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Automatic Term Extraction deals with the extraction of terminology from a domain specific corpus, and has long

been an established research area in data and knowledge acquisition. ATE remains a challenging task as it is known

that there is no existing ATE methods that can consistently outperform others in any domain. This work adopts a

refreshed perspective to this problem: instead of searching for such a ‘one-size-fit-all’ solution that may never exist,

we propose to develop generic methods to ‘enhance’ existing ATE methods. We introduce SemRe-Rank, the first

method based on this principle, to incorporate semantic relatedness - an often overlooked venue - into an existing

ATE method to further improve its performance. SemRe-Rank incorporates word embeddings into a personalised

PageRank process to compute ‘semantic importance’ scores for candidate terms from a graph of semantically related

words (nodes), which are then used to revise the scores of candidate terms computed by a base ATE algorithm.

Extensively evaluated with 13 state-of-the-art base ATE methods on four datasets of diverse nature, it is shown to

have achieved widespread improvement over all base methods and across all datasets, with up to 15 percentage points

when measured by the Precision in the top ranked K candidate terms (the average for a set of K’s), or up to 28

percentage points in F1 measured at a K that equals to the expected real terms in the candidates (F1 in short).

Compared to an alternative approach built on the well-known TextRank algorithm, SemRe-Rank can potentially

outperform by up to 8 points in Precision at top K, or up to 17 points in F1.
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2 Ziqi Zhang, Jie Gao, and Fabio Ciravegna

1 INTRODUCTION

Automatic Term Extraction (or Recognition) deals with the extraction of terms - words and collocations

representing domain-specific concepts - from a collection of domain-specific, usually unstructured texts. It

is a fundamental task for data and knowledge acquisition, often a pre-processing step for many complex

Natural Language Processing (NLP) tasks. These can include, for example, information retrieval [Lingpeng

et al. 2005], cold Start knowledge base population [Ellis et al. 2015; Zhang et al. 2015], ontology engineering

and learning [Biemann and Mehler 2014; Brewster et al. 2007; Wong et al. 2007], topic detection [Börner et al.

2003; El-Kishky et al. 2014], glossary construction [Habert et al. 1998; Maldonado and Lewis 2016; Peng

et al. 2004], text summarisation [Mihalcea and Tarau 2004], machine translation [Bowker 2003], knowledge

visualisation [Blei and Lafferty 2009a; Börner et al. 2003; Chang et al. 2009], and ultimately enabling

business intelligence [Maynard et al. 2007; Palomino et al. 2013; Schoemaker et al. 2013].

ATE is still considered an unsolved problem [Astrakhantsev 2016], and new methods have been developed

over the years to cope with the increasing demand for automated sense-making of the ever-growing number

of specialised documentation in industrial, governmental archives and digital libraries [Ahmad et al. 1999;

Ananiadou 1994; Astrakhantsev 2014, 2015; Bordea et al. 2013; Bourigault 1992; Church and Gale 1995;

Frantzi et al. 2000; Li et al. 2013; Lossio-Ventura et al. 2014b; Matsuo and Ishizuka 2003; Park et al. 2002;

Peñas et al. 2001; Rose et al. 2010; Sclano and Velardi 2007; Spasić et al. 2013]. These methods typically

start with extracting candidate terms (e.g., nouns, noun phrases, or n-grams) using linguistic processors,

then apply certain statistical measures to score the candidates by features collected both locally (surrounding

context or document) and globally (typically corpus-level). The scored candidate terms will be ranked for

subsequent selection and filtering.

Although a plethora of methods have been introduced, we notice two limitations of state-of-the-art.

First, it is known that no method can consistently perform well in all situations. Comparative studies

[Astrakhantsev 2016; Zhang et al. 2008] have shown that depending on the domains and datasets, the

best performing ATE method always varies and the accuracy obtainable by different methods can differ

significantly. As a result, knowing and choosing the best performing ATE method a-priori for every situation

is infeasible. For this reason, we argue that, instead of aiming to develop an unrealistic ‘one-size-fit-all’ ATE

method for any domain, it can be very useful to develop generic methods that when coupled with an existing

ATE method, can potentially improve its performance in any domain. The intuition is that, although it

can be infeasible to select a-priori the best performing ATE method for a domain, it can be beneficial to

know that by applying this ‘enhancement’ to an existing ATE method, we can potentially do better in that

domain with this method.

Second, while state-of-the-art typically make use of features such as word statistics (e.g., frequency) to

score candidate terms, they often overlook the role of semantic relatedness, an important area of research

where a significant amount of work has been undertaken over the years, particularly its application in

biomedical domain [Agirre et al. 2009; Batet et al. 2011; Cucerzan 2007; Lin 1998; Strube and Ponzetto 2006].

Semantic relatedness describes the strength of the semantic association between two concepts or their lexical

forms by encompassing a variety of relations between them. A more specific kind of semantic relatedness

is semantic similarity, where the sense of relatedness is quantified by the ‘degree of synonymy’ [Weeds

2003]. For example, cat is similar to dog, and is related but not similar to fur. To illustrate the usefulness of
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semantic relatedness in the context of ATE, assuming protein a representative term in a biomedical corpus,

then the scores of words highly related to it such as polymer and nitrogenous should be boosted according

to their degree of relatedness with protein, in addition to their frequency.

In this work, we introduce SemRe-Rank, the first generic method based on the principle of enhancing

existing ATE methods by incorporating semantic relatedness in the scoring and ranking of candidate terms.

SemRe-Rank applies a personalised PageRank process [Haveliwala 2003] to a semantic relatedness graph of

words constructed using word embedding models [Mikolov et al. 2013b] trained on domain-specific corpus.

The PageRank algorithm [Page et al. 1998] is well-known for its use in computing importance of nodes in a

graph based on the links among them, and was originally used to rank webpages. The personalised PageRank

extends it by implementing a ‘bias’ (personalisation) in the computation to favour nodes that are more

strongly connected to a set of seed (or ‘starting’) nodes. SemRe-Rank differs from previously related work in:

1) the way the graph is constructed, and 2) the fact that we use ‘personalised’ PageRank to let a small set

of seed nodes to propagate domain knowledge through the graph, eventually helping boost the scoring of

real terms. Specifically, SemRe-Rank computes a score denoting a notion of ‘semantic importance’ for every

word (node) on a graph by aggregating its relatedness with other words on the graph. This is then used to

revise the score of a candidate term computed by an ATE algorithm, to obtain a final score. To personalise

the PageRank process, we only require the selection of between a dozen and around a hundred real terms

through a guided annotation process, and therefore we say that SemRe-Rank is weakly supervised. However,

SemRe-Rank can also be completely unsupervised as we demonstrate its robustness in our experiments.

SemRe-Rank is extensively evaluated with 13 state-of-the-art ATE algorithms on four datasets of diverse

nature, and has shown to effectively enhance ATE methods that are based on word statistics as it has

achieved widespread improvement over all methods and across all datasets. On many cases, this improvement

can be quite significant (≥ 4 percentage points), including a maximum of 15 points in terms of the average

Precision in the top ranked K candidate terms for a set of K’s, and 28 points in terms of F1 measured at

a K that equals to the expected real terms in the candidates. Compared to an alternative approach that

adapts the well-known TextRank algorithm, SemRe-Rank can potentially outperform by up to 8 points in

the Precision at top K, or up to 17 points in F1.

Our unique contributions are three-fold. Conceptually, we propose a novel perspective towards the task

of ATE and take a previously unexplored venue of research. From the methodological point of view, we

introduce a generic method to enhance existing ATE methods by incorporating semantic relatedness in a

novel way. Empirically, we undertake extensive evaluation to show that our proposed method can improve

a wide range of ATE methods, often quite significantly.

The remainder of this paper is structured as follows. Section 2 introduces ATE in details and reviews

related work. Section 3 describes the proposed method. Section 4 describes datasets used for evaluating

SemRe-Rank, while Section 5 presents experiments and evaluation of SemRe-Rank. Section 6 discusses the

limitations of SemRe-Rank, followed by Section 7 that concludes this work and discusses future work.
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4 Ziqi Zhang, Jie Gao, and Fabio Ciravegna

2 RELATED WORK

2.1 Automatic Term Extraction

A typical ATE method consists of two sub-processes: extracting candidate terms using linguistic processors

and statistical heuristics, followed by candidate ranking and selection (i.e., filtering) using algorithms that

exploit word statistics. Linguistic processors often make use of domain specific lexico-syntactic patterns

to capture term formation and collocation. They often take two forms: ‘closed filters’ [Arora et al. 2014]

focus on precision and are usually restricted to nouns or noun sequences. ‘Open filters’ [Aker et al. 2014;

Frantzi et al. 2000] are more permissive and often allow adjectives, adverbs, etc. Both may use techniques

including Part-of-Speech (PoS) tag sequence matching, n-gram extraction, Noun Phrase (NP) Chunking, and

dictionary lookup. Most often, candidate terms are normalised (e.g., lemmatisation) to reduce inflectional

forms and stop words are removed. Simple statistical criteria such as minimal frequency of occurrence may

be used to remove candidates that are almost impossible to be terms. Qualified candidate terms can be a

simple form, such as ‘cell’ from the biomedical domain, or a complex form consisting of multiple words 1,

such as ‘CD45RA+ cell’ and ‘acoustic edge-detection’ from the computer science domain.

Candidate ranking and selection then computes scores for candidate terms to indicate their likelihood of

being a term in the domain, and classifies the candidates into terms and non-terms based on the scores.

The ranking algorithms are considered the most important and complicated process in an ATE method

[Astrakhantsev 2016; Kageura and Umino 1996] as they are often how an ATE method distinguishes itself

from others. The selection of terms are often based on heuristics such as a score threshold, or a section of

the top ranked candidate terms [Zhang et al. 2016a]. In the following, we will focus on candidate ranking

algorithms adopted by different ATE methods.

The ranking algorithms usually base on two principles [Kageura and Umino 1996]: unithood indicating the

collocation strength of units that comprise a single term and termhood indicating the association strength

of a term to domain concepts. We will discuss related work in the groups of ‘classic’ methods that do not

consider semantic relatedness (Section 2.1.1), against those that employ semantic relatedness in measuring

termhood (Section 2.1.3). While most state-of-the-art ATE methods are unsupervised, recent years have

seen an increasing number of machine learning based ATE methods, which often cross the boundaries of

traditional ATE categories. For these we discuss them in Section 2.1.2. Since the majority of literature has

been well summarised in previous surveys, here we focus on the hypothesis and principles of these methods.

2.1.1 Classic unithood and termhood based methods.

Unithood. This measures collocation strength, hence by definition, it is a type of measure for multi-word

terms (MWTs). The fundamental hypothesis is that if a sequence of words occurs more frequently together

than chance, it is more likely to be an integral unit and therefore a valid term. A vast number of word

association measures fall under this category, such as z-test [Dennis 1965], t-test [Church et al. 1991], χ2 test

and log-likelihood [Dunning 1993], and mutual information [Church and Hanks 1990]. Other recent studies

focusing on unithood include that of [Bouma 2009; Chaudhari et al. 2011; Deane 2005; El-Kishky et al.

2014; Liu et al. 2015; Matsuo and Ishizuka 2003; Song et al. 2011]. For example, Matsuo et al. [Matsuo and

1Note that a term can also consist of symbols and digits. However, for the sake of simplicity we refer them universally as
‘words‘.
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Ishizuka 2003] firstly rank candidate terms by their frequency in the corpus and a subset (typically top n%)

is selected - to be called ‘frequent terms’. Next, candidates are scored based on the degree to which their

co-occurrence with these frequent terms are biased. This is computed using the χ2 test.

Although unithood plays an indispensable role in ATE, research has shown that the measures on their

own are not sufficient to assess validity of a candidate term [Wong et al. 2008], but often needs to combine

measures of termhood.

Termhood. This measures the degree to which a candidate term is specific to the domain, and this is

primarily based on statistics such as occurrence frequency. Termhood measures both single-word terms

(SWTs) and MWTs. These include, e.g., total (TTF) [Bourigault 1992] or average total (ATTF) term

frequency in a corpus [Zhang et al. 2016a]; the adaptation of classic document-specific TFIDF (term

frequency, inverse document frequency) used in information retrieval to work at corpus level by replacing

term frequency in each document with total frequency in the corpus [Zhang et al. 2016a]; and Residual-IDF

[Church and Gale 1995] that measures the deviation of the actual IDF score of a word from its ‘expected’

IDF score predicted based on a Poisson distribution. The hypothesis is that such deviation is higher for

terms than non-terms.

Several branches of methods have taken different directions to improve the state-of-the-art using frequency-

based statistics, including: focusing on MWTs (typically like CValue), using contrastive statistics from

reference corpora (e.g., Weirdness), considering term co-occurrence context (e.g., NCValue), and employing

topic-modellings.

CValue [Ananiadou 1994] observes that real terms in technical domains are often MWTs and usually not

used as part of other longer terms (i.e., nested). Frequency based methods are not effective for such terms

as 1) nested candidate terms will have at least the same and often higher frequency, and 2) the fact that a

longer string appears n times is a lot more important than that of a shorter string. Thus CValue computes a

score that is based on the frequency of a candidate and its length, then adjusted by the frequency of longer

candidates that contain it. If a candidate term is frequently found in longer candidate terms that contain it,

it is called a ‘nested candidate term’ and its importance (i.e., CValue score) is reduced. Several more recent

methods such as RAKE [Rose et al. 2010], Basic [Bordea et al. 2013]2, and ComboBasic [Astrakhantsev

2015] choose to also promote candidate terms that are frequently nested as part of other longer candidates.

RAKE firstly computes a score for individual words based on two components: one that favours words

nested often in longer candidate terms, and one that favours words occurring frequently regardless of the

words which they co-occur with. These are computed using properties of nodes on a co-occurrence graph

of words. Then it adds up the scores of composing words for a candidate term. Basic modifies CValue

by promoting nested candidate terms, often used for creation of longer terms. While CValue and Basic

were originally designed for extracting MWTs, ComboBasic modifies Basic method further by allowing

customisable parameters that can be tailored either for extracting SWTs or MWTs.

Weirdness [Ahmad et al. 1999] compares normalised frequency of a candidate term in the target domain-

specific corpus with a reference corpus, such as the general-purpose British National Corpus3. The idea is

that candidates appearing more often in the target corpus are more specific to that corpus and therefore,

2This is the baseline method in [Bordea et al. 2013]. For the sake of convenience, we follow [Astrakhantsev 2016] to call this
‘Basic’.
3http://www.natcorp.ox.ac.uk
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6 Ziqi Zhang, Jie Gao, and Fabio Ciravegna

more likely to be real terms. Domain pertinence [Meijer et al. 2014] is a simplification of Weirdness as it

uses un-normalised frequency. Relevance [Peñas et al. 2001] extends Weirdness by also taking into account

of the number of documents where candidate terms occur. Astrakhantsev [Astrakhantsev 2014] introduces

LinkProbability, which uses Wikipedia as a reference corpus and normalises the frequency of a candidate

term as a hyperlink caption by its total frequency in Wikipedia pages. However, if a candidate does not

match any hyperlinks it receives a score of 0.

NCValue [Frantzi et al. 2000] extends CValue by introducing the notion of ‘term co-occurrence context’.

It hypothesises that 1) a domain-specific corpus usually has a list of ‘important’ words that appear in the

vicinity of terms; 2) and that candidate terms found in the context of such words should be given higher

weight. It thus firstly computes CValue of candidate terms in a corpus, then extracts words from the top n

to be ‘contextual words’. Next the CValue of any candidate terms found in the context of these contextual

words are boosted by its co-occurrence frequency with these words and their weights.

The method by [Bolshakova et al. 2013; Li et al. 2013] uses topic-modelling techniques (e.g., clustering,

LDA [Blei et al. 2003]) to map the domain corpus into a semantic space composed of several topics. Then

probability distribution over the topics for words are used to score candidate terms. For example, [Bolshakova

et al. 2013] adapt TTF and TFIDF by replacing term frequency in the corpus with its probability in all

topics, and document frequency with topic frequency. [Li et al. 2013] combine TTF with the sum of the

probability of composing words over all topics.

Hybrid. Such methods often adopt linear or non-linear combination of unithood and termhood measures.

For example, [Wong et al. 2008] propose a method where the score of a candidate term is collectively

dependent on ‘domain prevalence’ based on the frequency of a candidate in the target domain, ‘domain

tendency’ measuring the degree to which a candidate tends to be found more frequently in the target domain

than reference domains, and ‘contextual discriminative weight’ comparing a candidate against important

contextual words. GlossEx [Park et al. 2002] linearly combines ‘domain specificity’ (a termhood measure),

which normalises the Weirdness score by the length (number of words) of a candidate term, with ‘term

cohesion’ (a unithood measure) that measures the degree to which the composing words tend to occur together

as a candidate other than appearing individually. TermEx [Sclano and Velardi 2007], further extends GlossEx

by linearly combining a third component that promotes candidates with an even probability distribution

across the documents in the corpus (i.e., those that ‘gain consensus’ among the documents). [Lossio-Ventura

et al. 2014a] combine CValue, TFIDF, with a unithood measure called ‘insideness’ [Loukachevitch 2012] that

compares search engine page hits returned for exact matches and non-exact matches. Additionally, voting

algorithms [Zhang et al. 2008] that take (un-)weighted average of scores returned by several measures also

belong to this category.

2.1.2 Machine learning based methods. Given training data, machine learning based methods [Astrakhant-

sev 2014; Conrado et al. 2013; Fedorenko et al. 2014; Maldonado and Lewis 2016] typically transform training

instances into a feature space and train a classifier that can be later used for prediction. The features

can be linguistic (e.g., PoS pattern, presence of special characters, etc), or statistical or a combination of

both, which often utilise scores calculated by statistical ATE metrics [Maldonado and Lewis 2016; Yuan

et al. 2017]. However, one of the major problems in applying machine learning to ATE is the availability

of reliable training data. Semi-supervised and weakly supervised learning based approach have gained

Manuscript submitted to ACM
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increasing attention in recent years to address this issue. For example, positive unlabelled (PU) learning

[Astrakhantsev 2014] follows a bootstrapping approach starting with extracting top 100 - 300 candidate

terms using ComboBasic, then using these candidates as positive examples to induce a classifier using

features such as CValue, DomainCoherence, Relevance, etc. [Maldonado and Lewis 2016] propose an ongoing

retraining method that incorporates domain experts’ validation into supervised learning loop and iteratively

train a classifier with new training data combining manually labelled examples (by validation) and examples

labelled by the previously trained model. [Judea et al. 2014] adopt a heuristic-based method to generate

positive and negative examples of technical terms in the patent domain for supervised training. [Aker

et al. 2013] address the task of bi-lingual term extraction, where the goal is to project terms already

extracted from a source-language resource to a different, target-language using parallel corpus. In this

case, the source-language terms and the parallel corpus are used to train a machine learning model for the

target-language.

Although various attempts have been made, the portability of current machine learning based methods

due to the cost of creating quality training data is still arguable. Empirically, they do not always outperform

unsupervised, even simple ranking methods [Astrakhantsev 2016].

2.1.3 Semantic relatedness based methods. As shown before, the computation of either unithood or

termhood heavily relies on word statistics such as frequencies. However, we argue that the use of (co-

)occurrence frequency of words as evidence is insufficient. Semantic relatedness could also be a useful type

of signal in statistics based ATE methods, and also as features for machine learning based methods. This is

overlooked by the majority of state-of-the-art ATE methods. Here we refer to semantic relatedness based

ATE as those methods using explicit measures for quantifying semantic relatedness, the range of which is

beyond the scope of this work but surveyed in [Zhang et al. 2012]. These exclude, for example, approaches

that simply employ the frequency of co-occurrence.

KeyConceptsRelatedness (KCR) [Astrakhantsev 2014] selects terms as those semantically related to some

knowingly domain-specific concepts. Firstly, top n domain-specific concepts are extracted following an

approach similar to [El-Beltagy and Rafea 2010]. This generally selects candidate terms that are at least

above a certain frequency threshold, and appear in the first few hundred of words in a document. Then

these filtered candidate terms are ranked by their frequency and the top n are selected. Next, for each

candidate term, its semantic relatedness with each of the n concepts are computed, and its final score is

the average of the top k (k < n) similarities. To compute semantic relatedness, the method trains a word

embedding model using Wikipedia, and uses the cosine vector similarity metric. The approach adopted here

for computing semantic relatedness belong to the research of measuring distributional similarity of words

[Bernier-Colborne and Drouin 2016; Mikolov et al. 2013a; Weeds 2003] based on large corpus. This is widely

used as a computable proxy for lexical semantic relatedness.

KCR is highly similar to Domain Coherence (DC) [Bordea et al. 2013] and the method by [Khan et al.

2016]. In DC, ‘key concepts’ are replaced with an automatically constructed domain model consisting of

words and phrases considered to be ‘important’. This is built using the Basic measure. Then semantic

relatedness with highly ranked words from this model is computed using ‘normalised PMI’ (NPMI). In

[Khan et al. 2016], a subset of top ranked candidate terms are extracted using CValue and TFIDF, and

semantic relatedness is also computed using cosine vector similarity based on a word embedding model.
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8 Ziqi Zhang, Jie Gao, and Fabio Ciravegna

[Lossio-Ventura et al. 2014b] build a graph of candidate terms based on their pair-wise semantic relatedness

and argue that the weight of a candidate term depends on the number of neighbours that it has, and

the number of neighbours of its neighbours on the graph. This is similar to the principle of RAKE [Rose

et al. 2010]. Mathematically, semantic relatedness is calculated using a dice-coefficient function based on

co-occurrence frequency and the term weight is modelled as a log function.

Methods of [Maynard and Ananiadou 1999a,b, 2000; Maynard et al. 2008] revise the NCValue method

[Frantzi et al. 2000] by modifying the calculation of the weights of contextual words (see Section 2.1.1 under

‘Termhood’). While in NCValue, the weight of a contextual word depends on its co-occurrence frequency

with a subset of candidate terms highly ranked by CValue; in this revised method, this weight is computed

based on its semantic relatedness with entries in the selected subset of candidate terms. Using the biomedical

domain for experiments, semantic relatedness was computed based on the distance between the semantic

categories of a contextual word and a candidate term in the hierarchy provided by the UMLS Semantic

Network4, using a method similar to [Sumita and Iida 1991].

2.1.4 Limitations of state of the art. First, state of the art methods are typically introduced as standalone,

competing alternatives, the performance of which are always domain dependent. For example, [Astrakhantsev

2016] show that, among 13 state-of-the-art ATE methods, the best performing methods on a computational

linguistic dataset only come the last when tested on a biomedical dataset. This is also confirmed in our

experiments in Section 5. It is unclear whether and how different methods can be combined to enhance

each other, and studies in this direction have been limited to the use of ‘voting’ strategies, where given

the same list of candidate terms to rank, the scores computed by a range of methods are given different

or equal weights, aggregated, and then used to re-rank the candidate terms. However, on the one hand,

determining the weights can require prior knowledge of the expected performance of each method on a

dataset [Zhang et al. 2008]; on the other hand, voting can inherit limitations of different methods, as previous

work [Astrakhantsev 2016] has shown that on many datasets, the performance of a voting method can

be significantly lower (≥10 percentage points) than the best performing, individual methods combined by

voting. In contrast, SemRe-Rank is designed as a generic method to enhance existing ATE methods, and

our experiments show that it is effective for a wide range of ATE methods in different domains.

Second, SemRe-Rank makes use of semantic relatedness to ‘boost’ the scores of candidate terms relevant

to a domain. This is often an overlooked venue in classic unithood and termhood based methods. And

compared to semantic relatedness based methods, SemRe-Rank consumes semantic relatedness in a different

way, firstly by using the strength of relatedness to create a graph of connected words to which a PageRank

process is applied; and secondly by ‘personalising’ the PageRank process using seeds that are expected to

‘guide’ the selection of candidate terms that are truly relevant to the domain. Empirically, we show that

it is more effective than, e.g., an alternative approach adapted from the well-known TextRank algorithm

[Mihalcea and Tarau 2004] that constructs and represents a relatedness graph in a different way.

2.2 Keyword(phrase) and topical phrase extraction

A different, but closely related area of research to ATE concerns the extraction of keywords or keyphrases -

to be referred to as keyphrase extraction - from documents [Turney 2000; Witten et al. 1999]. Compared

4https://semanticnetwork.nlm.nih.gov/
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to ATE, keyphrase extraction serves different goals and therefore, often uses different techniques. ATE

examines terms that need to be representative for the domain and hence corpus-level (global) features are

important to provide comprehensive representation of candidate terms. This is particularly important for,

e.g., developing lexical or ontological resources for a domain. Keyphrase extraction on the other hand, treats

each document differently and most methods do not consider global information across the whole corpus.

Their goal is often to identify a handful of representative keyphrases for document indexing [Turney 2000].

For this reason, keyphrase extraction often utilises statistics gathered specifically for individual documents,

such as the classic TFIDF measure [Witten et al. 1999]. A well-known method is TextRank [Mihalcea and

Tarau 2004], which also uses the PageRank algorithm. TextRank builds an undirected and unweighted

graph to represent word co-occurrence relations from each document based on a context window, then

applies PageRank to compute scores for each word node on the graph. The scores are then used to extract

keyphrases for each document.

Supervised machine learning methods are also very common in keyphrase extraction. For example, the

recent SemEval 2017 initiative5 has brought renewed attention to this topic. Here it is re-defined as a

supervised tagging task, highly relevant to Named Entity Recognition (NER) [Nadeau and Sekine 2007;

Zhang 2013; Zhang et al. 2013]. One of the goals is identifying every mention instance of keyphrases in

documents. And all the 17 participating systems have overwhelmingly adapted classic NER techniques, often

using machine learning models built with training data.

Another related area of research concerns topical phrase extraction from topic models, where

the goal is to mine representative sequences of words (i.e., phrases) to describe topics computed by topic

modelling algorithms on a corpus. Again this serves a different goal, but is similar to ATE as it can be

considered as a two-step ATE process where the first step mines the topics described in a corpus, and the

second identifies representative keyphrases for these topics. In theory, this does however, add additional

layers of computation. Since topic modelling is beyond the scope of this work, our discussion in the following

focuses on works that use techniques similar to ATE and compares the ‘phrase extraction’ part of these

methods with ATE.

Earlier methods such as [Wallach 2006; Wang et al. 2007] propose to extract bi-grams from topic models.

ATE however, deals with word sequences of variable length, which is unknown a-priori. [Danilevsky et al.

2014] firstly extract order-free, variable length of word sets that are frequent patterns found to belong to the

same topics, then compute several metrics to rank these frequent patterns. These metrics are designed to

favour patterns that are frequent over the entire corpus (frequency), have high frequency concentrated on a

single topic (informativeness), have low frequency as being part of longer patterns (completeness), and whose

composing words co-occur significantly more often than the expected chance (collocation). Essentially, the

first two metrics can be considered as measures of termhood, while the last two can be measures of unithood.

[Blei and Lafferty 2009b] evaluate the likelihood of a word sequence being a valid topical phrase using a

permutation test that captures the same principle of unithood. [El-Kishky et al. 2014] follow a similar idea

as [Danilevsky et al. 2014] while addressing model scalability and complexity. In ranking candidate phrases,

their method also relies on frequency and collocation strength, which is measured using a generalisation

of the t-statistic. The later work by [Liu et al. 2015] extends both [Danilevsky et al. 2014] and [El-Kishky

5https://scienceie.github.io/evaluation.html
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10 Ziqi Zhang, Jie Gao, and Fabio Ciravegna

et al. 2014] by adding a supervised classification element to use a small labelled dataset to select quality

topical phrases. [Ren et al. 2017] and [Shang et al. 2017] recently explore the distantly supervised learning

technique to leverage largely available but potentially noisy labelled data from existing knowledge bases to

further improve the method proposed in [Liu et al. 2015].

3 METHODOLOGY

The workflow of SemRe-Rank is illustrated in Figure 1. The input to SemRe-Rank consists of 1) a target corpus

D = {d1, d2, ..., dn} from which terms are to be extracted, and 2) a set of candidate terms6 T = {t1, t2, ..., ti}

that are extracted from D and scored by an existing ATE algorithm (to be called a base ATE algorithm).

Also let ate(ti) denote the score of ti computed by the base ATE algorithm. The goal of SemRe-Rank is to

compute for each candidate term ti ∈ T , a revised score srk(ti) by modifying its original ATE score ate(ti)

to incorporate the ‘semantic importance’ of its composing words quantified based on the target corpus.

Let words(X) be a function returning the set of words from X7, which can be a document dn, a term ti, or

a set of candidate terms such as T . Starting with D and T , we firstly derive the set of words wx ∈ words(T )

and compute pair-wise semantic relatedness of these words based on the word embeddings trained on D

(Section 3.1). Note that we do not use all words from the entire corpus but focus on only words from

candidate terms, as we expect them to be more relevant to ATE. Next (Section 3.2), for each document dn,

we create a graph for a set of words satisfying words(dn) ∧ words(T ), i.e., the intersection of the words in

the document and words from candidate terms extracted for the entire corpus. Words form the nodes on

such a graph and edges are created based on their pair-wise semantic relatedness. A personalised PageRank

process is then applied to the graph to score the nodes. After applying the process to all documents, for

each word wx ∈ words(T ), we sum up its PageRank score computed within each of its containing document,

to derive a ‘semantic importance’ score of the word. This can be considered a quantification of the word’s

representativeness for the target corpus by incorporating its semantic relatedness with other words in the

same corpus. Finally (Section 3.3), for each candidate term ti ∈ T , we compute a revised score srk(ti) to

take into account both ate(ti), and the semantic importance of its composing words. This score srk(ti) then

replaces ate(ti) to be used as the new score to rank candidate terms.

3.1 Pair-wise semantic relatedness

We follow the recent methods of using word embedding vectors trained on unlabelled corpus, to compute

distributional similarity of words as a proxy for measuring the semantic relatedness of two words [Mikolov

et al. 2013b]. Given the target corpus D, we train a word embedding model that maps every unique word

in the corpus to a dense vector space of a given dimension, where each dimension represents a latent

concept hence each word represented as a probability distribution over a set of latent concepts. Then the

semantic relatedness of two words rel(wx, wy) is calculated using the cosine function between their vector

representations:

rel(wx, wy) =
w⃗x · w⃗y

∥w⃗x∥∥w⃗y∥
(1)

6The generation of candidate terms is not the focus of this work, as we use standard approaches depending on different
corpus and domains (to be detailed in Section 5).
7Also removing stopwords and applying lemmatisation.
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Fig. 1. The overall workflow of the SemRe-Rank method

In the above equation, w⃗ denotes the vector of the word w. While a wide range of methods can be used

for computing semantic relatedness of two words [Zhang et al. 2012], comparing their effect on SemRe-Rank

is beyond the scope of this work. The benefits of using distributional similarity as proxy for semantic

relatedness can be two-fold. First, it potentially avoids out of vocabulary issues. Second, the learned vector

representations of words are corpus specific, and potentially can be a better representation of the lexical

semantics of words in the target domain than those derived from a general purpose dataset or lexical

resources.

In this work, we use the word2vec [Mikolov et al. 2013b] algorithm to train word embeddings from

unlabelled corpora. word2vec employs a neural network algorithm to learn a dense vector of any arbitrary

size for each word in a corpus. Given a target corpus, we apply a pre-process to: 1) remove stop words; 2)

lemmatise each word; 3) remove any words that do not contain alpha-numeric characters; and 4) remove any
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12 Ziqi Zhang, Jie Gao, and Fabio Ciravegna

words that contain less than certain number of characters (minc) (to be detailed in Section 5.4.1 depending

on the corpus). The word order is retained. We use the skip-gram variant of the method, known to perform

better with small corpus and infrequent words, which is typical for ATE tasks. We use an expected vector

dimension of 100, and a context window of 3 for all corpora. The parameter settings are rather arbitrary, as

the purpose is solely to create a reasonable model for computing semantic relatedness.

Once we have computed pair-wise relatedness for words in words(T ), for each word wx ∈ words(T ), we

rank the list of other words based on their semantic relatedness to wx. These ranked lists will be used for

establishing edges on the graph (Section 3.2). Formally, we define relrank(wx) a function that returns the

ranked list of other words for wx:

relrank(wx) = (w1, w2, w3, ..., wl) : y = 1, ..., l ∧ wy ∈ {words(T )− {wx}}

∧ rel(wx, wy) > rel(wx, wy+1) (2)

3.2 Computing semantic importance of words

Here our goal is to use the set of relrank(wx) computed before to create graph(s) on which we use the

personalised PageRank algorithm to compute semantic importance scores of each word. Two design options

are available. First, we can create a single graph for the entire corpus and apply the PageRank process to

this graph. Second, we can create one graph for each document, applying the PageRank process to each

graph, and then aggregate the PageRank scores computed for each word from multiple documents to derive

a single score for that word.

We choose the second approach for two reasons. First, this allows us to capture both local evidence

(document-level) as the PageRank process only considers certain words from specific documents; and also

global evidence (corpus-level) as the semantic relatedness scores used to establish edges are determined

by the embedding representation learned from the entire corpus. Second, from a practical point of view,

a document-level graph is much smaller than a corpus-level graph and therefore much more efficient to

compute.

3.2.1 Graph construction. Algorithm 1 illustrates the graph construction process for a document dn.

Given the set of candidate terms T and a document dn, we firstly find the intersection of their word sets

words(dn) ∧ words(T ). Then for each word wx in this set, we add a node to the graph (line 4) and select

the strongly related words Awx
that is a subset of the intersection (line 5, select). Finally, words in Awx

are

added to the graph and an undirected, unweighted edge is created between wx and every word in Awx
(line

6 onwards).

Strongly related words are selected based on two thresholds. Given a word wx, their semantic relatedness

with wx must at least pass the minimum threshold relmin, and also within the top reltop from relrank(wx).

We set relmin = 0.5 for the scale of [0, 1.0] and reltop = 15%. The values are empirically derived based on a

preliminary data analysis detailed in Appendix A.

In short, lower relmin can ensure higher connectivity of the graph. We set this to be no less than 0.5,

as it is the intuitive middle point of the scale. However, our preliminary analysis shows that the choice of

relmin sometimes does not effectively filter unrelated or weakly related words, as we observed that many
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Algorithm 1 Graph construction

1: Input: dn, Vn ← ∅, En ← ∅
2: Output: Gn = (Vn, En)
3: for all wx ∈ {words(dn) ∧ words(T )} do
4: Vn = Vn ∪ {wx}
5: Awx

← select(relrank(wx))
6: for all wy ∈ Awx

do
7: Vn = Vn ∪ {wy}
8: En = En ∪ {(wx, wy)}
9: end for

10: end for

words can have a semantic relatedness score higher than relmin with almost all other words, regardless of

how high relmin is set. This is possibly due to inadequate representations learned from domain-specific

corpora [Lai et al. 2016; Wang et al. 2015; Zadeh 2016]. As a result, this can create many nodes that are

directly connected with all other nodes on a graph, which can drastically affect the computation of ranking.

As mentioned, increasing relmin did not solve the problem but potentially generates more disconnected

components in a graph (in the worst case, many isolated nodes). For this reason, we introduce another

threshold reltop. [Zhang et al. 2016b] have shown in a task of finding equivalent relations from linked data

that given a set of relation pair candidates, their degree of relatedness follows a long-tailed distribution

and the truly equivalent pairs are those receiving exceptionally high relatedness scores. On average these

are around 15% of the candidate set. We believe this to be a reasonable approximation to our problem

and hence assume that, given relrank(wx), only the top 15% words from the list can be considered to be

‘strongly related’ to wx.

While our method filters nodes and edges to be created on a graph, an alternative way would be using

the edge weighted PageRank algorithm [Xie et al. 2015], in which case words from the entire vocabulary will

be added as nodes and there will be a direct, weighted edge between every pair of nodes on the graph. In

theory, this is apparently very inefficient as the graph will be very large and overly dense.

3.2.2 Personalised PageRank. Traditionally, PageRank algorithms work with directed graphs. Therefore,

we firstly convert the above created undirected graph into a directed one by turning each edge into a pair of

opposite directed edges. Then given the directed graph G = (V,E), let deg(vx) be the out node degree of

node vx, M be an |V | × |V | transition matrix where My,x = 1
deg(vx)

if there is a link from x to y, and zero

otherwise. Then the personalised PageRank algorithm is formalised as a recursive process until convergence:

Pr = cMPr+ (1− c)v (3)

Pr is a vector of size |V | where each element is the score assigned to a corresponding node. Initially, this

is set to a uniform distribution. v is a |V | × 1 vector whose elements can be set to bias the computation

towards certain nodes, and c is the damping factor that by default, has been set to 0.85. The first term of

the sum in the equation models the probability of a surfer reaching any node from a source by following

the paths on the graph, while the second term represents the probability of ‘teleporting’ to any node, i.e.,

without following any paths on the graph.
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In the standard PageRank, the vector v asserts a uniform distribution over all elements thus assigning

equal probabilities to all nodes in the graph in case of random jumps. Personalised PageRank however,

initialises v with a non-uniform distribution, assigning higher weights to certain elements considered to be

more ‘important’. We refer to such a v as personalisation vector. This allows those corresponding nodes

to spread their importance along the graph on successive iterations of the algorithm. Effectively, the higher

weight of a node makes all the nodes in its vicinity also receive a higher weight.

We wish to utilise this nature of personalised PageRank to bias the computation of rank scores of nodes

on the graph based on some forms of domain knowledge. Intuitively, in an ATE task, if we already know a

set of real terms, these can be used as domain knowledge to guide the selection of other terms. However,

we have two issues. First, for each document, we have a graph of words instead of terms, which can have

multiple words. Second, we are creating one graph for every document, which can be in the multitude of

hundreds or thousands in a corpus, and therefore it is infeasible to customise a specific set of seed terms for

each document.

We propose to work around these issues by selecting a set of seed terms for the entire target corpus D,

and then map them to nodes found on each document-level graph. Let S = {t1, t2, ..., ts} denote a set of

seed terms that are known to be real terms extracted from the target corpus. Then we initialise v as:

vx =







1 wx ∈ words(S)

0 otherwise
(4)

where vx denotes the xth element in v, thus also corresponds to the node indexed by x on the graph;

words(S) returns a set of words extracted from the set of seed terms S. Thus on each document-level graph,

only nodes that are found to be part of words(S) are assigned a non-zero weight (to be called activated) in

the personalisation vector. Note that the number of these activated nodes can vary depending on individual

documents.

We must ensure S can map to words that are found in individual documents for the personalisation

to work. Therefore to create S, we propose a guided annotation process, where we firstly select top z

most frequent candidate terms extracted from a target corpus, and then manually identify those that are

considered as real terms to be used as S for that corpus. Empirically, we ensure z to be reasonably small

and therefore, we believe that this level of manual input is not laborious since we only need to verify a

small list of candidate terms once for each target corpus. We explain our choice of z in experiments. The

reason for focusing on the most frequent list of candidates (hence ‘guiding’ the verification process) is that

we expect them to map to also frequent words in the target corpus and therefore, increasing the chance of

activating nodes on individual document graphs.

In theory, this annotation process can be automated in many ways, such as trusting an existing ATE

method to rank and select a top section of candidate terms. We discuss these options and empirically explore

one possibility of such an unsupervised approach in Section 6.

3.2.3 Semantic importance. Following the personalised PageRank algorithm, Pr is computed until

convergence, by which point we obtain stable rank scores for all nodes on the graph created for a document.

Then the corpus level semantic importance of a word is computed as:
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smi(wx) =
∑

dn∈D

Prn(wx) (5)

Prn(wx) is the rank score for wx computed on the graph for document dn (0 if the document does not

contain this word).

3.3 Revising base ATE scores

The semantic importance score calculated for each word before is then used to modify the scores of candidate

terms computed by a base ATE algorithm. Given the set of candidate terms T extracted and scored by a

base ATE algorithm, we firstly normalise each candidate’s ATE score by the maximum attained score in

the set. We then do the same normalisation to the semantic importance scores of all words in words(T ).

Then let nate(ti) and nsmi(wx) each denote the normalised base ATE score of a candidate term and the

normalised semantic importance score of a word, the revised SemRe-Rank score of this term srk(ti) combines

the normalised base ATE score of this term and the normalised semantic importance scores of its composing

words as below:

srk(ti) = (1.0 +

∑

wx∈words(ti)
nsmi(wx)

|words(ti)|
)× nate(ti) (6)

4 DATASET

To extensively evaluate SemRe-Rank we compiled four frequently used datasets covering different domains.

GENIA. The most frequently used dataset in evaluating ATE is the GENIA dataset [Abulaish and Dey

2007; Kim et al. 2003], a semantically annotated corpus for biomedical text mining. GENIA contains 2,000

Medline abstracts, selected using a PubMed query for the terms human, blood cells, and transcription factors.

The corpus is annotated with various levels of linguistic and semantic information. Following [Zhang et al.

2016a] we extract any text annotated as ‘cons’ (concept) as our list of ground truth terms for this dataset,

but exclude ‘incomplete’ terms (e.g., coordinated terms, wildcard terms8).

ACLv2. Recent work by [Zadeh and Handschuh 2014; Zadeh and Schumann 2016] compile a dataset using

the publications indexed by the Association for Computational Linguistics (ACL). The dataset consists of

two versions, ACL ver1 [Zadeh and Handschuh 2014] contains over 10,900 documents, and a list of manually

annotated domain-specific terms. Term candidates are firstly extracted by applying a list of patterns based

on PoS sequence, and then ranked by several ATE algorithms and the top set of over 82,000 candidates

are manually annotated as valid or invalid. The second version ACL ver2 [Zadeh and Schumann 2016] is

a corpus of 300 abstracts from ACL ver1 that are fully annotated for the terminology they contain. Two

annotators with expert knowledge in the domain are required to read the abstracts, and follow a detailed

set of guidelines to mark lexical boundaries for all the terms they find.

We choose to use the ACL ver2 dataset for a number of reasons. First, the complete ACL ver1 dataset

became unavailable at the time of writing as it was replaced by the ACL ver2 dataset9. Second, the annotation

8E.g., CD2 and CD 25 receptors is a coordinated term as it refers to two terms, CD2 receptors and CD25 receptors, but
the first doesn’t appear in the text. For details, see [Kim et al. 2003].
9Following this URL takes us to the web page for ACL ver2, access via https://github.com/languagerecipes/the-acl-rd-tec.
Last retrieved: 15th Jun 2017.
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Table 1. Statistics of datasets used for experiment. #docs - number of documents in the dataset; #unique terms - number
of unique ground truth terms in each dataset; #words - number of words (using white space as separator), without any

filtering such as stop words removal. Note that this includes duplicates.

#words in docs

Dataset #docs #unique terms total min mean max

GENIA 2,000 33,396 434,782 49 217 532
ACLv2 300 3,059 32,182 10 107 300
TTCw 103 287 801,674 330 7,783 67,088
TTCm 37 254 304,903 955 8,240 54,727

exercise was arguably biased, as only highly ranked 82,000 term candidates were annotated, and without

access to their original lexical context in the documents. Based on the previous research, this only accounts

for 15% of term candidates extracted using the suggested patterns [Zhang et al. 2016a], hence it is likely

that a very large proportion of real or correct terms was missed. The ACL ver2 corpus however, was fully

annotated in a better controlled way. The original dataset10 was annotated by two annotators. In this work,

we simply merge the sets of annotations from the two annotators to create a single list of ground trouth

terms for the dataset. In case of conflicts, annotations by the first annotator are used.

TTCm and TTCw. While both GENIA and ACLv2 contain abstracts, we further enrich our dataset

collection by adding two corpora containing full-length articles compiled under the TTC (Terminology

Extraction, Translation Tools and Comparable Corpora) project11. The English TTC-wind (TTCw) corpus

contains 103 articles for the wind energy domain, while the English TTC-mobile(TTCm) contains 37

articles for the mobile technology domain12. Both corpora are created by crawling the Web and then

manually filtered. Ground truth lists of terms for both datasets are also provided.

In addition, the work by Astrakhantsev [Astrakhantsev 2016] also uses a number of other datasets for

evaluating ATE. These are not selected for several reasons. Most of these datasets are created for keyword

extraction, with documents often having only a handful of keywords as ground truth. Some also contain

automatically created ground truth by using a domain thesaurus, which is likely to generate false positives

(i.e., items incorrectly labelled as domain specific terms) and false negatives (i.e., items not labelled as

domain specific terms but should have been).

Table 1 shows the statistics of all four datasets used in the experiment. The datasets cover different

technical domains, various length of documents, and different density of ground truth terms13.

5 EXPERIMENT

5.1 Objectives, procedures, and performance measures

Objectives. Our experiments are designed for two objectives. First, we aim to test the capacity of

SemRe-Rank as a generic method to improve the performance of existing ATE methods. Thus to prove

that the method is generalisable and that results are not by chance, we select a range of 13 state-of-the-art

base ATE methods covering different categories. We discuss the selection and evaluation of these base ATE

10https://github.com/languagerecipes/acl-rd-tec-2.0
11http://www.ttc-project.eu/, last accessed on 30th Jun 2017
12Both datasets originally from: http://www.lina.univ-nantes.fr/?Reference-Term-Lists-of-TTC.html, last accessed on 30th
Jun 2017
13All processed forms of these datasets are available at: https://github.com/ziqizhang/data.
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methods in Section 5.3. Second, we aim to test if SemRe-Rank is a better approach to other alternative,

general-purpose methods that can be combined with a base ATE method to improve its performance. For

this, we replace SemRe-Rank with a method adapting the well-known TextRank algorithm, i.e., adapted

TextRank (adp-TextRank). We introduce the setup of SemRe-Rank and adp-TextRank in Section 5.4,

then apply them to the base ATE methods and compare their effects on improving ATE in Section 5.5.

Procedures. We firstly run each base ATE method on each dataset discussed before to produce a output

list of ranked candidate terms. Next, we add SemRe-Rank and adp-TextRank in turn to the base ATE

method to produce a different output list of ranked candidate terms. These output lists are then compared

against the lists of real terms compiled from the ground truth, using the performance measures detailed

below.

Performance measures. We use two measures to evaluate the output from ATE. Precision at K

calculates the precision (number of true positives according to the ground truth as a fraction of the number

of all candidate terms considered) obtained at rank K. This is commonly used for evaluating ATE in previous

work [Da Silva et al. 1999; Park et al. 2002], and the goal is to assess an ATE method’s ability to rank true

positives highly. We evaluate different K as (50, 100, 500, 1000, 2000)14. For the sake of readability, here we

only show the average P@K calculated over the five segments, i.e., avg P@K. Detailed results can

be found in Appendix B.

The second measure is inspired by the ‘R-Precision’ used in information retrieval, that is the Precision at

the Rth position in the ranking of results for a query that is expected to have R relevant documents. In this

work we propose to calculate Precision (P), Recall (R, number of true positives as a fraction of the number of

ground truth), and F1 (harmonic mean of P and R) at a K that equals to the size of the intersection of the

extracted candidate terms and the ground truth. In other words, this is the number of expected real terms

in the candidates, and we refer to this as the number of ‘Recoverable True Positives’, or RTP. Note

that the RTPs of an ATE method may only be a subset of the ground truth for a dataset since no linguistic

filters are guaranteed to cover all lexical and syntactic patterns of terms. Also, different ATE methods can

use different linguistic filters and therefore, for the same dataset, different ATE methods extract different

candidate terms and can have different RTP values. Table 2 shows the number of candidate terms and

recoverable true positives on each dataset, extracted by each ATE method. Using the GENIA dataset as an

example, we calculate P, R, F1 at rank K=13,831 for the Basic method, and K=15,603 for the CValue

method. Intuitively, a perfect ATE method will obtain 100% precision and also maximum obtainable recall

on that dataset at rank K=RTP. We will refer to this measure as Precision, Recall and F1 at K=RTP,

or in short, P@RTP, R@RTP, and F1@RTP (also the F1 mentioned in the abstract and introduction

of this article).

14Higher K’s such as 3000, 4000 etc are also tested, but results are not very informative for two reasons. First, the ability of
almost all ATE methods to rank true positives on top quickly diminishes beyond K =2000. Second, for the ACLv2, and
the two TTC datasets where the expected true positive terms are around 3000 and less than 300 respectively, increasing K

beyond these numbers will certainly include significantly more false positives than true positives. For these reasons, we notice
little or no change in P@K beyond 2000 and therefore, we do not report them here.
15Implemented in the ATR4S library and share the same linguistic processors, hence have the same set of candidate terms.
16Same as above but implemented in the JATE 2.0 library.
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Table 2. Number of candidate terms extracted by each ATE method on each dataset and their maximum Recoverable True
Positives (RTP). The voting method is not included as it uses the output (i.e., same set of candidate terms) from other ATE
methods. We use publicly available implementations of these methods and due to the difference in such implementations,

it has been impossible to ensure they use identical linguistic filters and extract the identical set of candidate terms. See
Section 5.3.1 for acronyms of base ATE methods.

Dataset Ground truth
ATE methods: Basic, Com-
boBasic, LP, NTM, PU15

ATE methods: TFIDF, CValue, RAKE, Weird-
ness, Relevance, GlossEx, χ216

Candidate terms RTP Candidate terms RTP

GENIA 33,396 56,704 13,831 38,850 15,603
ACLv2 3,059 6,361 2,090 5,659 1,976
TTCw 287 59,441 226 53,088 250
TTCm 254 35,109 226 26,011 238

5.2 Implementation

For all the base ATE methods, we use their existing JATE 2.0 [Zhang et al. 2016a] and the ATR4S

[Astrakhantsev 2016] implementations in order to facilitate future comparative studies and reproducibility.

The two libraries offer the most comprehensive set of state-of-the-art ATE implementations covering a wide

range of different categories of methods. They differ in terms of methods implemented, and also the types

of linguistic filters supported. For the set of ATE methods within each library, we use the same linguistic

filters for them all. However the two libraries do not support identical linguistic filters, and as a result,

methods within each library extract the same set of candidate terms; but the candidate term sets across the

two libraries are different. The detailed configurations of these methods can be found in Appendix C. Our

implementation of SemRe-Rank is shared online17. We run all experiments described below on the same

computer with 4 CPU cores and a maximum of 12GB memory.

5.3 Evaluation of the base ATE methods

As discussed before, to prove that our method is generalisable and our results are not by chance, we select a

total of 13 state-of-the-art ATE methods covering different categories of ATE methods detailed below.

5.3.1 Selection of base ATE methods. Purely unithood based methods are not often used alone today.

Thus we select one method to represent this category: the modified χ2 by [Matsuo and Ishizuka 2003].

We choose a total of 10 termhood based ATE methods as they represent the majority of state-of-

the-art. These include:

• using occurrence frequencies: TFIDF [Zhang et al. 2008], which is the most used and also best

performing [Zhang et al. 2016a] compared to other similar variants.

• focusing on MWTs: CValue [Ananiadou 1994], which is recognised as the most effective method for the

biomedical domain, as well as Basic [Bordea et al. 2013] and ComboBasic [Astrakhantsev 2015], both

are more recent variants based on CValue; and RAKE [Rose et al. 2010], which computes termhood

using graph-based properties.

17https://github.com/ziqizhang/semrerank

Manuscript submitted to ACM

https://github.com/ziqizhang/semrerank


937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

SemRe-Rank: Improving Automatic Term Extraction By Incorporating Semantic Relatedness With
Personalised PageRank 19

• using reference corpus: Weirdness [Ahmad et al. 1999] and Relevance18 [Peñas et al. 2001] both use

frequency of terms observed in a reference corpus; and LinkProbability (LP) [Astrakhantsev 2014],

which uses Wikipedia hyperlink frequencies.

• using topic-modelling techniques: Novel Topic Model (NTM) by [Li et al. 2013].

For hybrid ATE methods that combine unithood and termhood, we use GlossEx [Park et al. 2002],

which has been found to be one of the best performing hybrid methods. We also use a uniform weight

voting method (Vote) that, given different rankings of a list of candidate terms calculated by several ATE

methods, computes new scores for each candidate term by averaging its ranks from different methods. This

is essentially the same as the ‘weighted voting’ [Zhang et al. 2008], except that we use uniform weight

for different ATE methods. The reasons are, as discussed before, that on the one hand, the weight for

each method requires prior knowledge about its expected performance on each dataset; on the other hand,

the benefits of ‘weighted’ voting are not strong as empirically, it can still under-perform its composing

methods. We create two versions of the voting method, one aggregates the results of the five ATE methods:

Basic, ComboBasic, LP, NTM, and PU (Vote5); and the other aggregates the results of the seven ATE

methods: TFIDF, CValue, RAKE, Weirdness, Relevance, GlossEx, and χ2 (Vote7). The reason is that the

ATE methods within each set have the same candidate term lists, which are required for voting to work.

For machine learning based methods, we use Positive unlabelled (PU) learning [Astrakhantsev 2014].

In addition, we have also tested semantic relatedness based methods, including Key Concept

Relatedness (KCR) [Astrakhantsev 2014] and Domain Coherence (DC) [Bordea et al. 2013]. Intuitively, it

makes little sense to incorporate semantic relatedness into another method based on the same hypothesis, as

this will inevitably double-weight semantic relatedness, effectively down-weighting other important features

such as word statistics. We have empirically observed evidence which shows that when combined with KCR

or DC, SemRe-Rank does not consistently improve their base performance. Therefore practically, we do not

recommend using SemRe-Rank with other ATE methods that are also based on the principle of semantic

relatedness.

5.3.2 Base ATE Results. Results for these ATE methods are shown in Tables 3 and 4. Some may argue

that the results of different methods from the two libraries are not directly comparable as they use different

sets of candidate terms. However, we believe that this is still useful reference since the highest figures are seen

on methods from both libraries, suggesting that the different sets of candidate terms do not bias particular

ATE methods.

We notice several patterns from the results. First, neither the supervised machine learning based method

nor the voting method consistently outperforms others. The voting method depends too much on its

composing methods to perform well and tends to find a ‘middle ground’ of all participating methods, except

only a few cases. As a result, it can underperform individual methods. Second, while [Astrakhantsev 2016]

criticises that many existing works do not compare against more recent methods, it is clear that these

methods do not demonstrate consistent advantage over conventional, classic methods, such as CValue,

and TFIDF. Last but not least, in line with previous findings [Astrakhantsev 2016; Zhang et al. 2016a,

18The original implementation in ATR4S uses frequency of candidate terms in a reference corpus. However, in practice, many
terms - particularly MWTs - are not found in the reference corpus, but their composing words. Hence we have adapted
the method following the same approach used for Weirdness in [Zhang et al. 2008]. The implementation is available at
https://github.com/ziqizhang/jate/tree/semrerank
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Table 3. Average Precision at K for the five top segments (50, 100, 500, 1,000, 2,000) (avg P@K) for the 13 base ATE
methods on all four datasets. The highest figures on each dataset under each evaluation metric are in bold. For full results,

see Table 8 in Appendix B.
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ACLv2 .60 .59 .57 .67 .61 .67 .60 .40 .25 .38 .54 .41 .47 .51

GENIA .65 .65 .59 .40 .65 .60 .80 .66 .57 .63 .72 .76 .75 .69

TTCm .22 .22 .01 .11 .23 .20 .21 .08 .00 .03 .19 .08 .07 .16
TTCw .24 .24 .01 .06 .22 .21 .23 .02 .02 .00 .14 .03 .12 .11

Table 4. F1 at K=RTP for the 13 base ATE methods on all four datasets. The highest figures on each dataset under each
evaluation metric are in bold. For full results, see Table 8 in Appendix B.
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ACLv2 .42 .42 .42 .44 .43 .49 .49 .41 .33 .42 .48 .42 .45 .47
GENIA .37 .38 .38 .41 .40 .44 .45 .48 .38 .49 .56 .57 .51 .55
TTCm .26 .26 .00 .13 .34 .26 .41 .06 .00 .04 .27 .08 .27 .24

TTCw .32 .32 .00 .12 .34 .30 .30 .02 .02 .00 .18 .03 .13 .19

2008], no single ATE method can outperform others on all datasets under all evaluation measures. When

inspecting P@K for different K ’s in Table 8 from Appendix B, the pattern is stronger as an even larger set

of different ATE methods has obtained the best result for different K ’s. This raises the question of whether

a ‘one-size-fit-all’ ATE method is possible, and whether it would be more beneficial to develop methods that

can potentially improve a wide range of existing ATE methods.

The significantly lower performance obtained on the TTCm and TTCw datasets are very much due to

the very small amount of ground truth terms compared to relatively large amount of extracted candidate

terms (See Table 2). For example, for the Basic method on the TTCw dataset, the RTP is just over 200 and

the candidate terms extracted are over 59,000. In other words, we expect the method to rank just over 200

real terms highly out of over 59,000 candidates. This is a much more challenging task than, e.g., on the

GENIA dataset which has over 13,000 RPT’s and over 56,000 candidate terms for the same ATE method.

Also, effectively this means that for TTCm and TTCw, the maximum attainable P@K for K >RTP will be

significantly lower. For example, at K=2,000 for TTCm, the maximum attainable precision by this method

is only 11% (0.11) ( 226
2,000

).

Despite the scarcity of real terms in some of the datasets, the significantly varying performance of different

ATE methods can be due to the limitation in their hypothesis of what makes a real domain specific term,

and hence the method built on that hypothesis. For example, Weirdness promotes candidate terms that

contain words found to be ‘unique’ to the target dataset. This is measured by comparing a word’s frequency

in the target dataset against that in a general purpose corpus. On the GENIA dataset where it obtained

the second best avg P@K, it is reasonable to expect that a fair proportion of words in this very technical

domain can be quite unique and hence have low frequency in a general purpose corpus. However, in the

mobile technology and wind energy domains, a substantial amount of common words such as ‘frequency’,
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‘area’, ‘network’, ‘shaft’, ‘blade’, and ‘wind’ are often used as part of domain specific terms. Such words may

also have high frequency in the general domain. For this reason, results of Weirdness on the TTCm and

TTCw datasets are rather poor. Another example is CValue, which obtained the best result on the GENIA

dataset, suggesting that its preference to longer candidate terms over nested, shorter ones works well for

this domain. In that case, it would be reasonable to expect Basic and ComboBasic, which modify CValue by

also promoting such nested candidate terms, to be less effective.

Unfortunately, so far we only gain this insight after testing all ATE methods. This raises the question of

whether it is possible to develop methods that can assess the ‘fit’ between an ATE method for a corpus

a-priori. This may be particularly interesting as it can potentially allow us to predict the optimal ATE

methods for a target corpus. However, this is beyond the scope of this work, and will be explored in the

future.

So far we have evaluated the performance of base ATE methods. Next, we add SemRe-Rank or Adp-

TextRank to each base ATE method to evaluate their effect on enhancing ATE.

5.4 Setup of SemRe-Rank and the Adp-TextRank baseline

In this section, we describe the configuration of SemRe-Rank and also introduce the Adp-TextRank method

which we will use as an alternative baseline to SemRe-Rank for comparison.

5.4.1 SemRe-Rank setup. Following the SemRe-Rank method described in Section 3, we firstly need to

build word embedding models that are used to compute pair-wise semantic relatedness between words. Next

we need to identify the set of seed terms to initialise the personalisation vectors (Section 3.2.2).

For the word embedding models, we follow the method described in Section 3.1 to apply the word2vec

[Mikolov et al. 2013b] algorithm19 to each dataset to train a word embedding model to be used for that

dataset. The parameter of the minimum character length of a word (minc) is set to be the same as that

configured for candidate term extraction described in Appendix C.

For seed term selection, we aim to select a subset of z most frequent candidate terms in a target

dataset for verification. This z must not be too small, in which case we may not be able to identify sufficient

true positives (i.e., the seed set of terms S) that map to words in every document; it also must not be too

large, in which case the manual process can become too laborious. We have tested with z=200 and 100, from

which we identify a seed set of between 20 and 140 real terms depending on datasets. Table 5 shows the size

of the verified seed set of terms for each dataset under different z, and the corresponding average number

of activated nodes on each document-level graph. Overall, we can see that except the ACLv2 dataset, the

verified seed terms only map to a very small number of activated nodes (less than 1% of all nodes in most

cases) on a document-level graph.

5.4.2 Adp-TextRank baseline. To prove that SemRe-Rank is more effective than alternative approaches, we

develop a baseline by modifying the well-known TextRank algorithm. We adapt an existing implementation20

to also use personalisation benefiting from the same set of seeds identified before to calculate a TextRank

score for words within individual document dn ∈ D. Then we add up the TextRank scores of a given word

computed on all documents where the word is found. We call this score ‘corpus level TextRank score’ or

19We use the gensim (https://radimrehurek.com/gensim/models/word2vec.html) implementation.
20https://github.com/summanlp/textrank
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Table 5. Statistics of seed term selection and graph personalisation for the four datasets. avg#nodes: average number of
nodes on a document-level graph; avg#nodes activated : average number of activated nodes in the personalisation vector

for each document-level graph; #seed terms: the number of verified seed terms for each dataset. Note that since different

ATE methods produce different candidate term lists depending on their implementing libraries (JATE 2.0 or ATR4S), this
also impacts on the ranked top frequent candidates as well as the number of nodes on a graph. The table only shows the

calculated average figures across all these methods.

ACLv2 GENIA TTCm TTCw

avg#nodes 525 2,023 5,793 8,813

z=200
avg#nodes activated 101 25 63 19
#seed terms verified 128 126 49 24

z=100
avg#nodes activated 62 16 31 11

#seed terms verified 68 63 31 13

cTextRank score of a word. It then replaces our ‘semantic importance’ (smi(wx)) of words, and combines

with the base ATE scores of a candidate term in the same way described in Section 3.3 to compute a final,

revised score.

5.5 Evaluation of SemRe-Rank and Adp-TextRank

We apply SemRe-Rank and Adp-TextRank with each base ATE method on each dataset to obtain revised

rankings of candidate terms. We then evaluate these revised rankings using the same measures described

before, and compare these figures against those obtained by the corresponding base ATE method. In the

following we firstly analyse SemRe-Rank’s results on P@K and F1@RTP in Sections 5.5.1 and 5.5.2, then

discuss a comparison against Adp-TextRank in Section 5.5.3.

5.5.1 SemRe-Rank improvements in P@K. We make five observations based on results shown in Figure 2.

First, regardless of the seed size z, SemRe-Rank can consistently improve any tested base ATE method

in average P@K, with only one exception of RAKE on the TTCw dataset. In the majority of cases, at

least 1 percentage point (or .01 on the [0, 1] scale) of improvement is noted. Also in many cases, significant

improvements (≥ 4 percentage points) are obtained with different base ATE methods, on all datasets.

The maximum improvement is 15 points under z=200, or 12.6 under z=100. Although there are in total

four cases of <1 point improvement, considering the wide range of base ATE methods tested, the diverse

nature of datasets, also the extreme scarcity of real terms in the TTCm and TTCw datasets, we argue that

the task is very challenging and therefore this result is still very promising. It shows that by combining

SemRe-Rank with any of the tested and potentially many other ATE methods, in the predominant cases we

can expect SemRe-Rank to improve the ATE’s capability to rank real terms highly, as measured by P@K. It

is worth noting that SemRe-Rank can improve both the best and worst performing base ATE methods on

all datasets. On the GENIA dataset, it also significantly improves the second best performing base ATE

method Weirdness by 8.6 and 7.8 percentage points under z=200 and 100 to obtain an average P@K of

.846 and .838 respectively, outperforming the best base ATE CValue+SemRe-Rank (.80+.02 with z=200,

.80+.014 with z=100). The same is noted when comparing CValue against PU on the TTCm dataset under

z=100.

Second, relating to Table 5, we can see that SemRe-Rank can make effective use of very small amount of

domain knowledge in the form of seed terms. With z=200, we only identify between 24 and 128 seed terms,
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Fig. 2. Comparing SemRe-Rank against Adp-TextRank by the improvement in average P@K over base ATE methods for

all five K’s considered. The upper graph shows results obtained under z=200 and the lower graph under z=100. Each table

column corresponds to a separate dataset, and contains 14 numbers (with the highest number shaded in grey) corresponding
to the average P@K scores obtained by a base ATE method. The order of these base ATE methods shown in the table
is the same as that shown in the legend. The base ATE method is also indicated by the pattern of the bar immediately

above each number. The height of each bar indicates the improvement by SemRe-Rank over the base ATE’s average P@K
score shown below it in the table (a missing bar means an improvement of 0). Associated with each column is a red line
with a dot in the middle, which indicates the improvement by Adp-TextRank over the same base ATE. For example, the
leftmost bar shows that SemRe-Rank improves the Basic algorithm by .024, or 2.4 percentage points (achieving a total of

.624, i.e., .60 + .024), in average P@K. Adp-TextRank in comparison, achieves a .01 or 1 precentage point improvement
over Basic. (This figure is best viewed in colour)
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and with z=100 this drops to only 13 to 68. Notice also that when mapped to activated nodes on document

level graphs, on average, only between less than 1% and 5% nodes are activated, except on the ACLv2

dataset where this figure is between 10 and 20 %. As discussed before, in theory, these activated nodes can

still contain ‘noise’ because multi-word terms that are selected in the seeds can still contain common words

that are not domain-specific.

Third, comparing the results obtained with the two z values, slightly better performance is noticed with

z=200. However, this is only very noticeable on the TTCm dataset. Again relating to the number of seeds

and the activated nodes on a document level graph shown in Table 5, it appears that the benefits of having

more seed terms - in many cases almost doubled when increasing z from 100 to 200 - are not strong. This

can be a desirable feature as it suggests that practically, there is no need for additional human input.

Fourth, it appears that the base ATE methods that can benefit most from SemRe-Rank regardless of

datasets include TFIDF, Weirdness, Relevance, and χ2. Among these, TFIDF relies on occurrence frequencies

and, unlike CValue, Basic etc, does not bias to either SWTs or MWTs. Weirdness and Relevance are based

on the hypothetical different frequency distribution of domain specific terms and non-terms. χ2 relies on

candidate term co-occurrences.

Finally, it is worth noting that since we are calculating the average P@K over five different K’s, it is not

always the case that we see a change at every K. The implication is that, if we exclude the number of K ’s

where no change is noticed, the improvements in P@K can be higher. For details, see Appendix B.

5.5.2 SemRe-Rank improvements in F1@RTP. Figure 3 shows that, when measured by F1@RTP, improve-

ments by SemRe-Rank are less noticeable compared to those seen for average P@K, particularly on the

ACLv2 and GENIA datasets. This can be attributed to two reasons. First, F1 measures the balance between

Precision and Recall. However, on the ACLv2 and GENIA datasets, the maximum attainable Recalls are

rather low, due to the low numbers of RTPs compared to the ground truth (see Table 2). Second, on both

datasets, P@RTP are likely to be low because the RTP values are higher compared to the K’s we have

used for evaluating P@K, meaning that we can expect a lot more noise to be in the ranking. The opposite

can be said for TTCm and TTCw as in these cases, the RPT values are much lower than the K’s we have

used to evaluate P@K. Therefore, the achieved improvement in F1@RTP on these datasets are much more

significant.

Still we notice many similar patterns as those discussed for P@K. First, using a (potentially very) small

number of seed terms, SemRe-Rank effectively improves the ranking of real terms by many base ATE

methods, obtaining higher F1@RPT scores. Second, the different improvements achieved under different z

values are not very noticeable, except on the TTCm and TTCw datasets. Finally, base ATE methods that

have benefited most are also TFIDF, Weirdness, Relevance, and χ2.

5.5.3 SemRe-Rank v.s. Adp-TextRank etc. Compared against Adp-TextRank that uses the same seed sets

of terms (both z=100 and 200), SemRe-Rank has obtained generally much better performance. Although

better results are not always achieved for every base ATE method on every dataset, they have been noticed

for the most cases, especially in terms of average P@K, and on the TTCm and TTCw datasets where the tasks

are more challenging. Specifically, in terms of average P@K, SemRe-Rank can outperform Adp-TextRank

by a maximum of around 8 (Relevance, ACLv2) and 6 percentage (χ2, TTCm) points under z=200 and

100 respectively; or in terms of F1@RTP, 17 and 7 points respectively (RAKE, TTCm). Again taking into
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Fig. 3. Comparing SemRe-Rank against Adp-TextRank by the improvement in F1@RTP over base ATE methods. See

Figure 2 caption for how to interpret results on this Figure. (This figure is best viewed in colour)

account the challenges of the tasks due to the wide range of ATE methods and datasets, we argue that the

results are rather encouraging.

One problem with Adp-TextRank is that occasionally, it can damage the performance of base ATE

methods, as we notice several cases of drop in both average P@K and F1@RTP. This is a rather unattractive
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feature, particularly if we cannot anticipate under what situations it will improve or damage base ATE

performance.

Since the key difference between SemRe-Rank and Adp-TextRank is how the graphs are created, we can

argue that overall, the superior performance by SemRe-Rank can be attributed to its graph construction

approach that may have better captured semantic relatedness between words and subsequently feed that

information into the scoring of candidate terms.

Arguably, the voting method (Vote5 and Vote7) can be seen as another generic approach to improve

individual ATE method. Compared to SemRe-Rank, the main problem is that its performance is often

limited by the individual best performing method that participates in voting. Tables 3 and 4 have shown

that voting cannot always improve the individual best performing method. Previous research [Astrakhantsev

2016] has also shown that even weighted voting can still underperform individual participating methods.

In contrast, improvements by SemRe-Rank are more consistent, and SemRe-Rank has also proved to be

capable of further improving voting based methods (Figures 2 and 3).

6 LIMITATIONS OF SEMRE-RANK

In its current state, SemRe-Rank is still limited in a number of ways, which we discuss below and aim to

address in our future work.

6.1 Dependence on supervision

First and foremost, SemRe-Rank requires a set of seed terms to personalise the PageRank process. Although

we have proposed a guided annotation process that helps reduce human input to simply verifying a couple

of hundred candidate terms, ideally we want to eliminate this process completely. As discussed before, one

method to enable this is to let an existing ATE method to select top ranked z candidate terms and simply

use them all to initialise the personalisation vectors. However, due to the varying and unknown performance

of ATE methods in different domains, this will inevitably include noise in the personalisation process. To

explore if this is feasible, we report our preliminary exploration with some degree of success in this direction.

To do so, we simply use all top ranked z (either 200 or 100) candidate terms by their total frequency in a

corpus. In other words, we remove the human verification process from the current design of SemRe-Rank.

Note that although we can test a more sophisticated ATE method and theoretically anticipate better results,

our goal here is to gauge the extent to which such a potentially noisy personalisation process will damage

the usability of SemRe-Rank as a generic approach to enhance ATE. We will refer to this setting as the

unsupervised variant of SemRe-Rank, or simply unsupervised SemRe-Rank.

Figures 4 and 5 show the improvements in average P@K and F1@RTP over base ATE methods obtained

by the unsupervised SemRe-Rank. We summarise three observations from these results. First, compared to

the original SemRe-Rank whose results are shown in Figures 2 and 3, the unsupervised variant is indeed less

effective, as the ranges of achieved improvements in both measures are lower. This confirms that the noise

in the personalisation process indeed has negatively impacted the performance of SemRe-Rank.

Second, we can see a positive correlation between the amount of noise in seed terms and its negative effect

on SemRe-Rank. Recall that Table 5 shows the number of verified terms for each dataset under different

z. In other words, the difference between z and the number of verified terms is the number of incorrect,

or noisy, candidate terms added to the personalisation process and inevitably, these correspond to poor
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Fig. 4. Improvements in average P@K over base ATE methods by the unsupervised SemRe-Rank. See Figure 2 caption for
how to interpret results on this Figure. (This figure is best viewed in colour)

quality of personalisation vectors, which can mislead the computation of PageRank scores. Specifically, with

z=200, we have selected 72 incorrect seed terms (or 36% of all seeds) for ACLv2, 74 (37%) for GENIA, 151

for TTCm (75%), and 176 (88%) for TTCw. The situation is similar with z=100, with TTCm and TTCw

suffering from a significantly higher proportion of noise. As a result of this, we can see that when compared

against the original SemRe-Rank on a per-dataset basis, the performance of unsupervised SemRe-Rank on

TTCm and TTCw is significantly lower.

However (our third observation), despite the substantial noise in seed terms and their negative effect

on the unsupervised SemRe-Rank, it is worth noting that the unsupervised SemRe-Rank has still achieved

notable improvements in a wide range of base ATE methods on all datasets. Many of such improvements are

also very significant. More interestingly, notice that 1) the noise in seed terms did not cause SemRe-Rank to
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Fig. 5. Improvements in F1@RTP by the unsupervised variant of SemRe-Rank over base ATE methods. See Figure 2
caption for how to interpret results on this Figure. (This figure is best viewed in colour)

damage base ATEs, except only three occasions where the decrease is very small; 2) on ACLv2 and GENIA

where over 30% of the seeds are incorrect terms, the performance of the unsupervised SemRe-Rank did

not suffer very badly compared to the original SemRe-Rank. This suggests that SemRe-Rank can be quite

robust to noise. This is a very important and desirable feature. As in practice, automatically selecting a

noise-free seed set of terms is almost impossible. However, creating a seed set with reasonable accuracy but
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Table 6. Number of rare RTPs (Recoverable True Positives) compared to the total number of RTPs found in the candidate
term lists of each ATE method. A rare RTP is defined as one whose composing words all have a total corpus frequency of

less than 5.

Dataset
Basic, ComboBasic, LP, NTM, PU TFIDF, CValue, RAKE, Weirdness,

Relevance, GlossEx, χ2

Rare RTP Total RTP Rare RTP Total RTP

GENIA 647 13,831 121 15,603
ACLv2 143 2,090 171 1,976
TTCw 0 226 0 250
TTCm 0 226 0 238

some degree of noise is much more achievable. Our results so far have shown SemRe-Rank can potentially

still perform just as well using such a reasonable but noisy seed set.

6.2 Quality of word embeddings

SemRe-Rank requires learning word embedding vectors on the target corpus in order to compute semantic

relatedness between words. Traditionally, word embeddings are best estimated on very large corpora, typically

containing multi-million and even billions of words. In comparison, our word embedding learning task is

conducted on very small corpora. A known limitation of existing word embedding learning methods is that

the embedding vectors of low frequency words are often poor quality [Luong et al. 2013]. It is possible that

SemRe-Rank can also suffer from this issue, as we did not exclude low frequency words when training word

embeddings. To investigate the extent to which rare words can affect SemRe-Rank, we have carried out two

further analyses.

First, we aim to understand for a given dataset, the extent to which rare words are used as part (or

whole) of real terms. For this we quantify the number of ‘rare’ RTP’s found in the candidate terms extracted

by each ATE method for each dataset. A rare RTP is one whose composing words are all ‘rare words’. We

call a word ‘rare’ if it has a total corpus frequency below 5, which is the default parameter used in the

word2vec implementation to discard any infrequent words. We consider this a minimum requirement for

learning ‘reasonably quality’ word embedding vectors. Table 6 shows that rare RTP’s are found in both

the ACLv2 and GENIA datasets, but not TTCm or TTCw datasets. Although they represent only a small

percentage, this confirms that rare words can potentially impact on SemRe-Rank because they can be used

in real terms.

Second, assuming that the embedding vectors of rare words are poor quality, we aim to understand how

SemRe-Rank has performed on the RTP’s containing these rare words. To do so, we compare the ranking of

a rare RTP in the SemRe-Rank’s output against that in the base ATE method’s output. Specifically, let

rank(ate(ti)) return the rank position of ti among all T candidate terms based on its score computed by a

base ATE method, ate(ti); and let rank(srk(ti)) return the rank position of ti among the same candidate

terms based on its SemRe-Rank revised score (srk(ti)) for this base ATE method. Then we calculate its

‘relative movement’ as:

mov(ti) =
rank(ate(ti))− rank(srk(ti))

|T |
(7)
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As an example, if a rare term is ranked at the 999th out of 1,000 candidate terms based on a base

ATE method, but the 99th when we apply SemRe-Rank to this base ATE, it will have a movement of
999−99
1,000

= 0.90. In other words, SemRe-Rank has moved this rare term up the entire candidate term list by

90%.

For either of the ACLv2 and the GENIA datasets, and for each base ATE method, we calculate this

statistic for every rare RTP found in its candidate terms. We define different ranges of movement based on

a 5% interval on the [-100%, 100%] scale (i.e., a movement of between -100% and -95%, between -95% and

-90% etc.), and then we measure the percentage of rare RTP’s that fall under each range. Figure 6 plots

heatmaps showing the distribution of these rare RTP’s over these different movement ranges. It shows that

in the majority of cases, SemRe-Rank fails to rank these rare RTP’s higher than the base ATE methods.

In fact, except those cases of no movement (i.e., 0%), it has mostly ranked them lower. It is worth noting

however, that for those rare RPT’s that suffer from up to a 5% drop in their ranking due to SemRe-Rank,

in over 90% of cases the drop is very minor, i.e., < 1%.

These findings show that, although rare RTP’s are not common in our datasets, they do cause trouble to

SemRe-Rank as it indeed has performed badly on these cases. We further make an assumption that this

could be, partly due to the poor embedding vectors estimated for the rare words contained in such rare

RTP’s. The practical reason for not discarding these rare words when training word embeddings is our need

to compute pair-wise relatedness between any words. In this case, we want to have a coverage that is as

complete as possible. The relatively small corpus size can certainly be a cause for these poorly estimated

embedding vectors. Therefore, as an alternative, we can use already existing word embeddings pre-trained on

large general domain corpora, or train word embeddings on additionally collected domain-specific corpora, if

these are available.

6.3 Maximising the benefits of SemRe-Rank

A natural question by many readers at this point would be when should we use SemRe-Rank and with what

ATE methods in order to maximise its benefits. For the first part of this question, our experiments on an

extensive set of base ATE methods have shown that SemRe-Rank is highly generic: we can expect it to

work with potentially a wide range of different categories of ATE methods that are based on word statistics.

However, it should not be used with methods that already use semantic relatedness in any form.

The second part of this question is a lot harder to answer and would require significant additional work in

the future. It also involves answering two sub-questions: 1) how can we predict the optimal base ATE method

for a target corpus; and 2) how much improvement can we expect SemRe-Rank to achieve with this method.

For 1), as discussed previously in Section 5.3.2, we believe that the performance of a base ATE method on a

particular dataset can be predicted if we can measure the ‘fit’ between the hypothesis of the ATE method

and the characteristics of the target corpus. For example, by measuring the vocabulary overlap between the

target corpus and a reference general-purpose corpus, we may be able to gauge the extent to which methods

such as Weirdness and Relevance can be effective, as both promote candidate terms that contain words

frequently found in the target corpus but not other non-domain corpora. However, developing a generic,

systematic method to quantify such a ‘fit’ still requires significant research but can be very beneficial. For

2), previously we have discussed that SemRe-Rank seems to work best with TFIDF, Weirdness, Relevance

and χ2, each in turn representing the categories of ATEs that use simple occurrence frequencies, measure
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Fig. 6. Heatmap showing the distribution of rare RTPs over different ranges of relative movement in their rankings due to
SemRe-Rank, when compared to each base ATE method on either ACLv2 or GENIA dataset. Numbers within each cell are

percentage points and each row in a table sums up to 100 (%). Each column represents a movement range indicated by
the percentage numbers on top of the column. Each movement range is a 5% interval with the maximum indicated by the
number, except the 0% range that represents ‘no movement’ only. For example, in the top left table (ACLv2, z=200), the

first row indicates that, when we apply SemRe-Rank with z=200 to GlossEx, 11% of rare RTPs are given a new ranking
that is down by between 5 and 10 percent compared to their original rankings based on the base GlossEx scores (refer to
Table 6 for the total number of rare RTPs found by each base ATE methods. This figure is best viewed in colour).

the different frequency distribution of domain specific terms and non-terms, and rely on candidate term

co-occurrences. However, it would be too bold to conclude that SemRe-Rank will always work better with

any ATE methods from these categories. In fact, we believe that this will depend on many factors, such

as whether the base ATE method is a good fit for the target corpus, and whether the method already

(either accidentally or purposefully) ranks highly the candidate terms that happen to contain semantically

important words (in which case the effect of SemRe-Rank may be small). All these questions will require

further investigation to answer.

6.4 Graph of words v.s. graph of terms

SemRe-Rank is currently a model based on graphs of words. However, in a typical ATE task, we expect to

extract both SWTs and MWTs. This mismatch between the design of SemRe-Rank and the goal of ATE

causes several empirical challenges, such as the seed selection and the initialisation of personalisation vectors

discussed before. An alternative design would be to develop SemRe-Rank based on graphs of candidate
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terms, or n-grams (n>1). However, this also creates new questions, such as how to learn embeddings for

candidate terms and its influence on the shape of created graphs and their subsequent effect on performance.

7 CONCLUSION

Automatic Term Extraction is a fundamental task in data and knowledge acquisition and a long established

research area for decades. Despite a plethora of methods introduced over the years, it continues to remain

challenging and an unsolved task in some domains, as studies (including this one) have shown poor results

in some datasets, and inconsistent performance across different domains.

This work addresses the problem by taking two under-explored research directions: 1) to propose a generic

method that can be combined with an existing ATE method to further improve its performance, and 2) to

incorporate semantic relatedness in the extraction of domain specific terms. We have developed SemRe-Rank,

which applies a personalised PageRank process to semantic relatedness graphs of words to compute their

‘semantic importance’ scores. The scores are then used to revise the base scores of term candidates computed

by another ATE algorithm.

SemRe-Rank has been extensively evaluated with 13 state-of-the-art ATE methods on four datasets of

diverse nature, and is shown to be able to improve over all tested methods and across all datasets. Among

these, the best performing setting has achieved a maximum improvement of 15 percentage points in P@K,

and scored significant improvements (≥ 4 points in P@K) on many base ATE methods on all datasets.

Lessons learned. First, we have shown SemRe-Rank to be a generic approach that can potentially

improve various categories of ATE methods, regardless of their base performance, and on a diverse range of

datasets. Some of these improvements can be quite significant, even on some very challenging datasets due

to their extreme scarcity of real terms. To the best of our knowledge, this is also the first work in such a

direction.

Second, SemRe-Rank benefits from only a small amount of supervision, in the form of between just 10

and around a hundred seed terms, selected by a manual verification process.

Third, SemRe-Rank is robust to noise, as our preliminary experiments with an unsupervised variant

of SemRe-Rank shows that despite the substantial noise in the automatically selected seed terms, the

unsupervised variant is still able to obtain widespread improvement over base ATE methods. In many cases,

this can be very close to the original SemRe-Rank.

Last but not least, our comparison against an alternative method adapted from the well known TextRank

algorithm (adp-Textrank) shows that SemRe-Rank can outperform adp-TextRank in many cases and again,

sometimes quite significantly. This suggests that our proposed method for incorporating semantic relatedness

via a graph model is more effective.

Future work. We will undertake new research to address the limitations of SemRe-Rank discussed

before for our future work. First, we will explore different methods to automate the seed term selection to

develop unsupervised SemRe-Rank. To start, we will test the usage of existing, generally well performing

ATE methods for selecting seed terms. Another alternative would be to use existing domain lexicons such

as dictionaries and gazetteers that contain words or terms known to be specific to the domain, but not

necessarily overlap with the target corpus. We propose to add such words and terms to the graphs and use

them as seeds to propagate their influence to other potentially relevant candidate terms found in the corpus.

However, this will also require a modification to the word embedding learning process.
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Second, we will explore the effects of different word embeddings, including learning embedding vectors

from additionally collected large, domain specific corpus, as well as those pre-trained on general purpose

corpora. This will help us understand to what extent can we address the issues of rare words and their

implications on the performance of SemRe-Rank.

Third, we will research methods able to predict optimal ATE methods given a specific target corpus, by

measuring a ‘fit’ between the hypothesis of an ATE method and the characteristics of the corpus, such as

the way discussed before for Weirdness. We will start with specific ATE methods, then investigate methods

for generalisation. Further, additional experiments will be carried out to establish whether SemRe-Rank is

particularly effective for certain types of ATE methods.

Finally, we will develop SemRe-Rank on a graph of candidate terms instead of words, and compare its

performance against the current implementation based on words.
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Anselmo Peñas, Felisa Verdejo, and Julio Gonzalo. 2001. Corpus-based terminology extraction applied to information access.

In Proceedings of the Corpus Linguistics.

Fuchun Peng, Fangfang Feng, and Andrew McCallum. 2004. Chinese segmentation and new word detection using conditional

random fields. In Proceedings of the 20th international conference on Computational Linguistics. Association for

Computational Linguistics, 562.

Xiang Ren, Zeqiu Wu, Wenqi He, Meng Qu, Clare R Voss, Heng Ji, Tarek F Abdelzaher, and Jiawei Han. 2017. CoType:

Joint extraction of typed entities and relations with knowledge bases. In Proceedings of the 26th International Conference

on World Wide Web. International World Wide Web Conferences Steering Committee, 1015–1024.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. Automatic keyword extraction from individual documents.

John Wiley and Sons.

Paul JH Schoemaker, George S Day, and Scott A Snyder. 2013. Integrating organizational networks, weak signals, strategic

radars and scenario planning. Technological Forecasting and Social Change 80, 4 (2013), 815–824.

Francesco Sclano and Paola Velardi. 2007. TermExtractor: a Web Application to Learn the Shared Terminology of Emergent

Web Communities. In Proceedings of the 3rd International Conference on Interoperability for Enterprise Software and

Applications.

Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren, Clare R Voss, and Jiawei Han. 2017. Automated Phrase Mining from

Massive Text Corpora. arXiv preprint arXiv:1702.04457 (2017).

Sa-Kwang Song, Yun-Soo Choi, Hong-Woo Chun, Chang-Hoo Jeong, Sung-Pil Choi, and Won-Kyung Sung. 2011. Multi-words

terminology recognition using web search. In International Conference on U-and E-Service, Science and Technology.

Springer, 233–238.
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Appendices

A EMPIRICAL DATA ANALYSIS TO DETERMINE THE relmin AND THE reltop THRESHOLDS

As described in Section 3.2.1, during graph construction, we need to select ‘strongly related’ words to a

target word wx, with which we establish edges on the graph. We use two thresholds to control the selection

of such strongly related words for a target word: a minimum semantic relatedness threshold relmin, and top

reltop from relrank(wx). This design is empirically driven by a data analysis that is independent from the

evaluation of SemRe-Rank.

We choose to analyse a range of relmin values and their effect on the shape of the created graphs. For this,

we have set relmin to be one of the values {0.5, 0.6, 0.7, 0.8, 0.9}. Firstly, on each dataset and with each

value of relmin, we count the number of wx ∈ words(T ) (T the extracted candidate terms in a dataset) such

that for every other word wy ∈ words(T )(wx ̸= wy), rel(wx, wy) < relmin. In other words, wx is an isolated
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Table 7. Percentage of words that has no strongly related words under a given relmin threshold. These words will become
isolated nodes when the graph is constructed for its containing document.

0.9 0.8 0.7 0.6 0.5

ACLv2 16% 9% 6% 4% 3%
GENIA 19% 5% 2% 0.4% 0.1%
TTCm 10% 4% 3% 2% 1%
TTCw 11% 4% 2% 1% 0.4%

node on the graph. We then divide this count by the size of words(T ) to obtain a percentage number and

show this in Table 7 for different relmin. Note that as discussed before in Section 5.1 (last paragraph), the

size of T depends on different ATE methods which may use different linguistic filters. And in this work, this

depends on either the ATR4S or the JATE 2.0 library that uses its own linguistic filters for the implemented

ATE methods. However, we notice the same pattern regardless of what these T are. Therefore, we only

discuss our findings in this section based on the T extracted by the ATR4S library.

Secondly, we count for a target word wx ∈ words(T ), the number of wy ∈ words(T )(wx ̸= wy) such

that rel(wx, wy) ≥ relmin. We then divide this number by the size of words(T ), obtaining a percentage

value showing the fraction of words in words(T ) that has a relatedness score of at least relmin with the

target word. We call this percentage value ‘Percentage of Strongly Related Words (PSWA)’. We repeat

this for every word in words(T ) using the same relmin, this gives us a distribution of words from words(T )

over different value ranges of PSWA for a certain relmin. We then plot this distribution in quartiles using

the box-and-whisker chart in Figure 7, showing for a certain relmin (x-axis), the lowest PSWA, the lower

quartile, the median, the upper quartile, and the highest PSWA (all referenced against the y-axis).

Fig. 7. Distribution of pair-wise semantic relatedness scores computed on the four datasets. y -axis: percentage of words

from words(T ); x-axis: relmin threshold.

Using ACLv2 for example, when relmin = 0.9, the PSWA has a lowest value of 0 and a lower quartile of

about 60%, suggesting that roughly 25% of words (from words(T ), same for the following) have a semantic

relatedness score of above 0.9 with between 0 and almost 60% of other words. The median PSWA is slightly

above 75%, suggesting that about 25% of words have a relatedness score of above 0.9 with between 60 and

75% of other words. Or incrementally, 50% of words (anywhere below the median) can have a semantic

relatedness score of above 0.9 with some other words (ranging between 0 and 75%). Effectively, this means

that if we use relmin = 0.9 as the minimum threshold, almost 50% of words will be connected with between
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60 and almost 80% of other words on the graph (between the lower and upper quartiles), which seems to

make little sense. And yet Table 7 shows that still for this dataset, 16% of words are not connected to

any other word at all with this threshold, and therefore, become disconnected nodes on a graph. Similar

situation is found on the TTCm and TTCw datasets. While on the GENIA dataset, a high relmin does

seem to have stronger discriminative power. However, the problems are that, on the one hand, high relmin

threshold does not demonstrate consistent discriminating power on all datasets; on the other hand, it almost

certainly results in poor graph connectivity as too many nodes are isolated.

Although reducing relmin certainly creates more superfluous connections, the positive effect is the reduction

in the number of isolated nodes from graphs. However, it is clear that relmin alone is insufficient for the task

and therefore, we introduce the other threshold reltop to take only the top ranked words from relrank(wx)

for a given wx. And as described before, we set relmin = 0.5, which although does not eliminate isolated

nodes, still reduces them to reasonable levels and semantically represents a middle point on a [0, 1] scale

relatedness. And we set reltop to 15% based on the intuition discussed before in [Zhang et al. 2016a].

B FULL RESULTS

Table 8 shows the full results obtained by the 13 base ATE methods. Tables 9 and 10 show the improvement

(or decrease) to the base ATE performance obtained by SemRe-Rank and its unsupervised variant. In both

tables, avg P@K is the average of Precision over the five different K’s. However, it is not always the case

that we notice an improvement in Precision at every K. Therefore P@K CNGs shows the number of K’s

where a change to the base ATE method is noticed. In other words, if we exclude the number of K’s where

no change is noticed during the calculation of avg P@K, the figures can be higher.

C BASE ATE METHODS CONFIGURATIONS

Both JATE 2.0 and ATR4S allow evaluating ATE methods in a uniform environment. This is achieved

through using the same linguist processors to extract the same set of candidate terms for different ATE

methods. While the two libraries do not support identical settings, we have ensured that they are as close as

possible and that methods within each library use the same candidate term extraction process.

Specifically, JATE 2.0 uses PoS sequence patterns to extract words and word sequences based on their

PoS tags. The PoS patterns depend on different datasets. For GENIA and ACLv2, we use the same patterns

as in [Zhang et al. 2016a]. For TTCw and TTCm, we use the patterns distributed with the datasets. We

then process the candidates by removing leading and trailing stop words and non-alphanumeric characters,

and only keep candidate terms that satisfy several conditions defined on: minimum character length (minc),

maximum character length (maxc), minimum words (minw), and maximum words (maxw).

ATR4S firstly extracts n-grams, then filters them by applying a generic PoS pattern and stop words

removal. It also supports min/max char, and min/max word parameters. Table 11 shows the details of the

candidate term extraction configuration on all datasets. The slightly stricter constraints applied to both

TTCw and TTCm datasets are used as a means to reduce incorrect candidate terms due to very sparse

real terms in the datasets. Table 2 shows the number of candidate terms extracted from each dataset by

each ATE method. Note that we do not use minimum frequency to filter candidate terms. Frequency based

filtering is a common practice in ATE to reduce the number of false positives [Zhang et al. 2016a], however,

at the cost of losing true positives. Overall, Table 2 shows that the generic PoS patterns used by ATR4S
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Table 8. Full result of the 13 base ATE methods on all four datasets. The highest figures on each dataset under each
evaluation metric are in bold.
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ACLv2

P@50 .84 .82 .72 .88 .82 .82 .62 .44 .18 .32 .64 .40 .58 .54
P@100 .72 .71 .69 .81 .82 .85 .69 .46 .15 .35 .65 .50 .62 .46
P@500 .56 .55 .56 .67 .60 .63 .67 .34 .29 .42 .53 .36 .48 .48

P@1,000 .49 .49 .51 .60 .43 .58 .56 .36 .29 .42 .47 .40 .45 .46
P@2,000 .39 .39 .39 .41 .40 .46 .45 .38 .32 .40 .43 .40 .41 .42

P@RTP .38 .38 .39 .40 .40 .45 .45 .38 .32 .40 .43 .39 .41 .42
R@RTP .48 .47 .47 .50 .46 .54 .54 .44 .35 .44 .54 .44 .51 .51

F1@RTP .42 .42 .42 .44 .43 .49 .49 .41 .33 .42 .48 .42 .45 .47

GENIA

P@50 .80 .80 .38 .32 .74 .66 .86 .88 .68 .86 .68 .78 .66 .82

P@100 .74 .74 .51 .39 .69 .58 .83 .82 .63 .78 .65 .74 .69 .80
P@500 .64 .64 .70 .42 .65 .58 .80 .58 .56 .58 .74 .78 .71 .73

P@1,000 .57 .57 .69 .45 .61 .60 .78 .53 .52 .50 .77 .77 .71 .70

P@2,000 .49 .49 .66 .41 .58 .58 .74 .47 .44 .44 .77 .74 .67 .70

P@RTP .32 .33 .34 .36 .35 .39 .40 .44 .36 .45 .50 .53 .46 .50
R@RTP .44 .44 .43 .48 .47 .51 .52 .52 .41 .53 .63 .62 .58 .62
F1@RTP .37 .38 .38 .41 .40 .44 .45 .48 .38 .49 .56 .57 .51 .55

TTCm

P@50 .52 .52 0 .16 .44 .38 .34 .20 0 0 .34 .20 .18 .28
P@100 .35 .35 0 .14 .39 .33 .29 .10 0 0 .29 .10 .31 .20

P@500 .11 .11 .01 .11 .17 .13 .21 .04 0 .03 .16 .05 .13 .15
P@1,000 .07 .07 .01 .08 .10 .09 .12 .03 0 .04 .10 .04 .10 .10
P@2,000 .06 .06 .01 .05 .05 .06 .07 .02 0 .03 .07 .03 .07 .07

P@RTP .20 .20 0 .10 .27 .20 .33 .05 0 .04 .22 .07 .22 .20
R@RTP .36 .36 0 .19 .47 .36 .55 .06 0 .05 .37 .09 .36 .31
F1@RTP .26 .26 0 .13 .34 .26 .41 .06 0 .04 .27 .08 .27 .24

TTCw

P@50 .52 .52 0 0 .46 .44 .52 .04 .04 0 .26 0 .24 .16
P@100 .41 .41 0 .07 .34 .30 .36 .04 .02 0 .21 .04 .14 .19

P@500 .14 .14 .01 .10 .16 .15 .15 .01 .01 0 .10 .02 .09 .09
P@1,000 .07 .07 .01 .07 .09 .09 .09 .01 .01 0 .07 .02 .07 .07
P@2,000 .04 .04 .01 .04 .05 .05 .05 .01 .01 .01 .05 .02 .05 .05

P@RTP .25 .25 0 .09 .26 .23 .23 .02 .01 0 .14 .02 .10 .14

R@RTP .44 .44 0 .19 .50 .43 .43 .02 .03 0 .25 .04 .20 .28

F1@RTP .32 .32 0 .12 .34 .30 .30 .02 .02 0 .18 .03 .13 .19

generate more candidate terms on all datasets, while the domain specific PoS patterns used by JATE 2.0

capture more correct candidate terms (RTP).
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Table 9. Comparing SemRe-Rank (SRK) and its unsupervised variant (uSRK, both with z = 100) against each base ATE
method. Only the changes over the base ATE methods are shown as points within a scale of [0, 1], and (brackets) indicate

negative changes. Bold texts highlight the higher (if different) value between SRK and uSRK on each compared metric.
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ACLv2

SRK P@K CNGs 4 3 3 2 5 4 4 5 5 5 4 4 5 4
uSRK P@K CNGs 1 3 3 4 4 3 4 4 5 5 3 4 3 4
SRK avg P@K .014 .01 .018 .01 .032 .01 .022 .01 .092 .126 .058 .022 .042 .026

uSRK avg P@K .01 .01 .022 .01 .018 .004 .004 .01 .098 .086 .01 .03 .018 .016

SRK P@RTP - - - - - - .01 .01 .03 .01 .01 - .01 .01
uSRK P@RTP - - - - - - - .01 .02 .01 - - .01 .01

SRK R@RTP .003 - - .04 .01 - .002 .01 .04 .03 .01 - .01 .002
uSRK R@RTP .003 - - .04 .005 - - .01 .02 .02 .002 - .01 .002
SRK F1@RTP - - - .02 .003 - .01 .01 .03 .02 .01 - .01 .01
uSRK F1@RTP - - - .02 .002 - - .01 .02 .01 - - .01 .01

GENIA

SRK P@K CNGs 4 4 4 5 2 5 5 4 5 5 4 5 5 3
uSRK P@K CNGs 4 4 5 4 2 5 5 4 5 5 3 5 5 4

SRK avg P@K .01 .01 .038 .01 .036 .01 .014 .04 .062 .106 .03 .078 .026 .01

uSRK avg P@K .012 .012 .044 .01 .01 .01 .014 .04 .058 .104 .018 .076 .022 .004

SRK P@RTP .01 - - - - - .02 - .03 - .04 .01 .01 .01

uSRK P@RTP .01 - - - - - .01 - .03 - .04 .01 .01 .01
SRK R@RTP .01 - - - - .004 .02 .007 .04 - .04 .01 .01 .01

uSRK R@RTP .002 - - - - .004 .01 .007 .04 - .04 .01 .01 .004

SRK F1@RTP .01 - - - - - .02 .003 .04 - .04 .01 .01 .01
uSRK F1@RTP .01 - - - - - .01 .003 .04 - .04 .01 .01 .01

TTCm

SRK P@K CNGs 4 4 1 5 2 4 3 3 3 5 4 5 3 4

uSRK P@K CNGs 4 2 - 2 1 3 3 4 2 5 4 5 3 3
SRK avg P@K .01 .01 .004 .02 .03 .01 .068 .01 .01 .126 .068 .05 .08 .022

uSRK avg P@K .01 .004 - .01 (.01) .004 .01 - .01 .104 .028 .044 .01 .01

SRK P@RTP - - - .05 .01 .02 - .01 .01 .14 .03 .08 .01 .02

uSRK P@RTP - - - .02 - - - - - .08 .02 .04 .01 -
SRK R@RTP - - .01 .08 .01 .02 .01 .01 .03 .21 .06 .11 .03 .05

uSRK R@RTP - - .01 .04 - - .01 .004 .01 .16 .04 .05 .03 .01
SRK F1@RTP - - - .06 .01 .02 .002 .01 .01 .17 .04 .09 .02 .03

uSRK F1@RTP - - - .03 - - .002 - - .12 .03 .04 .02 .003

TTCw

SRK P@K CNGs 2 2 1 3 2 2 2 2 - 5 4 5 4 3

uSRK P@K CNGs 2 2 - 2 1 1 1 - - 5 3 3 2 3
SRK avg P@K .01 .01 .004 .032 .042 .01 .012 .01 - .096 .046 .026 .022 .022

uSRK avg P@K (.006) - - .01 (.01) .01 .01 - - .054 .012 .014 .01 .01

SRK P@RTP - - - .03 - .01 .02 - - .10 .02 .04 .02 .01

uSRK P@RTP .01 - - .01 - - .01 - - .08 .01 .02 - -
SRK R@RTP .03 .03 .02 .05 - .02 .04 - - .17 .05 .06 .05 .01

uSRK R@RTP (.01) .004 - .01 - - .01 - - .14 .03 .03 - -

SRK F1@RTP .01 .01 - .04 - .01 .03 - - .13 .05 .05 .03 .01

uSRK F1@RTP (.01) - - .01 - - .01 - - .10 .02 .03 - -
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Table 10. Comparing SemRe-Rank (SRK) and its unsupervised variant (uSRK, both with z = 200) against each base ATE
method. Only the changes over the base ATE methods are shown as points within a scale of [0, 1], and (brackets) indicate

negative changes. Bold texts highlight the higher (if different) value between SRK and uSRK on each compared metric.
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ACLv2

SRK P@K CNGs 5 3 2 2 5 4 4 4 5 5 4 4 5 5

uSRK P@K CNGs 4 3 2 3 4 3 2 5 5 5 2 4 4 5
SRK avg P@K .024 .014 .01 .016 .03 .01 .024 .012 .094 .118 .068 .03 .042 .026

uSRK avg P@K .014 .01 .01 .01 .016 - .01 .01 .094 .10 .014 .022 .014 .018

SRK P@RTP .01 - - - .01 - .01 .01 .03 .02 - - .01 .01

uSRK P@RTP - - - - - - - .01 .02 .02 - - - .02

SRK R@RTP .003 - - .04 .01 - .002 .01 .04 .04 - - .01 .002

uSRK R@RTP .003 - - .04 .005 - - .01 .02 .04 - - - .01

SRK F1@RTP .01 - - .02 .01 - .01 .01 .03 .03 - - .01 .01
uSRK F1@RTP - - - .02 .002 - - .01 .02 .03 - - - .02

GENIA

SRK P@K CNGs 4 4 4 5 2 5 5 4 5 5 4 5 5 5
uSRK chng P@K 5 4 5 4 2 5 5 4 5 5 3 5 5 5

SRK avg P@K .012 .012 .038 .01 .032 .01 .02 .036 .062 .12 .026 .086 .026 .01

uSRK avg P@K .01 .012 .044 .01 .018 .01 .014 .036 .056 .096 .018 .086 .022 .01

SRK P@RTP .01 - - - - - .01 - .03 .01 .04 .01 .01 .01
uSRK P@RTP .004 - - - - - - - .03 - .04 .01 .01 .01

SRK R@RTP .01 - - - - .004 .01 .007 .04 .01 .04 .01 .01 .01

uSRK R@RTP .01 - - - - .004 .01 .007 .04 - .04 .01 .01 .004

SRK F1@RTP .01 - - - - - .01 .003 .03 .01 .04 .01 .01 .01
uSRK F1@RTP .01 - - - - - .002 .003 .04 - .04 .01 .01 .01

TTCm

SRK P@K CNGs 2 2 3 4 3 4 3 3 5 5 4 5 4 3
uSRK P@K CNGs 2 2 - 1 2 4 3 2 2 5 3 4 2 4

SRK avg P@K .018 .016 .01 .012 .046 .012 .05 .008 .016 .15 .082 .08 .108 .026

uSRK avg P@K .012 .01 - .01 - .01 - - .01 .078 .024 .026 0 .01

SRK P@RTP - - .01 .05 - .02 .04 - .01 .24 .05 .11 .02 .04

uSRK P@RTP - - - .02 - - - - - .08 .03 .06 .01 .01

SRK R@RTP - - .02 .08 - .03 .08 .004 .02 .35 .09 .14 .03 .08

uSRK R@RTP .004 .004 .01 .02 - - .01 - .01 .16 .05 .07 .02 .02

SRK F1@RTP - - .01 .06 - .02 .05 - .01 .28 .07 .12 .03 .05

uSRK F1@RTP - - - .02 - - .002 - - .12 .04 .07 .01 .01

TTCw

SRK P@K CNGs 2 1 2 4 2 1 3 2 1 5 4 5 4 3

uSRK P@K CNGs 2 1 - 2 1 1 1 1 - 5 1 2 1 1
SRK avg P@K .01 .004 .01 .03 .034 .01 .014 .01 .004 .098 .048 .032 .04 .038

uSRK avg P@K .01 .004 - .01 .01 .01 .01 .01 - .04 .004 .012 .01 .004

SRK P@RTP .01 .004 .01 .03 .034 .01 .014 .01 .004 .098 .048 .032 .04 .038

uSRK P@RTP .006 .004 - .006 .004 .004 .004 .004 - .04 .004 .012 .008 .004
SRK R@RTP .03 .02 .02 .05 - .03 .09 - .02 .27 .06 .08 .03 .02

uSRK R@RTP .01 .01 - .01 - .01 (.01) - - .09 .02 .02 .01 -
SRK F1@RTP .01 .01 - .04 - .02 .06 - .01 .19 .03 .06 .02 .01

uSRK F1@RTP .003 .003 - .01 - .01 (.01) - - .06 .01 .02 .01 -
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Table 11. Configuration used by base ATE methods implemented in the ATR4S and the JATE 2.0 libraries. ‘N/A’ indicates
that the configuration parameter is not available for the implementation of that method.

minc maxc minw maxw

Basic, ComboBasic, LP, NTM, PU (from ATR4S)

GENIA 2 N/A 1 5
ACLv2 2 N/A 1 5
TTCw 3 N/A 1 4
TTCm 3 N/A 1 4

TFIDF, CValue, RAKE, Weirdness, Relevance, GlossEx, χ2 (from JATE 2.0)

GENIA 2 40 1 5

ACLv2 2 40 1 5
TTCw 3 40 1 4
TTCm 3 40 1 4
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