 (01) (0.9 (0.4 (04) (0.2) (0.1) (0.3)

Modulus of elasticity 46.8 475 483 293 340 183 235 8.1 8.3 10.1
(GPa) (21) (@0 (3.34) (231) (3.1) (26) (9 (@6 (11 (25

Strain capacitydma« 004 006 022 005 026 006 134 014 132 055
(mm) (0.01) (0.02) (0.07) (0.01) (0.32) (0.01) (0.21) (0.03) (0.74) (0.36)

4.3.1 Flexural Strength

Flexural strength values are comparned-igure 8. The addition of steel fibres enhanced the
flexural strength by 26% for OBF and 30% for ORF, with respecthe control mix. This

improvement was anticipated as the steel fibres addxasgdl reinforcement.

12

without fibres
L | with blend fibres
L T I | lwith recycled fibres

Flexural strength (MPa)

! |
| 1 : | |
0 OP OBF ORF 20P 20BF 40P 40BF 60P 60BF 60RF

Mix ID.

Figure 8. Flexural strength of the tested concrete mixes

Consistent with the reported by other auth, replacing the fine and coarse

aggregates with rubber particlead an adverse effect on flexural strength. The flexurahgth
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465 of the RuC mixes without fibreQ0P, 40P and 60P, was 23%, 49% and 64% lower tharothat
466 the conventional concreteespectively As for the compressive strength, the reduction in flexura
467 strength may be attributed to the lack of good bonding conditi@tween the rubber particles
468 and the cement paste, as well as the low stiffm@bkigher Poisson’s ratio of rubber (nearly 0.5)

469 compared to conventional aggregaﬁ . The high Poisson’s ratio means that the rubber
470 once in tension will contract faster than concretidélateral direction, facilitating loss of bond.
471 The low stiffness also means that the rubber contritlugieslittle in tension at the low strain at
472  which the cement matrix cracks.

473

474 The addition of steel fibres in the RuC resulted in lbstantial enhancement of its flexural
475 strength, therefore mitigating the adverse effecpaiftially replaced natural aggregates by
476 recycled rubber particles. By comparing the flexurabsgjtie of the SFRRuC mixes, 20BF0BF,
477 60BF and 60RF, with the flexural strength of the RuC mixiisowt fibres, 20P40P and 60P,
478 it is noted that the flexural strength was increased by Z8%, 111.5% and 61.5%, respectively.
479 Although the flexural strength gain of the 60RF mix is nohigh as the 60BFmix, it still
480 provides sufficient flexural strength for SFRRuC pavemeaid slabs on grade and can
481 potentially lead to more sustainable solutions by eliminatingi¢lee for virgin materials.

482

483 Figure 9 shows the normalised compressive and flexural stréorgéii mixes, with respect to
484 the control mix (concrete without fibres and/or rubbédrjs clear that the loss in compressive
485 strength as a result of the addition of rublsemore pronounced than the flexural strength loss.
486 Even without the fibres, the loss in flexural resiseamd the RuC is less than the loss in
487 compressive strength; this indicatbat the rubber is making a modest contribution to the tensile

488 capacity of the concrete in tension. When fibres atded, the tensile resistance is further
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enhanced and hence, considerable flexural resistance isgiede@ven when large volumes of

rubber are present.
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Figure. 9 Normalised strength as a function of rubber volumééndoncrete

4.3.2 Modulus of elasticity

The values obtained from the flexural tests are in gésénilar to those from the compressive
tests. As expected, there is a small increase (up to 3% ialastic modulus when fibres are
added. A significant reduction in the elastic modulusde &und for the RuC mixes, with the
decrease being almost proportional to the amount of rubiéert. In particular, the modulus of
elasticity of the RuC mixes without fibres, 20P, 40P and, 6243 37.4%, 60.9% and 82.7%
lower than that of the control mix, respectively. Tligliion of steel fibres into RUC mixes
recovered only marginally part of the modulus of elastiiss. This confirms that, within the
elastic domain, the inclusion of rubber particles playgominant roleon flexural stiffness,

whereas the steel fibres make a minimal contribution.
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4.3.3 Strain capacity

The flexural strain capacity was assessed by examiningsttiess-deflection curves. The
deflection dmax COrresponding to the peak stress, fmaxaken as a relevant indicatof strain
capacity]. It is evident from table 6 that the strain capacity is aoéd by the addition of
fibres. For instance, thimax valuefor the control mix, OP, was 0.04 mm, while theaxvalues
for OBF and ORF mixes were 0.06 and 0.22 mm, respectivelyefh&ncement can be explained
by the bridging action of the fibres. The strain cayazi the RTSF mix, ORF, was higher than
that of the blend fibres mix, OBF, possibly due to the largerban of RTSF fibres bridging the

cracks.

The strain capacity also increases with higher rubbeteats in the concrete. Compared to the
control mix, OP, thémaxof the RUC mixew/as increased by 25%, 50% and 250% for 20P, 40P
and 60P, respectively. Turatsinze et [33] explained sabbvbur by the ability of rubber
particles to reduce stress concentration at the crackhtis, delaying the coalescence and
propagation of micro-cracks. Mixes with steel fibres amober developed the highest strain

capacity values, indicating a synergy between rubber aatifiires in enhancing strain capacity.

4.3.4 Residual flexural strength and energy absorption behaviour

The load versus deflection curves shown in Figure 10 confiatnthe post-peak braresof the
SFRC prisms without rubber were significantly enhancedrasudt of the inclusion of fibres.
The fibres continue bridging the cracks and resisting theéning even after the peak load,

dissipating energy through the pull-out mechanism.
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Figure. 10 Average stress versus deflection curves for all comenetes studied

Although rubber particles had an adverse effect on the flegtremgth of the concrete prisms,
they improved slightly the post-peak energy absorpfitis enhancement can be explained by
the ability of the rubber particles to undergo large defoomair tension and promote high
energy absorption. As a result of the interlocking &iction at fire-matrix and fibre-rubber
interfaces, steel fibres substantially enhanced the pa&tgrergy absorption and dissipation of
RuC mixes, which at large displacements show higher flexiapacity than the specimens

without rubber.

As expectedconcrete prisms with a blend of fibores (MSF and RT$©wssuperior post-peak
energy absorption behaviour than those with RTSF aRN8F are overall better distributed and

in general help control micro-cracks, while MSF are betteontrolling cracks once they open
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and develop. Though the difference in performance ismabos for normal concrete in Figure
10, this is well demonstrated at 60% rubber content when thE 60Btrols the cracks much
better than 60RF. larother stud], the mixes with blend fibres are shown tpertorm boh

the RTSF and MSF only mixes.

To further examine the post-peak energy absorption behafite mixesthe residual flexural
strength(fri) and the characteristic residual flexural strength \&{tiec) were obtained (see
Table 7) at given intervals of CMOD (0.5, 1.5, 2.5, 3.5) atiog to RILEM recommendation
. The residual flexural strength can be considered a meastmeghness or even ductility of
the SFRC mixes. Higher values @fi fmean higher post-cracking load ang capacity and
higher ductility. The characteristic residual flexural sty ki accounts for the variability of
the residual flexural strength results. SFRRuC mixewsta lower rate of reduction in residual
strength than FRC mixes. This may be attributed to the qress rubber particles that prolong
the crack path and increase the contact area ofitheefaurface with the rubber particles, which
make some contribution to the tensile strength, butersdble the steel fibres to engage better

across the crack.

Table 7. Residual and characteristic flexural strength valueooérete assessed

Mix Vi 1D fri(MPa) fri c (MPa) fib (2010) classification
No. X fr1 fro fra fra | fric froe frac  frac fR3,(/fR1,c Class
1 oP - - - - - - - - - -
2 OBF 81 53 35 27:6.1 35 24 1.2 0.39 -(<0.5)
3 ORF 84 52 37 28:83 47 29 18 0.35 -(<0.5)
4 20P - - - - - - - - - -
5 20BF 65 66 54 4344 49 33 23 0.75 4.4
6 40P - - - - - - - - - -
7 40BF 59 64 64 54: 49 58 56 46 1.14 4.
8 60P - - - - - - - - - -
9 60BF 51 54 53 4744 52 51 38 1.16 4.4
10 60RF 41 37 31 2636 32 28 26 0.78 3.6b

* aif 0.5 < fr3dfr1,c< 0.7, bif 0.7< fr3 dfr1,c<0.9;Cif 0.9< fradfr1c<1.1dif 1.1 <fr3dfric< 3;€ if 1.3< fr3 dfric

28



561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

According to fib model cod 8] for structural applicatiomsh normal and high-strength

concrete, SFRC can be classified according to the poskintaresidual strength (considering

the value of#1,9, and the ratioss.dfri.c The higher the value okfc.and/or the ratiosk, d fr1.g

the higher the class. As observed in Table 7, mixes 408F68BF show the best overall

performance among all mixes, whereas SFRC mixes (withoberulan not be classified as

their frs.d fr1c ratio is less than 0.5. Nevertheless, all SFRC mixes (cwioval and rubberised)

fulfilled the requirements of EN 1488969]1.5 MPa at 0.5 mm CMOD and 1.0 MPa at 3.5

mm CMOD- and could be used for practical applications.

The aim of this study is to develop a more flexible Podleement concrete pavement. However,
as flexible pavement standards/specifications relate to lagpimgrete, it is not possible to use
them for a direct comparison, though the flexural penorce of SFRRuC is far superior to that
of asphalt concrete. Hence, SFRRuC pavements, thougibldle should comply with
standards/specifications for rigid pavements. The magureidere is that the rigid pavement
standards relay on the compressive and flexural strenfiiesigh all SFRRuC mixes studied
here meet the flexural strength characterisasslescribed in pavement design standard BS EN
13877-], not all of them can meet the compressive requitsmidowever, provided that
durability requirements are met, this should not be a bigeibut would require modification on

the standard.

4.4 Free shrinkage behaviour

Typical curves of total shrinkage versus time are shiowiigure 11. The vertical dotted line

shown at 8 days indicates the start of drying shrinkddpe values predicted according to
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Eurocode ] for conventional concrete (accountingdarperature and humidity) are also

included for comparisan

Both conventional concrete and SFRC mixes show lower aubogeand drying shrinkage
strains than those predicted by EurocodE@2). The difference between predicted and actual
values for these mixes can be attributed to the presdrghoquantities of silica fume and fly
ash, not accounted for in the Eurocode 2 equation.dls@® clear that the addition of rubber
increases the overall shrinkage strains at 57 days by 15r520M059% for 40P and 127% for
60P. This increase in free shrinkage strain with increasing rubbatent is due to the lower
stiffness of rubber particles compared to conventional ggtge, which reduces the overall
internal restrain The higler porosity and diffusivity of rubberised concrete prim# @dso

contribute to increasing the rate of moisture loss andlaating drying shrinkage.
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Figure. 11 Total free shrinkage for all concrete mixes

30



599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

5 Conclusions

This study assessed the fresh state and mechanical prsdrsteel-fibre reinforced rubberised

concretes (SFRRuC)n which waste tyre rubber partially replaced aggregates, @mdislof

manufactured and recycled tyre steel fibres were wsedeinforcement. Based on the

experimental results, the following conclusions can be/atra

The replacement of conventional aggregates with rubbeclpanteduces workability and
unit weight, and increases air content of the freslitreda mixes. Steel fibres further
lower workability and increase air content, whiharginally increasing unit weight.

The mechanical properties (compressive and flexuralgitieas well as the modulus of
elasticity) decrease with increasing rubber cont8teel fibresin appropriate amounts
(up to 40 kg/) enhance the mechanical properties of conventional etenup to 30%
compressive strength) and provide modest increases mdtielus of elasticity.

Free shrinkage strain increases with increasing rubb@erbas a result of the lower
stiffness of rubber particles.

In rubberised concretehe addition of steel fibre reinforcement mitigates kb&s in
flexural strength (from 50% to 9.6% loss, compared to cdiosgad concrete) and slightly
improves compressive strength and modulus of elasticity qup2t5% and 28.4%,
respectively), hence, they are an important component Wwheh is to be used for
structural purposes.

Concrete strain capacity and post-peak energy absotmlmaviour are enhanced by the
addition of fibres and are further improved by the inclusaf rubber, completely
transforming the flexural performano& RuC and enabling it to resist structural loads.
A high performance (class d according to fib 2010 model ﬁ]& and highly flexible

steel fibre reinforce rubberised concrete can be produdddé@?o rubber content and
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blended fibres (20 kg/fnof MSF and 20 kg/mof RTSF), suitable for pavement
applications.
It is concluded that SFRRuC is a promising candidate maferialse in structural concrete
applications with increased toughness and flexibility requirgspesuch as road pavements and
slabs on grade. Future work should be directed towardsigatsg the long-term performance

of this innovative concrete in aggressive environments.
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