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This work provides robust oral pathology and stable isotope

evidence on Bayesian mixing model for an unexpectedly high

consumption of carbohydrates by a Middle Holocene coastal

population of the Atlantic Forest of South America, an area

traditionally viewed as peripheral to early centres of food

production on the continent. A diversified economy with

substantial consumption of plant resources was in place at the

shellmound (or sambaqui) of Morro do Ouro, in Babitonga

Bay, and supported a dense population at ca 4500 cal BP.

This dietary composition is unique when compared with

that of other contemporary and later groups in the region,

including peoples who used ceramics and domesticated

crops. The results corroborate independent dietary evidence,

such as stone tool artefacts for plant processing and plant

microremains in dental calculus of the same individuals, and

suggest plant cultivation possibly took place in this region at

the same time as the development of early agriculture in

Amazonia and the La Plata Basin. Our study situates the

Atlantic Forest coast of Brazil on the map of early plant

management in the Neotropics.

& 2018 The Authors. Published by the Royal Society under the terms of the Creative

Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits

unrestricted use, provided the original author and source are credited.
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1. Introduction
Food production fuelled population growth and the emergence of social complexity in pre-Columbian

South America, from the Andes to lowland regions of the continent [1–3], leaving a longstanding

legacy in regional biodiversity, cultural landscapes and traditional knowledge [4–8]. However, the

nature, time and place of early plant cultivation and the development of independent centres of food

production in the tropics are still matters of debate [3]. The narrow coastal strip of the Atlantic Forest,

one of the world’s most diverse tropical biomes [9], has supported human societies since the Middle

Holocene, but their interaction with plant resources is still poorly understood [10,11]. As a result, this

region has only been given cursory consideration, and it is viewed as peripheral to early centres of

plant management and cultivation [3,12,13].

Shellmounds and middens, also known as sambaquis [14], are distinctive archaeological features of the

Atlantic Forest formed by pre-ceramic coastal populations between ca 8000 and 1000 years ago [14,15],

making them contemporaneous with the establishment of mixed economies and sedentary villages in

the Andes and along major river basins of the continent [2,8,16]. The high frequency and large

volume of some sambaquis on the southern coast of what is today Brazil, containing hundreds of

human burials, have been taken as evidence for high population density, monumental architecture

and social complexity during the Middle to Late Holocene [14,17]. These populations would have

maintained economies founded primarily on the exploitation of rich marine ecosystems [18–20].

Increasing archaeobotanical studies, nevertheless, have provided a much greater appreciation of the

dietary diversity among sambaqui builders. Remains of root crops, herbaceous plants and fruits with

unknown domestication stages, consistent with yam (Dioscorea sp.), palms (Arecaceae), myrtle

(Myrtaceae) and Annonaceae, have been found in several sites [10,11]. Similarly, starch grains and

phytoliths compatible with maize (Zea mays), sweet potato (Ipomoea batatas), palms (Arecaceae), yam

(Dioscorea sp.) and Araceae have been detected in dental calculus of Middle and Late Holocene

sambaqui individuals along the southeastern coast of Brazil [21,22], who were often affected by

relatively higher frequencies of oral pathologies [23]. Moreover, grinding stones and mortars

presumably used for processing plant resources are commonly reported at sambaqui sites, indirectly

reflecting investments in plant exploitation [11,17]. These independent lines of evidence indicate that

plant resources were important components in sambaqui societies, and support the hypothesis that

low-level food production [24] took place among these coastal groups.

We performed oral health and stable isotope analyses on human individuals from the sambaquis of

Morro do Ouro (MO) and Rio Comprido (RC) in Babitonga Bay, southern Brazil, to unveil the dietary

behaviour of human individuals during the Middle–Late Holocene. Our analyses revealed high levels

of dental caries and evidence of carbohydrate-rich diets in individuals at MO and, to a lesser extent,

at RC. The results support the emerging view that food production through plant cultivation was

practised along the Atlantic Forest coast contemporaneously to the emergence of farming villages in

the Andes [16] and Amazonia [8,25], and early plant cultivation in the La Plata Basin [1].

1.1. The sambaquis of southern Brazil

The northern coast of Santa Catarina state has the highest concentration of sambaquis along the Brazilian

coast (figure 1a; electronic supplementary material, Methods) [29]. Hundreds of sites are distributed

around Babitonga Bay, where recent population growth and urban development have been putting

increasing pressure on this unique archaeological heritage. The archaeological information contained

within some of these sites, such as MO and RC (figure 1b), has survived thanks to preventive

archaeological investigations and private collections [30–32], along with previous scientific studies

[21,23,33] and curation at the Museu Arqueológico de Sambaqui de Joinville.

Morro do Ouro (MO) has been a key site in discussion of population density, health and disease, and

cultural and dietary variability in the Atlantic Forest coast during the Middle Holocene [23]. Preventive

archaeological excavations from the second half of the twentieth century report great amounts of

terrestrial and marine faunal remains, artefacts, domestic structures and human burials [30–32].

Faunal remains include molluscs (e.g. Anomalocardia flexuosa, Ostreidae, Mytilidae), fish (e.g. Mugil sp.,

Micropogonias furnieri, Centropomidae, Tetraodontidae, Sciaenidae, Ariidae), and terrestrial mammals

(e.g. Cuniculus paca, Tayassu pecari [31]; J. Ferreira 2018, personal communication), but detailed

taxonomic and quantitative information is lacking. Polished stone tools have been found, and charred

plant remains (palm fruit) have also been reported in some archaeological deposits [32]. A total of 116
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human burials were recovered at MO [30,31,33] and new radiocarbon measurements on human

individuals (electronic supplementary material, table S1) reveal that the site was occupied between ca

4824–4527 and ca 4510–4101 cal BP. Analyses of micro-remains from dental calculus identified starch

grains compatible with sweet potato (Ipomoea batatas), yam (Dioscorea sp.) and Araceae among others

as yet unidentified [21]. However, the contribution of plant resources to individual diets was unclear

until now.

Rio Comprido (RC), located ca 4 km from MO, was first excavated in 1969. A variety of lithic artefacts

(choppers, flaked and semi-polished axes, stone sculptures), charcoal and faunal remains were extracted

from the deposit [34] but, as for MO, there is a general lack of taxonomic and quantitative information on

food remains. A total of 67 human burials were excavated [33]. Based on field reports, the burials were

distributed in at least two funerary packages representing two distinct occupational phases: an earlier

phase, RCI (ca 5642–5438 to ca 4800–4374 cal BP) and a later phase, RCII (ca 4051–3712 to ca 3608–

3380 cal BP) [33,34], as further demonstrated by direct 14C measurements on human individuals

(electronic supplementary material, table S1).

2. Material and methods
Detailed materials, sample preparation methods and results are reported in electronic supplementary

material (Methods).

2.1. Sex, age and oral health markers

In this study, a total of 70 individuals were analysed. We applied morphological analyses, including sex

and age determinations, as well as oral pathology analyses on 28 individuals from RC (divided in two

chronological phases: RCI, n ¼ 16; RCII, n ¼ 12) and 42 from MO. We used 11 markers grouped into

three categories (caries, periodontal disease and dental wear).

2.2. Stable isotope analysis and Bayesian mixing model

Stable isotope analysis was performed on 36 individuals, 16 from RC (RCI, n ¼ 9; RCII, n ¼ 7) and 20

from MO. Individual ribs, cranial fragments and bulk dentin were sampled for stable isotope analysis

of carbon (d13Ccol) and nitrogen (d15Ncol) of bulk collagen. Teeth were also selected for apatite stable

carbon (d13Cap) isotope analysis from 12 and 8 individuals from MO and RC, respectively. The

proportional contribution of different food sources to human diet at MO and RC was estimated using

Bayesian mixing models in FRUITS 2.1.1 [35] to account for multiple dietary sources, macronutrient

fractions and routing, and uncertainties in dietary inferences. While for bone collagen the only dietary

proxies used in model estimations were d
13Ccol and d

15Ncol values, for teeth we explored collagen data

Joinville-Santa Catarina-Brazil

1 km

(a) (b)

Figure 1. (a) Localities of Middle and Late Holocene coastal sites mentioned in the text. The red star indicates the geographical

location of Middle Holocene coastal sites (Forte, Corondó, both in Saquarema region) with possible evidence of food production

[26–28]. (b) Locations of Morro do Ouro (MO) and Rio Comprido (RC) in Joinville.
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alone (d13Ccol and d
15Ncol) and collagen data combined with apatite (d13Ccol, d

15Ncol and d
13Cap).

Uncertainty of dietary proxies was set at 0.5‰. Three food sources with their respective

macronutrient compositions were considered: terrestrial mammals (protein, lipids), fish (protein,

lipids) and plants (protein, carbohydrates).

2.3. Radiocarbon age

To refine the chronology of Morro do Ouro and Rio Comprido, new 14C dates were obtained on selected

individuals from each site, from different depths in the sedimentary record. Samples were analysed at

Beta Analytic and at the University of Arizona AMS Facility using accelerator mass spectrometry. The
14C dates were calibrated (BP) using SHCal13 in OxCal v. 4.3 [36]. The Bayesian mixing model

estimated the average relative contribution of marine carbon (%) to collagen carbon, which was then

used to correct the radiocarbon dates for the marine reservoir effect for each individual. We adopted

an average marine radiocarbon reservoir correction value (DR) of 23+ 52 for the study area according

to the data obtained on the southern Brazilian coast [37] and generated by http://calib.org/marine/.

3. Results

3.1. Radiocarbon determination

The consumption of marine resources had a measurable impact on the absolute 14C dates (electronic

supplementary material, table S1). The Bayesian model (see below; electronic supplementary material,

tables S6 and S7) estimated that carbon from marine organisms (e.g. fish) contributed from

approximately 73.2+3.6% (MO13) to approximately 3.7+ 2.7% (MO59) to the carbon collagen of

dated individuals, resulting in calibrated dates (2s) older by up to approximately 377 years (MO13).

The vertical distribution of 14C dates from RC confirms the sedimentary and archaeological evidence

for at least two main phases of occupation, RCI (5642–5438 to 4800–4374 cal BP) and RCII

(4051–3712 to 3608–3380 cal BP). These phases are separated by a stratigraphic deposit with no

human burials. A possible much later phase of occupation may have occurred, as indicated by the

date provided by burial RC4A which was recovered at a depth of 0–1 m but dated to 925–699 cal BP.

However, this needs to be clarified with further studies.

Contrary to RC, the 14C dates from Morro do Ouro (4824–4527 to 4510–4101 cal BP) show no relation

to their depth in the deposit. This could be related to several, not mutually exclusive factors such as

spatial variability of site formation processes [38], post-depositional deformation [39] and secondary

burials [14]. Nevertheless, considering that most of the dates overlap each other, it is possible that the

funerary deposit at MO was formed relatively quickly. Therefore, we consider the individuals

exhumed from MO as a single group.

3.2. Oral health

Using 11 oral health markers, a total of 1826 alveoli and 1345 teeth were examined from 70 individuals

(see electronic supplementary material, Methods). Age and sex determinations were possible for

approximately 75% of all analysed individuals (electronic supplementary material, table S2), with the

majority of these determined to be male. As the sample size did not allow for statistical comparison

by age and sex within sites, only between-site comparisons were made. Similar age distributions were

seen at MO and RCII, represented primarily by middle adults (MA; 30–49 years) and young adults

(YA; 20–29 years). A higher relative frequency of YA was found at RCI, followed by MA; however,

these differences were not statistically significant (see electronic supplementary material, Methods for

an expanded explanation). As such, the differences in oral pathology seen across the sites most likely

reflect variability in diet and nutrition, rather than between-population differences in age or sex

distribution [40].

The frequency of caries (electronic supplementary material, table S3) ranged from 7.6% (RCI) to 13.2%

(MO), with statistically significant differences seen only between MO and RCI ( p ¼ 0.0052; differences

between RCI and RC2, and between RC2 and MO were not significant). The frequencies of caries

were higher than expected for most hunter-gatherers or fishermen [41]. By contrast, ante-mortem

tooth loss (AMTL) reaches 6.2% (RCI), 2.4% (MO) and 1.1% (RCII), with statistically significant

differences seen between RCI and RCII ( p ¼ 0.001) and RCI and MO ( p ¼ 0.0004).
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Some differences were observed in caries depth between sites, but these were all statistically

indistinguishable. Enamel caries ranged from 55% (RCII) to 80% (RCI), while the frequency of dentin

caries, a ‘robust’ marker of cariogenicity [42], was higher in MO (23.1%) and RCII (20%), compared to

RCI (15%). Pulp caries, which correspond to lesions reaching the pulp chamber producing necrosis,

ranged from 5% (RCI) to 13.2% (MO) and 25% (RCII).

Similarly, caries type varied considerably between sites, but statistical differences were only observed

for cervical (extra-occlusal) lesions (electronic supplementary material, table S3). The frequency of

occlusal caries was generally high in all groups, ranging from 53.7% (MO) to 70% (RCI). The higher

frequency in RCI, which has mainly enamel caries, confirms the chronicity of carious lesions. By

contrast, MO had the highest frequency of extra-occlusal caries (including approximal, smooth surface

and cervical lesions), and this was statistically significant when compared with RCII ( p ¼ 0.0123).

Carious lesions have been associated with diets rich in fermentable carbohydrates [43–45] and free

sugar including honey and syrups [46], with the frequency of deep caries increasing in retentive and

non-retentive surfaces with exposure to cariogenic foods [47]. Diets higher in cariogenic foods

typically have an increased frequency of extra-occlusal caries [42] and cavities on smooth or non-

retentive tooth surfaces [48,49]. Therefore, it is likely that people at MO had a more cariogenic and

refined (by mechanical fractionation and/or cooking by gelatinization) diet compared to those at

RCII [40,50], as further corroborated by a significantly higher frequency of cervical lesions at MO ( p ¼

0.0230) (figure 2a–d). Finally, caries linked to dental wear (occlusal wear, pulp exposure and dentin

caries [40]) occurred more frequently in individuals from RCII (25%) compared to both MO (7.4%)

and RCI (5%). However, there were no significant differences between sites.

Dental calculus, alveolar resorption [42] and dental wear indexes [51] were statistically

indistinguishable across the three populations ( p ¼ 0.367, p ¼ 0.437, p ¼ 0.164; electronic

supplementary material, table S4). Regarding prevalence (electronic supplementary material, table S5),

MO showed the highest prevalence of carious lesions and AMTL, but differences were statistically

significant only for periapical lesions, which were also more frequent in MO (41%) when compared to

RCI ( p ¼ 0.0425).

(a) (b)

(c) (d)

A

B C

D

E
F

G

Figure 2. Oral pathology of individual MO59 (female, YA). (a) Left maxilla: A, dental wear; B, ante-mortem tooth loss; C, occlusal–

dentin caries and pit caries; D, occlusal–pulp caries. (b) Mandible, occlusal view. (c) Mandible, lingual view on right side: E, M2:

occlusal caries and related abscess and cervical caries; F, M3: gross–gross caries and related abscess. (d ) Mandible, buccal view on

left side: G, M1: occlusal pulp caries, abscess and alveolar resorption.
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3.3. Stable isotopes and Bayesian mixing models

Dietary estimations based on stable isotopes from teeth and bone were in good agreement with

inferences from oral pathology. Bayesian mixing models quantified the relative caloric contribution

(%) of three main food sources: plants, marine–estuarine fish and terrestrial mammals. The models

also provided the relative caloric contribution of food macronutrients (e.g. protein), and the main

source of dietary proteins based on the caloric contribution of food sources to nitrogen isotope values

[35] (electronic supplementary material, tables S6 and S7). More accurate dietary reconstructions

would have been achieved if isotopic baselines were available for each site, and their macronutrients

analysed for stable carbon and nitrogen isotope composition. Moreover in this study, isotope

signatures from teeth represent average individual diets of the first 2 to 20 years. Model estimations

were based on teeth collagen and apatite, and on teeth collagen only. However, the generated

estimates from these two models generally deviated less than 10% for all food sources, indicating that

the model outputs were robust under distinct parameters. Some estimates deviated more than 10%,

but these were limited to three individuals from MO (MO22, MO44, MO60) where the relative

contributions of terrestrial mammals and plants to dietary calories could not be statistically resolved.

Although the differences between teeth model estimates were relatively small, the model integrating

collagen and apatite provided the most accurate outputs, with uncertainties associated with individual

estimates generally less than 10%. Under this model, fish contributed to the majority of caloric intake

at MO (approx. 5–60%; average 48+16%), followed by plants (approx. 21–92%; average 36+ 20%)

and terrestrial mammals (approx. 3–36%; average 17+ 11%). The wide credible intervals and

standard deviations around the averages indicate that individual diets were remarkably variable at

MO (figure 3). An example is offered by individual MO59, a young woman who obtained

approximately 92% of her dietary calories from plants, and was affected by the highest number of

carious lesions in the whole assemblage (figure 2a–d ). Isotope data from teeth at RCI also suggest

that fish was the main source of dietary calories (approx. 57–60%; average 58+1%), followed by

plants (approx. 31–34%; average 32+ 1%) and terrestrial mammals (approx. 6–12%; average 10+

2%), but the much narrower credible intervals reflect more accurate estimations and less diversified

diets (figure 3; electronic supplementary material, table S6).

For both sites, the main source of protein was fish, ranging from approximately 33 to 89% at MO and

from approximately 87 to 90% at RCI. The large variability at MO was again largely due to MO59, which

obtained approximately 59% of dietary proteins from plants, and the remaining approximately 33% and

approximately 8% from fish and terrestrial mammals, respectively. In general, protein intake was high at

RCI (approx. 22%) and MO (approx. 20–22%), with the exception of MO59 (approx. 5.4%), and

compatible with values reported for other hunter-gatherers (19–35%) [52].

Dietary estimations based on bone collagen (figure 4; electronic supplementary material, table S7)

suggest that plants provided the majority of dietary calories at MO (approx. 37–97%; average 48+

14%), along with fish (approx. 2–55%; average 44+ 13%), and to a lesser extent terrestrial mammals

(approx. 3–12%; average 8+2%). Worth noting are two outliers, MO59 (female) and MO29 (male),

with approximately 92% and approximately 70%, respectively, of their dietary calories coming from

plants. As observed from teeth outputs, the wide range of estimated food sources highlights the

diversified nature of individual diets at MO. Conversely, the model points to fish as the main source

of dietary calories at RCI (approx. 34–57%; average 48+8%) along with plants (approx. 35–59%;

average 44+9%), and to a lesser extent terrestrial mammals (approx. 5–10%; average 7+1%). Similar

estimates were obtained for RCII, where diet was dominated by fish (approx. 43–53%; average 48+

3%), followed by plants (approx. 34–50%; average 42+ 5%) and terrestrial mammals (approx. 7–19%;

average 10+4%). In general, the food sources were statistically distinguishable within the 68%

confidence interval for all the sites. Comparisons between bone and teeth estimates for the same

individuals showed very little differences under the same model parameters (collagen only).

The main source of dietary proteins at MO was fish (approx. 58–84%), except for MO59, who

obtained most of her dietary proteins from plants (approx. 82%). Fish was also the dominant source

of proteins at RCI (approx. 66–85%) and RCII (approx. 74–83%). Protein intake estimated from bone

collagen was higher compared to teeth, ranging from approximately 12 to 41% in MO, approximately

31 to 42% in RCI, and approximately 37 to 40% in RCII. These estimates are consistent and slightly

higher than values observed for some hunter-gatherers [52].

Model estimations based on the average d
13Ccol and d

15Ncol values of pre-ceramic and ceramic

populations from the southern Atlantic Forest coast of Brazil indicate that fish was the main source of

dietary calories, variably followed by plants and terrestrial mammals (figure 5), in agreement with
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previous ethnographic studies showing that animal proteins and lipids provide the dominant source of

energy to hunter-gatherers [53,54]. Within this regional context, MO stands out in regard to its high

dietary dependence on plants, followed by other groups (RCI, Forte Marechal Luz (FML), Cubatão),

all in Babitonga Bay.

4. Discussion
The relative frequency and patterns of caries reveal distinct dietary behaviours and potentially also food

preparation techniques between groups from RC and MO. The high proportion of chronic or static caries
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at RCI suggests a less cariogenic diet compared to RCII and MO, and it is possibly associated with a more

alkaline salivary pH, and/or phosphate and calcium content in marine-based diets [55,56]. By contrast,

the higher frequency of deep and extra-occlusal caries at RCII, and notably at MO, points toward the

pervasive and persistent consumption of cariogenic and processed carbohydrates [45,57].

Cervical caries are the most common type of extra-occlusal caries in MO (29%) and have been

associated with frequent consumption of sucrose and solid fermentable starches [45,57], high

concentrations of salivary lactobacilli [49,58], age and deposition of cervical calculus with gingival

recession [57,59]. Frequencies of cervical caries around 16.0% were reported in Pleistocene

RCI RCII MO
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hunter-gatherers from North Africa, and interpreted as the first signs of systematic harvesting and

storage of wild plant foods rich in carbohydrates [60]. In Andean agriculturalists, cervical caries (up

to 30%) were attributed to the consumption of fermentable beverages prepared with manioc, maize

and other starch-rich foods [41]. Previous studies have shown that sucrose, starch with sucrose,

fructose and dextrose, in decreasing order, stimulate the production of smooth surface caries and

cervical caries, while high amounts of maltose and starches led preferentially to cervical caries [43,57].

Therefore, diets at MO were probably richer in fermentable carbohydrates than those at RC, as well as

in relation to diets of ancient occupants of other sambaquis [41,61], and comparable with diets of some

agriculturalists [41].

Dental wear indexes in RC and MO were, by contrast, the lowest among several sambaqui groups

studied elsewhere [62]. Nevertheless, diet in RCII seems to have been more abrasive than that at MO,

which was the site with the lowest sand/grit content in dental calculus among four pre-ceramic and

ceramic sites [21]. Regardless of the quantity of sand/grit in dental calculus, its presence suggests direct

roasting of processed food over charcoal or cooking in earth ovens [33], and this seems to be confirmed

by the presence of stone vessels and grindstones at MO, possibly used in flour making [21,31,32],

although we cannot rule out the effect of taphonomic agents [21]. The oral pathologies observed in MO

thus far suggest a highly cariogenic and more processed diet, compared to RCI and RCII.

Dietary inferences from oral pathologies are broadly supported by stable isotope data. Bayesian

estimations indicate that plants, marine–estuarine fish and terrestrial mammals contributed to

different extents to individual diets, but a higher dependence on plant resources took place at MO

between ca 4824–4527 and 4510–4101 cal BP. Although more accurate dietary reconstructions would

benefit from the development of isotopic baselines for each site, our comparative analysis across

distinct coastal populations shows that plant consumption at MO was substantially higher, and above

the values expected for hunter-gatherers [53]. Some individuals from MO (e.g. MO59) who relied

fundamentally on plant resources since childhood could be interpreted as non-locals [63,64], perhaps

absorbed in the context of post-marital residence practices [65]. Population exchange between coastal

fishing people and groups engaged in plant cultivation may have facilitated the spread of ideas,
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transferred ecological knowledge, biological materials and economic strategies. As such, differential

interpopulation interactions could explain the distinct degree of plant dependence among sambaqui

groups in this region (figure 5).

Results from MO are directly supported by the presence of starches and phytoliths consistent with

tuber crops, such as yams (Dioscorea sp.), sweet potato (Ipomoea batatas) and Araceae, in dental

calculus of the same individuals [21]. Artefactual evidence such as stone tools for plant processing

also indirectly confirms the investment in plant exploitation and preparation. Such a level of plant

dependence would probably require some kind of plant management, possibly through cultivation, to

guarantee long-term and predictable returns. Conceivably, other root crops such as manioc (Manihot

sp.), which has been associated with slash-and-burn cultivation [13], and fruits reported in South

American tropical forests from the Early Holocene could have featured on the menu of this group

[3,66,67]. Interestingly, abrupt increases in carbonized particles associated with extensive palaeofires

have been detected in sediments from the Atlantic Forest coast and the southern Brazilian highlands

dated from 10 400 until 3600 cal. BP [68,69]. These fires took place in the context of a wetter

climate and some are believed to be anthropogenic in origin, potentially signalling the onset of

slash-and-burn cultivation in the region from the Middle Holocene [70].

South America is a polycentric cradle of early food production. However, the nature, time and

space of early plant cultivation are still being mapped. The dietary evidence discussed in this paper

suggest that food production may have taken place in this region during the Middle Holocene,

contemporaneous with the shift to horticulture in Amazonia [8,13,25] and the earliest evidence for

plant cultivation in La Plata Basin [1,71,72]. Plant cultivation has been postulated for other groups

along the Atlantic Forest coast during the Middle Holocene [10,26–28], reinforcing the contribution of

sambaqui archaeological evidence for documenting early food production in the Americas.

5. Conclusion
The Neotropics is one of the world’s centres of early food production, but the nature, time and place of

early plant cultivation are still matters of debate. The Atlantic Forest coast has been largely peripheral in

this narrative despite its unique biodiversity and archaeological records of dense human occupation since

the Middle Holocene. Our study challenges this traditional view. We report on oral pathology and stable

isotope evidence for carbohydrate-rich diets among hunter-fisher-gatherers in southern Brazil at ca 4500

cal BP. The high consumption of cariogenic and carbohydrate-rich food suggests that permanent

populations subsisting on a mixed economy possibly cultivated plants along this narrow coastal strip.
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