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a b s t r a c t 

Nano-scale experimental findings reveal that wave propagation in heterogeneous materials is dispersive. 

In order to capture such dispersive behavior, in this paper gradient elasticity theory is resorted to. A pop- 

ular gradient elasticity model arising from Mindlin’s theory incorporates two internal length scale param- 

eters, which correspond to one micro-stiffness and one micro-inertia term. As an extension of Mindlin’s 

model, an expanded three-length-scale gradient elasticity formulation with one additional micro-inertia 

term is used to improve the description of microstructural effects in dynamics. A non-local lattice model 

is introduced here to give the above micro-stiffness and micro-inertia terms a physical interpretation 

based on geometrical and mechanical properties of the microstructure. The purpose of this paper is to 

assess the effectiveness of such a three-length-scale formulation in predicting wave dispersion against ex- 

perimental and micro-mechanical data from the literature. The dispersive wave propagation through lam- 

inated composites with periodic microstructure is investigated first. Length scale identification is carried 

out based on higher-order homogenization to link the constitutive coefficients of the gradient theory di- 

rectly to microstructural properties of the layered composite. Secondly, experimental dispersion curves for 

phonons propagating in aluminum and bismuth crystals are scrutinized, thus highlighting the motivation 

for including multiple micro-inertia terms . Finally, ultrasonic wave dispersion experimentally observed in 

concrete specimens with various sand contents and water/cement ratios is analyzed, along with length 

scale quantification procedures. It is found that the proposed three-length-scale gradient formulation is 

versatile and effective in capturing a range of wave dispersion characteristics arising from experiments. 

Advantages over alternative formulations of gradient elasticity from the literature are discussed through- 

out the paper. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Classical (local) elasticity theory fails to describe those physi- 

cal phenomena in which non-local (long-range) interactions play 

a major role in the deformation process. This occurs in materials 

with a lattice microstructure and heterogeneous media wherein 

the external length-scales and time-scales are of the same or- 

der as those of the dominant heterogeneities. Among the phys- 

ical phenomena not captured by the classical theory of elastic- 
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ity, of particular relevance to the present paper is the dispersion 

observed in the wave propagation ( Askes and Aifantis, 2011 ). In- 

deed, experimental evidence points out that the different harmonic 

wave components travel with different velocities ( Warren et al., 

1967; Yarnell et al., 1964a,b, 1965 ; Aggelis et al., 2005; Philippidis 

and Aggelis, 2005 ). These dispersive phenomena cannot be cap- 

tured unless long-range interactions, occurring within the mate- 

rial microstructure, are accounted for in the constitutive model. 

One obvious solution could be modeling every single microstruc- 

tural component individually, which represents the basis of molec- 

ular/atomistic models. Nevertheless, such models may be computa- 

tionally prohibitive or extremely demanding on memory resources, 

thus unfeasible to cope with real engineering problems. As an al- 
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ternative, nonlocal continuum field theories ( Eringen, 1983; Fuschi 

et al., 2015; Polizzotto et al., 2006 ) and higher-order continuum 

theories ( Maugin and Metrikine, 2010 ), including gradient elasticity 

( Askes and Aifantis, 2011; Mindlin, 1964; Aifantis 1992; Altan and 

Aifantis 1997; Bažant and Jirásek, 2002 ), have been developed to 

bridge the gap between atomistic models and classical continuum 

mechanics theory. 

In particular, gradient elasticity formulations enrich the field 

equations of classical elasticity theory by means of additional 

higher-order spatial derivatives of relevant state variables (such as 

strains, stresses and/or accelerations). These higher-order terms are 

accompanied by length scale parameters, which reflect the under- 

lying material microstructure. An effective class of gradient elastic- 

ity theories for use in dynamics involves mixed spatial–temporal 

derivatives by incorporating higher-order contributions both in the 

stiffness terms and in the inertia terms ( Askes and Aifantis, 2006; 

Metrikine and Askes, 2002, 2006; Askes and Metrikine, 2002; 

Askes et al., 2007; Papargyri-Beskou et al., 2009; Askes et al., 

2008 ). While inclusion of the Laplacian of the strain in the consti- 

tutive relation is essential to remove singularities from the elastic 

strain field, the acceleration gradients (micro-inertia terms) are of 

paramount importance to capture the dispersive character of the 

wave propagation. The role of micro-inertia in enriched continuum 

theories has been recently investigated in the field of metamateri- 

als ( Madeo et al., 2017 ). 

Along this research line, a new three-length-scale gradient 

formulation has been developed recently by the authors ( De 

Domenico and Askes, 2016, 2017 ). In addition to Aifantis’ gradient 

elasticity ( Aifantis, 1992; Altan and Aifantis, 1997; Ru and Aifan- 

tis, 1993; Triantafyllidis and Aifantis, 1986 ) the new model incor- 

porates two micro-inertia terms multiplying the second-order and 

the fourth-order space derivative of the acceleration field in the 

equations of motions. This model is very versatile and provides 

an improved dispersion behavior due to the presence of the two 

micro-inertia terms, as previously shown in ( De Domenico and 

Askes, 2016 ). 

A first novel contribution of the present paper is to pro- 

vide some micro-mechanical background to the model with three 

length scales. In order to correlate the three length scale parame- 

ters with the material microstructure, a non-local lattice model is 

presented, based on the standard “continualization” of the equa- 

tions of motion involving both lumped and distributed mass terms. 

In this way, all three length scale parameters can be assigned a 

physical meaning based on geometrical and mechanical properties 

of the microstructure. 

The next aim of this paper is to assess the dispersive capa- 

bilities of the proposed formulation by addressing a few experi- 

mental dispersion curves reported in the literature. The longitudi- 

nal wave dispersion in a bi-layered composite laminate with peri- 

odic microstructure, which has been widely discussed in the rele- 

vant literature ( Ruzzene and Baz, 20 0 0; Bennett et al., 2007; An- 

drianov et al., 2008 , 2011a,b; Chen and Fish, 2001; Fish et al., 

2002; Dontsov et al., 2013 ), is first examined. Length scale iden- 

tification is carried out based on asymptotic higher-order homoge- 

nization ( Fish and Chen, 2001 ), so as to link the three constitutive 

coefficients of the gradient elasticity theory directly to microstruc- 

tural properties of the composite laminate. The exact dispersion 

curve ( Bedford and Drumheller, 1994 ) is approximated closely 

by the proposed three-length-scale gradient elasticity formula- 

tion. Physically-based (pseudo-experimental) results are also sim- 

ulated via the spectral analysis of surface waves (SASW) ( Kim and 

Park, 2002 ) in conjunction with the phase spectrum approach 

( Sachse and Pao, 1978 ) and compared to the ones provided by the 

gradient elasticity model. Next, longitudinal dispersion curves of 

phonons propagating in aluminum and bismuth are investigated 

( Warren et al., 1967; Yarnell et al., 1964a,b, 1965 ). It is seen that 

the inclusion of the fourth-order acceleration gradient is essential 

to capture the qualitative trend of such dispersion curves, which 

exhibit an inflexion in the medium wave number regime that 

cannot be captured with a single micro-inertia term. Finally, the 

dispersive behavior of ultrasonic wave propagation in fresh mortar 

and hardened concrete specimens having various water and sand 

contents is analyzed ( Aggelis et al., 2005; Philippidis and Aggelis, 

2005; Iliopoulos et al., 2016 ), and corresponding length scale quan- 

tification procedures presented. 

Throughout the paper alternative, simpler formats of gradient 

elasticity theories presented in the literature, equipped with one 

or two length scales, are retrieved as special cases of the three- 

length-scale formulation here proposed. 

Incidentally, the proposed formulation not only improves the 

dispersive behavior, but also is particularly appealing from a com- 

putational point of view for straightforward numerical implemen- 

tation. Indeed, the authors have demonstrated that this particu- 

lar format of gradient elasticity can be handled, via an operator 

split, such that a finite element implementation with simple linear 

shape functions is possible ( De Domenico and Askes, 2017 ), thus 

avoiding the need for more sophisticated discretization techniques 

( Askes and Metrikine, 2002; Zervos et al., 2009; Engel et al., 2002; 

Zervos, 2008 ). 

2. Three-Length-Scale gradient elasticity theory 

Motivated by nano-scale experimental evidence on the disper- 

sion characteristics of materials with a lattice structure ( Warren 

et al., 1967; Yarnell et al., 1964a,b, 1965 ), a new gradient elastic- 

ity formulation with three higher-order terms has been proposed 

in ( De Domenico and Askes, 2016, 2017 ). In particular, it includes 

one strain gradient (Aifantis’ term corresponding to the Laplacian 

of the strain field) and two micro-inertia contributions. The start- 

ing point is the following constitutive equation 

σi j = C i jkl 
(

ε kl − ℓ 2 1 ε kl,nn + ℓ 2 2 ̈ε kl − ℓ 4 3 ̈ε kl,nn 
)

(1) 

where, for reasons of dimensional consistency, the three gradi- 

ent terms are accompanied by three distinct length-scale factors 

ℓ 1 , ℓ 2 , ℓ 3 . More specifically, these terms relate essentially to inter- 

nal lengths and internal times, i.e., expanding εkl in Taylor series 

not only in space but also in time. This is more simply demon- 

strated via the one-dimensional format of Eq. (1) that reads 

σ = E 
(

ε − ℓ 2 1 ε 
′′ + ℓ 2 2 ̈ε − ℓ 4 3 ̈ε 

′′ ) (2) 

where E is the Young’s modulus, and overdots and primes are 

adopted for derivatives with respect to time and to the spatial co- 

ordinate x , respectively. Eq. (2) may be rewritten as 

σ = E ̃  ε 

˜ ε = 
(

1 − ℓ 2 1 ∇ 2 x + ℓ 2 2 ∇ 2 t − ℓ 4 3 ∇ 2 x ∇ 2 t 

)

ε with ∇ 2 x = 
∂ 2 

∂ x 2 
, ∇ 2 t = 

∂ 2 

∂ t 2 
. 

(3) 

Considering the equilibrium equation σ ′ − ρü = 0 , after rear- 

ranging terms, we get the following equation of motion in terms 

of displacements 

ρ
(

ü −
E 

ρ
ℓ 2 2 ̈u 

′′ + 
E 

ρ
ℓ 4 3 ̈u 

′′′′ 
)

= E 
(

u ′′ − ℓ 2 1 u 
′′′′ ) (4) 

which, to make the notation consistent with the quoted papers ( De 

Domenico and Askes, 2016, 2017 ), may be rewritten as 

ρ
(

ü − αℓ 2 ü ′′ + βℓ 4 ü ′′′′ 
)

= E 
(

u ′′ − γ ℓ 2 u ′′′′ 
)

(5) 

in which the three length scales ℓ 1 , ℓ 2 , ℓ 3 have been reported in 

terms of just a single length scale parameter ℓ characterizing the 

underlying material microstructure. The three dimensionless coef- 

ficients α, β , γ adjust the relative magnitudes between the var- 

ious length scales appearing in the strain gradient term and in 
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the micro-inertia contributions. More specifically, the γ ℓ 2 term 

represents the gradient enrichment of the strain gradient the- 

ory ( Aifantis, 1992 ), whereas the higher-order inertia contributions 

multiply two additional length scale factors αℓ 2 and βℓ 4 , respec- 

tively. Therefore, higher-order contributions appear simultaneously 

as micro-stiffness and micro-inertia, which has been termed as 

dynamic consistency in a few previous articles ( Askes and Aifan- 

tis, 2006 , 2011; Metrikine and Askes 2002, 2006; Askes et al., 

2007 ). The simplest dynamically consistent model incorporating 

one micro-inertia term αℓ 2 and one micro-stiffness term γ ℓ 2 has 

been extensively used in the relevant literature, see e.g. ( Askes and 

Aifantis, 2006 , 2011; Askes et al., 2007; Papargyri-Beskou et al., 

2009; Polyzos and Fotiadis 2012; Dontsov et al., 2013; Ansari et al., 

2012; Iliopoulos et al., 2016 ) to quote just a few. As compared to 

this model, there is an additional βℓ 4 term in the proposed for- 

mulation, which improves the prediction of wave dispersion and 

allows for greater flexibility in terms of shape of the correspond- 

ing dispersion curve, as demonstrated in the next Sections. 

The dispersion behavior of Eq. (5) can be described by the fol- 

lowing dimensionless expressions 

(

ωℓ 

c e 

)2 

= ( kℓ ) 
2 1 + γ ( kℓ ) 

2 

1 + α( kℓ ) 
2 + β( kℓ ) 

4 

(

c 

c e 

)2 

= 
1 + γ ( kℓ ) 

2 

1 + α( kℓ ) 
2 + β( kℓ ) 

4 
(6) 

where c e ≡
√ 
E/ρ is the one-dimensional wave velocity of classi- 

cal elasticity, ω is the angular frequency, k the wave number and 

c = ω/ k the phase velocity. 

As a remark, it is worth noting that the inertia-gradient terms 

in Eq. (5) lead to non-classical gradient-dependent inertia terms 

in the equation of motion, i.e. in the left-hand-side of Eq. (5) –

the last two terms. These non-classical terms, in analogy to the 

first classical inertia term of this equation, introduce gradient- 

dependent Coriolis force effects (see, for example, ( Truesdell and 

Toupin, 1960; Truesdell and Noll, 2004 )) under a change of frame. 

In fact, the aforementioned two non-classical gradient dependent 

terms may be viewed as representing coupling effects between in- 

ternal lengths and internal times/lags of the underlying micro/nano 

structures (see, for example ( Aifantis 2016 )). 

3. Physical background of the three length scale gradient 

model 

In many studies, gradient elasticity theories have been derived 

from the continualization of the response of a discrete lattice, 

see e.g. ( Metrikine and Askes, 20 02, 20 06; Askes et al., 20 08; De 

Domenico and Askes, 2016; Polyzos and Fotiadis, 2012; Chang and 

Gao, 1995 ). In an attempt to provide a theoretical background of 

the proposed gradient formulation, two motivations for the model 

are provided in this Section. First, we will suggest a novel approach 

to continualization of a lattice. Next, we will present a derivation 

based on Hamilton’s principle. Perhaps neither of these two moti- 

vations should be considered as definitive or as superior over the 

other, but they are included here and presented alongside one an- 

other in the hope to trigger constructive debate and discourse in 

the community. 

3.1. A novel multi-scale approach to homogenization of a discrete 

lattice 

First, a clear physical meaning depending on the underlying 

material microstructure is provided by a novel approach to homog- 

enization of discrete mass at multiple scales of observation. A sim- 

ple lattice model is given in Fig. 1 . 

We consider a material in which, at the macro level, a portion 

of the mass is distributed and the remainder is lumped. This mate- 

rial is schematically represented by a chain of mass particles hav- 

ing mass M being connected to each other by springs of stiffness 

k and with distributed mass ρm . Uniform spacing of the lumped 

mass particles is assumed to be equal to ℓ , which is hence meant 

as the unit cell of the non-homogeneous material. The physical 

motivation for distributed mass at the macro level is to interpret 

this distributed mass as a macro-level representation of lumped 

masses at the micro level. Such additional micro-mass distribu- 

tion is represented by another discrete set of smaller masses m e 

that are placed in between two neighbor particles M , i.e., within 

the unit cell ℓ , and are connected with each other through springs 

of stiffness k e , cf. again Fig. 1 . This additional micro-distribution 

of mass and stiffness in series is equivalent to ρm A ℓ = m and 

�1/ k e = 1/ k . From another perspective, the springs k characteriz- 

ing the connections of the chain at the macroscale are not consid- 

ered massless as in classical lattice model, but springs with uni- 

formly distributed mass m and density ρm (micro-volume density) 

( Polyzos and Fotiadis, 2012 ). It is this micro-mass distribution that 

is responsible for the higher-order terms of the proposed gradient 

elasticity formulation, as will be explained below. 

The various discrete model properties can be translated into 

continuum properties in the usual way. In particular, the con- 

tinuous counterpart of the lumped mass at macro level and 

the stiffness of the material are the macroscale mass density 

ρM = M / A ℓ , and the Young’s modulus E = k ℓ / A , with A denoting the 

cross-sectional area, in addition to the microscale mass density 

ρm = �m e / A ℓ as defined above. 

In an attempt to write the equation of motion of the n th degree 

of freedom (located at x n ), we introduce the stiffness matrix of the 

unit cell, which has the well-known expression 

K = 

[

k −k 

−k k 

]

. (7) 

For the mass matrix representation, we need to distinguish the 

two contributions. A standard lumped mass matrix can be used 

for the lumped mass particles M of the macro level. On the other 

hand, the lumped mass particles of the micro-level have been 

translated to a distributed mass at the macro level, for which a 

so-called consistent mass matrix is more appropriate to represent 

this contribution. Thus, we adopt 

M micro = 
ρm Aℓ 

6 

[

2 1 
1 2 

]

; M macro = 
M 

2 

[

1 0 
0 1 

]

. (8) 

whereby the consistent mass matrix of the first expression is based 

on a linear resolution of the displacement field, which is in ac- 

cordance with the resolution underlying Eq. (7) – see for instance 

standard finite element textbooks ( Hughes, 20 0 0 ). With the stiff- 

ness and mass matrices introduced, the generic n th particle must 

satisfy the following equation 

M ü n + 
ρm Aℓ 

6 
( ̈u n −1 + 4 ̈u n + ü n +1 ) + k ( −u n −1 + 2 u n − u n +1 ) = 0 . 

(9) 

Now, continualization is performed by translating the response 

of the discrete particle u n into the continuous displacement u ( x ), 

cf. Fig. 1 . For the neighboring particles, this means u n ± 1 = u ( x ± ℓ ) 

because x n ± 1 = x n ± ℓ . The continuous counterpart of Eq. (9) is 

ρM Aℓ ü (x ) + 
ρm Aℓ 

6 
( ̈u (x − ℓ ) + 4 ̈u (x ) + ü (x + ℓ ) ) 

= 
EA 

ℓ 
( u (x − ℓ ) − 2 u (x ) + u (x + ℓ ) ) . (10) 
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Fig. 1. Lattice with both distributed and lumped mass. 

By using Taylor expansions for the u ( x ± ℓ ) and ü (x ± ℓ ) terms, 

after some straightforward algebra Eq. (10) can be rewritten as 

( ρM + ρm ) ü (x ) + 
ρm ℓ 

2 

6 

(

ü ′′ (x ) + 
ℓ 2 

12 
ü ′′′′ (x ) + 

ℓ 4 

360 
ü ′′′′′′ (x ) 

)

= E 

(

u ′′ (x ) + 
ℓ 2 

12 
u ′′′′ (x ) + 

ℓ 4 

360 
u ′′′′′′ (x ) 

)

+ O( ℓ 6 ) (11) 

The expansion terms in Taylor series are truncated in order to 

make Eq. (11) asymptotically accurate up to O( ℓ 6 ) . Omitting the 

space dependence of the displacement, that is, u = u ( x ), and intro- 

ducing the so-called “total density” ρ = ρm + ρM leads to the fol- 

lowing compact equation 

ρ ü = 

(

1 + 
ℓ 2 

12 
∇ 

2 
x + 

ℓ 4 

360 
∇ 

4 
x + . . . 

)

(

Eu ′′ −
1 

6 
ℓ 2 ρm ̈u 

′′ 
)

(12) 

from which we notice that higher-order inertia gradients are 

uniquely ascribed to the presence of the micro-mass distribution 

ρm . Within the gradient series, the 2 nd term is unstable and incor- 

rect in the Garding sense ( Filimonov, 1996 ), while the 3 rd term is 

correct and stable ( Andrianov et al., 2010 ). Thus, loss of stability 

is not a primary concern, and Eq. (12) could be used effectively. 

Nevertheless, in order to aid parameter identification in Eq (5) , we 

apply Padé approximation of the differential operator, that is 

(

1 + 
ℓ 2 

12 
∇ 

2 + 
ℓ 4 

360 
∇ 

4 + . . . 

)

≈
1 

(

1 − ℓ 2 

12 ∇ 2 + 
ℓ 4 

240 ∇ 4 + . . . 
) (13) 

so that Eq. (12) is rewritten as 

(

1 −
ℓ 2 

12 
∇ 

2 + 
ℓ 4 

240 
∇ 

4 + . . . 

)

ρ ü = Eu ′′ −
1 

6 
ℓ 2 ρm ü 

′′ (14) 

which can be shown to be stable. The negative term on the right- 

hand-side can also be expressed in terms of an equivalent higher- 

order strain gradient plus an additional fourth-order inertia gradi- 

ent term: from (14) we get 

ü = 
E 

ρ
u ′′ + 

1 

12 

(

ρ − 2 ρm 

ρ

)

ℓ 2 ü ′′ + O 
(

ℓ 4 
)

. (15) 

Taking the second spatial derivative of Eq. (15) and multiplying 

with ℓ 2 ρm /6 yields 

ρm 

6 
ℓ 2 ü ′′ = E 

ℓ 2 

6 

ρm 

ρ
u ′′′′ + 

1 

72 

ρm ( ρ − ρm ) 

ρ
ℓ 4 ü ′′′′ + O 

(

ℓ 6 
)

(16) 

which, when substituted back into Eq. (14) , yields the following 

final equation of motion 

ρ

(

ü −
ℓ 2 

12 
ü ′′ + 

(

1 

240 
+ 

1 

72 

ρm ( ρ − 2 ρm ) 

ρ2 

)

ℓ 4 ü ′′′′ 
)

= E 

(

u ′′ −
ℓ 2 

6 

ρm 

ρ
u ′′′′ 

)

. (17) 

Comparing Eqs. (1) and (17) leads to a clear, one-to-one identi- 

fication of the α, β , γ constants of the proposed three-length-scale 

gradient elasticity formulation 

α = 
1 

12 
; β = 

1 

240 
+ 

1 

72 

ρm ( ρ − 2 ρm ) 

ρ2 
; γ = 

1 

6 

ρm 1 

ρ
. (18) 

Generally speaking, α may be higher or lower than γ depend- 

ing on the value of the ρm / ρ ratio. The case α > γ is represen- 

tative, for example, of fresh concrete and mortars, which corre- 

sponds to ρm / ρ < 1/2 (i.e. relatively less distributed mass and 

more lumped mass). On the contrary, the case α < γ has been 

observed in hardened concrete, which corresponds to ρm / ρ > 1/2 

(i.e. relatively more distributed mass and less lumped mass). 

We emphasize that we do not claim the above derivation to 

be the only motivation of the suggested model with strain gra- 

dients and multiple inertia gradients. What we have used is the 

link between the notion of lumped masses at different scales of 

observation and the combination of lumped mass and distributed 

mass at a single scale of observation. Since the distributed mass is 

represented by a non-diagonal mass matrix in the discrete model, 

continualization straightforwardly leads to inertia gradients. Obvi- 

ously, other motivations may equally be possible, for example in- 

troducing series expansions of the energy functionals and apply- 

ing the Hamilton’s principle to obtain the equations of motion of 

the higher order continuum model, see Metrikine and Askes (2002, 

2006 ) and Polyzos and Fotiadis (2012) or the next subsection. 

3.2. Derivation of the proposed gradient theory through Hamilton’s 

principle 

Next, by way of complementing the continualization approach 

presented above, we will summarize a more formal approach to 

motivating the three length scale model. The kinetic and poten- 

tial energy density of the three-length-scale gradient model of 

Eq. (5) adopt the following formats, respectively 

U 
kin = 

1 

2 
ρ
[ 

( ̇ u ) 
2 + αℓ 2 

(

˙ u ′ 
)2 

+ βℓ 4 
(

˙ u ′′ 
)2 

] 

, 

U 
pot = 

1 

2 
E 

[ 
(

u ′ 
)2 

+ γ ℓ 2 
(

u ′′ 
)2 

] 

. (19) 
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The above energy densities form the Lagrangian density L = 

U kin − U pot . The dependence of L upon the higher-order space 

derivatives of the displacement and of the velocity field is respon- 

sible for the gradient contributions in the equations of motion. For 

α = β = γ = 0 the classical formats of the kinetic and potential en- 

ergy density of a classical continuum are obtained. The Lagrangian 

function is obtained by integrating in space and time 

L = 

∫ T 

0 

∫ L 

0 
L d x d t . (20) 

Hamilton’s stationary principle applied to perturbed displace- 

ment fields in (20) leads to 

δL = 0 

⇒ 

∫ T 

0 

∫ L 

0 

(

∂L 

∂ ˙ u 
δ ˙ u + 

∂L 

∂ ˙ u ′ 
δ ˙ u ′ + 

∂L 

∂ ˙ u ′′ 
δ ˙ u ′′ + 

∂L 

∂u ′ 
δu ′ + 

∂L 

∂u ′′ 
δu ′′ 

)

d x d t = 0 (21) 

which, upon performing integration by parts in x and t to translate 

all variations to δu , yields 

∫ T 

0 

{

∫ L 

0 

[

−
∂ 

∂t 

(

∂L 

∂ ˙ u 

)

+ 
∂ 2 

∂ x∂ t 

(

∂L 

∂ ˙ u ′ 

)

−
∂ 3 

∂ t∂ x 2 

(

∂L 

∂ ˙ u ′′ 

)

−
∂ 

∂x 

(

∂L 

∂u ′ 

)

+ 
∂ 2 

∂ x 2 

(

∂L 

∂u ′′ 

)]

δu d x 

}

d t 

+ 

∫ T 

0 
δu 

[

∂L 

∂u ′ 
−

∂ 

∂x 

(

∂L 

∂u ′′ 

)

−
∂ 

∂t 

(

∂L 

∂ ˙ u ′ 

)

+ 
∂ 2 

∂ x∂ t 

(

∂L 

∂ ˙ u ′′ 

)]∣

∣

∣

∣

L 

0 

d t 

+ 

∫ T 

0 
δu ′ 

[

∂L 

∂u ′′ 
−

∂ 

∂t 

(

∂L 

∂ ˙ u ′′ 

)]
∣

∣

∣

∣

L 

0 

d t = 0 (22) 

where account has been taken of the fact that δu ( x , 0) = δu ( x, T ) = 0 

and all the space and time derivatives of δu vanish at the limits 

of the time interval. Substituting the Lagrangian density resulting 

from the energy functionals in (19) into (22) straightforwardly pro- 

duces the equation of motion (5) (for the first integral in (22) ) and 

some boundary conditions (for the other two integrals). 

4. Wave dispersion: analytical vs. experimental findings 

In this Section we present a few experimental dispersion curves 

from the literature. The effectiveness of the proposed three-length- 

scale gradient formulation is assessed by comparing the analyt- 

ical dispersion curve with the experimental findings and micro- 

mechanical data. Length-scale identification and quantification pro- 

cedures are discussed, and advantages over alternative formulation 

of gradient elasticity theory are presented. As a remark, in real ex- 

periments finite objects are considered, whereas boundary condi- 

tions were ignored in the above theoretical model, assuming an 

infinite domain – this is due to their complex meaning and not 

clear interpretation from a physical viewpoint ( De Domenico and 

Askes, 2016 ). Therefore, it is implied here that the experimental 

data considered below are relevant to a central zone of the mate- 

rial wherein boundary effects can be reasonably neglected. 

4.1. Dispersion of longitudinal waves in composite laminates with 

periodic microstructure 

We first investigate a problem in which the internal microstruc- 

ture is known a priori , so that the corresponding material length 

scales can be determined exactly. The following derivations have 

partly been presented in ( De Domenico and Askes, 2016 ) and are 

here extended to incorporate, in addition to the exact dispersion 

curve, some pseudo-experimental results as clarified below. 

With the aid of Fig. 2 , a composite laminate modeled as a one- 

dimensional rod with a periodic microstructure is studied. In par- 

ticular, the internal microstructure is composed of two layers al- 

ternating periodically along the rod length L . In other words, the 

composite laminate has piecewise homogeneous material charac- 

teristics, with layer 1 being characterized by mass density ρ1 and 

Young’s modulus E 1 , and layer 2 being defined by ρ2 and E 2 . The 

composite rod is considered to be very long so that the wave prop- 

agation in its periodic layer can be studied by analyzing the behav- 

ior of its unit cell of length ℓ . In each unit cell, materials 1 and 2 

are assigned a volume fraction a and 1 − a , respectively, with 0 ≤
a ≤ 1 (the limits a = 0 and a = 1 being representative of a homoge- 

neous medium). 

The periodic microstructure lends itself to the development 

of homogenized models having certain effective material proper- 

ties, which approximate the behavior of the original heterogeneous 

medium with the main difference that the local fluctuations arising 

from the heterogeneities do not appear explicitly in the equation 

of motion. The underlying assumption is that the microscopic size 

ℓ of heterogeneities is significantly smaller than the macroscopic 

length L , at the limit ε = ℓ / L → 0 where ε denotes the rate of het- 

erogeneities of the composite laminate. The homogenized equation 

of motion in the limit case as ε = 0 reads 

ρ̄ü = Ē u ′′ (23) 

where ρ̄ and Ē are the effective mass density and the effective 

Young’s modulus that are related to the component properties 

through the following relations ( Andrianov et al., 2008; Chen and 

Fish, 2001 ) 

ρ̄ = a ρ1 + (1 − a ) ρ2 

Ē = 
E 1 E 2 

(1 −a ) E 1 + a E 2 
. 

(24) 

In order to account for local variations of the displacements on 

the scale of heterogeneities, higher-order asymptotic homogenization 

schemes with multiple length scales and time scales should be 

adopted ( Bennett et al., 2007; Andrianov et al., 2008 , 2011a , b; Chen 

and Fish, 2001; Fish and Chen, 2002 ). In Fish and Chen (2001) an 

asymptotic expansion including terms up to O( ǫ4 ) was developed 

according to 1 

ρ̄ü = Ē 

(

u ′′ + 
1 

12 
θ2 ℓ 2 u ′′′′ + 

1 

360 
θ2 ψ 

2 ℓ 4 u ′′′′′′ 
)

+ O( ǫ6 ) (25) 

where 

θ = 
a ( 1 − a ) ( E 1 ρ1 − E 2 ρ2 ) 

ρ̄ ( (1 − a ) E 1 + a E 2 ) 
. (26) 

and 

ψ = 
1 

ρ̄( ( 1 − a ) E 1 + a E 2 ) 

{ a 2 E 2 2 [ 2 a 2 ρ2 
1 − (1 − a ) 

2 ρ2 
2 + 6 a (1 − a ) ρ1 ρ2 ] 

+ 2 a (1 − a ) E 1 E 2 [3 a 
2 ρ2 

1 + 3 (1 − a ) 
2 ρ2 

2 

+ 11 a (1 − a ) ρ1 ρ2 ] − (1 − a ) 
2 
E 2 1 [ a 

2 ρ2 
1 − 2 (1 − a ) 

2 ρ2 
2 

− 6 a (1 − a ) ρ1 ρ2 ] } 1 / 2 . (27) 

After some algebra and performing some mathematical ma- 

nipulations as described in De Domenico and Askes (2016) , 

Eq. (25) may be rewritten in the following equivalent form 

ρ̄
(

ü −
1 

12 
( θ2 + 1) ℓ 2 ü ′′ + 

1 

720 
θ2 

(

5( θ2 + 1) − 2 ψ 
2 
)

ℓ 4 ü ′′′′ 
)

= Ē 

(

u ′′ −
1 

12 
ℓ 2 u ′′′′ 

)

+ O( ǫ6 ) . (28) 

1 Unlike our earlier paper ( De Domenico and Askes, 2016 ), account has now been 

taken of the misprint in the sign of the last term of Eq. (21) that was present in the 

original paper by ( Fish and Chen, 2001 ), as noted in ( Andrianov et al., 2011a ). 
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Fig. 2. Two-component composite laminate with periodically heterogeneous microstructure. 

This means that the O( ǫ4 ) asymptotic expansion of the equa- 

tions of motion of the periodic laminate shown in Fig. 2 leads to 

a higher-order homogenized medium described by a three-length- 

scale gradient elasticity formulation with one micro-stiffness and 

two micro-inertia terms, as that proposed in this paper. By com- 

paring Eqs. (28) and (6) , a one-to-one correspondence of the three 

length scale material parameters is attained as follows 

α = 
1 

12 
( θ2 + 1) , β = 

1 

720 
θ2 

(

5( θ2 + 1) − 2 ψ 
2 
)

, γ = 
1 

12 
. (29) 

Considering also that ℓ is set equal to the size of the unit cell, 

all the constitutive parameters of the proposed three-length-scale 

gradient elasticity formulation are exactly identified from the mi- 

crostructural mechanical and physical properties of the periodic 

composite laminate. 

Next, and in line with the goal of the present paper, we want 

to verify the validity of the gradient elasticity formulation re- 

ported in (28) against benchmark results. We here consider the 

phase velocity dispersion curve obtained from the exact solution 

and that arising from a “numerical simulation” of experiments 

( pseudo-experimental results ). In particular, the exact dispersion 

curve of the periodic laminate can be obtained by applying the 

Floquet theorem to the periodic equations of motion ( Bedford and 

Drumheller, 1994 ) and by imposing continuity of displacements 

and stresses at the interfaces and periodicity of the problem, which 

results in the following trigonometric dispersion equation ( Ruzzene 

and Baz, 20 0 0; Andrianov et al., 2008 ) 

cos ( ̄k ℓ ) = cos ( (�(ω) ) cos ( (�(ω) τ ) 

−
ξ 2 + 1 

2 ξ
sin ( (�(ω) ) sin ( (�(ω) τ ) (30) 

where k̄ is the effective wave number that quantifies the na- 

ture of the wave propagation along the rod, �( ω) = ω L 1 / c 1 and 

τ = L 2 c 1 / L 1 c 2 are two material parameters depending on the 

two phase velocities in the two constituent materials c 1 , c 2 and 

the lengths of the two materials within the unit cell L 1 = a ℓ 

and L 2 = (1 − a ) ℓ , while ξ = 
√ 
E 1 ρ1 / 

√ 
E 2 ρ2 represents the relative 

impedance of the composite. 

On the other hand, some pseudo-experimental results are 

considered in addition to the exact dispersion curve presented 

above. These physically-based results are simulated numerically by 

means of the spectral analysis of surface waves (SASW) ( Kim and 

Park, 2002 ) in conjunction with the phase spectrum approach 

( Sachse and Pao, 1978 ). This technique, mainly used in geotechnical 

engineering to assess in situ properties of the soil layers, has al- 

ready been proposed in ( Carta et al., 2012 ) from a numerical point 

of view and in ( Donà et al., 2015 ) from an experimental point of 

view to identify length scale parameters of gradient elasticity the- 

ory from wave propagation. With the aid of the schematic config- 

uration depicted in Fig. 3 , the SASW technique consists of apply- 

ing an impulsive load to one end of the periodically heterogeneous 

rod, in order to generate the propagation of an infinite series of si- 

nusoidal waves with different frequency. The acceleration response 

to such impulse source is recorded at two distinct locations along 

the rod, namely at receiver 1 and 2. The two signals y 1 ( t ) and y 2 ( t ) 

from the time domain are converted into the frequency domain 

via the fast Fourier transform (FFT). The phases of the two signals 

ϕ 1 ( ω) and ϕ 2 ( ω) are then unwrapped in order to obtain two con- 

tinuous functions ϕu 1 ( ω) and ϕu 2 ( ω), respectively. The phase ve- 

locity as a function of the frequency c ( ω) is evaluated as the ratio 

between the product of the wave angular frequency ω times the 

distance between the two receivers d 2 and the shift between the 

two unwrapped phases, i.e., 

c(ω) = 
ω d 2 

φu 1 (ω) − φu 2 (ω) 
. (31) 

Finally, the dispersion curve is plotted in terms of phase ve- 

locity against the values of the wave number for each angular fre- 

quency ω considered in the FFT analysis, the latter being computed 

from (31) as k ( ω) = ω/ c ( ω). 

The above described procedure has been applied to the peri- 

odic laminate shown in Fig. 2 . The acceleration time-domain re- 

sponse for the application of the phase spectrum approach has 

been computed numerically via a finite element discretization of 

the heterogeneous rod with 1D-bar elements ( De Domenico and 

Askes, 2016 ). The bar length is assumed as L = 100 m, and a cross- 

sectional area A = 1 m 2 for simplicity. The bar is fixed at the right 

hand side, and subject to a force at its left hand side F = F 0 δ( t ), 
with δ( t ) the Dirac’s delta and F 0 = 1N the unit-pulse applied at 

t = 0. A unit cell size ℓ = 0.1 m is assumed, along with a volume 

fraction a = 1/2, which means that material 1 and material 2 oc- 

cupy the same volume within each unit cell. Unitary macroscopic 

(effective) material properties are considered, i.e. ρ̄ = 1 kg / m 3 and 

Ē = 1 N / m 2 . For given properties E 1 , ρ1 of material 1, the corre- 

sponding ones for material 2, namely E 2 , ρ2 are obtained by means 

of Eq. (24) . Two periodic laminates with different wave dispersion 

characteristics are here investigated: i) the limit case of a com- 

posite laminate with strong contrast between the two materials by 

considering material 1 as a stiff, dense material, with E 1 = 10 6 N/m 2 

and ρ1 = 1.9999kg/m 3 , associated to a contrast of impedance be- 

tween the two materials θ = 0.99995 computed from Eq. (26) ; 

ii) a heterogeneous laminate with weak impedance mismatch, 
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Fig. 3. Schematic configuration for determination of wave dispersion via the SASW in conjunction with the phase spectrum approach – the experimental set up is simulated 

numerically. 

Fig. 4. Dispersion curves of periodically heterogeneous composite laminate shown in Fig. 2 with strong contrast of impedance (a) and weak contrast of impedance (b) 

between the two materials. 

having E 1 = 10N/m 2 and ρ1 = 1.2kg/m 3 , associated with θ = 0.55. 

In order to explicitly model the variation of the material prop- 

erties within each unit cell of the laminate, the element size h el 
is assumed as ℓ /12. Considering that ℓ = 0.1 m and L = 100 m, a 

mesh of 12,0 0 0 linear finite elements is employed, with periodi- 

cally alternating groups of 6 elements having material properties 

E 1 , ρ1 and E 2 , ρ2 as shown in Fig. 3 . Time integration is performed 

with the Newmark constant average acceleration scheme, with a 

time step �t = h el in accordance with the guidelines indicated in 

( De Domenico and Askes, 2017 ). It has been found that the posi- 

tion of the two receivers does not affect the wave dispersion re- 

sults appreciably ( Carta et al., 2012 ), therefore we have assumed 

d 1 = 1 m and d 2 = 1 m for simplicity. 

Exact dispersion curve, phase spectrum approach and gradient 

elasticity results (with both two and three length scales) are all re- 

ported in Fig. 4 and compared to each other. The exact solution 

in terms of phase velocity is derived by solving the trigonomet- 

ric Eq. (30) numerically for ω, and then obtaining c = ω/ ̄k . The 

two length scale gradient elasticity formulation is obtained as a 

special case of the three-length-scale case by eliminating the ℓ 4 

term in (28) . Such solution corresponds to an asymptotic homog- 

enization that is accurate up to O( ǫ2 ) , whereas the three-length- 

scale formulation is a O( ǫ4 ) homogenized model ( De Domenico 

and Askes, 2016 ). 

By inspection of Fig. 4 it is seen that, as expected, the laminate 

with strong impedance mismatch between the two materials, case 

i), is more dispersive than the laminate with weak contrast, case 

ii). In both cases it is observed that the exact dispersion curve is 

almost coincident with the one provided by the phase spectrum 

approach, which confirms that the numerically simulated pseudo- 

experimental results are fully consistent with the material proper- 

ties of the laminate and the chosen finite element mesh is appro- 

priate. This result is valuable: indeed, it is expected that a refer- 

ence (numerical) solution could be identified for other more com- 

plicated microstructural arrangements of the laminate, for which 

an exact solution is not available in the literature, by simulating 

the phase spectrum experiments as done in this simple example. 

The analytical dispersion curves provided by the three-length-scale 

gradient elasticity model, Eq. (6) equipped with the constants iden- 

tified in (29) , gives a very precise description of the exact dis- 

persion curve of the heterogeneous medium for all the depicted 

range of normalized wave numbers in the laminate with strong 

impedance mismatch, and up to approximately k ℓ ≈ 2.5 for the 

laminate with weak contrast. It is worth noting that the correc- 

tion in the sign of the last term in Eq. (25) has led to certain im- 

provements as compared to the results shown in an earlier paper 

of the authors ( De Domenico and Askes, 2016 ). In both cases, the 

introduction of the β term leads to significant improvements as 
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Fig. 5. Analytical versus experimental dispersion curves for phonons propagating in the longitudinal direction for aluminum (a) and bismuth (b) (experimental data after 

Yarnell et al., 1964b, 1965 ). 

compared to the two-length-scale model without β . More impor- 

tantly, the third length scale plays a crucial role in fitting the exact 

dispersion curve while not requiring additional computational cost: 

the same finite element implementation can be used for both the 

three-length-scale and two-length-scale gradient elasticity model 

(see ( De Domenico and Askes, 2016 ) for full details). 

4.2. Phonon dispersion in aluminum and bismuth 

Neutron scattering experiments were conducted by Yarnell and 

co-workers in the mid-sixties to investigate the dispersion charac- 

teristics of waves propagating in nano-structured materials. In par- 

ticular, experimental dispersion curve for phonons propagating in 

the longitudinal crystallographic direction in an aluminum crystal 

at 300 °K and in bismuth at both room temperature and at 75 °K 

were reported in two research works ( Yarnell et al., 1964b, 1965 ) 

in the shape of angular frequency versus normalized wave num- 

ber curve. Relevant results are shown in Fig. 5 (for bismuth, only 

the results at 75 °K are reported; at room temperature the observed 

frequencies were about 1.5% lower than the displayed case). 

Based on the experimental results, the analytical dispersion 

curves from gradient elasticity theory have been constructed, and 

the main length-scale parameters entering Eq. (6) have been found 

as a result of a non-linear least square minimization procedure. 

Two theoretical dispersion curves are shown and compared in 

Fig. 5 , namely the three-length-scale gradient elasticity formula- 

tion with α, β , γ terms, and the two-length-scale formulation with 

only α, γ terms, i.e., by excluding the second micro-inertia term 

proportional to β . The values of the coefficient of determination R 2 

are also displayed in the same figures, showing very good agree- 

ment for the three-length-scale formulation, and a rather poor 

performance of the two-length-scale model. The α, β , γ coeffi- 

cients identified from the minimization procedure are α = 0.01233, 

β = 0.009199 and γ ≈ 0 for aluminum, and α ≈ 0, β = 0.03015 

and γ ≈ 0 for bismuth, which highlights the importance of includ- 

ing the second micro-inertia term. Without this term, the change 

of the curvature (inflexion point) that is experimentally observed 

in the medium wave number regime cannot be captured. It can 

demonstrated, see e.g. ( De Domenico and Askes, 2016 ), that the oc- 

currence of such an inflexion in the dispersion curve results from 

the circumstance β > αγ in the corresponding dispersion Eq. (6) , 

which is a condition fully met by the aforementioned identified co- 

efficients. The fact that α is small for bismuth is a particularity of 

this set of experiments, while the circumstance γ ≈ 0 found for 

the two analyzed cases would imply that the dispersion curve has 

a zero asymptote for infinitely large wave numbers. However, it is 

clear that experimental evidence for the very large wave numbers 

is lacking, which suggests that the result γ ≈ 0 may be a mathe- 

matical peculiarity of this particular set of experimental data. 

4.3. Dispersion of longitudinal waves in fresh and hardened concrete 

specimens 

Concrete is a highly non-homogeneous (particulate composite) 

material containing random inhomogeneities over a wide range 

of length scales (cement, sand, fine and coarse aggregates, air 

bubbles suspended in water, etc.), which is reflected in its com- 

plicated mechanical behavior ( De Domenico, 2015; De Domenico 

et al., 2014; Pisano et al., 2014, 2015 ). Closely related to the com- 

plex and randomly organized microstructure of concrete, wave dis- 

persion is induced by multiple wave scattering phenomena, with 

a stress wave undergoing both dispersion and attenuation when 

propagating through such a non-homogeneous material ( Kim et al., 

1991; Jacobs and Owino, 20 0 0 ). In the relevant literature, measure- 

ments concerning ultrasonic wave propagation on concrete spec- 

imens were mainly related to determination of the actual wa- 

ter/cement ( w / c ) ratio ( Popovics and Popovics, 1998 ), as well as to 

estimate other material properties such as strength, porosity and 

damage of concrete ( Malhotra and Carino, 1991 ). For instance, con- 

crete specimens with lower w / c ratio were found to exhibit higher 

wave velocity as well as higher amplitude measured through trans- 

mission ( Ye et al., 2003 ), and the concrete pulse velocity was found 

to be frequency-dependent especially over the range of 24–120 kHz 

( Popovics et al., 1990 ). 

A well-documented experimental campaign concerning ultra- 

sonic wave propagation on fresh and hardened concrete as well 

as on mortar specimens was conducted at the University of Pa- 

tras ( Aggelis et al., 2005; Philippidis and Aggelis, 2005 ). This study, 

here referred to for the experimental findings, was aimed at as- 

sessing the quality of concrete at different stages after mixing via 

ultrasonic non-destructive testing techniques. The dispersive fea- 

tures observed in ultrasonic wave propagation were ascribed to the 

underlying internal microstructure of concrete. In particular, two 

material properties were explored, namely the sand content and 

the w / c ratio. 

In Figs. 6 and 7 the experimental results in terms of phase 

velocity curves of fresh concrete specimens ( Aggelis et al., 2005 ) 

are displayed. These results were obtained through a waveform 
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Fig. 6. Analytical versus experimental dispersion curves of fresh concrete specimens with w / c ratio equal to 0.55 and different sand contents: a) s = 0%; b) s = 25%; c) s = 30%; 

d) s = 40% (experimental data after Aggelis et al., 2005 ). 

generator and two broadband piezoelectric transducers, which 

were installed on two opposite faces of a special Plexiglas U- 

shaped mold in which the fresh cementitious material was poured. 

A set of tone-burst signals were introduced into the specimens, 

with central frequencies ranging from 20 kHz up to about 1 MHz, 

and the signals at the two sensors located at a given separation 

distance were monitored. The phase velocity was determined for 

each frequency as the ratio of the distance traveled over the de- 

lay observed in the two waveforms ( Kinra et al., 1980 ). Although 

the source experimental plots were in the form of phase velocity 

c versus frequency f curves ( Aggelis et al., 2005 ), for consistency 

with the remainder of the paper the experimental results are here 

presented as phase velocity versus wave number curves by recall- 

ing the relation k = 2 π f / c . In this way, the length scale parameters 

entering the gradient elasticity formulation of Eq. (6) can be found 

by a data fitting of the experimental pairs c − k with a non-linear 

least square minimization procedure. 

The corresponding analytical dispersion curves provided by the 

gradient elasticity theory are reported against the experimental 

findings. The specimens shown in Fig. 6 share the same w / c ra- 

tio equal to 0.55, while the sand content varies from zero (limit 

case of the cement paste) to 25%, 30% and 40%. Conversely, fresh 

concrete specimens reported in Fig. 7 share the same sand con- 

tent equal to s = 30% while the w / c ratio assumes the values 0.46, 

0.475, 0.525, 0.55. The size of sand particles in both cases ranged 

from 1 mm to 4 mm. 

By inspection of the experimental points, significant dispersion 

is observed as the phase velocity values drop from several thou- 

sand m/s to approximately the sound velocity in water (1500 m/s) 

for the large wave numbers. It is worth noting that in some cases 

extremely high values of phase velocity would be extrapolated in 

the low wave number regime, see e.g. Fig. 6 a, b and d. This be- 

havior cannot be explained by classical approaches, but rather it 

may be ascribed to the interaction between micro-structural ef- 

fects ( Iliopoulos et al., 2016 ) and to the resonance behaviors of air 

bubbles within fresh concrete that is still in a liquid form. From 

Fig. 6 , it is noted that an increase of sand content from 0% to 40% 

produces a decrease in the phase velocity in the low wave num- 

ber range, whereas in the medium-to-high wave number range 

the phase velocity is found to be not significantly affected by the 

sand content. This implies that the stiffer the mortar, due to an 

increase of the sand content, the less the dispersion experimen- 

tally obtained. On the contrary, from Fig. 7 it is observed that an 

increase of the w / c ratio yields a more dispersive wave propaga- 

tion, as the phase velocities in the low-frequency regime increase 

accordingly. Therefore, the stronger dispersive behavior is observed 

for the less stiff specimens, with low sand content and high water 

content. 

In Iliopoulos et al. (2016 ) the two-length-scale gradient elas- 

ticity model with one micro-stiffness term and one micro-inertia 

term ( αℓ 2 and γ ℓ 2 terms of the present notation, which in the 

quoted paper were termed as h 2 and g 2 ) was employed to describe 

the dispersive wave propagation analytically, and the correspond- 

ing length scale parameters were detected as a result of a least 

square fitting technique against the experimental data. In Tables 1 

and 2 the microstructural parameters h and g as well as the R 2 

values directly taken from the study by Iliopoulos et al. (2016 ) are 

listed. As an extension of this model, we here repeat the curve 

fitting procedure by using the three-length-scale gradient elastic- 

ity formulation as per Eq. (6) . The corresponding R 2 values are 
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Fig. 7. Analytical versus experimental dispersion curves of fresh concrete specimens with s = 30% and different w / c ratios: a) w / c = 0.460; b) w / c = 0.475; c) w / c = 0.525; d) 

w / c = 0.550 (experimental data after Aggelis et al., 2005 ). 

Table 1 

Length scale identification for fresh concrete specimens with water/cement ratio equal to w / c = 0.55 and different sand contents (experimental data 

after Aggelis et al., 2005 ). 

three-length-scale gradient elasticity model (proposed) two-length-scale gradient model ( Ilioupoulos et al. 2016 ) 

sand content c e [m/s 2 ] h = 
√ 

αℓ 2 [m] h̄ = 4 
√ 

βℓ 4 [m] g = 
√ 

γ ℓ 2 R 2 h [ m ] g [m] R 2 

0% 17,820 0.0167 0.0106 0.0014 0.99955 0.3243 0.0019 0.952 

25% 9728 0.0089 0.0181 0.0015 0.99694 0.0300 0.0025 0.770 

30% 5182 0.0047 0.0189 0.0013 0.99754 0.0103 0.0020 0.892 

40% 70,240 0.0839 0.0833 0.0020 0.98843 0.4896 0.0018 0.961 

Table 2 

Length scale identification for fresh concrete specimens with sand content s = 30% and different water/cement ratios (experimental data after 

Aggelis et al., 2005 ). 

three-length-scale gradient elasticity model (proposed) two-length-scale gradient model ( Ilioupoulos et al. 2016 ) 

w / c ratio c e [m/s 2 ] h = 
√ 

αℓ 2 [m] h̄ = 4 
√ 

βℓ 4 [m] g = 
√ 

γ ℓ 2 R 2 h [ m ] g [m] R 2 

0.460 3904 0.0043 0.0012 0.0016 0.98841 0.0076 0.0018 0.969 

0.475 4240 0.0052 0.0216 0.0018 0.99526 0.0074 0.0021 0.969 

0.525 4574 0.0043 0.0 0 09 0.0013 0.99906 0.0068 0.0018 0.950 

0.550 5199 0.0047 0.0191 0.0013 0.99727 0.0102 0.0019 0.892 

appreciably higher than the ones reported in Iliopoulos et al. 

(2016 ) because of the added fourth-order term, and the agree- 

ment with the experimental data is excellent for all the ana- 

lyzed concrete specimens, cf. again Figs. 6 and 7 . Interestingly, 

from Tables 1 and 2 it is noted that the length-scale parame- 

ters associated with the strain gradient term, g = 

√ 

γ ℓ 2 , is roughly 

similar in the two gradient elasticity models equipped with two- 

and three-length-scale parameters, respectively. In particular, this 

length scale has dimensions ranging from 1.3 mm to 2.0 mm for 

the three-length-scale model and from 1.8 mm to 2.5 mm for the 

two-length-scale model, which in both cases resembles the aver- 

age size of the sand particles adopted in the analyzed fresh con- 

crete specimens. Therefore, a consistent relationship between the 

length scale parameter and the characteristic size of the material 

microstructure exists, which was also observed in ( Iliopoulos et al., 

2016 ). On the contrary, the micro-inertia term h = 
√ 

αℓ 2 in the 

two gradient elasticity models equipped with two- and three- 

length-scale parameters are rather different, which is also quite 
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Fig. 8. Analytical versus experimental dispersion curves of hardened mortar specimens with a / c = 0.3 and different w / c ratios: a) w / c = 0.50; b) w / c = 0.55; c) w / c = 0.60; d) 

w / c = 0.65 (experimental data after Philippidis and Aggelis, 2005 ). 

reasonable as the three-length-scale model describes the micro- 

inertia effects via an additional micro-inertia term h̄ = 
4 
√ 

βℓ 4 in 

comparison with the two-length-scale gradient model. In all the 

fresh concrete specimens it is found that h > g , which means that 

α > γ in Eq. (6) . 

This circumstance generates a phase velocity curve that is de- 

creasing with increasing wave numbers, i.e., the higher wave num- 

bers travel slower than the lower wave numbers. This behavior is 

typical of fresh mortar and fresh concrete specimens where the in- 

clusions, in the form of sand particles, are embedded in a liquid 

matrix, thus micro-inertia values are higher than micro-stiffness. 

On the other hand, mortar and concrete specimens were also 

tested at a hardened state ( Philippidis and Aggelis, 2005 ) and the 

corresponding experimental phase velocity curve was derived. The 

phase spectrum technique introduced in ( Sachse and Pao, 1978 ) 

was employed: two ultrasonic broadband transducers, having cen- 

ter frequency 500 kHz and mounted directly on the specimen sur- 

face, were used, the fast Fourier transforms of the exciting and 

received signals were recorded and the difference of unwrapped 

phases for each frequency component of the Fourier spectrum was 

calculated, thus giving indications on the phase velocity for that 

frequency. Cubic specimens of 150 mm side were tested, aged be- 

tween 2.5 and 4 years from casting ( Philippidis and Aggelis, 2005 ). 

Mortar specimens contain cement, sand and water, with sand par- 

ticles up to 4.75 mm, whereas concrete specimens contain also fine 

aggregates, ranging from 1.18 mm to 25 mm, and coarse aggregates, 

of sizes from 4.75 mm to 37.5 mm. Phase velocity curves for mortar 

and concrete specimens are reported in Figs. 8 and 9 , respectively. 

Different w / c ratios are examined, while all the specimens share 

the same aggregate to cement ratio a / c = 3, resulting in volume 

content of aggregates of approximately 60%. It is found that both 

mortar and concrete specimens at hardened state exhibit an op- 

posite dispersive behavior than the fresh cementitious specimens 

discussed before, as the phase velocity curve increases with in- 

creasing wave numbers, which means that the higher wave num- 

bers travel faster than the lower wave numbers. Generally speak- 

ing, concrete specimens exhibit a more pronounced dispersive be- 

havior than mortar ones, which is reflected by the higher increase 

of phase velocity in the low wave number range. This may be due 

to the larger size of inclusions in the form of coarse aggregates 

that contribute to an increased inhomogeneity of the specimen as 

a whole. 

The analytical dispersion curves from gradient elasticity theory 

are reported against the experimental data. The microstructural co- 

efficients of both the three-length-scale and the two-length-scale 

gradient formulation are again identified via a non-linear least 

square minimization procedure and reported in Tables 3 and 4 

for mortar and concrete, respectively. For hardened concrete spec- 

imens, the two length-scale parameters h and g as well as the R 2 

values are directly taken from the study by Iliopoulos et al. (2016 ). 

Similarly to the case of fresh concrete, for hardened concrete sig- 

nificant improvements are achieved by the inclusion of an addi- 

tional micro-inertia term, with the R 2 values of the three-length- 

scale model being appreciably higher (in all cases higher than 0.99) 

than the ones obtained by the two-length-scale gradient formula- 

tion in Iliopoulos et al. (2016 ), cf. Table 4 . Excellent performance 

is also achieved with regard to mortar specimens, cf. Table 3 . 

Due to the shape of the phase velocity curve that increases with 
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Fig. 9. Analytical versus experimental dispersion curves of hardened concrete specimens with a / c = 0.3 and different w / c ratios: a) w / c = 0.375; b) w / c = 0.40; c) w / c = 0.425; 

d) w / c = 0.45 (experimental data after Philippidis and Aggelis, 2005 ). 

Table 3 

Length scale identification for hardened mortar specimens with aggregate to cement mass ratio a / c = 3 and different water/cement 

ratios (experimental data after Philippidis and Aggelis, 2005 ). 

three-length-scale gradient elasticity model two-length-scale gradient elasticity model 

w / c ratio c e [m/s 2 ] h = 
√ 

αℓ 2 [m] h̄ = 4 
√ 

βℓ 4 [m] g = 
√ 

γ ℓ 2 R 2 h [ m ] g [m] R 2 

0.500 3927 0.0146 0.0069 0.0158 0.999413 0.0159 0.0172 0.98067 

0.550 3900 0.0118 0.0061 0.0122 0.97179 00,141 0.0146 0.90874 

0.600 3717 0.0112 0.0060 0.0116 0.97181 0.0134 0.0138 0.90716 

0.650 3673 0.0101 0.0062 0.0102 0.91356 0.0137 0.0139 0.73203 

Table 4 

Length scale identification for hardened concrete specimens with aggregate to cement mass ratio a / c = 3 and different water/cement ratios (ex- 

perimental data after Philippidis and Aggelis, 2005 ). 

three-length-scale gradient elasticity model (proposed) two-length-scale gradient model ( Iliopoulos et al., 2016 ) 

w / c ratio c e [m/s 2 ] h = 
√ 

αℓ 2 [m] h̄ = 4 
√ 

βℓ 4 [m] g = 
√ 

γ ℓ 2 R 2 h [ m ] g [m] R 2 

0.375 3925 0.0203 0.0072 0.0246 0.99919 0.0219 0.0264 0.977 

0.400 ∗ 4178 0.0153 0.0078 0.0167 0.99759 0.0169 0.0183 0.981 

0.425 3793 0.0154 0.0080 0.0187 0.99789 0.0200 0.0247 0.978 

0.450 3881 0.0144 0.0071 0.0165 0.99168 0.0205 0.0238 0.954 

∗ This case was not discussed in the study by Iliopoulos et al. (2016) . The results with the two-length-scale gradient elasticity model are derived 

by the authors. 

increasing wave numbers, in all the hardened mortar and concrete 

specimens it is found that g > h , which means that γ > α in 

Eq. (6) . This behavior is typical of hardened concrete where inclu- 

sions, in the form of coarse aggregates, are harder than the solid 

matrix and micro-stiffness attains higher values than micro-inertia. 

In Tables 3 and 4 it is found that the microstructural coeffi- 

cients g = 

√ 

γ ℓ 2 and h = 
√ 

αℓ 2 are roughly comparable in the two 

gradient elasticity models equipped with two- and three-length- 

scale parameters, respectively. In particular, the microstructural co- 

efficient g has dimensions of a few cm, more specifically ranging 

from 16.5 mm to 24.6 mm for the three-length-scale model and 

from 18.3 mm to 26.4 mm for the two-length-scale model. These 

results are both consistent with the average size of aggregates used 

for concrete specimens (mean size 24 mm ( Iliopoulos et al., 2016 )). 
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Comparing these values with the previous ones for fresh concrete 

specimens, it is found that the length scale parameter g is a few 

mm in the case of fresh concrete, and a few cm in the case of 

hardened concrete. This order of magnitude of difference reflects 

the actual particle sizes in the underlying material microstructure 

at the two different states, as already noted in Iliopoulos et al. 

(2016 ). Moreover, by inspection of Tables 3 and 4 it can be noted 

that an increase of the w / c ratio leads to a monotonic decrease of 

the micro-stiffness g , which is physically reasonable as the macro- 

scopic representative volume contains a higher amount of water. 

The results of concrete specimen with w / c = 0.400 slightly deviate 

from this trend, probably due to some experimental troubles oc- 

curred during this specific tests. 

The phase velocity value c e in the limit as k → 0 (characterizing 

the wave propagation of non-dispersive waves in a classical elastic 

medium) decreases with increasing the w / c ratio. The c e values in 

hardened mortar and hardened concrete approximately range from 

3700 to 4000 m/s, which are physically consistent values for typi- 

cal concrete properties in terms of mass density ρ ≈ 2400 kg/m 3 

and Young’s modulus E ≈ 2.8 · 10 10 N/m. For such typical concrete 

properties the classical one-dimensional phase velocity would be 

c e = 
√ 
E/ρ ≈ 3400 m / s . However, the actual dispersive behavior 

experimentally occurring in the concrete specimens is not de- 

scribed by the one-dimensional equation of motion (5) , but rather 

by Eq. (1) . The dispersive properties of Eq. (1) were derived in 

De Domenico and Askes (2017 ) by studying two-dimensional wave 

propagation. The following results were obtained in terms of com- 

pressive and shear wave velocity, respectively 

c 2 

c 2 p 
= 

1 + γχ2 

1 + αχ2 + βχ4 
with c 2 p = 

λ + 2 μ

ρ
= 

E 

ρ

(1 − ν) 

(1 + ν)(1 − 2 ν) 

= c 2 e 
(1 − ν) 

(1 + ν)(1 − 2 ν) 

c 2 

c 2 s 
= 

1 + γχ2 

1 + αχ2 + βχ4 
with c 2 s = 

μ

ρ
= 

E 

2 ρ(1 + ν) 
(32) 

where λ, μ are the Lamé constants, while c p and c s denote the 

long wave length limit of the compressive and shear wave veloc- 

ity, respectively. The comparison between Eqs. (6) and (32) reveals 

that the dispersion curves for one-dimensional waves and two- 

dimensional compressive and shear waves have the same shape, 

the only difference being the factor by which they are scaled. 

The one-dimensional case may be retrieved from Eq. (32) for a 

zero value of the Poisson’s ratio ν , leading to c p ≡ c e = 
√ 
E/ρ . For 

ν > 0 one has c p > c e ; again referring to typical medium con- 

crete properties and considering that the Poisson’s ratio can be as- 

sumed as ν ≈ 0.2 −0.3, the ratio c 2 p /c 
2 
e in (32) is roughly equal 

to (1 −ν)/(1 + ν)(1 −2 ν) ≈ 1.11 −1.35, so that c p ≈ 1 . 05 − 1 . 16 c e , 

which is definitely in agreement with the phase velocity val- 

ues found in the experimental dispersion curves in the limit as 

k → 0 for a classical phase velocity of approximately c e = 
√ 
E/ρ ≈

3400 m / s . 

In order to establish a direct link between the length-scale pa- 

rameters and the geometric and mechanical properties of the mi- 

crostructure, the lattice model described in Section 3.1 can be re- 

sorted to. To this aim, the procedure described in ( Iliopoulos et al., 

2016 ) is here adapted to link the proposed three-length-scale gra- 

dient elasticity formulation to the microstructure of the hardened 

concrete specimens. In particular, the Young’s modulus of the lat- 

tice model illustrated in Fig. 1 is expressed according to the mix- 

ture law as follows 

E = E a V a + E m V m (33) 

where E a and E m denote the Young’s modulus of the concrete ag- 

gregates and concrete matrix, respectively, while V a and V m are the 

corresponding volume fractions, with V m = 1 −V a . For the tested 

Table 5 

Physical and mechanical properties of concrete specimens (after Iliopoulos et al., 

2016 ). 

aggregates Matrix concrete 

E a ρa V a E m ρmat V m E 

w / c [GPa] [kg/m 3 ] [ − ] [GPa] [kg/m 3 ] [ − ] [GPa] 

0.375 70 2650 0.310 20.0 2100 0.690 35.5 

0.400 ∗ 70 2650 0.305 18.5 2090 0.695 34.2 

0.425 70 2650 0.300 17.0 2080 0.700 32.9 

0.450 70 2650 0.290 14.0 2050 0.710 30.2 

∗ This case was not discussed in Iliopoulos et al. (2016) . Mechanical and physical 

properties are here estimated by the authors on the basis of the other results. 

concrete specimens, these mechanical and physical quantities were 

experimentally evaluated and are reported in Table 5 for each w / c 

ratio. It is noted that the Young’s modulus of the matrix E m mono- 

tonically decreases as the w / c ratio increases, which is reasonable 

since the water content negatively influences the matrix stiffness. 

The concrete Young’s modulus E calculated according to Eq. (33) is 

also listed in the Table. 

We also compute the total mass density of the lattice system 

ρ = ρM + ρm , with ρM denoting the macro-volume density and ρm 

indicating micro-volume density, cf. Fig. 1 . These mass density 

terms are linked to the physical properties of the concrete spec- 

imens through the expressions 

ρM = ρa V a , ρm = ρmat V m (34) 

where ρa and ρmat denote the aggregate and matrix densities. 

Value of the parameters ρa , ρmat experimentally evaluated for each 

concrete specimen are listed in Table 5 . The ρm / ρ ratio expressing 

the significance of the micro-to-macro density is then computed 

for each concrete specimen and reported in Table 6 as well. Once 

the ρm / ρ ratio is computed, the particle spacing ℓ of the nonlocal 

lattice model, representing the unit cell of the non-homogeneous 

material, can be derived from the micro-stiffness g as follows 

g 2 = γ ℓ 2 = 
ρm 

6 ρ
ℓ 2 → determine ℓ. (35) 

To determine ℓ , the values of the length-scale material param- 

eter g identified with the non-linear least square fitting procedure 

and reported in Table 4 have been assumed. The obtained lattice 

size ℓ for each w / c ratio is reported in Table 6 . The particle size 

ℓ may also be used to determine the mean aggregate diameter d . 

On the basis of the volume fraction V a , the mean aggregate diam- 

eter has been estimated as d ≈ ℓ 3 
√ 

V a , see Iliopoulos et al. (2016 ), 

which ranges from d = 51.0 mm for w / c = 0.375 to d = 33.1 mm for 

w / c = 0.45 as reported in Table 6 . Except for the case w / c = 0.375, 

these values are quite in line with the actual aggregate dimensions 

used for the hardened concrete specimens, so that the obtained 

d values may realistically describe the representative concrete mi- 

crostructure. 

Once the particle spacing ℓ is determined, the micro-inertia 

length scales of the nonlocal lattice model are finally calculated 

as 

h 2 = αℓ 2 = 
1 

12 
ℓ 2 , h̄ 4 = βℓ 4 = 

(

1 

240 
+ 

1 

72 

ρm ( ρ − 2 ρm ) 

ρ2 

)

ℓ 4 (36) 

in line with the previously discussed Eq. (17) . The resulting micro- 

inertia terms calculated through (36) are reported in Table 6 as 

well. Two main conclusions may be drawn: 1) all the calculated 

micro-inertia values h are lower than the corresponding micro- 

stiffness g , which confirms the result obtained by fitting the ex- 

perimental dispersion curves; 2) such micro-inertia terms h and h̄ 

derived from the nonlocal lattice model roughly resemble the val- 

ues of h and h̄ identified by curve fitting the experimental disper- 

sion curves, cf. Table 4 . This result is not trivial, as these two sets 
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Table 6 

Link between nonlocal lattice parameters and concrete microstructure. 

nonlocal lattice concrete microstructure parameters derived from lattice model 

w / c ρm 
ρ ℓ [m] d [m] g = 

√ 
γ ℓ 2 h = 

√ 
αℓ 2 [m] h̄ = 4 

√ 
βℓ 4 [m] 

0.375 0.638 0.0754 0.05105 0.0246 0.0217 0.0154 

0.400 0.642 0.0510 0.03435 0.0167 0.0147 0.0102 

0.425 0.647 0.0569 0.03813 0.0187 0.0164 0.0111 

0.450 0.654 0.0499 0.03307 0.0165 0.0144 0.0096 

of micro-inertia terms arise from two different procedures, the for- 

mer focused on mathematically-based least square principles, the 

latter inspired by a physically-based approach via the proposed 

nonlocal lattice model. 

5. Concluding remarks 

Elastic waves propagating through non-homogeneous media ex- 

hibit dispersion if their wavelength is of the same order as the 

characteristic length scale of the material microstructure. In or- 

der to capture such physical phenomenon, in this paper gradient 

enrichments of the classical continuum equations have been em- 

ployed. In the literature, a number of gradient elasticity formula- 

tions were proposed, mainly originating from the Mindlin’s theory 

of elasticity with microstructure. In the framework of wave disper- 

sion one of the most popular models is the one equipped with two 

length scale parameters, associated with one higher-order stiffness 

term (strain gradient) and one higher-order inertia term (inertia 

gradient). In this research we have highlighted the potentials of an 

enhanced format of gradient elasticity in the context of wave dis- 

persion, which may be viewed as an extension of the latter model 

by incorporating three length scale material parameters. The rel- 

ative magnitudes between these three length scales are adjusted 

by three coefficients that are termed α, β , γ in this paper. The γ
term is associated with the Laplacian of the strain field, while the 

α and β coefficients multiply two higher-order inertia terms. As 

compared to the popular two length-scale gradient model, there is 

one more micro-inertia term (linearly proportional to the β con- 

stant) multiplying the fourth-order space derivative of the acceler- 

ation field in the equations of motion. The earlier two-length-scale 

model can thus be retrieved as a special case by assuming β = 0. 

It is rather obvious that additional gradient enrichments im- 

prove the dispersion behavior of higher-order continuum models. 

To demonstrate and quantify this, a set of experimental findings 

available in the literature and/or benchmark solutions based on 

micromechanics have been considered and compared to the an- 

alytical dispersion curves provided by gradient elasticity. In par- 

ticular, the dispersive wave propagation in composite laminates 

with periodic microstructure, in metal nano-structured crystals of 

aluminum and bismuth, and in concrete and mortar specimens 

has been investigated. It has been found that there are signifi- 

cant improvements in the prediction of the dispersive behavior as 

observed in experiments and micro-mechanical data by including 

the additional micro-inertia term proportional to the fourth-order 

space derivative of the acceleration. 

Since the identification and quantification of internal constitu- 

tive parameters of gradient elasticity is usually viewed as an in- 

tricate task, we have provided a few procedures by which such 

parameters can be linked to material microstructural properties. 

In composite laminates with periodic microstructure, length scale 

identification is carried out based on higher-order asymptotic ho- 

mogenization. Moreover, length scale quantification procedures 

have been discussed for concrete specimens and related to the real 

distribution of inclusions in the underlying microstructure with the 

aid of a lattice model. 

Another important aspect that makes the three-length-scale 

gradient formulation particularly appealing from a numerical point 

of view is concerned with the relevant finite element implementa- 

tion. Application of a specific operator split to the original fourth- 

order differential equations with three higher-order terms results 

in a set of two second-order differential equations. This implies 

that a standard finite element implementation with linear shape 

functions ( C 0 -continuity) is sufficient. As a result, it is concluded 

that the additional β term considerably improves the dispersive 

behavior, but at the same time it does not imply any extra compu- 

tational cost as compared to the two-length-scale model with one 

micro-inertia and one micro-stiffness term. 
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