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ORIGINAL ARTICLE Open Access

Individual differences in hyper-realistic
mask detection
Jet G. Sanders* and Rob Jenkins

Abstract

Hyper-realistic masks present a new challenge to security and crime prevention. We have recently shown that people’s

ability to differentiate these masks from real faces is extremely limited. Here we consider individual differences as a

means to improve mask detection. Participants categorized single images as masks or real faces in a computer-based

task. Experiment 1 revealed poor accuracy (40%) and large individual differences (5–100%) for high-realism masks

among low-realism masks and real faces. Individual differences in mask categorization accuracy remained large when

the Low-realism condition was eliminated (Experiment 2). Accuracy for mask images was not correlated with accuracy

for real face images or with prior knowledge of hyper-realistic face masks. Image analysis revealed that mask and face

stimuli were most strongly differentiated in the region below the eyes. Moreover, high-performing participants tracked

the differential information in this area, but low-performing participants did not. Like other face tasks (e.g. identification)

, hyper-realistic mask detection gives rise to large individual differences in performance. Unlike many other face tasks,

performance may be localized to a specific image cue.

Keywords: Masks, Disguise, Face perception, Face detection, Face recognition, Deception, Fraud, Passports,

Performance enhancement, Individual differences

Significance
The proliferation of Hollywood-style silicone masks has

caught the security sector unawares. These whole-face

masks allow wearers to transform their facial appearance in

seconds and are readily accepted as real faces. The implica-

tions for security and crime prevention are potentially

far-reaching, as undetected face masks undermine the con-

nection between facial appearance and personal identity.

Psychological research on face perception has discovered

large individual differences in identification ability. The

present studies similarly reveal large individual differences

in the completely novel task of hyper-realistic mask detec-

tion and identify a specific region under the eyes that may

drive accurate performance. Our findings raise the interest-

ing prospect of selecting personnel for very narrow cogni-

tive tasks. They also suggest that performance on this

particular task may be responsive to training. Either route

could improve our ability to distinguish hyper-realistic face

masks from real faces.

Background
In a number of high-profile criminal cases, offenders have

used hyper-realistic face masks (Fig. 1) to transform their

facial appearance, leading police to pursue suspects who

looked nothing like the actual offenders (e.g. different race

or age; Bernstein, 2010). In a separate incident, an airline

passenger wearing a hyper-realistic mask boarded an inter-

national flight without the deception being noticed

(Zamost, 2010). These cases suggest that, in practical set-

tings, hyper-realistic face masks can be difficult to distin-

guish from real faces. Experimental evidence bears out this

conclusion. In a series of studies (Sanders et al., 2017), we

examined incidental detection of unexpected but attended

hyper-realistic masks in both photographic and live pre-

sentations. In all of these studies, viewers accepted

hyper-realistic masks as real faces. These findings extend a

tradition of research into realism of artificial stimuli. The

Uncanny Valley phenomenon originally considered a

range of human-like stimuli from puppets to robots

(Mori, 1970; Mori, MacDorman, & Kageki, 2012). In re-

cent years, the focus has shifted somewhat to

computer-generated images (e.g. Nightingale, Wade, &

Watson, 2017), but the very success of computer graphics
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has raised awareness that on-screen images may be digit-

ally generated or enhanced. One of the interesting aspects

of hyper-realistic masks is that they also fool the eye in

the physical world (Sanders et al., 2017), where digital

image manipulation has not yet encroached.

The finding that spontaneous mask detection is unreli-

able suggests that specific measures may be required if de-

tection rates are to be improved. Here we pursue an

individual differences approach to the problem. Over the

last decade, individual differences have become an import-

ant topic in face perception research, not least because they

suggest a route to improving performance in applied set-

tings. For face identification, the range of ability is brack-

eted by two extremes. At the high end, super-recognizers

who rarely make errors (Bobak, Bennetts, Parris, Jansari, &

Bate, 2016; Robertson, Noyes, Dowsett, Jenkins, & Burton,

2016; Russell, Duchaine, & Nakayama, 2009), and at the

low end, people with developmental prosopagnosia who

rarely exceed chance performance (Behrmann & Avidan,

2005; Duchaine & Nakayama, 2005). Between these ex-

tremes, there is a spectrum of ability on standardized face

identification tests (e.g. Burton, White, & McNeill, 2010;

Duchaine & Nakayama, 2006).

These findings have led some researchers to suggest that

personnel selection could play a useful role in optimizing

occupational face recognition (White, Kemp, Jenkins,

Matheson, & Burton, 2014). For example, Metropolitan

Police super-recognizers have been found to score

unusually high on a range of face identification tests

(Robertson et al., 2016).

For mask detection, the cognitive situation is some-

what different. Here the challenge is not individuation at

the subordinate level (Rosch, Mervis, Gray, Johnson, &

Boyes-Braem, 1976), but rather categorization at the

basic level, albeit for the unusual case where one

basic category (masks) deliberately mimics the other

(faces). As the current task involves face/non-face

categorization, it arguably has more in common with

face detection than with face identification (see

Bindemann & Lewis, 2013, for a careful dissection of

these issues).

The analogy with face detection may have some broad

predictive value for the present case. Large individual differ-

ences in face detection ability have recently been reported

(Robertson, Jenkins, & Burton, 2017) and they appear to

dissociate from face identification ability. However, one im-

portant difference is that face detection hinges on the pres-

ence or absence of a face-like pattern (e.g. two eyes above a

nose above a mouth). That criterion will not help the

viewer in the current task, as hyper-realistic face masks and

real faces both present face-like patterns. Thus, the intu-

ition is that hyper-realistic mask detection will require finer

discrimination than face detection tasks demand.

As yet, very little is known about individual differences

in this finer perceptual task. For example, we do not

know the expected range of ability. Nor do we know any

factors that might differentiate high performers from

low performers. The present studies address these issues

by asking whether some people are better than others at

categorizing masks and faces, and what they may be

doing that allows them to perform well. The overarching

aim is to establish whether an individual differences ap-

proach might be as useful in hyper-realistic mask detec-

tion as it has been in face identification.

We begin in Experiment 1 by comparing detection of

low-realism and high-realism masks in the context of

real faces. In Experiment 2, we eliminated low-realism

masks to focus participants on the harder comparison

(high-realism masks vs real faces). Finally, we undertook

an image analysis to compare use of information for

high- and low-accuracy subgroups.

Experiment 1
Previous studies of hyper-realistic mask perception have

assessed spontaneous detection of masks during an or-

thogonal task (social inference ratings; Sanders et al.,

2017). Detection rates approached floor levels in that

situation, precluding individual differences analysis. In

Fig. 1 Hyper-realistic dominant male mask (right) worn by author RJ (left)
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this study, we sought to increase detection rates by: (1)

explicitly instructing participants that the task was to

distinguish masks from real faces; (2) presenting masks

and faces equally often (50% prevalence); and (3) explaining

this prevalence rate to participants. These measures were

intended to license “mask” responses, even when partici-

pants were not certain. We expected that low-realism

masks and real faces would be categorized accurately. Our

main interest was in the range of performance for

high-realism masks.

Method
Ethics statement

Ethics approval for all experiments was obtained from the

departmental ethics committee at the University of York.

Participants

Thirty members of the volunteer panel at the University

of York (21 women, 9 men; mean age = 22 years, age

range = 18–41 years) took part in exchange for a small

payment or course credit.

Stimuli and design

To collect images of high-realism masks, we entered the

search terms “realistic masks,” “hyper-realistic masks,” and

“realistic silicone masks” into Google Images. We selected

images that: (1) exceeded 150 pixels in height; (2) showed

the mask in roughly frontal aspect; (3) showed the eye

region without occlusions; and (4) included real hair

eyebrows. We used the same criteria to search the websites

of mask manufacturers (e.g. RealFlesh Masks, SPFX, CFX)

and topical forums on social media (e.g. Silicone Mask

Sickos, Silicone mask addicts). Our aim here was to sam-

ple “ambient” photos of hyper-realistic masks that repre-

sent the range of the mask images in the visual world

(Jenkins et al., 2011). For this reason, we avoided promo-

tional studio photographs of the masks and instead used

photos of the masks in situ. This search resulted in 37

hyper-realistic mask images that met the inclusion criteria.

For comparison, we collected 37 images of low-realism

masks by entering search terms such as “Halloween,”

“party,” “mask,” “masquerade,” “face-mask,” and “party

mask” in Google Images and selecting the first images

that met inclusion criteria 1–3 above.

We also collected 74 real-face images for use as fillers

in the mask/face categorization task. To ensure that the

demographic distribution among our real face images

was similar to that portrayed by the high-realism masks,

we entered the search terms “young male,” “old male,”

“young female,” and “old female” into Google Images.

We then accepted images that met criteria 1–3 until the

distribution of faces across these categories was the

same as for the high-realism mask images. All photos

were cropped to show the head region only and resized

to 540 × 385 pixels for presentation (see Fig. 2).

The final image set consisted of 148 photographs (37

high-realism masks, 37 low-realism masks, 74 real faces).

Each participant viewed the 148 images intermixed in a

different random order (within-subjects design).

Procedure

Participants were instructed that half of the images

showed real faces and half of the images showed masks.

They were also informed that mask trials would contain

both low-realism masks and high-realism masks. Each

trial consisted of a centrally presented image (a mask or

a face) together with the prompt “Is this person wearing

a mask?” and response options “Yes - Press M” and “No

– Press Z.” The display remained on screen until re-

sponse, upon which the following trial began automatic-

ally. No time limit was imposed. Participants completed

three practice trials, followed by 148 experimental trials

in a unique random order. The entire experiment took

approximately 10 min to complete.

Results and discussion
Group performance

Real face images were correctly classified on 96.3% of tri-

als and were not analyzed further. Performance on mask

trials is summarized in Fig. 3. As expected, low-realism

masks were categorized reliably (M= 98.2%, SE = 0.4, CI

= 97.6–99.0). High-realism masks were categorized much

less reliably (M = 40.4%, SE = 5.6, CI = 29.2–51.5), mean-

ing that the clear majority of these masks (59.6%) were

misclassified as real faces. A within-subjects t-test

confirmed that this difference in accuracy was statistically

significant (t(29) = 10.29, p < 0.001).

Reaction time (RT) data followed a similar pattern. Cor-

rect responses to low-realism mask trials were relatively

fast (M= 895 ms, SE = 35, CI = 831–959). Indeed, RTs to

high-realism masks were twice as long 1629 ms (SE = 142,

CI = 1352–1901). Again, the difference between mask

conditions was statistically robust (t(29) = 5.86, p < 0.001).

Individual differences

As can be seen in Fig. 4, there was little variability in accur-

acy in the low-realism mask condition (range 95–100%),

with performance compressed against ceiling for this easy

task. In contrast, accuracy in the high-realism condition

spanned the entire range (5–100%). Unsurprisingly, there

was no correlation between high- and low-realism mask

trial performance (r = 0.182, p = 0.335).

Overall, classification judgements were much harder

for high-realism masks than for low-realism masks.

More importantly for the current study, the data reveal

striking individual differences in performance for the

high-realism condition. A few observers detected hardly
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any hyper-realistic face masks in this experiment, but a

few detected nearly all of them.

One possible interpretation of this pattern is that

low-realism masks make high-realism masks hard to detect,

by encouraging viewers to draw the category boundary in

the wrong place ([real faces + high-realism masks] vs [low--

realism masks] as opposed to [real faces] vs [high-realism +

low-realism masks]). Prior knowledge of hyper-realistic face

masks could protect against this error, leading to high over-

all accuracy. To address this possibility, we next repeated

the experiment without the low-realism mask condition.

We also asked participants whether they had encountered

hyper-realistic face masks before the experiment.

Experiment 2
This experiment was the same as Experiment 1, except for

the following changes. First, we replaced the low-realism

mask stimuli with high-realism mask stimuli, in order to

focus participants on the difficult judgments (real faces vs

hyper-realistic face masks). As before, we informed partic-

ipants that half of the trials would contain real faces and

half of them would contain masks. We expected the new

composition of trials to elicit errors in both directions (i.e.

masks mistaken for faces and faces mistaken for masks).

Our main interest was the distribution of performance in

this situation. To test for effects of prior mask knowledge

on performance, we also collected self-report ratings at

the end of the experiment.

Method
Participants

Thirty members of the volunteer panel at the University

of York (24 women, 6 men; mean age = 20 years, age

Fig. 2 Example of trial sequence in Study 1. Correct responses: Z, M, M, M, M. See main text for details

Fig. 3 Mean accuracy rates (a) and correct reaction times (b) across participants as a function of mask condition in Study 1
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range = 18–24 years) took part in exchange for a small

payment or course credit.

Stimuli and design

Additional stimuli were collected via Internet search,

using the method described in Experiment 1. Once

again, the proportions of young male, old male, young

female, and old female items were matched across real

face and high-realism mask images. The final image set

consisted of 148 photographs (74 high-realism masks

and 74 real faces). Each participant viewed the 148

images intermixed in a different random order (with-

in-subjects design).

Procedure

The procedure was the same as for Experiment 1, except

that the low-realism trials were replaced with

high-realism trials (see Fig. 5). To test whether individ-

ual differences in performance could be explained by

prior knowledge of hyper-realistic face masks, we asked

participants to rate their prior knowledge on a 7-point

Likert scale at the end of the experiment.

Results and discussion
Group performance

Overall categorization performance is summarized in

Fig. 6. As can be seen from the figure, classification of real

face images was accurate, but not at ceiling (M= 91.2%,

SE = 2.0, CI = 87.3–95.1). Accuracy for high-realism masks

was relatively low (M= 73.7%, SE = 2.7, CI = 68.3–79.0),

indicating that hyper-realistic masks were frequently mis-

classified as real faces (26.3%). A within-subjects t-test

confirmed that this difference in classification accuracy

was statistically significant (t(29) = 6.78, p < 0.001).

To analyze discriminability and bias, we also carried out a

signal detection analysis of correct performance (d’ = 1.56,

SE = 0.43, CI = 1.40–1.72, p(correct) = 0.825). This indicates

that participants were able to differentiate between masks

and real faces. A criterion analysis (C = 0.61, SE = 0.09, CI =

− 0.97 – – 0.43) indicates a modest bias towards responding

“mask.” After correcting for this bias, the ability to discrim-

inate masks from real faces remained (d’ corrected = 1.36,

SE = 0.43, CI = 1.40–1.72, p(correct) = 0.854).

There was no significant difference in reaction times be-

tween real face (M= 1301 ms, SE = 93, CI = 1121–1480)

Fig. 4 Scatterplot showing participants’ mean categorization

accuracy rates in the high-realism and low-realism mask conditions

in Study 1

Fig. 5 Example of trial sequence in Study 2. Correct responses: Z, Z, M, M
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and high-realism mask trials (M = 1283 ms, SE = 71, CI =

1145–1421; [t (29) = 0.34, p = 0.73]).

Individual differences

As can be seen in Fig. 7, almost everyone performed

above chance in both conditions. Classification accuracy

was in the range of 65–100% in the real face condition

and 43–91% in the high-realism mask condition. Inter-

estingly, there was no correlation in performance be-

tween the two conditions (r = − 0.04, p = 0.83).

We also measured the individual differences in

discriminability between masks and real faces in terms

of sensitivity (d’: range = 0.59–2.34) and criterion scores

(C: range = − 1.86 – 0.32).

Prior mask knowledge

Self-report ratings of prior mask knowledge were generally

low (M= 2.67, SD = 1.03), suggesting little or no exposure

to hyper-realistic face masks before the experiment. More

importantly, there was no significant correlation between

prior mask knowledge and performance in either the

high-realism mask condition (r = 0.025, p = 0.898) or the

real face condition (r = 0.319, p = 0.092), discriminabil-

ity (r = 0.295, p = 0.120), or bias (r = − 0.218, p = 0.256)

(see Fig. 8).

Overall error rates were high (20%) despite the sim-

plicity of the task and despite the fact that partici-

pants were informed about the prevalence of mask

and real face trials. We note that error rates were

somewhat higher in the mask condition (30%) than in

the real face condition (10%), meaning that overall,

masks were mistaken for faces more often than faces

were mistaken for masks. Interestingly, some partici-

pants were highly accurate in correctly categorizing

the masks. However, accuracy in the mask condition

was not explained by accuracy in the real face condi-

tion, nor by prior exposure to hyper-realistic face

masks. In the final study, we ask whether

high-performing individuals are using specific visual

cues to support their accurate judgements.

Image analysis
The purpose of the image analysis was to compare

the use of visual information by high classification

accuracy and low classification accuracy participants

in Experiment 2. Our specific interests were: (1) the

availability of visual cues—that is, whether mask and

face images differed reliably; (2) the nature of any

reliable visual cues—specifically, their spatial location;

and (3) whether high-performing and low-performing

participants made different use of these cues. We

Fig. 6 Mean accuracy rates (a) and correct reaction times (b) across participants as a function of experimental condition in Study 2

Fig. 7 Scatterplot showing participants’ mean categorization accuracy

rates in the real face and high-realism mask conditions in Study 2
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addressed these issues by using categorization data

from Experiment 2.

The logic of this image analysis is as follows. The ap-

pearance of the mask stimuli and the face stimuli can be

summarized by generating an average image for each

stimulus category (an average mask and an average face).

Systematic differences between these two categories can

then be visualized by subtracting the average face from

the average mask to create a difference image. This differ-

ence image indicates which regions of the stimulus are

most informative for mask/face classification. Our hypoth-

esis is that high-performing participants tracked this infor-

mation more closely than low-performing participants. To

test this hypothesis, we used categorization responses

from Experiment 2 to generate difference images for the

high-performing and low-performing subgroups. This

allowed us to compare the perceptual difference images

(based on participants’ categorization of the stimuli)

against the physical difference image (based on the actual

stimulus categories). By undertaking this comparison for

different slices of the image, we were able to quantify par-

ticipants’ tracking of category-level regularities across dif-

ferent face regions.

Method
Participant subgroups

To establish a strong manipulation of the independ-

ent variable (categorization accuracy for masks), we

divided participants into performance quintiles (N = 6

per subgroup) and contrasted the highest and lowest

quintiles. A 2 × 2 mixed ANOVA with the

within-subject factor image type (mask, real face) and

the between-subjects factor of subgroup (high, low)

confirmed that these subgroups were statistically

distinct with respect to their classification scores.

Consistent with the whole-group analysis, we found a

significant main effect of image type, with higher accuracy

for real face trials (M = 90.0%, SE = 1.4, CI = 83.6–95.7)

than for mask trials (M = 72.5%, SE = 1.5, CI 65.9–

79.1), (F(1,10) = 13.76, p = 0.004, η2 = 0.58). More im-

portantly, there was also a significant main effect of

subgroup, with the high-accuracy group (M = 90.2%,

SE = 0.8, CI = 86.7–93.8) reliably outperforming the

low-accuracy group (M = 72.1%, SE = 2.1, CI = 62.9–

81.2), (F(1,10) = 85.44, p < 0.001, η2 = 0.89). There was

no significant interaction between these factors

(F(1,10) = 1.78, p = 0.212).

Fig. 8 Scatterplots showing participants’ mean categorization accuracy rates for high-realism masks (a) and real faces (b), discriminability (c) and

bias (d) as a function of prior mask knowledge in Study 2
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Face averages

We next constructed six average images (Burton, Jenkins,

Hancock, & White, 2005) from the following six image

sets: (1) actual masks (N = 74); (2) actual faces (N = 74);

(3) perceived masks for high performers; (4) perceived

faces for high performers; (5) perceived masks for low per-

formers; and (6) perceived faces for low performers

(weighted averages of images as classified; N > 50 for all).

Seven images (five masks, two real faces) were excluded

from this analysis because the camera angle did not allow

accurate landmarking of the photographs (see Kramer,

Jenkins, & Burton, 2017 for implementation details). The

six weighted texture averages for the remaining images

are shown in Fig. 9.

Difference images

To ask what distinguishes masks from real faces, we next

computed a difference image (average mask minus aver-

age face) separately for the veridical categories, the

high-performance group, and the low-performance group.

These three difference images are shown in Fig. 9 (lighter

regions indicate greater difference). The veridical differ-

ence image (Fig. 9, center) indicates that the surrounding

of the eye is especially informative, presumably because

the eye holes in the mask can produce local anomalies in

appearance (e.g. surface discontinuities if the mask is not

flush with the wearer’s face; complexion discontinuities if

the skin around the wearer’s eyes is exposed). The ques-

tion is whether observers pick up on these subtle cues.

Visual comparison confirms that the difference image for

the high-performer group (Fig. 9, left) closely resembles

the veridical difference image (Fig. 9, center). The differ-

ence image for the low-performer group (Fig. 9, right) re-

sembles the veridical difference image less closely. This

global pattern is perhaps to be expected, given the forma-

tion of the subgroups: if high performers did not track the

veridical categories, they would not be high performers.

However, local variations in this pattern may reveal spe-

cific cues that high performers exploit, and that low per-

formers overlook. We investigated this possibility by

comparing correlations between different image slices.

Image correlations

To avoid spurious inflation of correlation values by black

background pixels, we first cropped the background

from each difference image to create rectangular face

image (300 × 228 pixels) that retained all of the internal

features. To allow direct comparison across equally sized

regions, we then divided each rectangular image into 30

horizontal slices (10 × 228 pixels; see Fig. 9). Successive

rows of pixels can be concatenated to form a single vec-

tor of pixels for each slice (1 × 2280 pixels), in which the

grayscale intensity of each pixel is specified by an integer

value between 0 (black) and 255 (white). These intensity

values formed the input to the correlation analysis.

Figure 9 shows the results of these image correlations

(r values), separately for each slice. As can be seen from

the figure, correlations between the veridical difference

image and the high-performer image are consistently

high across image slices (range = 0.87–0.99). The corre-

lations between the veridical difference image and the

low-performer image are lower overall and much more

Fig. 9 Summary image analysis in Study 3. Average images show mean pixel intensities across images in each category, separately for high

performers (left), low performers (right), and veridical categories (center). Difference images are subtractions of pixel intensity (mask minus face; rescaled

for visualization). Lighter colors indicate larger differences. Note the light region around the eye in the veridical difference image. The y-axis shows 30

horizontal image slices. Correlations between difference images (gray bars) are shown for each image slice. The largest discrepancy between high and

low performers is shown at Slice 15 (black bars). High performers closely tracked categorial differences in this region. Low performers did not
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variable (range = 0.59–0.95). Most strikingly, there is a

distinct notch in correlation values between the

low-performer and veridical difference images, directly

under the eyes (image slice 15; r = 0.59). In fact, this was

the lowest correlation in entire analysis. Importantly,

that notch does not appear in the correlations between

the high performer and veridical difference images

(image slice 15; r = 0.95).

To summarize, our comparison of mask and face images

suggests that the eye surround is the most informative re-

gion for separating these two categories. High performers

appear to use information below the eye in a way that low

performers do not. What information could be in this re-

gion? We suggest two possibilities. First, in a real face, the

region below the eyes normally includes the lower eye-

lashes—an area of high local contrast. The masks in our

stimulus set do not include eyelashes. If the mask covers

the wearer’s eyelashes, it will typically reduce local contrast.

Reduced local contrast under the eye may be a cue to mask

detection. Second, in a real face, skin complexion below the

eyes normally changes gradually on a local scale. The masks

in our stimulus set do not necessarily match the complex-

ion of the wearer. If the mask exposes any skin below the

wearer’s eyes, it may cause an apparent discontinuity in skin

coloration. Discontinuity in complexion under the eye may

be a cue to mask detection. Each of these possibilities sug-

gests that the precise fit of the mask around the wearer’s

eyes is critical. Shade from the brow will tend to conceal

cues in the upper eye region, at least under normal illumin-

ation conditions (light source above). However, the same il-

lumination conditions will tend to highlight cues in the

lower eye region, making them more salient.

General discussion
Across three studies, we investigated individual differ-

ences in hyper-realistic mask detection—specifically, the

ability to categorize images as masks or real faces. In Ex-

periment 1, we found large individual differences in a

mask/face categorization task for high-realism masks,

low-realism masks, and real faces. Although low-realism

masks (and real faces) were categorized accurately over-

all (> 98% correct), high-realism masks were not (40%

correct). More importantly, from an individual differ-

ences perspective, accuracy in the high-realism condition

ranged from floor (5%) to ceiling (100%), despite the

consistently high accuracy for other stimulus types.

In Experiment 2, we discarded the low-realism mask

condition to focus exclusively on the difficult

categorization—hyper-realistic masks vs real faces. Per-

haps surprisingly, removing the easy condition improved

performance in the difficult condition considerably (74%

correct). This seemingly paradoxical result underscores

the importance of the context in which a categorization

decision is taken. The absence of an obvious category

distinction (cf. Experiment 1), combined with information

about the distribution of stimuli, presumably led partici-

pants in Experiment 2 to approach the task differently.

Nevertheless, we still observed a wide range of perform-

ance, even in this very different cognitive situation. Accur-

acy ranged from near chance (43%) to near ceiling (91%).

Interestingly, accuracy in the real face condition was also

varied (65–100%). However, performance in these two

conditions was uncorrelated and was not explained by

previous exposure to hyper-realistic face masks.

Both of these experiments revealed large individual

differences in hyper-realistic mask detection, in the sense

that some people were much more accurate than others

at categorizing masks and real faces. These findings sug-

gest that stable differences in ability may be worth pur-

suing. It is too early to say whether some individuals

exhibit a special talent for this task. Conclusive evidence

would require estimates of test–retest reliability and

consistently high performance across a range of tasks

(Russell et al., 2009; Robertson et al., 2016). Until then,

we suggest another possible route to improved detection

rates—one that does not depend on screening for

high-aptitude individuals. In our image analysis, we

asked what high performers are doing that low per-

formers are not. This analysis revealed a candidate visual

cue that these subgroups used differently—the area

under the eyes. Hyper-realistic mask images and real

face images diverged more strongly in this area than in

other areas. Moreover, high performers and low per-

formers diverged strongly in the extent to which the area

under the eyes predicted their responses. This intriguing

finding raises the question of whether mask detection

could be improved by drawing attention to this region. If

so, it could pave the way for a simple training interven-

tion. This is a tantalizing prospect, especially as benefits

of training in face identification tasks have proven diffi-

cult to pin down (Towler, White, & Kemp, 2014, 2017;

White et al., 2014). Eye-tracking data in combination

with accuracy rates, before and after training, should

elucidate the potential of this approach.

Finally, it is worth returning to the somewhat artificial

nature of this task. The experiment was specifically con-

trived to encourage detection of hyper-realistic masks. For

example, we focused on masks in the task instructions

and spelled out the distribution of mask and face stimuli.

In view of this strong framing, the detection rate for these

masks seems rather low. Nevertheless, it almost certainly

overestimates the rate of spontaneous detection when a

mask framing is absent. Sanders et al. (2017) reported ex-

tremely low rates of spontaneous detection, both for

photographic presentations in the lab and live viewing of

mask wearers outdoors. On the other hand, none of these

studies has measured detection during active social inter-

action with the mask wearer (e.g. conversation). We
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expect that, in a more interactive context, additional cues

from speech and movement could increase detection rate,

but that is a matter for future studies.

Across these studies, we show that distinguishing

hyper-realistic masks from real faces is a difficult task.

Some people are much better than others at picking out

hyper-realistic masks, and these large individual differ-

ences are not readily explained by correct categorization

of real faces or by prior exposure to hyper-realistic

masks. We suggest that they may be explained by differ-

ential use of specific visual cues and identify the region

under the eyes as a promising candidate.

Abbreviation

RT: Reaction time
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