
This is a repository copy of Dynamic graph stream algorithms in o(n) space .

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/135474/

Version: Published Version

Article:

Huang, Z. and Peng, P. orcid.org/0000-0003-2700-5699 (2019) Dynamic graph stream
algorithms in o(n) space. Algorithmica, 81 (5). pp. 1965-1987. ISSN 0178-4617

https://doi.org/10.1007/s00453-018-0520-8

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Algorithmica

https://doi.org/10.1007/s00453-018-0520-8

Dynamic Graph Stream Algorithms in o(n) Space

Zengfeng Huang1 · Pan Peng2

Received: 26 October 2016 / Accepted: 15 September 2018

© The Author(s) 2018

Abstract

In this paper we study graph problems in the dynamic streaming model, where the

input is defined by a sequence of edge insertions and deletions. As many natural prob-

lems require Ω(n) space, where n is the number of vertices, existing works mainly

focused on designing O(n · poly log n) space algorithms. Although sublinear in the

number of edges for dense graphs, it could still be too large for many applications

(e.g., n is huge or the graph is sparse). In this work, we give single-pass algorithms

beating this space barrier for two classes of problems. We present o(n) space algo-

rithms for estimating the number of connected components with additive error εn of

a general graph and (1 + ε)-approximating the weight of the minimum spanning tree

of a connected graph with bounded edge weights, for any small constant ε > 0. The

latter improves upon the previous O(n · poly log n) space algorithm given by Ahn et

al. (SODA 2012) for the same class of graphs. We initiate the study of approximate

graph property testing in the dynamic streaming model, where we want to distinguish

graphs satisfying the property from graphs that are ε-far from having the property.

We consider the problem of testing k-edge connectivity, k-vertex connectivity, cycle-

freeness and bipartiteness (of planar graphs), for which, we provide algorithms using

roughly O(n1−ε · poly log n) space, which is o(n) for any constant ε. To complement

our algorithms, we present Ω(n1−O(ε)) space lower bounds for these problems, which

show that such a dependence on ε is necessary.

Keywords Dynamic graph streams · Graph sketching · Property testing · Minimum

spanning tree

A preliminary version of this paper appeared in the Proceedings of the 43rd International Colloquium on

Automata, Languages and Programming (ICALP), Rome, Italy, July 2016.

Zengfeng Huang: Supported by Shanghai Science and Technology Commission (Grant No.

17JC1420200) and Australian Research Council Discovery Grant (DP150102728).

Pan Peng: Work done while the author was at TU Dortmund, Germany and supported by ERC grant No.

307696.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0520-8&domain=pdf
http://orcid.org/0000-0003-2700-5699

Algorithmica

1 Introduction

Graphs or networks are a natural way to describe structural information. For example,

users of Facebook and the acquaintance relations among them form a social network,

the proteins together with interactions between them define a biological network, and

web-pages and hyperlinks give rise to a huge web graph. Due to the rapid develop-

ment of information technology, many such graphs become extremely large, and are

constantly changing, which poses great challenges for analyzing their structures. Over

the last decade, the data stream model [34] has proven to be successful in dealing with

big data. In this model, the algorithm should make only one pass (or a few passes)

over the stream, and use sublinear working space. The time required to output the

final answer and process each element is also important. There is a growing body of

work studying graph problems over data streams. Graph streams were first considered

by Henzinger et al. [24], and later have been extensively studied in the insertion-only

model (eg., [17,18,34]), where there is no edge deletion in the stream. Recently, start-

ing from the seminal works of Ahn, Guha and McGregor [2,3], the interest has shifted

to the dynamic streaming model, where the edges can be both inserted and deleted

(see eg., [1,5–7,9,10,14,23,28,29,31,33]). In this setting, most algorithms designed

are linear sketch-based, which is also an effective technique for processing distributed

graphs. For more information about graph streaming algorithms see the recent survey

by McGregor [32].

For graph streams, both insertion-only and dynamic, the research in the past has

mostly focused on the semi-streaming model, in which the algorithms are allowed to

use Õ(n) space, where n is the number vertices in the graph. (For notational conve-

nience, we will use Õ(g) and Ω̃(g) to hide poly log(g) factors.) The reason behind

this is that even in the insertion-only model, many natural graph problems require

Ω(n) space (e.g., testing if the graph is connected [18]). Note that the allowed space

in semi-streaming model is sublinear in the input size as the number of edges of the

graph might be as large as Ω(n2). However, in many real applications (e.g., the input

graph is already very sparse), an Õ(n) space algorithm might be even worse than just

storing all the edges. From this perspective, one may naturally ask the question which

kind of problems can be solved with even less space, i.e., o(n) space.

To the best of our knowledge, very few results are known in this direction. Chitnis

et al. [10] and Fafianie and Kratsch [16] introduced parameterized graph stream algo-

rithms which may only use o(n) space with some promise of the size of the solution.

This parameterized setting has been further investigated in [9]. In addition, it has been

shown that the size of the maximum matching can be approximated within constant

factor in Õ(n4/5) space for graphs with bounded arboricity [7,9,15].

In this paper, we study two classes of graph problems that admit single-pass o(n)

space algorithms in the dynamic streaming model. The first class contains the problems

of estimating the number of connected components and the weight of the minimum

spanning tree (MST). We show that one can estimate the number of connected compo-

nents within an additive error of εn with o(n) space and post-processing time, for any

constant ε > 0. We also present an algorithm to (1+ε)-approximate the weight of the

MST with o(n) space and post-processing time for connected graphs with bounded

edge weights, which improves the best known algorithm with Õ(n) space in the same

123

Algorithmica

setting given by Ahn et al. [2]. It is worth noting that the problem of estimating the num-

ber of connected components within small multiplicative error requires Ω(n) space,

as it is generally harder than the problem of (exactly) testing graph connectivity; and

that estimating the weight of MST for graphs with arbitrarily large edge weights (e.g.,

Ω(log n)) requires Ω(n) space (see Theorem 10). Previously these two problems have

been studied in the framework of sublinear time algorithms (see eg. [8,40]).

The second class consists of problems that are relaxations of deciding graph prop-

erties. Given a huge graph, it is very useful to know whether the graph has some

predetermined property, such as k-connectivity, bipartiteness, cycle-freeness and etc.,

which provide valuable information about the graph. However, besides the require-

ment of Ω(n) space, exactly testing properties sometimes is too strong a requirement

for analyzing highly dynamic graphs, since the answer may change in the next second

due to an insertion or deletion of a single edge. In this paper, we initiate the study of

approximate graph property testing in the dynamic streaming model: we want to test

whether a graph satisfies some property or one has to modify a small constant fraction

of edges to make it have the property. This notion of approximation is adapted from the

framework of property testing [21,22,36], and a large number of existing literatures

have given efficient testing algorithms (called testers) for many properties under dif-

ferent query models (see surveys [20,39]). We show that some fundamental properties

can be tested in both o(n) space and post-processing time in the dynamic streaming

model and we also present close lower bounds for these problems which hold even

in the insertion-only model. We remark that McGregor [32] also suggested to study

the (approximate) property testers in graph streaming model, and asked whether more

space-efficient algorithms exist for these problems, and we thus give an affirmative

answer to this question.

1.1 Our Results

Now we formally state our main results. Our results regarding estimating the number

of connected components and the MST weight are as follows.

– Estimating the Number of Connected Components We present a dynamic streaming

algorithm that estimates the number of connected components within additive error

εn in Õ(n1−ε+εq+1
) space and post-processing time for any constant q ≥ 1. We

note that a lower bound of Ω(n1−O(ε)) for this problem follows from the work

[42].

– Estimating the Weight of the Minimum Spanning Tree (MST) In this problem, we

want to estimate the weight of the MST of a connected graph with edge weights

in the set {1, 2, · · · , W }. We give a dynamic streaming algorithm that computes a

(1+ε)-approximation of the MST weight and uses space and post-processing time

Õ(W n
1− ε

W−1 + εt

(W−1)t) for any constant t ≥ 1. By an argument in [8], the result can

be extended to non-integral weights, as long as the ratio between the largest and

the smallest weight is bounded. A space lower bound of Ω(n1− 4ε
W−1) is shown for

this problem.

123

Algorithmica

Table 1 Upper and lower bounds of streaming testers

Space Space lower bound

Õ Ω

Connectivity n1−ε n1−8ε

k-Edge connectivity k1+ε · n1−ε

k-Vertex connectivity k1+ε/4

ε · n1−ε/4

Cycle-freeness n1−ε+ε2
n1−8ε

Bipartiteness of planar graphs n1−Ω(ε2) n1−4ε

We also present approximate testing algorithms for a number of fundamental graph

properties. Before stating the performance of these algorithms, we first introduce some

definitions. Given a graph property �, an m-edge graph G is called ε-far from having

� if one has to modify more than εm edges of G to get a graph G ′ satisfying �.

This distance definition is adapted from [36] and is most suitable for general graphs

where neither edge density nor maximum degree is restricted. We call an algorithm

a (dynamic) streaming tester for �, if it makes a single-pass over a stream of edge

insertions and deletions, with probability at least 2/3, accepts any graph satisfying �,

and rejects any graph that is ε-far from having �.

We give sketch-based streaming testers for properties of being connected, k-edge

connected, k-vertex connected, cycle-freeness and bipartite (for planar graphs). The

performance of our testers are summarized in Table 1. We stress that most of our testers

have (asymptotically) the same post-processing time as the space they used except for

testing k-edge connectivity when k ≥ Ω(nε/(1+ε)) and k-vertex connectivity when

k ≥ Ω(nε/(4+ε)).

1.2 Our Techniques

To estimate the number of connected components with small additive error εn, we note

that it is sufficient to estimate the number scc(G) of connected components of small

size (i.e., O(1/ε)), since the number of components of size larger than this is at most

O(εn) (see also [8]). To estimate scc(G), the following vertex sampling framework is

used: we sample a sufficiently large set of vertices S by sampling each vertex in G with

some probability p, and then use the statistics of the sampled connected components

of the original graph to estimate scc(G). For any small connected component C in

G, it is likely that all the vertices in C will be sampled out. Conditioned on this, we

add 1/p|C| to our final estimator, which is the reciprocal of the probability that C is

entirely sampled out. Now the task is then to identify which subsets of S are connected

components in the original graph. A trivial way is to check all subsets of S, which takes

too much time. A more efficient way is to only check all the connected components

in G[S], since a sampled component of G must also form a component in G[S]. We

carefully use a set of linear sketches to do this. More specifically, we first recover

all connected components in G[S] by invoking a sketch-based streaming algorithm

123

Algorithmica

given in [2], which only needs space near-linear in |S|. Then we use (different) linear

sketches to check if any of these components is indeed a connected component of

the original graph. We remark that the first set of linear sketches of a vertex v sketch

its neighborhood information in G[S], while the second set sketch its neighborhood

information in G. Our o(n) space streaming algorithm for (1 + ε)-approximating the

weight of MST follows via a connection between the number of connected components

and the weight of MST established in [8].

To give testers for some graph property � in dynamic streaming model, we start

from the observation that if a graph G is far from having �, then typically, there

exist many small disjoint subgraphs, each of which is a witness that the graph G does

not satisfy �. (For example, if � is connectivity, then there exists at least Ω(εm)

connected components of size at most O(1/ε) in a graph that is ε-far from being

connected.) This implies that by sampling a sufficient large set of vertices, with high

probability, one of such subgraphs will be entirely sampled. Checking which vertices

form a witness of the original graph can then be done by using the aforementioned

framework. Different sketches will be used for testing different properties.

To prove lower bounds for our studied problems, we give reductions from Boolen

Hidden Hypermatching (BHH) problem that was studied in [42]. Our reductions share

similarity with the reduction in [42] to the cycle-counting problem and the reductions

in [27,30] to the approximate max-cut problem.

1.3 RelatedWork

Ahn et al. [2] initiated the study of graph sketches, and gave dynamic semi-streaming

algorithms for computing a spanning forest (which can be used to count the exact

number of connected components), and (1 + ε)-approximate the weight of MST.

They also proposed algorithms to exactly testing of a set of properties, including

testing connectivity, k-edge connectivity, and bipartiteness. Recently, Guha et al. gave

dynamic streaming algorithms for exactly testing of k-vertex connectivity [23]. All

these algorithms use Õ(n) space (Õ(kn) for k-connectivity). On the other hand, the

randomized space lower bounds for these exact testing problems were known to be

Ω(n) in the insertion-only model [17,18]. Recently, Sun and Woodruff improved these

lower bounds to Ω(n log n) [41]. Verbin and Yu [42] proved a lower bound for cycle-

counting, which implied a lower bound of Ω(n1−O(ε)) for estimating the number of

components.

In the random order insertion-only model Kapralov et al. [26] gave a one pass

streaming algorithm that estimates the maximum matching size with polylogarithmic

approximation ratio in polylogarithmic space. Although sublinear in n, the model

considered is very different from ours.

Sublinear time algorithms for estimating the number of connected component and

the weight of MST were first given by Chazelle et al. [8]. Later these two problems

have been further considered in geometric settings [11,13,19]. In particular, Frahling

et al. studied the problem of (1 + ε)-approximating the weight of MST in dynamic

geometric data stream [19].

123

Algorithmica

There has been a rich line of work on graph property testing in the query model (see

surveys [20,39]) and the goal there is to design fast algorithms that make as few queries

as possible. The query models that are mostly related to ours are bounded degree

model and general graph model. In particular, our definition of ε-far is adapted from

the general graph model. Goldreich and Ron [22] initiated the study of property testers

in bounded degree graph model, and gave testers for connectivity, k-edge connectivity,

2, 3-vertex connectivity, cycle-freeness, Eulerianity. Testing k-vertex connectivity in

bounded degree graphs for arbitrary constant k was given in [43]. These testers have

later been generalized to general graph model [35,36]. Testing bipartiteness in planar

graphs was studied in [12].

After having submitted the paper, we became aware that Hossein Jowhari [25] has

independently studied the problem of estimating the number of connected components

and provided similar results as ours, while he did not consider the streaming prop-

erty testers considered here. Furthermore, subsequent to our work, Peng and Sohler

[37] showed that in random order streams, approximating the number of connected

components with additive error εn and (1 + ε)-approximating the weight of the MST

of a connected graph with bounded edge weights can be solved in a single-pass and

constant space (in terms of words), i.e., the space complexity only depends on ε and

is independent of the size of the graph.

2 Preliminaries

2.1 Notations

Let [n] := {1, · · · , n}. We use V := [n] to denote the vertex set of the graph G defined

by the stream, and let m denote the number of edges of G. For an undirected graph

G = ([n], E) and a vertex i ∈ [n], we let Γ (i) denote all the neighbors of i . For a set

C ⊆ [n], let Γ (C) denote the set of vertices in V \C that have at least one neighbor in

C , that is, Γ (C) = ∪i∈CΓ (i)\C . Let E(C, V \C) denote the set of edges crossing C

and V \C . We will use G[C] to denote the subgraph induced by C .

For each vertex i , we define two vectors �i ∈ {−1, 0, 1}(
n
2) and �i ∈ {0, 1}n to

encode the neighborhood information of i as follows:

�i
j,k =

⎧

⎨

⎩

1 if i = j < k and (j, k) ∈ E

−1 if j < k = i and (j, k) ∈ E

0 otherwise

�i
j =

{

1 if j ∈ Γ (i) or j = i

0 otherwise

By simple induction arguments, it is easy to prove that for any vertex set C ⊂ V ,

the nonzero entries in the vector �C :=
∑

i∈C �i corresponds to the edges between

C and its complement V \C . The nonzero entries in
∑

i∈C �i corresponds exactly to

vertices in C ∪ Γ (C).

123

Algorithmica

2.2 Linear Sketches

Linear sketch (or sketch for short) is a powerful tool widely used in the streaming

model and other areas. Given a large vector x ∈ R
n , we want to construct a small

sketch L(x), from which certain properties of x can be recovered. We call L a linear

sketch if L(x+y) = L(x)+L(y) for all x, y, and this additive property make it trivial

to implement linear sketches in the dynamic streaming model. As in the previous

works, we will use linear sketches as our main tool.

AGM sketch We will use a dynamic streaming algorithm for constructing a spanning

forest of a graph by Ahn, Guha and McGregor [2], which is summarized as follows.

Theorem 1 (AGM sketch [2]) There exists a single-pass sketch-based dynamic stream-

ing algorithm that uses O(n log3 n) space, and recovers a spanning forest of the graph

with probability 0.99. The recovery time of the algorithm is Õ(n), and the update time

is poly log n.

AMS sketch To check whether the input vector x is 0 or not, one can simply maintain

a constant approximation of its second frequency moment, that is F2(x) :=
∑

i x2
i .

In particular, by using the classical AMS sketch that was introduced by Alon, Matias

and Szegedy [4], one can approximate F2(x) within a multiplicative factor of c using

O(log(1/δ) log n) bits of memory with probability at least 1 − δ, for any 0 < δ < 1

and constant c > 1.

Exact k-sparse recovery We call a vector k-sparse if |supp(x)| ≤ k. Given a non-zero

vector x ∈ R
n , the goal here is to recover x if x is k-sparse, otherwise outputs Fail.

We have the following result from [38].

Lemma 1 [38] There exists an O(k log n logk δ−1) space sketch-based algorithm that

takes as input a non-zero vector x ∈ R
n , and with probability 1 − δ, recovers x if x is

k-sparse, otherwise outputs Fail. The update time is O(poly log n) and the recovery

time is O(k · poly log n).

3 Estimating the Number of Connected Components andMSTWeight

In this section, we present and analyze our algorithms for estimating the number of the

connected components in a graph and (1 + ε)-approximating the weight of the MST.

3.1 Estimating the Number of Connected Components

Our first observation is that, to estimate the number of connected components within

additive error εn, we can simply ignore all the large components (see also [8]). In

particular, the number of components of size larger than Ω(1/ε) is at most O(εn).

Thus it will be sufficient to estimate the number of components of small size, for which

we have the following theorem.

Theorem 2 For any constant t ≥ 1, there exists a one-pass dynamic streaming algo-

rithm that uses Õ(et n1−ε) space and post-processing time to estimates the number of

123

Algorithmica

connected components of size at most 1/ε within an additive error εt n. The update

time is O(poly log n).

By invoking Theorem 2 with parameter ε′ = (1 − εq)ε and t = (q + 1), we get an

estimator for the number of connected components of size smaller than 1/ε′ within

additive error at most εq+1n. Since the number of components of size at least 1/ε′

is at most ε′n = εn − ε1+qn, the estimator also approximates the total number of

connected components within additive error at most εn. The space of the algorithm is

Õ(eq+1n1−ε+εq+1
), and we have the following result.

Theorem 3 Let q ≥ 1 be a constant. There exists a one-pass dynamic streaming

algorithm that with constant success probability, estimates the number of connected

components of a graph within an additive error εn in Õ(eq+1n1−ε+εq+1
) space and

post-processing time.

Now we give the proof of Theorem 2. Recall that the vectors �C encode the

information of the number of edges between C and V \C .

Proof of Theorem 2 Let scc(G) denote the number of connected components of size

at most 1/ε in G. Our algorithm for estimating scc(G) is as follows. We first sample

each vertex with probability p := (ε2t n/16)−ε. Let S be the set of sampled vertices.

We then use the AGM sketch from Theorem 1 to maintain a spanning forest F of

the subgraph induced by S. Then for each component C in F , we test whether C is

actually a connected component in G by testing whether the vector �C :=
∑

v∈C �v

is 0, which can be done by the AMS sketch. If �C = 0, we set XC = 1, otherwise

set XC = 0. Our estimator is then defined as
∑

C
XC

p|C | , where C ranges over all

components of F with size at most 1
ε
. See Algorithm 1 for the details.

Algorithm 1 EstimateNumSCC

1: Sample each vertex with probability p := (ε2t n/16)−ε . If more than 16np vertices are sampled, then

abort and output Fail. Let S denote the set of sampled vertices.

2: Maintain an AGM sketch of G[S] using Theorem 1.

3: For each v ∈ S, maintain an AMS sketch AM S(�v), sketching the neighborhood of v in G.

4: Post-Processing:

5: Use the AGM sketch to recover a spanning forest F of G[S] using Theorem 1.

6: For each component C ∈ F , estimate F2(�C) using the AMS sketch AM S(�C) =
∑

v∈C AM S(�v),

and set XC = 1 if F2 = 0, otherwise set XC = 0. For each 1 ≤ ℓ ≤ 1
ε , let Xℓ :=

∑

C :|C |=ℓ XC .

7: Output Y :=
∑

ℓ≤ 1
ε

Xℓ

pℓ .

Note that the algorithm samples at most 16np = O(ε−2tε · n1−ε) vertices and we

maintained an AGM sketch on G[S] and an AMS sketch for each sampled vertex,

which imply that the space complexity of the algorithm is O(ε−2tεn1−ε · poly log n).

By simple calculus, for any ε, it holds that ε−2ε ≤ e2/e < e, so the space is at most

Õ(et n1−ε). The post-processing time is near linear in the space, and the update time

is O(poly log n).

123

Algorithmica

Now we prove the correctness of the above algorithm. First we note that the expected

number of sampled vertices in Step (1) is np, and thus by Markov inequality, the

probability that more than 16np vertices are sampled is at most 1
16

. Also note that with

probability at least 1 − 1
16

, the AGM sketch returns a true spanning forest of G[S].
In addition, since the number of components in F is at most n, we will query the

AMS sketch at most n times. Thus if we set the error probability of the AMS sketch

to be δ = 1
16n

, then with probability at least 1 − 1
16n

· n = 1 − 1
16

, all invocations

of AMS sketches (with log2 n bits of space per sketch) for testing if �C = 0 will

give the correct answer. Conditioned on this event, Xℓ defined in Step (6) is exactly

the number of connected components B of size ℓ in G such that all vertices in B are

sampled out, which is true since for any component C ∈ F , F2(�
C) = 0 if and only

if C is a connected component in G.

Let B1, · · · , Bscc(G) be the connected components of size at most 1
ε

of G.

For any integer ℓ ≤ 1
ε
, let Bℓ denote the set of connected components of size ℓ

in G, that is, Bℓ = {Bi : 1 ≤ i ≤ scc(G), |Bi | = ℓ}. Let bℓ := |Bℓ|. Note that

scc(G) =
∑

ℓ≤ 1
ε

bℓ. For any set B, let Z B denote the indicator random variable that

all the vertices in B have been sampled. Note that Pr[Z B = 1] = p|B|. Now by

the above argument, Xℓ =
∑

B∈Bℓ
Z B , and E[Xℓ] = bℓ · pℓ. Furthermore, we have

Y =
∑

ℓ≤ 1
ε

Xℓ

pℓ =
∑

ℓ≤ 1
ε

∑

B∈Bℓ
Z B

pℓ , and thus E[Y] =
∑

ℓ≤ 1
ε

bℓ = scc(G).

Note that all Z Bi
’s are mutually independent for all i , so it holds that

Var[Y] =
∑

ℓ≤ 1
ε

∑

B∈Bℓ
Var[Z B]

p2ℓ
=

∑

ℓ≤ 1
ε

bℓ(pℓ − p2ℓ)

p2ℓ
≤

∑

ℓ≤ 1
ε

bℓ

pℓ

≤

∑

ℓ≤ 1
ε

bℓ

p1/ε
=

scc(G)

p1/ε
≤

n

p1/ε
= ε2t n2/16, (1)

where we use the fact that scc(G) ≤ n, and p = (ε2t n/16)−ε. Then by Chebyshev’s

inequality,

Pr[|Y − scc(G)| ≥ εt n] = Pr[|Y − E[Y]| ≥ εt n] ≤
Var[Y]
ε2t n2

≤ 1/16.

By the union bound, the algorithm will succeed with probability at least 2
3

. ⊓⊔

3.2 Approximating theWeight of Minimum Spanning Tree

We use the previous algorithm on estimating the number of connected components to

approximate the weight of a minimum spanning tree of a weighted graph. Let W ≥ 2 be

an integer, G be a connected graph with integer edge weights from [W] := {1, · · · , W },
and c(MST) be the weight of an MST of G. For any 1 ≤ ℓ ≤ W , let G(ℓ) denote the

subgraph of G consisting of all edges of weight at most ℓ. Let cc(ℓ) denote the number

123

Algorithmica

of connected components of G(ℓ). Chazelle et al. [8] give the following lemma relating

the weight of MST to the number of connected components of G(ℓ).

Lemma 2 [8] It holds that c(MST) = n − W +
∑W−1

ℓ=1 cc(ℓ).

For a connected graph with integer edge weights, the weight of any MST is at least

n−1, so it is sufficient to estimate cc(ℓ) within an additive error of εn/(W −1) for each

ℓ. To do this, we can simply run W −1 parallel instances of Theorem 3, each of which

sketches a subgraph G(ℓ). Then the space of the algorithm will be Õ(W n1− ε
W−1).

Theorem 4 Let t ≥ 1 be any constant. There exists a single-pass dynamic stream-

ing algorithm that uses space and post-processing time Õ(et W n
1− ε

W−1 + εt

(W−1)t) to

compute a (1 + ε)-approximation of the weight of the MST.

We remark that Ahn et al. [2] have given a dynamic streaming algorithm for this

problem for any graph with maximum edge weight upper bounded by O(poly(n)),

and their algorithm uses space O(n · poly log n). Our algorithm uses o(n) space for

any connected graph with maximum edge weight bounded by o(log n) (for constant

ε), which improves the algorithm of [2] in this setting. We also note that Ω(n) space

is necessary for estimating the weight of MST for graphs with maximum edge weight

at least c log n for constant ε and some large universal constant c (see Theorem 10).

Finally, we remark that the algorithm can also be extended to the setting where non-

integral weights are allowed (see [8] for more details).

4 Dynamic Streaming Testers

In this section, we give our streaming testers for a number of graph properties, including

k-edge connectivity, k-vertex connectivity, cycle-freeness, planar graph bipartiteness,

and Eulerianity.

4.1 Testing k-Edge Connectivity

A graph is k-edge connected if the minimum cut of the graph has size at least k. We

start from the simplest case, i.e., k = 1, which is equivalent to the problem of testing

connectivity.

4.1.1 Connectivity

It is clear that if G is ε-far from being connected, one must add at least εm edges to

make it connected, which implies that there are at least εm +1 connected components

in G [22,36]. Therefore, we can distinguish a connected graph from any graph that is

ε-far from being connected by estimating the number of connected components with

an additive error �(εn). However, by a more careful analysis, we can reduce the space

by a factor of O(nO(ε)).

123

Algorithmica

Theorem 5 There exists a dynamic streaming tester for 1-edge connectivity that runs

in Õ(n1−ε) post-processing time and space.

Proof First observe that one can simply reject the input graph if m < n − 1, since in

this case, the graph is disconnected. Thus, in the following we assume m ≥ n − 1 and

our tester is described in Algorithm 2.

Algorithm 2 TestConnectivity

1: Sample each vertex with probability p := (εn/10)−ε . If more than 16np vertices are sampled, abort

and output Fail. Let S denote the set of sampled vertices.

2: For each v ∈ S, maintain an AMS sketch AM S(�v), sketching the neighborhood of v in G.

3: Maintain an AGM sketch of G[S] using Theorem 1.

4: Post-Processing:

5: Use the above sketch to construct a spanning forest F of G[S] as guaranteed by Theorem 1.

6: For each connected component C ∈ F , estimate F2(�C) using the AMS sketch AM S(�C) =
∑

v∈C AM S(�v). If the answer F̃2 = 0, Reject.

7: Accept.

It is easy to see that Algorithm 2 only uses Õ(|S|) space, which is bounded by

Õ(np) = Õ(ε−εn1−ε) = Õ(n1−ε). The post-processing time is nearly linear in the

size of S, since the AGM algorithm needs Õ(|S|) post-processing time, and we invoke

at most |S| AMS queries, each of which takes Õ(1) time. The update time is poly log n.

For the correctness of the algorithm, we condition on the event that the number

of sampled vertices is at most 16np, which occurs with probability at least 1 − 1
16

,

and on the event that the spanning forest F is constructed correctly, which occurs

with probability 0.99. By setting the error probability of the AMS sketch to be 1/n2

(with an extra log n factor in space), with probability 0.99, all the answers from AMS

sketches are all correct, and we also condition on this.

If G is connected, then it will always be accepted, since for each C ∈ F , �C �= 0,

and conditioned on the correctness of the AMS sketch, F̃2 will never be 0. On the

other hand, if the graph is ε-far from being connected, the number of connected

components in G, denoted as cc(G), is at least 1 + εm ≥ εn. Let B1, · · · , Bcc(G)

denote all connected components in G. Let pi = p|Bi | for 1 ≤ i ≤ cc(G). Using

the inequality 1 − x ≤ e−x for all x , the probability that none of the components is

entirely sampled out is (1 − p1) · (1 − p2) · · · · (1 − pcc(G)) ≤ e−
∑

i pi . Then by the

AM-GM inequality, this probability is at most

e−cc(G)·(
∏

i pi)
1/cc(G) = e−cc(G)·pn/cc(G) ≤ e−cc(G)·p1/ε ≤ e−εn·p1/ε ≤ 1/16,

where we use the fact that p = (εn/10)−ε and cc(G) ≥ εn. So the probability that

at least one of the components is sampled out is at least 15/16. Conditioned on this,

F2(�
C) = 0 for some component in G[S] and the algorithm will output Reject. By

union bound, our algorithm will succeed with probability 1− 1
16

−0.01−0.01− 1
16

>

3/4. ⊓⊔

123

Algorithmica

4.1.2 k-Edge Connectivity: k ≥ 2

By using a slightly more involved argument and replacing AMS sketches with

(k − 1)-sparse recovery sketches, we can generalize the above idea to testing k-edge

connectivity for k ≥ 2. We have the following theorem on testing k-edge connectivity.

Theorem 6 Let k ≤ O(nε/(1+ε)). There exists a single-pass dynamic streaming tester

for k-edge connectivity with post-processing time and space Õ(k1+ε · n1−ε).

In order to prove Theorem 6, we will use the following result by Orenstein and

Ron [35], who have given, for any k ≥ 2, a characterization of graphs that are ε-far

from being k-edge connected (which simplifies the corresponding result in [22]). We

define a subset C to be ℓ-extreme if |E(C, V \C)| = ℓ < k and for any C ′ ⊂ C ,

|E(C ′, V \C ′)| > ℓ.

Lemma 3 (Corollary 14 and Claim 16 in [35]) If G is ε-far from being k-edge con-

nected, then there are at least 2εm
k

disjoint subsets with an edge-cut smaller than k.

For each such a subset C, it contains a minimal subset C ′ ⊆ C that is ℓ-extreme for

some ℓ < k.

Now we present the proof of Theorem 6.

Proof of Theorem 6 It is clear that m ≥ nk/2 for any k-connected graph, and thus we

can safely reject whenever m < nk/2. In the following, we will only consider the case

that m ≥ nk/2. Our tester is then described in Algorithm 3.

Algorithm 3 TestKEdgeConnectivity

1: Sample each vertex with probability p := (εn/4k)−ε . If more than 16np vertices are sampled, abort

and output Fail. Let S denote the set of sampled vertices.

2: For each v ∈ S, maintain a (k − 1)-sparse recovery sketch Sk−1(�v).

3: Maintain an AGM sketch of G[S] using Theorem 1.

4: Post-Processing:

5: Use the above sketch to recover a spanning forest F of G[S] using Theorem 1.

6: For each component C ∈ F , recover �C from Sk−1(�C), and if it succeeds, Reject.

7: Accept.

Note that the AGM sketch use space Õ(|S|) = Õ(np) = Õ(kεn1−ε). In addition,

each sampled vertex only needs to store a k-sparse recovery sketch, so the space

complexity of the algorithm is Õ(k) · np = Õ(k1+εn1−ε). The post-processing time

is near linear in the space, and the update time is O(poly log n).

For the correctness of the algorithm, we first note that if G is k-edge connected,

then G will be accepted as long as there is no error happening when querying the

k-sparse recovery sketches. This happens with probability 1−1/n by setting the error

probability of the sketch to be 1/n2, and we will condition on this event.

Now if G is ε-far from being k-edge connected, then from Lemma 3, it follows

that there are at least 2εm
k

≥ εn disjoint ℓ-extreme subsets. Let B1, · · · , Bs be the set

123

Algorithmica

of these ℓ-extreme subsets where s ≥ εn. Observe that for any ℓ-extreme subset B,

the induced subgraph G[B] is connected. This is true since otherwise, there exists a

subset B ′ ⊂ B satisfying |E(B ′, B\B ′)| = 0, which implies that |E(B ′, V \B ′)| ≤
|E(B, V \B)| = ℓ, contradicting to the assumption that B is ℓ-extreme.

Let Ei be the event that Bi is entirely sampled out, and Fi be the event that none of

the vertices in Γ (Bi) is sampled.

Note that our algorithm will reject if Ei ∧ Fi happens for some i , and thus our

theorem will follow from the inequality that

Pr

[

∨

i

(Ei ∧ Fi)

]

≥
3

4
. (2)

Now we prove inequality (2). Note that the events (Ei ∧ Fi) are not necessarily

independent across i since two different ℓ-extreme subsets may contain neighbors of

each other or share neighbors. We have the following simple lemma to deal with this

issue.

Lemma 4 There exists a set I ⊂ [s], with |I | = s/k, such that:

1. |E(Bi , B j)| = 0 for all i, j ∈ I and i �= j , and

2.
∑

i∈I |Bi | ≤
∑s

j=1 |B j |/k.

Proof We say Bi and B j are neighbors, if |E(Bi , B j)| > 0. We iteratively construct

the index set I ⊂ [s] as follows. We start from the empty set I0 = ∅ and add one

index at each step. Let It denote the set that at the end of step t . In the (t + 1)-th step,

we find the smallest set Bit+1 that is not a neighbor of Bih
for any h ≤ t and add the

index it+1, i.e., It+1 = It ∪{it+1}. Note that since each ℓ-extreme set has at most k −1

neighbors, we can always find such a set if t < s/k. Let I = Is/k . Then Item 1 of the

lemma follows by our construction. Since the set Bit that we found in the t-th step

may intersect with at most k sets, and Bit is the smallest set that has no intersection

with all sets found in the first t −1 steps, there must exist a partition of [s] into s/k sets

{P1, P2, · · · , Ps/k}, such that for any t ≤ s/k and j ∈ Pt , |B j | ≥ |Bit |. Item 2 of the

lemma then follows from our construction of the index subset I = {i j : 1 ≤ j ≤ s/k},
and the fact that [s] = ∪s/k

t=1 Pt . ⊓⊔

Now we give a lower bound for Pr[
∨

i∈I Ei]. Let pi = p|Bi | be the probability that

all vertices in Bi are sampled. Using the fact 1 − x ≤ e−x for all x and the AM-GM

inequality, we have

ln
∏

i∈I

(1 − pi) ≤ −
∑

i∈I

pi ≤ −|I | · (
∏

i∈I

pi)
1/|I | = −|I | · p

∑

i∈I |Bi |/|I |

≤ −(s/k) · p
∑

i |Bi |/s

≤ −
εn

k
· p1/ε.

123

Algorithmica

Thus we have

Pr

[

∨

i∈I

Ei

]

= 1 − (
∏

i∈I

(1 − pi)) = 1 − eln
∏

i∈I (1−pi) ≥ 1 − e− εn
k

·p1/ε ≥ 15/16,

since we set p = (εn/4k)−ε.

Now by the property of I as guaranteed in Lemma 4, it follows that F j and Ei are

independent for all i, j ∈ I . Hence, conditioned on the event
∨

i∈I Ei , the probability

of
∨

i∈I (Ei ∧ Fi) happening is

Pr

[

∨

i∈I

(Ei ∧ Fi)

∣

∣

∣

∨

i∈I

Ei

]

≥ min
j∈I

Pr[F j] = min
j∈I

(1 − p)|Γ (B j)| ≥ (1 − p)k

≥ e−pk−p2k

≥ 0.8,

where in the penultimate inequality, we used the basic inequality that 1 − x ≥ e−x−x2

for x ≤ 0.5; the last inequality holds for k ≤ 0.1/p or equivalent k ≤ O(nε/(1+ε)).

Finally, we have

Pr

[

∨

i

(Ei ∧ Fi)

]

≥ Pr

[

∨

i∈I

(Ei ∧ Fi)

]

= Pr

[(

∨

i∈I

(Ei ∧ Fi)

)

∧

(

∨

i∈I

Ei

)]

= Pr

[

∨

i∈I

Ei

]

· Pr

[

∨

i∈I

(Ei ∧ Fi)

∣

∣

∣

∨

i∈I

Ei

]

≥
15

16
·

4

5
≥ 3/4.

⊓⊔
We remark that the problem can still be solved in space Õ(kn1−ε) for larger k by

testing the neighborhood of all subsets of size smaller than 1/ε in S, however the

post-processing time will be Õ(knO(1/ε)). Also, k ≤ O(nε) is the most interesting

case for us, since we are mostly interested in o(n) space algorithms.

4.2 k-Vertex Connectivity

A graph is k-vertex connected if the minimum vertex cut of the graph has size at least

k, i.e. it remains connected whenever fewer than k vertices are removed. The following

lemma on the structure of graphs that are ε-far from being k-vertex connected can be

directly deduced from Corollary 19 in [35].

Lemma 5 If the graph is ε-far from k-vertex connected, then there exists at least εm
2k

subsets C of size at most 2kn
εm

such that G[C] is connected and Γ (C) < k.

123

Algorithmica

Proof (sketch) In Corollary 19 in [35], it is proven that for any directed graph G that

is ε-from k-vertex connected, then there exists at least εm
2k

subsets C of size at most
2kn
εm

, and either |Γ +(C)| < k or |Γ −(C)| < k, where Γ +(C) := {v ∈ V \C : 〈v, u〉 ∈
E(G), u ∈ C} (resp., Γ −(C) := {v ∈ V \C : 〈u, v〉 ∈ E(G), u ∈ C}) denotes the set

of vertices in V \C that are endpoints of incoming (resp., outgoing) edges incident to

C .

On the other hand, in Sect. 5.3 in [35], it is proven that if an undirected graph G

is ε-far from k-vertex connected, then the corresponding directed graph G ′ that is

obtained by turning each undirected edge (u, v) into directed edges 〈u, v〉 and 〈v, u〉
is ε-far from being k-vertex connected. Therefore, there exists at least εm

2k
subsets C

in G ′ of size at most 2kn
εm

, and either |Γ +
G ′(C)| < k or |Γ −

G ′(C)| < k. This directly

implies that the corresponding set C in G satisfies that |ΓG(C)| < k. Finally, if G[C]
is not connected, then we can replace C by one maximal subset C ′ ⊂ C such that

G[C ′] is connected. Note that |ΓG(C ′)| ≤ |ΓG(C)| < k. This completes the proof of

the lemma. ⊓⊔

Now we use the above lemma to show our k-vertex connectivity tester.

Theorem 7 Let k ≤ O(n
ε

4+ε). There exists a single-pass dynamic streaming tester

for k-vertex connectivity with post-processing time and space complexity Õ(k1+ε/4

ε
·

n1−ε/4).

Proof (sketch) We can also simply consider the case that m ≥ nk/2, since otherwise

the graph cannot be k-vertex connected and we can directly reject. Our approach for

testing k-connectivity is similar to testing k-edge connectivity. The difference here is

that now we cannot use the (k − 1)-sparse recovery sketch for the vector �v . Instead,

for each vertex v ∈ S, we will maintain an exact k′-sparse recovery sketch of the

vector �v (defined in Sect. 2.1), Sk′(�v), for k′ = 4
ε

+ k. Then for each detected

connected component C of size smaller than 4/ε in G[S] (by AGM sketch), recover

�C :=
∑

v∈C �v from the sketch Sk′(�C) =
∑

v∈C Sk′(�v). If it succeeds, we get

the set C
⋃

Γ (C), and since we know C , we get Γ (C). If |Γ (C)| < k, we reject.

For any k-vertex connected graph, the tester will never reject if all the sparse recover

sketches return correctly, which happens with high probability. On the other hand,

if G is ε-far from k-vertex connected, by similar analysis as in k-edge connectivity

together with Lemma 5, we know that with high probability, there is a subset C ⊆ S

such that G[C] is a connected component in G[S], |Γ (C)| < k and |C | ≤ 4/ε, and

conditioned on this the algorithm will successfully recover Γ (C), and reject with high

probability. Here to make the analysis work, we have to set the sampling probability

p := (εn/16k)−ε/4, so the space used is Õ(k′ · kε/4 · n1−ε/4) = Õ(k1+ε/4

ε
· n1−ε/4).

Since the analysis is almost the same as k-edge connectivity, we omit the details here.

⊓⊔

4.3 Testing Cycle-Freeness

Now we consider the problem of testing cycle-freeness, which is equivalent to testing

if the graph is a forest. Let cc(G) denote the number of connected components of the

123

Algorithmica

input graph G. Let B1, · · · , Bcc(G) be the connected components in G. Note that if G

is cycle-free, then for each i ≤ cc(G), |E(Bi)| = |Bi | − 1, and thus the total number

of edges in G is

m =
cc(G)
∑

i=1

|E(Bi)| =
cc(G)
∑

i=1

(|Bi | − 1) = n − cc(G),

that is, cc(G) = n −m. If G is ε-far from being cycle-free, i.e., one has to delete more

than εm edges to make it cycle-free, then cc(G) > n − m + εm. Therefore, to test

cycle-freeness of a graph, it will be sufficient to approximate the number of connected

components with additive error εm/2. One may try to directly invoke Algorithm 1

with parameter ε′ = εm
2n

. However, m could be much smaller than n and we do not

know m in advance. We overcome this obstacle by a case analysis.

Theorem 8 There exists a single-pass dynamic streaming algorithm that tests cycle-

freeness of a graph with space and post-processing time Õ(n1−ε+ε2
).

Proof Note that if m > n − 1, then the graph must contain at least one cycle, and thus

we can safely reject the graph. In the following, we assume that m ≤ n − 1. Note that

if ε ≤ 1/(10 log n), then we can simply store whole graph and test if it is cycle-free,

as the size of the graph is O(n) = O(n1−ε+ε2 · poly log n). In the following, we will

assume that ε > 1/(10 log n). Our algorithm for testing cycle-freeness depends on

the construction of AGM sketch, in which each vertex u maintains a linear sketch of

�u (denoted as A(�u)). Each such sketch has size poly log n and the property that

A(0) = 0 (it consists of O(log n) l0-samplers, see [2] for details). Our main idea is

to maintain a sparse recovery sketch for the AGM sketch (i.e. a composition of sparse

recovery sketch and AGM sketch). Now we describe our algorithm in Algorithm 4.

Note that the space used by the algorithm is max{Õ(np0), Õ(np), k ·poly log n} =
Õ(n1−ε+ε2 + n2ε/(1+ε+ε2)/ε6) = Õ(n1−ε+ε2

) as ε > 1/(10 log n), and the post-

processing time is near linear in space.

Now we prove the correctness of the algorithm. We define G ′ ⊆ G to be a subgraph

which consists of all the vertices of positive degree. Let n′ = |G ′|. Note that m ≥ n′/2.

If n′ ≤ n1−η, then the vector ϒ is Õ(n1−η)-sparse, since for all isolated vertices u,

we have A(�u) = 0, and thus we can recover the entire ϒ exactly. Then by Step 2-(c)

and Theorem 1, we can get the exact number of components of G ′. Since the number

of vertices of G ′ is |Y |, and λ = m is the total number of edges, then the graph is

cycle-free if and only if c̃1 = |Y | − λ.

If n′ > n1−η, then conditioned on the event that all AM S(�v) for v ∈ S0 are

correct (which occurs with high probability), our estimator c̃0 approximates the number

of isolated vertices in G, denoted by c0, with an additive error (ε3/16)n1−η with

probability at least 1 − 1
16

(by our choice that p0 = 1
4096ε6n1−2η and similar analysis

for the proof of Theorem 2). We will condition on this event. Since n′ > n1−η and

m ≥ n′/2, we have that |c0 − c̃0| ≤ (ε3/8)m.

Now note that by Theorem 2, c̃2 is an estimator for the number, denoted by c2,

of components in G ′ of size smaller than 1/η with additive error ηt
√

n′n1−η. This

123

Algorithmica

Algorithm 4 TestCycleFreeness

1: Maintain a count λ of the number of edges.

2: Let η = ε/(1 + ε + ε2). Let k = n1−ηpoly log n. Perform the following steps (a),(b),(c) in parallel:

(a) Maintain an exact k-sparse recovery sketch S of the vector ϒ := (A(�u))u∈V using Lemma 1.

(b) Sample each vertex with probability p0 := 1

4096ε6n1−2η . For each sampled vertex v, maintain the

AMS sketch AM S(�v). Let S0 denote the resulting sample set.

(c) Run Algorithm 1 with parameter p = (η2t n1−η/16)−η , while in step (6) of Algorithm 1, ignore

all the isolated vertices that are sampled out (i.e., set XC = 0 whenever |C | = 1).

3: Post-Processing:

4: Recover ϒ from S.

5: if The recovery does not fail then

6: Use ϒ to construct a spanning forest on vertex set Y := {u : A(�u) �= 0} using Theorem 1. Let c̃1

denote the number of connected components of this forest. If c̃1 = |Y | − λ, Accept; otherwise, Reject.

7: else

8: Let X0 denote the number of vertices v in S0 with F2(�v) = 0 (by the AMS sketches AM S(�v)).

Let c̃0 := X0
p .

9: Let c̃2 be the resulting estimator of Algorithm 1 in Step 2-(c). If c̃0 + c̃2 ≤ n − λ + ε3

4 λ, Accept;

otherwise, Reject.

10: end if

follows by the upper bound η2t n1−ηn′/16 of the variance of the estimator (which

can be shown similarly to inequality (1) in Sect. 3) and the Chebyshev’s inequality.

Now note that the additive error is at most ηt n′ ≤ ε3m/8 for some constant t since

n′ > n1−η and m ≥ n′/2. That is, with high probability, |c2 − c̃2| ≤ ε3m/8. In the

following, we condition on this event.

Let L be the number of components in G ′ of size larger than 1/η. Note that each

such component has at least 1/η − 1 edges. Thus, m ≥ L · (1/η − 1), which gives that

L ≤ η
1−η

m = ε
1+ε2 m by our choice of η.

If the original graph G is cycle-free, then the number of connected components

of G equals n − m, i.e., c0 + L + c2 = n − m. Thus, we have that c̃0 + c̃2 ≤
c0 + ε3m/8 + c2 + ε3m/8 = n − m − L + ε3m/4 ≤ n − m + ε3

4
m. The algorithm

will output Accept.

If G is ε-far from being cycle-free, then c0 + L + c2 > n − m + εm. Thus,

c̃0 + c̃2 ≥ c0 −ε3m/8+c2 −ε3m/8 > n −m +εm − L −ε3m/4 ≥ n −m + ε3

1+ε2 m −
ε3m/4 > n − m + ε3m/4. The algorithm will output Reject.

Thus, our algorithm can distinguish cycle-free graphs from those graphs that are

ε-far from being cycle-free with probability at least 2/3. This completes the proof of

the theorem. ⊓⊔

4.4 Testing Bipartiteness of the Planar Graphs

Now we consider the problem of testing if a planar graph is bipartite or ε-far from

bipartite. Here a planar graph is ε-far from bipartite if one has to delete at least εm

edges to get a bipartite graph. Czumaj et al. [12] showed the following result1.

1 In [12], ε-far is expressed as εn edges, rather than εm edges as in our definition, that has to be deleted to

obtain a bipartite graph. However, Lemma 6 directly follows from their proof.

123

Algorithmica

Lemma 6 [12] For any (simple) planar graph G that is ε-far from bipartite, then G

has at least εm/q(ε) edge-disjoint odd-length cycles of length at most q(ε)/2 each,

where q(ε) = O(1/ε2).

By the above lemma, we only need to sample each edge independently with some

probability (rather than vertices as we did before) of the graph so that with high

probability the resulting sampled graph contains at least one short odd-length cycle.

The edge-sampling process can be done by using hash functions (see e.g. [3]). Similar

to our previous analysis, it will be sufficient to set the sample probability to p =
Oε(n

−q(ε)), which implies that the space used is Õ(n1−Ω(ε2)). We omit the details

here.

4.5 Testing Eulerianity

Note that the algorithm for connectivity testing can be directly used to testing Eule-

rianity. A graph G is Eulerian if there is a path in the graph that traverses each edge

exactly once, or equivalently, if G is connected and the degrees of all vertices are even

or exactly two vertices have odd degrees. Note that if graph G is ε-far from being Eule-

rian then either G has Ω(εn) connected components (i.e. far from being connected)

or has Ω(εn) vertices of odd degree (cf., [22,36]). Then one can test Eulerianity by

first invoking the previous algorithm on testing connectivity, and then sample O(1/ε)

vertices and check if some sampled vertex has odd degree. The post-processing time

and space complexity of the final algorithm are Õ(n1−c·ε) for some universal constant

c.

5 Lower Bounds

In this section we present lower bounds, which hold in the insertion-only model. Our

proofs are based on the reductions to the Boolean Hidden Hypermatching (BHH)

problem (See [42]), which are in the same spirit as the lower bound proof for the

Cycle Counting problem in [42]. We first give the definition of the boolean hidden

hypermatching problem.

Definition 1 (BHHt
n) In the this problem, Alice gets a boolean vector x ∈ {0, 1}n ,

where n = 2kt for some integer k. Bob gets a partition (or hypermatching) of the

set [n], {m1, · · · , mn/t }, where the size of each mi is t , and a vector w ∈ {0, 1}n/t .

For convenience, we will also use the corresponding n-dimensional boolean indicator

vector Mi to represent mi , and let M be a n/t ×n matrix, the i row of which is Mi . The

promise of the input is either Mx + w = 1 or Mx + w = 0, where all the operations

are modulo 2. The goal of the problem is to output 1 when Mx + w = 1, and output

0 otherwise.

We have the following lower bound from [42].

Theorem 9 [42] The randomized one-way communication complexity of BHHt
n when

n = 2kt for some integer k ≥ 1 is Ω(n1−1/t).

123

Algorithmica

v2i−1

v2i

u2i−1

u2i

v2i−1

v2i

u2i−1

u2i

xi = 0 xi = 1

Fig. 1 Parallel (left) and crossing (right) matching according to the value of xi

v2mi,j−1

v2mi,j u2mi,j

v2mi,j+1−1

v2mi,j+1

u2mi,j+1−1

u2mi,j+1

xmi,j
= 0 xmi,j+1

= 1

u2mi,j−1

Fig. 2 Bob connects (u2mi, j −1, v2mi, j+1−1) and (u2mi, j
, v2mi, j+1

) for each j ∈ [t − 1]

Our lower bounds will be built upon the following basic construction.

Construction of G(x, M). Given vector x and matrix M respectively, Alice and Bob

construct a bipartite graph G(x, M) = (U , V , E), where U = {u1, · · · , u2n} and V =
{v1, · · · , v2n}, as follows. Given x ∈ {0, 1}n , Alice adds a perfect matching between

U and V . For each i ∈ [n], if xi = 0, she adds two parallel edges (u2i−1, v2i−1)

and (u2i , v2i); otherwise if xi = 1, she adds two crossing edges (u2i−1, v2i) and

(u2i , v2i−1) (see Fig. 1).

Given M , Bob will do the following. For each i ∈ [n/t] and the hyperedge mi ⊂ [n]
(that corresponds to the i th row Mi), we use mi, j ∈ [n] to denote the j th element

in mi and we let Si := {x |x = v2mi, j −1orv2mi, j
or u2mi, j −1 or u2mi, j

, j ∈ [t]}.
For each i ∈ [n/t] and j ∈ [t − 1], Bob adds two edges (u2mi, j −1, v2mi, j+1−1) and

(u2mi, j
, v2mi, j+1

) (see Fig. 2).

Observe that the edges added by Alice and Bob form two paths p2i−1, p2i over

vertex set Si , where p2i−1 starts from v2mi,1−1 and p2i starts from v2mi,1
for each i .

The entire graph G(x, M) consists of 2n/t disjoint paths {p1 · · · , p2n/t }. It also has

the following property.

Fact 1 Based on the value of (Mx)i , we have: 1) if (Mx)i = 0, then p2i−1 is a path

from v2mi,1−1 to u2mi,t −1 and p2i is a path from v2mi,1
to u2mi,t

; 2) if (Mx)i = 1, then

p2i−1 is a path from v2mi,1−1 to u2mi,t
and p2i is a path from v2mi,1

to u2mi,t −1.

5.1 Minimum Spanning Tree

Theorem 10 In the insertion-only model, if all edges of the graph have weights in [W],
any algorithm that (1 ± ε)-approximates the weight of the MST must use Ω(n1− 4ε

W−1)

bits of space.

Proof Given x and M , Alice and Bob first construct the graph G(x, M) as described

above. Next Bob adds (u2mi,t −1, v2mi,1−1) and (u2mi,t
, v2mi,1

) if wi = 0; adds

(u2mi,t −1, v2mi,1
) and (u2mi,t

, v2mi,1−1) if wi = 1. The weight of all the edges added

123

Algorithmica

so far is 1. Next, regardless of the value of wi , Bob places edges (v2mi,t
, v2mi+1,1

)

with weight 1 for i = 1, · · · , n/t − 1 and edges (v2mi,t
, u2mi,t

) with weight W for

each i ∈ [n/t], so that the graph become connected. By similar argument as above,

if Mx + w = 0, all the edges (v2mi,t
, u2mi,t

) must be picked in any minimum span-

ning tree, since each of these edges forms a cut, and thus the weight of any MST is

nW/t + 4n − n/t − 1 = 4nε + 4n − 1, where we set t = (W − 1)/4ε. On the other

hand, when Mx + w = 1, the weight of the MST is 4n − 1, since in this case, the

graph is already connected without those edges with weight W . So if the algorithm

can compute an (1 + ε)-approximation of the weight of the minimum spanning tree,

it solves the BHHt
n problem. This completes the proof. ⊓⊔

5.2 Testing Connectivity

Theorem 11 In the insertion-only model, to distinguish whether a graph of 4n vertices

is connected or 1
8t+1

-far from being connected, any algorithm must use Ω(n1−1/t) bits

of space.

Proof Given x and M , Alice and Bob first construct the graph G(x, M). Next Bob

adds another set of edges based on vector w. If wi = 0, he adds (u2mi,t −1, v2mi,1−1)

and (u2mi,t
, v2mi,1

); if wi = 1, he adds (u2mi,t −1, v2mi,1
) and (u2mi,t

, v2mi,1−1). So

when (Mx)i + wi = 0, p2i−1 and p2i become 2 disjoint cycles. On the other hand,

when (Mx)i + wi = 1, p2i−1 and p2i together form a larger cycle. Now Bob places

(v2mi,t
, v2mi+1,1

) in E for i = 1, · · · , n/t − 1 which connect p2i with p2(i+1) for all

i ∈ [n/t − 1], i.e. all the paths in G(x, M) with even indices become a connected

component. The total number of edges is 8n + n/t . When Mx + w = 0, the graph

has n/t + 1 components which is 1
8t+1

-far from connected; when Mx + w = 1 the

graph is connected. So if a streaming algorithm can distinguish whether a graph of

size 4n is connected or 1/8t-far from being connected, it solves BHHt
n , since Alice

can first run the algorithm on her part of the graph and send the memory to Bob, and

then Bob continues to run the algorithm on his part and output the answer. Therefore,

the communication lower bound of BHHt
n implies a space lower bound of testing

connectivity. ⊓⊔

5.3 Testing Cycle-Freeness

As in the proof of Theorem 11, given x and M , Alice and Bob first construct G(x, M).

Then, for i ∈ [n/t], Bob adds (u2mi,t −1, v2mi,1−1) if wi = 0; adds (u2mi,t −1, v2mi,1
) if

wi = 1. The total number of edges is less than 8n. Through similar arguments, it is

easy to verify that if if Mx + w = 0, the graph has exactly n/t cycles and n/t paths,

which is 1/8t-far from cycle-free. On the contrary, if Mx + w = 1, the graph has n/t

paths and no cycle. So if an algorithm can distinguish whether a graph of size 4n is

cycle-free or 1/8t-far from cycle-free, it solves BHHt
n .

Theorem 12 In the insertion-only model, any algorithm that can distinguish whether a

graph of 4n vertices is cycle-free or 1/8t-far from being cycle-free, must use Ω(n1−1/t)

bits of space.

123

Algorithmica

5.4 Testing Bipartiteness of Planar Graphs

Alice and Bob first construct the graph G(x, M). Next, for each i ∈ [n/t], Bob adds

edges (v2mi,1−1, ξ1) and (v2mi,1
, ξ2), where ξ1, ξ2 are new vertices. For i ∈ [n/t], Bob

also adds (u2mi,t −1, ξ1) and (u2mi,t
, ξ2) if wi = 0; adds (u2mi,t −1, ξ2) and (u2mi,t

, ξ1)

if wi = 1. For this problem we assume t is odd. So by similar arguments, we can

easily verify that, if Mx + w = 0, the graph contains 2n/t edge-disjoint cycles of

length 2t + 1, and if Mx + w = 1, the graph has no odd cycle, and thus bipartite. The

graph constructed is planar and has 4n + 2 vertices and 8n + 4n/t edges, so we have

the following lower bound for testing bipartiteness.

Theorem 13 In the insertion-only model, any algorithm that can distinguish whether

a planar graph of 4n + 2 vertices is bipartite or 1
4t+2

-far from being bipartite, must

use Ω(n1−1/t) bits space.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Ahn, K.J., Cormode, G., Guha, S., McGregor, A., Wirth, A.: Correlation clustering in data streams. In:

Proceedings of the 32nd International Conference on Machine Learning, ICML, pp. 6–11 (2015)

2. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measurements. In: Proceedings

of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 459–467. SIAM,

Philadelphia (2012)

3. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs. In: Pro-

ceedings of the 31st Symposium on Principles of Database Systems, pp. 5–14. ACM, New York (2012)

4. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments.

In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 20–29.

ACM, New York (1996)

5. Assadi, S., Khanna, S., Li, Y., Yaroslavtsev, G.: Maximum matchings in dynamic graph streams and

the simultaneous communication model. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA ’16, pp. 1345–1364. SIAM, Philadelphia (2016)

6. Bhattacharya, S., Henzinger, M., Nanongkai, D., Tsourakakis, C.E.: Space-and time-efficient algorithm

for maintaining dense subgraphs on one-pass dynamic streams. In: ACM Symposium on Theory of

Computing (2015)

7. Bury, M., Schwiegelshohn, C.: Sublinear estimation of weighted matchings in dynamic data streams.

ESA (2015)

8. Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the minimum spanning tree weight in sub-

linear time. SIAM J. Comput. 34(6), 1370–1379 (2005)

9. Chitnis, R., Cormode, G., Esfandiari, H., Hajiaghayi, M., McGregor, A., Monemizadeh, M., Vorot-

nikova, S.: Kernelization via sampling with applications to dynamic graph streams. SODA (2016)

10. Chitnis, R., Cormode, G., Hajiaghayi, M., Monemizadeh, M.: Parameterized streaming: maximal

matching and vertex cover. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on

Discrete Algorithms, pp. 1234–1251. SIAM, Philadelphia (2015)

11. Czumaj, A., Ergün, F., Fortnow, L., Magen, A., Newman, I., Rubinfeld, R., Sohler, C.: Approximating

the weight of the euclidean minimum spanning tree in sublinear time. SIAM J. Comput. 35(1), 91–109

(2005)

12. Czumaj, A., Monemizadeh, M., Onak, K., Sohler, C.: Planar graphs: random walks and bipartiteness

testing. In: Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, pp.

423–432. IEEE (2011)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica

13. Czumaj, A., Sohler, C.: Estimating the weight of metric minimum spanning trees in sublinear time.

SIAM J. Comput. 39(3), 904–922 (2009)

14. Esfandiari, H., Hajiaghayi, M., Woodruff, D.P.: Brief announcement: applications of uniform sam-

pling: densest subgraph and beyond. In: Proceedings of the 28th ACM Symposium on Parallelism in

Algorithms and Architectures, SPAA 2016, pp. 397–399 (2016)

15. Esfandiari, H., Hajiaghayi, M.T., Liaghat, V., Monemizadeh, M., Onak, K.: Streaming algorithms for

estimating the matching size in planar graphs and beyond. In: Proceedings of the Twenty-Sixth Annual

ACM-SIAM Symposium on Discrete Algorithms, pp. 1217–1233. SIAM, Philadelphia (2015)

16. Fafianie, S., Kratsch, S.: Streaming kernelization. In: Mathematical Foundations of Computer Science

2014, pp. 275–286. Springer, Berlin (2014)

17. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming

model. Theor. Comput. Sci. 348(2), 207–216 (2005)

18. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the data-stream

model. SIAM J. Comput. 38(5), 1709–1727 (2008)

19. Frahling, G., Indyk, P., Sohler, C.: Sampling in dynamic data streams and applications. In: Proceedings

of the Twenty-First Annual Symposium on Computational Geometry, pp. 142–149. ACM, New York

(2005)

20. Goldreich, O.: Introduction to testing graph properties. In: Property Testing, pp. 105–141. Springer,

Berlin (2011)

21. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approxi-

mation. J. ACM 45(4), 653–750 (1998)

22. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 32, 302–343 (2002)

23. Guha, S., McGregor, A., Tench, D.: Vertex and hyperedge connectivity in dynamic graph streams. In:

Proceedings of the 34th ACM Symposium on Principles of Database Systems, pp. 241–247. ACM,

New York (2015)

24. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams. In: External Memory

Algorithms, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 20–22,

pp. 107–118 (1998)

25. Jowhari, H.: Estimating the number of connected components in graph streams. Personal Communi-

cation

26. Kapralov, M., Khanna, S., Sudan, M.: Approximating matching size from random streams. In: Pro-

ceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 734–751.

SIAM, Philadelphia (2014)

27. Kapralov, M., Khanna, S., Sudan, M.: Streaming lower bounds for approximating max-cut. In: Proceed-

ings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1263–1282.

SIAM, Philadelphia (2015)

28. Kapralov, M., Lee, Y.T., Musco, C., Sidford, A.: Single pass spectral sparsification in dynamic streams.

In: Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pp. 561–570.

IEEE (2014)

29. Kapralov, M., Woodruff, D.: Spanners and sparsifiers in dynamic streams. In: Proceedings of the 2014

ACM symposium on Principles of distributed computing, pp. 272–281. ACM, New York (2014)

30. Kogan, D., Krauthgamer, R.: Sketching cuts in graphs and hypergraphs. In: Proceedings of the 2015

Conference on Innovations in Theoretical Computer Science, pp. 367–376. ACM, New York (2015)

31. Konrad, C.: Maximum matching in turnstile streams. ESA (2015)

32. McGregor, A.: Graph stream algorithms: a survey. ACM SIGMOD Rec. 43(1), 9–20 (2014)

33. McGregor, A., Tench, D., Vorotnikova, S., Vu, H.T.: Densest subgraph in dynamic graph streams.

MFCS (2015)

34. Muthukrishnan, S.: Data streams: algorithms and applications. Theor. Comput. Sci. 1(2), 117–236

(2005)

35. Orenstein, Y., Ron, D.: Testing eulerianity and connectivity in directed sparse graphs. Theor. Comput.

Sci. 412(45), 6390–6408 (2011)

36. Parnas, M., Ron, D.: Testing the diameter of graphs. Random Struct. Algorithms 20(2), 165–183 (2002)

37. Peng, P., Sohler, C.: Estimating graph parameters from random order streams. In: Proceedings of

the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2449–2466. SIAM,

Philadelphia (2018)

38. Price, E.: Efficient sketches for the set query problem. In: Proceedings of the twenty-second annual

ACM-SIAM symposium on Discrete Algorithms, pp. 41–56. SIAM, Philadelphia (2011)

123

Algorithmica

39. Ron, D.: Algorithmic and analysis techniques in property testing: foundations and trends ®. Theor.

Comput. Sci. 5(2), 73–205 (2010)

40. Rubinfeld, R., Shapira, A.: Sublinear time algorithms. SIAM J. Discrete Math. 25(4), 1562–1588

(2011)

41. Sun, X., Woodruff, D.P.: Tight bounds for graph problems in insertion streams. In: The 18th

International Workshop on Approximation Algorithms for Combinatorial Optimization Problems

(APPROX’2015) (2015)

42. Verbin, E., Yu, W.: The streaming complexity of cycle counting, sorting by reversals, and other prob-

lems. In: Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms,

pp. 11–25. SIAM, Philadelphia (2011)

43. Yoshida, Y., Ito, H.: Property testing on k-vertex-connectivity of graphs. In: Automata, Languages and

Programming, pp. 539–550. Springer, Berlin (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Affiliations

Zengfeng Huang1 · Pan Peng2

B Pan Peng

p.peng@sheffield.ac.uk

Zengfeng Huang

huangzf@fudan.edu.cn

1 School of Data Science, Fudan University, Shanghai, China

2 Department of Computer Science, University of Sheffield, Sheffield, UK

123

http://orcid.org/0000-0003-2700-5699

	Dynamic Graph Stream Algorithms in o(n) Space
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Linear Sketches

	3 Estimating the Number of Connected Components and MST Weight
	3.1 Estimating the Number of Connected Components
	3.2 Approximating the Weight of Minimum Spanning Tree

	4 Dynamic Streaming Testers
	4.1 Testing k-Edge Connectivity
	4.1.1 Connectivity
	4.1.2 k-Edge Connectivity: k2

	4.2 k-Vertex Connectivity
	4.3 Testing Cycle-Freeness
	4.4 Testing Bipartiteness of the Planar Graphs
	4.5 Testing Eulerianity

	5 Lower Bounds
	5.1 Minimum Spanning Tree
	5.2 Testing Connectivity
	5.3 Testing Cycle-Freeness
	5.4 Testing Bipartiteness of Planar Graphs

	References

