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Abstract

A popular graph clustering method is to consider the embedding of an input graph into R
k

induced by the first k eigenvectors of its Laplacian, and to partition the graph via geometric
manipulations on the resulting metric space. Despite the practical success of this method-
ology, there is limited understanding of several heuristics that follow this framework. We
provide theoretical justification for one such natural and computationally efficient variant.

Our result can be summarized as follows. A partition of a graph is called strong if each
cluster has small external conductance, and large internal conductance. We present a simple
greedy spectral clustering algorithm which returns a partition that is provably close to a
suitably strong partition, provided that such a partition exists. A recent result shows that
strong partitions exist for graphs with a sufficiently large spectral gap between the k-th and
(k+1)-st eigenvalues. Taking this together with our main theorem gives a spectral algorithm
which finds a partition close to a strong one for graphs with large enough spectral gap. We
also show how this simple greedy algorithm can be implemented in near-linear time for any
fixed k and error guarantee. Finally, we evaluate our algorithm on some real-world and
synthetic inputs.

Keywords: Clustering, Greedy Algorithms, Graph Partitioning, Spectral Graph Theory

1. Introduction

Spectral clustering of graphs is a fundamental technique in data analysis that has enjoyed
broad practical usage because of its efficacy and simplicity. The technique maps the vertex set
of a graph into a Euclidean space Rk where a classical clustering algorithm (such as k-means,
k-center) is applied to the resulting embedding [33]. The coordinates of the vertices in the
embedding are computed from k eigenvectors of a matrix associated with the graph. The
exact choice of matrix depends on the specific application but is typically some weighted
variant of D − A, for a graph with degree matrix D and adjacency matrix A. Despite
widespread usage, theoretical understanding of the technique remains limited. For example,
it is generally not clear for which classes of graphs spectral clustering works well, or what
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the structure of the subgraph induced by vertices that correspond to embedded points from
the same cluster is. Although the case for k = 2 (two clusters) is well understood, the case
of general k is not yet settled and a growing body of work seeks to address the practical
success of spectral clustering methods [7, 8, 15, 20, 27, 33].

In this paper we present a simple greedy spectral clustering algorithm which is guaranteed
to return a high quality partition, provided that one of sufficient quality exists. It first
chooses k clusters along with their centers greedily from the vertices spectrally embedded
in an Euclidean space. Any left over vertex is assigned to one of the computed clusters
whose center it is closest to. The resulting partition is close in symmetric difference to the
high quality one. Our results can be viewed as providing further theoretical justification for
popular clustering algorithms such as in [7] and [20].

Measuring partition quality. Intuitively, a good k-clustering of a graph is one where there
are few edges between vertices residing in different clusters and where each cluster is well-
connected as an induced subgraph. Such a qualitative definition of clusters can be appro-
priately characterized by vertex sets with small external conductance and large internal
conductance, which has been first formalized by Oveis Gharan and Trevisan [13].

Let G = (V,E) be an undirected unweighted graph. Let deg(v) be the degree of a vertex
v ∈ V . For a subset S ⊂ V , the external conductance and internal conductance are defined
to be

φout(S;G) :=
|E(S, V (G) \ S)|

vol(S)
, φin(S) := min

S′⊆S,vol(S′)≤ vol(S)
2

φout(S
′;G[S])

respectively, where vol(S) =
∑

v∈S deg(v) (called the volume of S), E(X, Y ) denotes the set
of edges between X and Y , and G[S] denotes the subgraph of G induced on S. For an isolated
vertex v in G, we assume φout(v,G) = 0 and φin(v) = 1 by definition. Let φin(G) := φin(V ).
It follows that if φin(G) > 0, then G cannot have any isolated vertex. When G is understood
from context we sometimes write φout(S) in place of φout(S;G).

We define a k-partition of a graph G to be a partition A = {A1, . . . , Ak} of V (G) into
k disjoint subsets. We say that A is (αin, αout)-strong, for some αin, αout ≥ 0, if for all
i ∈ {1, . . . , k}, we have

φin(Ai) ≥ αin and φout(Ai) ≤ αout.

Thus a high quality partition is one where αin is large and αout is small.

Our contribution. We present a simple spectral algorithm which computes a partition prov-
ably close to any (αin, αout)-strong k-partition if there is large gap between αin and αout (see
Theorem 2.1 for formal statement). We emphasize the fact that the algorithm’s output
approximates any good existing clustering in the input graph. The algorithm consists of a
simple greedy clustering procedure performed on the embedding into R

k induced by the first
k eigenvectors. We further show how to implement this algorithm in near-linear time for any
fixed k and error guarantee (see Theorem 5.2).
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In the analysis of our algorithm, we show some interesting spectral properties of graphs
that admit strong k-partitions: each of the (rescaled) first k eigenvectors of the Laplacian
matrix of the graph is close to some vector that is constant on each cluster; the image of
each cluster concentrates around some point in the spectral embedding, and all these points
are well separated.

Related work. The discrete version of Cheeger’s inequality asserts that a graph admits a
bipartition into two sets of small external conductance if and only if the second eigenvalue
is small [2, 3, 9, 19, 24]. In fact, such a bipartition can be efficiently computed via a simple
algorithm that examines the second eigenvector. Generalizations of Cheeger’s inequality have
been obtained by Lee, Oveis Gharan, and Trevisan [17], and Louis et al. [18]. They showed
that spectral algorithms can be used to find k disjoint subsets, each with small external
conductance, provided that the k-th eigenvalue is small. An improved version of Cheeger’s
inequality has been obtained by Kwok et al. [16] for graphs with large k-th eigenvalue.

Even though the clusters given by the above spectral partitioning methods have small
external conductance, they are not guaranteed to have large internal conductance. In other
words, for a resulting cluster C, the induced graph G[C] might admit further partitioning
into sub-clusters of small conductance. Kannan, Vempala and Vetta proposed quantifying
the quality of a partition by measuring the internal conductance of clusters [14]. Allen
Zhu, Lattanzi and Mirrokni [1] and Orecchia and Allen Zhu [21] studied local algorithms for
extracting subsets with small external conductance under the assumption that subsets with
small external conductance and high (internal) connectivity exist.

One may wonder under what conditions a graph admits a partition which provides guar-
antees on both internal and external conductance. Oveis Gharan and Trevisan, improving
on a result of Tanaka [30], showed that graphs which have a sufficiently large spectral gap
between the k-th and (k + 1)-st eigenvalues (denoted as λk and λk+1, respectively) of its
Laplacian admit a strong k-partition [13] (see Theorem 2.2). Czumaj et al. [11] recently
proposed a sublinear algorithm for testing if a graph with bounded maximum degree has an
(αin, αout)-strong partition in the framework of property testing, assuming there is some gap
between αin, αout.

Follow-up work. Subsequent to the original ArXiv submission [12] of this paper, Peng, Sun,
and Zanetti [23], Awasthi et al. [6] and Sinop [25] have derived spectral algorithms with
weaker assumption on the gap between αin and αout (or some related gap, e.g., λk+1 and
αout) to cluster the vertices of the graph. The clustering algorithm analyzed in this paper
remains distinct from this body of work. For example, in [23] the authors applied k-means
clustering to the spectral embedding by the first k eigenvectors; and show that the resulting
algorithm is able to find k sets each of which is close to one cluster of a strong k-partition
and has bounded small external conductance, under the assumption that λk+1/αout = Ω(k3).
(In contrast, our assumption is α2

in
/λk = Ω(k3d3

max
) for graphs with maximum degree at

most dmax; see Theorem 2.1.) Their error guarantee ultimately depends on the approxima-
tion factor afforded by a k-means algorithm. Unfortunately, k-means is very sensitive to
the initial choice of k centers and it is NP-hard to approximate to within some constant
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factor [5]. They also gave a heat-kernel based algorithm that runs in near-linear time, which
seems to be unappealing for implementation. In [6], the authors proposed an algorithm
that iteratively applies the k-means clustering on the resistive embedding projected onto
the first k eigenvectors, and outputs a k-partition such that each part is close to one set
in a target partition, under the assumption that the ratio between the algebraic expansion
of the clusters and αout is Ω(k). Sinop [25] gave another spectral algorithm assuming that
λk+1/αout = Ω(1). In each case, [6, 23, 25] use either a different measure of the difference
of the output partition and the target partition, or a different definition of conductance (see
our remark below Theorem 2.1).

Outline. Section 2 contains a description of the greedy k-clustering algorithm and the state-
ment of our main theorem. In Section 3 we show a spectral concentration property for
any graph that admits a high quality partition. Building on this property, we argue that
the image of each cluster concentrates around some point in the spectral embedding and
these points are well separated. The complete proof of the main theorem is then given in
Section 4. In Section 5, we give a randomized version of the algorithm which runs in time
Õ(mk+ε−1k3n) for any error parameter ε > 0. Finally, we present some experimental results
in Appendix C.

2. Greedy k-Clustering

Let G be an undirected unweighted graph with n vertices, and let LG = I−D−1/2AD−1/2

be its normalized Laplacian, whereA is the adjacency matrix of G andD is a diagonal matrix
with the entries D(v, v) equal to the degree of vertex v. Let 0 = λ1 ≤ λ2 ≤ . . . ≤ λn be
the eigenvalues of LG, and v1,v2 . . . ,vn ∈ R

n a corresponding collection of orthonormal left

eigenvectors1. Note that by the variational characterization of eigenvalues,
viLGvT

i

viv
T
i

= λi for

1 ≤ i ≤ n (see [10]).
In this paper we consider a simple geometric clustering operation on the embedding F(u)

which carries a vertex u to a point given by a rescaling of the first k eigenvectors of LG,

F(u) = deg(u)−1/2 (v1(u), . . . ,vk(u)) . (1)

For any U ⊆ V (G), let F(U) denote all the embedded points corresponding to vertices in U ,
that is, F(U) = {F(u) : u ∈ U}. For any set B ⊆ R

k, let F−1(B) := {v ∈ V (G) : F(v) ∈ B}.
For any point x ∈ R

k and real number R ≥ 0, let ball(x, R) := {y : ‖y − x‖2 ≤ R}.

Intuitive description. The algorithm takes as input a graph G, and a desired number of
clusters, k. The algorithm uses the bottom k eigenvectors v1, . . . ,vk of LG to compute the
embedding F = F(V (G)) of G into R

k. Next, it begins an iterative process of searching
for regions of the embedding containing many points from F , and removing them to form
clusters. To do so, it first computes a distance threshold R = R(k,G) = R(k, n, dmax),

1We will use x to denote a row vector and x
T to denote a column vector.
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1. Let v1, . . . ,vk be the k first eigenvectors of LG.

2. Let F : V (G) → R
k, where F(u) = deg(u)−1/2 (v1(u), . . . ,vk(u)).

3. R = 1
36kdmax

√
n

4. V0 = V (G)

5. for i = 1, . . . , k

6. ui = argmaxu∈Vi−1
|ball(F(u), 2R) ∩ F(Vi−1)|

= argmaxu∈Vi−1
|{w ∈ Vi−1 : ‖F(u)− F(w)‖2 ≤ 2R}|

7. Pi = F−1(ball(F(ui), 2R)) ∩ Vi−1

8. Vi = Vi−1 \ Pi

9. Let g : Vk → {u1, · · · , uk}, g(v) = ui if i is the smallest index
satisfying ‖F(v)− F(ui)‖ ≤ ‖F(v)− F(uj)‖ for all j 6= i.

10. Return {C1, . . . , Ck} = {P1 ∪ g−1(u1), . . . , Pk ∪ g−1(uk)}

Figure 1: The greedy spectral k-clustering algorithm takes an n-vertex graph G with maximum degree at
most dmax as input, and outputs a partition C = {C1, . . . , Ck} of V (G).

where n = |V (G)| and dmax represent an upper bound of the maximum degree. Using this
threshold, the algorithm looks for a point p ∈ F such that the number of near-by points of F
(points of F which fall within a radius of 2R of p) is maximized. The vertices corresponding
to these points (including p) are made into a cluster, and p is remembered as the location
of the cluster in the embedding. Next, p and its near-by points are removed from F . This
iterative process continues either for k iterations, or until there are no points of F left in
the embedding. Afterward, any remaining points of F are thought of as “outliers”, and each
has its corresponding vertex assigned to a nearest cluster.

A more formal description of the algorithm appears in Figure 1. In Section 5, we show
how the algorithm can be implemented in time Õ(mk + ε−1k3n) for any error parameter
ε > 0, where m denotes the number of edges of the graph and Õ(·) hides polylog n factors.

To measure the performance of our algorithm, we introduce the following notion of sym-
metric difference between two collections, each of k sets, that generalizes the symmetric
difference between two sets.

A distance on k-partitions. For two sets Y, Z, their symmetric difference is given by Y △Z =
(Y \Z)∪ (Z \Y ). Let X be a finite set, k ≥ 1, and let A = {A1, . . . , Ak}, A′ = {A′

1, . . . , A
′
k}

be collections of disjoint subsets of X. Then, we define a distance function between A, A′,
by

|A△A′| = min
σ

k∑

i=1

∣∣Ai△A′
σ(i)

∣∣ ,

where σ ranges over all permutations σ on {1, . . . , k}.
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2.1. Main Theorem

Theorem 2.1 (Spectral partitioning via greedy k-clustering). Let G be an n-vertex graph
with maximum degree at most dmax. Let k ≥ 1, and let A = {A1, . . . , Ak} be any (αin, αout)-
strong k-partition of V (G) with αin > 10(kdmax)

3/2 ·
√
λk. Then, on input G, the algorithm

in Figure 1 outputs a partition C such that

|A△C| = O

(
λk · d3max

k5 · n
α2
in

)
.

Due to the dependency on dmax, the above result is mainly interesting for bounded degree
graphs. We remark that even for some special classes of bounded degree graphs, analyzing
the performance of spectral clustering algorithms is already interesting and challenging. For
example, in their seminal work Spielman and Teng gave the first rigorous analysis of the
performance of spectral clustering methods which use the second eigenvector of the matrix
D − A on bounded degree planar graphs and finite element meshes [28]. This result was
further generalized to graphs with bounded degree and bounded genus by Kelner [15] and
excluded-minor graphs by Biswal, Lee and Rao [8]. Our result holds for arbitrary bounded
degree graphs that admit a good quality k-partition and demonstrates the effectiveness of the
spectral clustering algorithms that use only the first k eigenvectors (cf. Alpert and Yao [4]).

We further remark that while αout does not appear explicitly in the error term in Theo-
rem 2.1, it does implicitly bound the error through a higher order Cheeger inequality [17].
In particular, λk ≤ 2αout and thus when αout/α

2
in
is small there is strong agreement between

A and C. In addition, the dependency on the upper bound dmax of maximum vertex degree
seems unavoidable since we are measuring the size of the symmetric difference A△C rather
than its volume or total degree. (Note that the definition of conductance is volume-based,
while the error is measured with respect to the size of clusters. Such an inconsistency seems
to cause the dependency on dmax.) In contrast, the latter measurement was used in [23],
which allows the authors to derive an error term that is independent of the maximum de-
gree. On the other hand, such a dependency also does not appear in [6] and [25], as the

authors are studying the size-based definition of conductance (i.e., φout(S;G) := |E(S,V (G)\S)|
|S| )

instead of the volume-based definition as in our paper. We also note that the algorithms in
some follow-up work (e.g., [6, 23]) can output some partition with an approximate guarantee
for individual clusters, while our algorithm can only have approximate guarantee over the
all k clusters.

Application of main theorem. Oveis Gharan and Trevisan [13] (see also [30]) showed that, if
the gap between λk and λk+1 is large enough, then there exists a partition into k clusters,
each having small external conductance and large internal conductance.

Theorem 2.2 ([13]). There exist universal constants c > 0, α > 0, and β > 0, such that for
any graph G with λk+1 > ck2

√
λk, there is a (α · λk+1/k, β · k3

√
λk)-strong k-partition of G.

The same paper [13] also shows how to compute a partition with slightly worse quanti-
tative guarantees, using an iterative combinatorial algorithm with polynomial running time.
More specifically, they have shown the following theorem.
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Theorem 2.3 ([13]). There is a polynomial time algorithm that takes as input a graph G
with λk+1 > 0 for any k ≥ 1, outputs an ℓ-partition that is (Ω(λ2

k+1/k
4), O(k6

√
λk))-strong,

for some 1 ≤ ℓ < k + 1.

Let τ be a number satisfying τ ≥ τ0 := max{c, 10 · α−1 ·
√
kd

3/2
max}, where α, c are the

constants given in Theorem 2.2. Let G be a graph with λk+1 > τk2
√
λk. By applying

Theorem 2.1 on G with parameters αin = α ·λk+1/k, which satisfies that αin > 10(kdmax)
3/2 ·√

λk, we obtain the following corollary.

Corollary 2.4. Let k ≥ 1. Let G be an n-vertex graph with maximum degree at most dmax,
and λk+1 > τk2

√
λk, where τ ≥ τ0 and τ0 is defined as above. Let A be the (α · λk+1/k, β ·

k3
√
λk)-strong partition of G guaranteed by Theorem 2.2. Then, on input G, the algorithm

in Figure 1 outputs a partition C such that

|A△C| = O

(
d3
max

k3n

τ 2

)
.

In comparison with the algorithm from Theorem 2.3 that finds a partition that is a
(Ω(λ2

k+1/k
4), O(k6

√
λk))-strong partition, our algorithm finds a partition that is close to

some (Ω(λk/k), O(k3
√
λk))-strong partition. It is not clear how to find in polynomial time

a partition (without error) that is (Ω(λk/k), O(k3
√
λk))-strong.

3. Spectral Concentration

In this section, we prove that for any graph with some strong k-partition and any eigen-
vector vi (1 ≤ i ≤ k), the rescaled vector xi := viD

−1/2 is close (with respect to the ℓ2 norm)
to some vector x̃i that is constant on each cluster. We slightly abuse the notation by also
using F to denote the n × k matrix that corresponds to our spectral embedding (i.e., with
row vectors F(u), for all u ∈ V ). It is useful to note that F = [xT

1 , · · · ,xT
k ].

Lemma 3.1. Let G be a graph with maximum degree at most dmax. Let v1, . . . ,vk ∈ R
k

denote the first k eigenvectors of LG. For αin > 0, let A = {A1, . . . , Ak} be any (αin, αout)-
strong k-partition of V (G). For any i ∈ {1, . . . , k}, if xi = viD

−1/2, then there exists
x̃i ∈ R

n, such that,

(i) ‖xi − x̃i‖22 ≤ 2kλk·dmax

α2
in

, and

(ii) x̃i is constant on the clusters of A, i.e. for any A ∈ A, u, v ∈ A, we have x̃i(u) = x̃i(v).

Before laying out the proof, we provide some explanation of the statement of the theorem.
First, note that the ℓ22-distance between xi and its uniform approximation x̃i depends linearly
on the ratio λk/α

2
in
, which, as noted above, is bounded from above by 2αout/α

2
in
. Second,

the partition-wise uniform vector x̃i which minimizes the left hand side of (i) is constructed
by taking the mean values of xi on each partition. This, together with the bound in (i),
means that xi assumes values in each partition close to their mean. In summary, if there is
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a sufficiently large gap between the external conductance αout and internal conductance αin

of the clusters, the values taken by each vector xi have k prominent modes over k partitions.
We need the following result that is a slight restatement of a lemma in [11] to prove

Lemma 3.1. (For completeness, a proof of Lemma 3.2 is included in Appendix A.)

Lemma 3.2. Let G = (V,E) be any undirected graph and let C ⊆ V be any subset with
φ(G[C]) ≥ φin > 0. Then for every i, 1 ≤ i ≤ k, xi = viD

−1/2, the following holds:

∑

u,v∈C
(xi(u)− xi(v))

2 ≤ 4λk · vol(C)

φ2
in

.

We remark that in the above Lemma, there is a linear dependency on vol(C), which
directly causes our result and the following analysis to depend on dmax. Now we are ready
to prove Lemma 3.1.

Proof of Lemma 3.1. Let 1 ≤ i ≤ k, and 1 ≤ j ≤ k. By precondition of the lemma, A is an
(αin, αout)-strong k-partition. Now we apply C = Aj and φin = αin in Lemma 3.2 to get

∑

u,v∈Aj

(xi(u)− xi(v))
2 ≤ 4λk · vol(Aj)

α2
in

≤ 4λk · dmax · |Aj|
α2
in

,

where the second inequality follows from our assumption that the maximum degree is dmax.

Let x̃i(u) =

∑
v∈Aj

x(v)

|Aj | if u ∈ Aj. Note that x̃i is constant on each cluster. On the other

hand, by the definition of x̃i, we have

1

|Aj|
∑

u,v∈Aj

(xi(u)− xi(v))
2 = 2

∑

u∈Aj

(xi(u)− x̃i(u))
2.

Therefore,

‖xi − x̃i‖22 =
k∑

j=1

∑

u∈Aj

(xi(u)− x̃i(u))
2 =

1

2

k∑

j=1

1

|Aj|
∑

u,v∈Aj

(xi(u)− xi(v))
2

≤ 2kλk · dmax

α2
in

.

This completes the proof of the lemma.

4. From Spectral Concentration to Spectral Clustering

In this section we prove Theorem 2.1. We begin by showing that if there exists strong
k-partition with high quality in the graph G, then in the spectral embedding defined by
F(u) = deg(u)−1/2(v1(u), . . . ,vk(u)) for any u ∈ V , one can find k well-separated center
points in R

k such that the balls (of some appropriately chosen radius) centered at these
center points are disjoint and the collection of these balls is close to any strong k-partition.
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Lemma 4.1. Let G be an n-vertex graph of maximum degree at most dmax. Let A =
{A1, . . . , Ak} be any (αin, αout)-strong k-partition of V (G) with αin > 10(kdmax)

3/2 ·
√
λk.

Let F : V (G) → R
k be the spectral embedding of G given by (1). Let R = 1

36kdmax

√
n
. Then

there exists k points p1, . . . ,pk ∈ R
k and a family, A′, of k subsets of V (G), given by

A′
i = {u ∈ V : ‖F(u) − pi‖2 ≤ R} for 1 ≤ i ≤ k, such that the following conditions are

satisfied:

(i) For 1 ≤ i < j ≤ k, ‖pi − pj‖2 > 6R.

(ii) The elements of A′ are pairwise disjoint.

(iii) |A△A′| = O
(

λk·d3maxk
4·n

α2
in

)
.

To prove Lemma 4.1, we first give some definitions and introduce some useful tools. For
any symmetric matrix X, let ηi(X) denote the ith largest eigenvalue of X. For any (not
necessarily square) matrix Y, let Yrow(i) denote the ith row vector of Y. We will make use
of the following pair of facts which are proved in Appendix B:

Fact 4.2. For any two p × p symmetric matrices X,Y, if maxi≤p‖Xrow(i) −Yrow(i)‖2 ≤ δ,
then for any i ≤ p, |ηi(X)− ηi(Y)| ≤ √

p · δ.

Fact 4.3. For any two p× q matrices X,Y, if maxi≤p‖Xrow(i)‖2 ≤ γ, and maxi≤p‖Xrow(i) −
Yrow(i)‖2 ≤ δ, then maxi≤p‖(X ·XT )row(i) − (Y ·YT )row(i)‖2 ≤

√
p(δ2 + 2γδ).

Now we prove Lemma 4.1.

Proof of Lemma 4.1. Recall that for any i, 1 ≤ i ≤ k, xi = viD
−1/2 and x̃i denotes the

vector that x̃i(u) =
1

|Aj |
∑

v∈Aj
xi(v) if u ∈ Aj. Now for each 1 ≤ j ≤ k, define

pj := (x̃1(u), · · · , x̃k(u)), for any u ∈ Aj.

Further recall that F ∈ R
n×k is the matrix corresponding to our spectral embedding and

that F = [xT
1 , · · · ,xT

k ]. Let P := [x̃T
1 , · · · , x̃T

k ]. Note that for any u ∈ Aj, the row vector
corresponding to u of P is pj. Let ζ = 2kλk·dmax

α2
in

. We have the following claim about the

eigenvalues of matrix PT ·P.

Claim 4.4. All eigenvalues of PT ·P are at least 1
dmax

− k(ζ + 2
√
ζ).

Proof. Let T be the n× k matrix with ith column vT
i , for each i ≤ k. Thus, F = D−1/2T.

Now we note that all the eigenvalues of FT ·F are at least 1/dmax. This is true since for any
y ∈ R

k,

y(FT · F)yT = ‖yFT‖22 = ‖yTTD−1/2‖22 ≥ ‖yTT‖22/dmax = y · yT/dmax,

where the second to last inequality follows from the fact that ‖zM‖22 ≥ (mini Mi,i)
2‖z‖22

for any vector z ∈ R
n and diagonal matrix M ∈ R

n×n, which is true since ‖zM‖22 =

9



∑
i(ziMi,i)

2 ≥ (mini Mi,i)
2
∑

i(zi)
2 = (mini Mi,i)

2‖z‖22; and the last equation follows from
the observation that TT ·T = Ik×k.

Now note that for each i ≤ k, since xi = viD
−1/2, and ‖vi‖2 = 1, it holds that ‖xi‖2 ≤ 1.

On the other hand, by Lemma 3.1, it holds that

‖FT
row(i) −PT

row(i)‖2 = ‖xi − x̃i‖2 ≤
√

ζ.

By Fact 4.3, we have that maxi≤p‖(FT ·F)row(i)−(PT ·P)row(i)‖2 ≤
√
k(ζ+2

√
ζ). Then by

Fact 4.2, for each i ≤ k, |ηi(FT ·F)−ηi(P
T ·P)| ≤ k(ζ+2

√
ζ). Since all the eigenvalues of FT ·F

are at least 1
dmax

, it follows that that all eigenvalues of PT ·P are at least 1
dmax

−k(ζ+2
√
ζ).

On the other hand, we prove in the following claim that if there exists two vectors pi0 ,pj0

that are close, then PT ·P has at least one small eigenvalue.

Claim 4.5. If there exists i0, j0 ≤ k such that ‖pi0 − pj0‖2 ≤ 6R, then PT · P has an
eigenvalue at most k(36R2n+ 12R

√
n).

Proof. Let Q denote the n × k matrix obtained from P by replacing each row vector that
equals pi0 by vector pj0 . Note that QT ·Q is singular, and thus has eigenvalue 0.

Now note that maxi≤k‖PT
row(i)−QT

row(i)‖2 ≤ 6R
√
n since the absolute value of each entry

in P−Q is at most 6R, and also note that for any i ≤ k,

‖PT
row(i)‖2 =

√√√√
k∑

j=1

|Aj|
(∑

u∈Aj
xi(u)

|Aj|

)2

≤

√√√√
k∑

j=1

|Aj|
∑

u∈Aj
x2
i (u)

|Aj|
= ‖xi‖2 ≤ 1.

Then by Fact 4.3, maxi≤k‖(PT ·P)row(i)−(QT ·Q)row(i)‖2 ≤
√
k (36R2n+ 2 · 6R√

n). Now
by Fact 4.2 and the fact that QT ·Q has eigenvalue 0, we know that at least one eigenvalue
of PT ·P is at most k (36R2n+ 12R

√
n).

Now we prove Item (i) of the lemma. By the assumption αin > 10(kdmax)
3/2

√
λk, it holds

that ζ = 2kλk·dmax

α2
in

< 1
50k2d2max

, which implies that 1
dmax

− k(ζ + 2
√
ζ) > 1

2dmax
. On the other

hand, since R = 1
36kdmax

√
n
, we have that k(36R2n+12R

√
n) ≤ 1

2dmax
. Therefore, by Claim 4.4

and Claim 4.5, we have reached a contradiction regarding the minimum eigenvalue of PT ·P.
This implies Item (i) of the lemma, that is, for all 1 ≤ i < j ≤ k, ‖pi − pj‖2 > 6R. Now
for each 1 ≤ j ≤ k, define A′

j := {u ∈ V : ‖F(u) − pj‖2 ≤ R} as required by Item (ii). Let
A′ = {A′

1, . . . , A
′
k}. By Item (i) A′

1, · · · , A′
k are disjoint, proving Item (ii).

Finally, we prove Item (iii) of the lemma. By Lemma 3.1,

k∑

i=1

‖xi − x̃i‖22 ≤ k · ζ.

10



On the other hand, if we let Abad = {u : u ∈ Aj, ‖F(u)− pj‖ > R, 1 ≤ j ≤ k}2, then
k∑

i=1

‖xi − x̃i‖22 =
k∑

j=1

∑

u∈Aj

k∑

i=1

(xi(u)− x̃i(u))
2 =

k∑

j=1

∑

u∈Aj

‖F(u)− pj‖22

≥
∑

u∈Abad

R2 = |Abad| ·R2.

Therefore, |Abad| ≤ kζ
R2 ≤ 2592·λk·d3maxk

4·n
α2
in

.

Now we observe that

|A△A′| ≤
k∑

j=1

|Aj △A′
j| =

k∑

j=1

(|Aj \ A′
j|+ |A′

j \ Aj|) ≤ |Abad|+
k∑

j=1

|A′
j \ Aj|.

Note that for any u ∈ A′
j \Aj, it holds that u ∈ Ai for some i 6= j. Since u ∈ A′

j, it holds
that ‖F(u) − pj‖2 ≤ R, which implies that ‖F(u) − pi‖2 ≥ ‖pj − pi‖2 − ‖F(u) − pj‖2 >
6R−R = 5R. This further implies that u ∈ Abad. Since all A

′
1, · · · , A′

k are disjoint, we have

that
∑k

j=1 |A′
j \ Aj| ≤ |Abad|.

Thus, it holds that
|A△A′| ≤ 2|Abad|,

which proves the Item (iii) of the lemma.

We are now ready to prove our main theorem.

Proof of Theorem 2.1. Let A = {A1, . . . , Ak}, A′ = {A′
1, . . . , A

′
k}, R, and p1, . . . ,pk be as

in Lemma 4.1. Let ε = |A△A′|/n = O(λk·d3maxk
4

α2
in

). Let C = {C1, . . . , Ck} be the ordered

collection of pairwise disjoint subsets of V (G) output by the greedy spectral k-clustering
algorithm in Figure 1. Let P = {P1, . . . , Pk} where Pi is the subset, called group, found by
the algorithm at the ith iteration for 1 ≤ i ≤ k. The set of vertices not covered by any of the

clusters in A′ plays a special role in our argument which we denote as B = V (G)\
(⋃k

i=1 A
′
i

)
.

Clearly, |B| ≤ |A△A′| ≤ εn.
We say that a cluster A′

i is touched if the algorithm, while computing the centers, considers
a group Pj ∈ P with Pj ∩ A′

i 6= ∅. For a cluster A′
i, let Pρ(i) be the group in P that touches

A′
i for the first time in the algorithm if it is touched at all. Let I ⊆ {1, . . . , k} be the support

of ρ, that is, ρ(i) exists if and only if i ∈ I. Let i∗ = |I|. By permuting the indices of the
clusters in A′, we may assume w.l.o.g. that I = {1, . . . , i∗}.

First we observe that ρ is a bijection on I. This is because the group Pρ(i), i ∈ I, can
intersect at most one cluster in A′. The reason is that every cluster in A′ is contained inside
some ball of radius R, the distance between any two centers of such balls is more than 6R,
and each Pρ(i) is contained inside some ball of radius 2R.

In case i ∈ I, we have |Pρ(i) \A′
i| ≤ |B ∩Pρ(i)|. This is because Pρ(i) cannot intersect any

other cluster in A′ but B. On the other hand, it holds that |A′
i \Pρ(i)| ≤ εn, since otherwise

11



the algorithm could have made a better choice by taking the entire A′
i while computing Pρ(i).

Such a choice can be made by taking Pρ(i) to be all the yet unclustered points that are inside
a ball of radius 2R centered at any point in A′

i; since A′
i is in a ball of radius R, it follows

by the triangle inequality that A′
i will be contained inside Pρ(i). Therefore, for every i ≤ i∗,

|A′
i △Pρ(i)| = |Pρ(i) \ A′

i|+ |A′
i \ Pρ(i)| ≤ |B ∩ Pρ(i)|+ εn.

In the other case when i 6∈ I, we claim that the cluster A′
i can have at most 2εn vertices.

Suppose not. Since ρ is a bijection on I and I is a proper subset of {1, · · · , k}, there is a
group Pj with j 6∈ ρ(I), which does not intersect any cluster in A′ for the first time. Then,
it has the only option of intersecting a cluster in A′ beyond the first time and/or intersect
B. Since |A′

i \ Pρ(i)| ≤ εn for all i ∈ I, Pj can have at most εn + |B| ≤ 2εn vertices. But,
the algorithm could have made a better choice by selecting A′

i while computing Pj because
|A′

i| > 2εn by our assumption. We reach a contradiction.
Let T = {1, · · · , k} \ {ρ(1), · · · , ρ(i∗)} be the set of indices j such that Pj does not

intersect any cluster in A′ for the first time. For any j ∈ T , Pj can only intersect set
B and/or set Ai \ Pρ(i) for some i such that ρ(i) < j. This then gives that | ∪j∈T Pj| ≤∑

j∈T |B ∩ Pj|+
∑

i≤i∗ |A′
i \ Pρ(i)|.

Using the bijectivity of ρ on the set {1, . . . , i∗}, we have

|A′ △P| ≤
∑

i≤i∗

|A′
i △Pρ(i)|+ |∪j∈TPj|+ |∪i>i∗A

′
i|

≤ kεn+
∑

i≤i∗

∣∣B ∩ Pρ(i)

∣∣+
∑

j∈T
|B ∩ Pj|+ kεn+ |∪i>i∗A

′
i|

≤ 2kεn+ |B|+ 2kεn ≤ 5kεn.

Now since the vertices in Vk = V (G)\∪i≤kPi are distributed to the clusters in P to create
the output clusters C, we have that |A′ △C| ≤ |A′ △P| + |Vk|. Observe that by the above
analysis,

|Vk| ≤ |B|+
∑

i≤i∗

|A′
i \ Pρ(i)|+ | ∪i>i∗ A

′
i| ≤ εn+ kεn+ 2kεn ≤ 4kεn.

It follows that |A′ △C| ≤ 9kεn. The following concludes the proof:

|A△C| ≤ |A△A′|+ |A′ △C| < εn+ |A′ △C| ≤ 10kεn = O

(
λk · d3max

k5 · n
α2
in

)
.

5. Implementation in Practice

In this section, we show how to efficiently implement the greedy algorithm in Figure 1.
To this end, we discuss how to quickly compute the first k eigenvectors and how to speed up
the step of finding centers by random sampling.

12



5.1. Eigenvectors Computation

In general, the eigenvectors cannot be computed exactly in polynomial time as the entries
may be irrational. However, in our application it is sufficient to have a set of vectors that
well approximate the eigenvectors. To see this, we note that only the orthonormal property

of eigenvectors v1, · · · ,vk and the fact that for 1 ≤ i ≤ k,
viLGvT

i

vi·vT
i

≤ λi are needed for all our

previous results and analysis. Therefore, if we have a set of k orthonormal vectors v′
1, · · · ,v′

k

with v′
iLGv′T

i

v′
i·v′T

i

≤ 2λi for 1 ≤ i ≤ k, then our previous results still hold if we replace λk by

2λk. On the other hand, such set of k orthonormal vectors can be computed efficiently as
shown in the following folklore lemma, the proof of which follows from a repeated application
of the near-linear time algorithm for computing the second eigenvector given by Spielman
and Teng [29] and the variational characterization of eigenvalues (see e.g., Corollary 7.6.4 in
[22]).

Lemma 5.1 (folklore). There exists a procedure, ApproxEigen, that takes an n-vertex,
m-edge graph G, and an integer k ≤ n, and returns k orthonormal vectors v′

1, · · · ,v′
k ∈ R

n

such that v′
iLGv′T

i

v′
i·v′T

i

≤ 2λi, for 1 ≤ i ≤ k. The running time of the procedure is Õ((m+ n)k).

5.2. A Faster Algorithm

To further speed up the running time, we note that in each iteration i such that 1 ≤ i ≤ k,
the greedy algorithm in Figure 1 has to consider all vertices in Vi−1 to determine the best
center. This may cause the total time in these iterations to be as large as Ω(kn2), which is
slow in practice since n can be much larger than k. We show how to speed up this step via
random sampling. The main observation is that we can get good center candidates by only
computing the number of near-by vertices in the embedding, for vertices from a randomly
chosen subset Ui of Vi, of size about Θ(ǫ−1k log n), for any error parameter ǫ. This will
reduce the computation time for finding the best centers from Θ(n2k2) to O(ǫ−1nk3 log n).
The procedure is summarized in Figure 2. The performance of the algorithm is given in the
following theorem (that is similar to Theorem 2.1).

Theorem 5.2. Let ε > 0. Let G be an n-vertex m-edge graph with maximum degree at most
dmax. Let k ≥ 1, and let A = {A1, . . . , Ak} be any (αin, αout)-strong k-partition of V (G) with

αin > max{10(kdmax)
3/2, c

√
k5d3

max
} ·
√

2λk

ε
for some sufficiently large constant c. Then, on

input G, with high probability, the algorithm in Figure 2 outputs a partition C such that

|A△C| ≤ εn.

Furthermore, the running time of the algorithm is Õ(mk + ε−1k3n).

Proof sketch. Note that αin > 10(kdmax)
3/2 ·

√
2λk, and that by Lemma 5.1 the vectors

v′
1, · · · ,v′

k returned by ApproxEigen are orthonormal and satisfy v′
iLGv′T

i

v′
i·v′T

i

≤ 2λi, for

1 ≤ i ≤ k. Thus, we can apply the argument of the proof of Lemma 4.1 on vectors
v′

1, · · · ,v′
k to find a collection A′ = {A′

1, . . . , A
′
k} of pairwise disjoint subsets of V (G), such

13



1. Let v′
1, . . . ,v

′
k be the returned vectors of the procedure ApproxEigen(G, k).

2. Let F : V (G) → R
k, where F(u) = deg(u)−1/2 (v′

1(u), . . . ,v
′
k(u)).

3. R = 1
36kdmax

√
n

4. V0 = V (G)

5. for i = 1, . . . , k

6. Sample uniformly with repetition a subset Ui−1 ⊆ Vi−1, |Ui−1| = Θ(ε−1k log n).

7. ui = argmaxu∈Ui−1
|ball(F(u), 2R) ∩ F(Vi−1)|

= argmaxu∈Ui−1
|{w ∈ Vi−1 : ‖F(u)− F(w)‖2 ≤ 2R}|

8. Pi = F−1(ball(F(ui), 2R)) ∩ Vi−1

9. Vi = Vi−1 \ Pi

10. Let g : Vk → {u1, · · · , uk}, g(v) = ui where i is the smallest index
satisfying ‖F(v)− F(ui)‖ ≤ ‖F(v)− F(uj)‖ for all j 6= i.

11. Return {C1, . . . , Ck} = {P1 ∪ g−1(u1), . . . , Pk ∪ g−1(uk)}

Figure 2: The fast spectral k-clustering algorithm takes an n-vertex graph G with maximum degree at most
dmax, and an ε > 0 as input, and returns a partition C = {C1, . . . , Ck} of V (G).

that |A△A′|/n ≤ O(λk·d3maxk
4

α2
in

). Since c is sufficiently large and αin ≥ c
√

k5d3
max

·
√

2λk

ε
, we

can guarantee that |A△A′|/n ≤ ε
10k

. Let ε′ = ε
10k

. Similar to the proof of Theorem 2.1, we
define a function ρ : {1, . . . , k} → {1, . . . , k} that maps clusters in A′ to clusters in C, where
C = {C1, . . . , Ck} are the ordered collection of pairwise disjoint subsets of V (G) output by
the greedy spectral k-clustering algorithm in Figure 2. Now note that for any i ≤ k, a
vertex from a cluster A′

i of size at least 2ε′n will be sampled out with probability at least
1− 1

n2 . This implies that with high probability the following holds: for each i ∈ {1, . . . , k},
if |A′

i| ≥ 2ε′n, then ρ(i) exists, since the vertices in the set Ui−1 of the ith iteration of the
algorithm are sampled uniformly at random. The rest of the argument for the correctness
of the algorithm is identical to the proof of Theorem 2.1, and eventually, we can guarantee
that |A△C| ≤ 10kε′n = εn.

For the running time of the algorithm, note that by Lemma 5.1, the procedure Approx-
Eigen takes time Õ((m+ n)k). In each iteration, we need to sample O(ε−1k log n) vertices,
and for each sampled vertex we need to determine the number of near-by vertices in the em-
bedding, which takes O(nk) time, as each vertex corresponds to a point in R

k. This means
that the computation in all the k iterations takes time O(ε−1nk3 log n). Therefore, the total
running time of the algorithm is thus Õ((m+n)k)+O(ε−1nk3 log n) = Õ(mk+ε−1nk3).

In practice it is common to work with fixed k. We note that the fast randomized al-
gorithm runs in near-linear time for k = O(polylog(n)), provided that the user specifies
ε = Ω(1/ polylog(n)).
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6. Conclusion

In this paper we have presented a very simple spectral clustering algorithm that provably
approximates any good partition of an input graph, provided that one exists. Further,
our preliminary experimental results given in Appendix C indicate that the algorithm gives
meaningful output even when the spectral gap condition is much smaller than what our
theorems require. This provides some evidence that stronger theoretical guarantees may be
obtainable, possibly by weakening the gap condition. It is also natural to wonder how small
of a separation is necessary for good performance of the algorithm. We currently know of
no such lower bounds. We believe that these are interesting research directions.

One interesting remark is that a qualitatively similar result can be obtained for weighted
graphs by introducing the input graph’s minimum edge weight, wmin, as a lower bound for
the (now weighted) degree in Lemma 3.2 and in Claim 4.4. This results in an additional
factor of w−3

min
in the corresponding analog of Theorem 2.1, provided that R of Figure 1 is

also scaled by a factor of
√
wmin.

Unfortunately, due to the appearance of wmin in the denominator, the result of the pre-
vious paragraph is unstable under perturbation of the input graph by a low-weight edge.
This instability appears to be an artifact of the analysis. For instance we can show that
given any (αin, αout)-strong partition A, there exists a choice of R such that the resulting
clustering is stable under perturbation by a low-weight edge. Such a result essentially follows
by replacing wmin with δmin, the minimum weighted vertex degree among all induced graphs
G[A] for A ∈ A. The obstacle with turning this into an algorithm is that to obtain the
corresponding error guarantee we must scale R (as it appears in Figure 1) by a factor of√
δmin, which is not known a priori. It remains an open problem to give a similar algorithm

for weighted graphs which is stable under perturbation by a low-weight edge.
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Appendix A. Missing Proofs from Section 3

Proof of Lemma 3.2. For any i ≤ k,

viLGv
T
i

vivT
i

=
xiD

1/2LGD
1/2xT

i

xiDxT
i

=

∑
(u,v)∈E(xi(u)− xi(v))

2

∑
u∈V deg(u)x2

i (u)
= λi ≤ λk .

This further gives that

∑

(u,v)∈E
(xi(u)− xi(v))

2 ≤ λk, (A.1)
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since
∑

u∈V deg(u)x2
i (u) =

∑
u∈V v2

i (u) = 1. Let us recall a known result (see, e.g., [10, (1.5),
p. 5 and (1.14), p. 13]) that for any graph H = (VH , EH),

2

λ2(H) = volH(VH) ·min
f

{
2 ·∑(u,v)∈EH

(f(u)− f(v))2
∑

u,v∈VH
(f(u)− f(v))2 degH(u) degH(v)

}
, (A.2)

where λ2(H) denotes the second smallest eigenvalue of the normalized Laplacian of H. Let
us consider the induced subgraph H := G[C] on C. Since φ(H) ≥ φin, Cheeger’s inequality

yields λ2(H) ≥ φ2
in

2
. Therefore, if we apply this bound to inequality (A.2), then,

volH(VH) ·
2 ·∑(u,v)∈EH

(xi(u)− xi(v))
2

∑
u,v∈VH

(xi(u)− xi(v))2 degH(u) degH(v)
≥ λ2(H) ≥ φ2

in

2
.

Combining this with the fact that

∑

(u,v)∈EH

(xi(u)− xi(v))
2 ≤

∑

(u,v)∈EG

(xi(u)− xi(v))
2 ≤ λk,

where the last inequality follows from inequality (A.1), we have that

∑

u,v∈VH

(xi(u)− xi(v))
2 degH(u) degH(v) ≤

4λkvolH(VH)

φ2
in

.

Next, since φ(H) ≥ φin > 0 implies that degH(u) ≥ 1 for all u ∈ VH . Using the bound above
we obtain:

∑

u,v∈VH

(xi(u)− xi(v))
2 ≤

∑

u,v∈VH

(xi(u)− xi(v))
2 degH(u) degH(v)

≤ 4λkvolH(VH)

φ2
in

≤ 4λkvol(C)

φ2
in

.

This completes the proof of the lemma.

Appendix B. Missing Proofs from Section 4

Proof of Fact 4.2. Since maxi≤p‖Xrow(i)−Yrow(i)‖2 ≤ δ, then the Frobenius norm ‖X−Y‖F
of X−Y is at most

√
p · δ, and therefore, the induced 2-norm ‖X−Y‖2 of X−Y is at most√

p · δ. By Weyl’s inequality [31], for any i, |ηi(X) − ηi(Y)| ≤ |η1(X −Y)| ≤ ‖X −Y‖2 ≤√
p · δ.

2We remark that in [10], the summation in the denominator is over all unordered pairs of vertices, while
in our context, the summation is over all possible |VH |2 vertex pairs. Therefore, a multiplicative factor 2
appears in the numerator in Equation (A.2) compared to the form in [10, (1.5), p. 5].
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Proof of Fact 4.3. For simplicity, let Xi := Xrow(i) and Yi := Yrow(i). Note that the i, jth
entry of X ·XT and Y ·YT are 〈Xi,Xj〉 and 〈Yi,Yj〉, respectively, and that

|〈Xi,Xj〉 − 〈Yi,Yj〉| = |〈Xi,Xj〉 − 〈Yi −Xi +Xi,Yj −Xj +Xj〉|
≤ |〈Yi −Xi,Yj −Xj〉|+ |〈Yi −Xi,Xj〉|+ |〈Xi,Yj −Xj〉|
≤ ‖Yi −Xi‖2‖Yj −Xj‖2 + ‖Yi −Xi‖2‖Xj‖2 + ‖Xi‖2‖Yj −Xj‖2
≤ δ2 + 2γδ.

Therefore, maxi≤p‖(X ·XT )row(i) − (Y ·YT )row(i)‖2 ≤
√
p(δ2 + 2γδ).

Appendix C. Experimental Evaluation

Results from our greedy k-clustering implementation are shown in Figures C.3, C.4, C.6.
Cluster assignments for graphs are shown as colored nodes. In the case where the graph
comes from a triangulated surface, we have extended the coloring to a small surface patch in
the vicinity of the node. Each experiment includes a plot of the eigenvalues of the normalized
Laplacian (y-axis), by eigenvector number (x-axis). A small rectangle on each plot highlights
the corresponding spectral gap between k and k + 1.

Multiple spectral gaps. Recall that graphs which have a sufficiently large spectral gap between
the k-th and (k+1)-st eigenvalues admit a strong clustering [13]. Figure C.3 shows the result
of our algorithm on a graph with two prominent spectral gaps, k = 2 (left) and k = 5 (right).

This graph is sampled from the following generative model. Let C1, . . . , C5 be disjoint
vertex sets of equal size, depicted as circles. Every edge with both endpoints in the same
Ci appears with probability p1, every edge between C1 ∪ C2 and C3 ∪ C4 ∪ C5 appears with
probability p3, and every other edge appears with probability p2, for some p1 ≫ p2 ≫ p3.
The resulting graph admits a strong k-partition, for any k ∈ {2, 5}. This fact is reflected in
the output of our algorithm.

We remark that to achieve a sufficiently large gap at k = 5 many intra-circle edges are
necessary, which makes the resulting figures too dense. To make the plots readable, we have
displayed only a subsampling of these edges.

Comparison with k-means. In Figure C.5 we compare the greedy approach to k-means on the
spectral embedding. Our experiments build a graph on two and three-dimensional euclidean
point-cloud data by selecting a threshold value, D, and connecting any two points which
are no further than D. Additionally, any singletons are removed. A key feature of the
chosen point-cloud data is that it comes with ground truth labeling which we lift to the
corresponding graph.

3Only the largest component was used for clustering.
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Figure C.3: Clustering a graph with multiple spectral gaps. The graph has n = 500 nodes, with edges chosen
according to our model below. Clustering is performed with R = 18/(kdmax

√
n) for k = 2 and k = 5.
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Figure C.4: Visual comparison of cluster assignments between Greedy k-Center and k-means. Clustering
was performed on graphs with radius R = 18/(kdmax

√
n). The scores in the titles indicate percent correct

classification with respect to the ground truth.
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Data set n k D Greedy k-C k-means
pathbased 297 3 2 85.185 85.522
jain 373 2 3 100 100
zahn 399 6 3 65.414 71.471
aggregation 788 7 2 99.746 96.063
LSun 400 3 1 93.250 93.250
Tetra 400 4 1 100 100
Hepta 212 7 5 44.811 57.849
Chainlink 1000 2 1 80.600 83.196
EngyTime3 4082 2 0.5 96.546 96.423
TwoDiamonds 800 2 1 100 100

Figure C.5: Percentage agreement to ground truth for Greedy k-Clustering and k-means. The results
reported in the k-means column are the mean percent agreement over 100 trials where k-means was initialized
by random selection of k points in the embedding. The R parameter for Greedy k-Clustering was given by
the formula R = 18/(kdmax

√
n). The first four input graphs are based on data sets of the same name from

[26], the rest are based on similarly named point-cloud data from FCPS. [32].

Figure C.6: A k = 6 clustering performed on the 1-skeleton of triangulated mesh (n = 12500), using
R = 30/(kdmax

√
n). Here the two algorithms agree on 97.176% of the vertices.
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