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Coloring square-free Berge graphs

Maria Chudnovsky∗ Irene Lo† Frédéric Maffray‡
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Abstract

We consider the class of Berge graphs that do not contain an induced

cycle of length four. We present a purely graph-theoretical algorithm that

produces an optimal coloring in polynomial time for every graph in that

class.
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1 Introduction

A graph G is perfect if every induced subgraph H of G satisfies χ(H) = ω(H),
where χ(H) is the chromatic number of H and ω(H) is the maximum clique
size in H. In a graph G, a hole is an induced cycle with at least four vertices
and an antihole is the complement of a hole. We say that graph G contains a
graph F , if F is isomorphic to an induced subgraph of G. A graph G is F -free
if it does not contain F , and for a family of graphs F , G is F-free if G is F -free
for every F ∈ F . Berge [2, 3, 4] introduced perfect graphs and conjectured
that a graph is perfect if and only if it does not contain an odd hole or an
odd antihole. A Berge graph is any graph that contains no odd hole and no
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odd antihole. This famous question (the Strong Perfect Graph Conjecture) was
solved by Chudnovsky, Robertson, Seymour and Thomas [7]: Every Berge graph
is perfect. Moreover, Chudnovsky, Cornuéjols, Liu, Seymour and Vušković [6]
devised a polynomial-time algorithm that determines if a graph is Berge.

It is known that one can obtain an optimal coloring of a perfect graph in
polynomial time due to the algorithm of Grötschel, Lovász and Schrijver [12].
This algorithm however is not purely combinatorial and is usually considered
impractical. No purely combinatorial algorithm exists for coloring all Berge
graphs optimally and in polynomial time.

The length of a path or cycle is the number of its edges. In what follows
we will use the term “path” to mean “induced (or chordless) path”. For a path
P with ends a, b, the interior of P is the set V (P ) \ {a, b}; the interior of P
is denoted by P ∗. We let Ck denote the hole of length k (k ≥ 4). The graph
C4 is also referred to as a square. A graph is chordal if it is hole-free. It is
well-known that chordal graphs are perfect and that their chromatic number
can be computed in linear time (see [11]).

Farber [10], and later Alekseev [1], proved that the number of maximal
cliques in a square-free graph on n vertices is O(n2). Moreover it is known that
one can list all the maximal cliques in a graph G in time O(n3K), where K
is the number of maximal cliques; see [20, 18] among others. It follows that
finding ω(G) (the size of a maximum clique) can be done in polynomial time for
any square-free graph, and in particular finding χ(G) can be done in polynomial
time for a square-free Berge graph. Moreover, Parfenoff, Roussel and Rusu [19]
proved that every square-free Berge graph has a vertex whose neigbhorhood
is chordal, which yields another way to find all maximal cliques in polynomial
time. However getting an exact coloring of a square-free Berge graph is still
hard, and this is what we do. The main result of this paper is a purely graph-
theoretical algorithm that produces an optimal coloring for every square-free
Berge graph in polynomial time.

Theorem 1.1 There exists an algorithm which, given any square-free Berge
graph G on n vertices, returns a coloring of G with ω(G) colors in time O(n9).

A prism is a graph that consists of two vertex-disjoint triangles (cliques of
size 3) with three vertex-disjoint paths P1, P2, P3 between them, and with no
other edge than those in the two triangles and in the three paths. Note that if
two of P1, P2, P3 have lengths of different parities, then their union induces an
odd hole. So in a Berge graph, the three paths of a prism have the same parity.
A prism is even (resp. odd) if these three paths all have even length (resp. all
have odd length).

Let A be the class of graphs that contain no odd hole, no antihole of length
at least 6, and no prism. This class is studied in [17], where purely graph-
theoretical algorithms are devised for coloring and recognizing graphs in that
class. In particular:
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Theorem 1.2 ([17]) There exists an algorithm which, given any graph G in
class A on n vertices, returns a coloring of G with ω(G) colors and a clique of
size ω(G), in time O(n6).

Note that every antihole of length at least 6 contains a square; so a square-
free graph contains no such antihole.

Since Theorem 1.2 settles the case of graphs that have no prism, we may
assume for our proof of Theorem 1.1 that we are dealing with a graph that
contains a prism. The next sections focus on the study of such graphs. We will
prove that whenever a square-free Berge graph G contains a prism, it contains
a cutset of a special type, and, consequently, that G can be decomposed into
two induced subgraphs G1 and G2 such that an optimal coloring of G can be
obtained from optimal colorings of G1 and G2.

Note that results from [16] show that finding an induced prism in a Berge
graph can be done in polynomial time but that finding an induced prism in
general is NP-complete.

In [15], it was proved that when a square-free Berge graph contains no odd
prism, then either it is a clique or it has an “even pair”, as suggested by a
conjecture of Everett and Reed (see [9]). However, this property does not carry
over to all square-free Berge graphs; indeed it follows from [13] that the line-
graph of any 3-connected square-free bipartite graph (for example the “Heawood
graph”) is a square-free Berge graph with no even pair.

We finish this section with some notation and terminology. In a graph G,
given a set T ⊂ V (G), a vertex of V (G) \ T is complete to T if it is adjacent to
all vertices of T . A vertex of V (G) \ T is anticomplete to T if it is non-adjacent
to every vertex of T . Given two disjoint sets S, T ⊂ V (G), S is complete to T if
every vertex of S is complete to T , and S is anticomplete to T if every vertex of
S is anticomplete to T . Given a cycle, any edge between two vertices that are
not consecutive along it is a chord. A cycle that has no chord is chordless.

The line-graph of a graph H is the graph L(H) with vertex-set E(H) where
e, f ∈ E(H) are adjacent in L(H) if they share an end in H.

In a graph J , subdividing an edge uv ∈ E(J) means removing the edge
uv and adding a new vertex w and two new edges uw, vw. Starting with a
graph J , the effect of repeatedly subdividing edges produces a graph H called
a subdivision of J . Note that V (J) ⊆ V (H). A bipartite subdivision of a graph
J is any subdivision of J that is bipartite.

Lemma 1.3 Let G be square-free. Let K be a clique in G, possibly empty. Let
X1, X2, . . . , Xk be pairwise disjoint subsets of V (G), also disjoint from K, such
that Xi is complete to Xj for all i 6= j, and let X =

⋃
i Xi. Suppose that for

every v in K, there is an integer i so that v is complete to X \Xi. Then there
is an integer i such that (K ∪X) \Xi is a clique in G.

Proof. First observe that there exists an integer j such thatX\Xj is a clique, for
otherwise two of X1, . . . , Xk are not cliques and their union contains a square.
Hence if K is empty, the lemma holds.
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Now we claim that K is complete to at least k − 1 of the Xi’s. For suppose
on the contrary that K is not complete to any of X1 and X2. Then there are
vertices v1, v2 ∈ K, x1 ∈ X1, x2 ∈ X2 such that for i ∈ {1, 2} and j ∈ {1, 2}\{i},
vi adjacent to xi and non-adjacent to xj . By the assumption, v1 6= v2. Then
{v1, x1, x2, v2} induces a square, contradiction. Hence there exists an index h
such that K is complete to X \Xh.

Suppose that the lemma does not hold. Then j 6= h and there are vertices
x, x′ ∈ Xj , v ∈ K, w ∈ Xh such that x and x′ are non-adjacent and v and w are
non-adjacent. Then {x, v, x′, w} induces a square, contradiction. This proves
the lemma. �

In a graph G, we say (as in [7]) that a vertex v can be linked to a triangle
{a1, a2, a3} (via paths P1, P2, P3) when: the three paths P1, P2, P3 are mutually
vertex-disjoint; for each i ∈ {1, 2, 3}, ai is an end of Pi; for all i, j ∈ {1, 2, 3}
with i 6= j, aiaj is the only edge between Pi and Pj ; and v has a neighbor in
each of P1, P2, P3.

Lemma 1.4 ((2.4) in [7]) In a Berge graph, if a vertex v can be linked to a
triangle {a1, a2, a3}, then v is adjacent to at least two of a1, a2, a3.

2 Good partitions

In a graph G, a triad is a set of three pairwise non-adjacent vertices.
A good partition of a graph G is a partition (K1,K2,K3, L,R) of V (G) such

that:

(i) L and R are not empty, and L is anticomplete to R;

(ii) K1 ∪K2 and K2 ∪K3 are cliques;

(iii) If P = p1 − · · · − pk is a path with p1 ∈ K1, pk ∈ K3, k ≥ 3 and P ∗ ⊆ L,
then p2 is complete to K1.

(iv) Either K1 is anticomplete to K3, or for every v ∈ L the set N(v) ∩K1 is
complete to N(v) ∩K3;

(v) For some x ∈ L and y ∈ R, there is a triad of G that contains {x, y}.

Theorem 2.1 Let G be a square-free Berge graph. If G contains a prism, then
G has a good partition.

The proof of this theorem will be given in the following sections, depending on
the presence in G of an even prism (Theorem 4.2), an odd prism (Theorem 5.2),
or the line-graph of a bipartite subdivision of K4 (Theorem 6.1).

In the rest of this section we show how a good partition can be used to find
an optimal coloring of the graph.
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Lemma 2.2 Let G be a square-free Berge graph. Suppose that V (G) has a good
partition (K1,K2,K3, L,R). Let G1 = G \ R and G2 = G \ L, and for i = 1, 2
let ci be an ω(Gi)-coloring of Gi. Then an ω(G)-coloring of G can be obtained
in polynomial time.

Proof. We may assume (by making K2 maximal) that no vertex of K3 is com-
plete to K1. Since K1∪K2 is a clique, by permuting colors we may assume that
c1(x) = c2(x) holds for every vertex x ∈ K1 ∪K2.

Say that a vertex u in K3 is bad if c1(u) 6= c2(u), and let B be the set
of bad vertices. If B = ∅, we can merge c1 and c2 into a coloring of G and
the lemma holds. Therefore let us assume that B 6= ∅. We will show that we
can produce in polynomial time a pair (c′1, c

′

2) of ω(G)-colorings of G1 and G2,
respectively, that agree on K1 ∪ K2 and have strictly fewer bad vertices than
(c1, c2). Repeating this argument at most |B| times will prove the lemma.

For each h ∈ {1, 2} and for any two distinct colors i and j, let Gi,j
h be the

bipartite subgraph of Gh induced by {v ∈ V (Gh) | ch(v) ∈ {i, j}}; and for any
vertex u ∈ K3, let C

i,j
h (u) be the component of Gi,j

h that contains u.

Let u ∈ B, with i = c1(u) and j = c2(u). Then Ci,j
h (u) ∩ K2 = ∅ for each

h ∈ {1, 2} because u is complete to K2. Say that u is free if Ci,j
h (u) ∩K1 = ∅

holds for some h ∈ {1, 2}. In particular u is free whenever colors i and j do not
appear in K1.

We may assume that there is no free vertex. (1)

Suppose that u is a free vertex, with Ci,j
1 (u)∩K1 = ∅ say. Then we swap colors

i and j on Ci,j
1 (u). We obtain a coloring c′1 of G1 where the color of every vertex

in K1 ∪K2 is unchanged, by the definition of a free vertex; so c′1 and c2 agree
on K1 ∪ K2. For all v ∈ K3 \ B we have c1(v) 6= i, because c1(u) = i, and
c1(v) 6= j, because c1(v) = c2(v) 6= c2(u) = j; so the color of v is unchanged.
Moreover we have c′1(u) = j = c2(u), so c′1 and c2 agree on u. Hence the pair
(c′1, c2) has strictly fewer bad vertices than (c1, c2). Thus (1) holds.

Choose w in B with the largest number of neighbors in K1. Then:

Every vertex u ∈ B satisfies N(u) ∩K1 ⊆ N(w) ∩K1. (2)

For suppose that some vertex x ∈ K1 is adjacent to u and not to w. By the
choice of w there is a vertex y ∈ K1 that is adjacent to w and not to u. Then
{x, y, u, w} induces a square, a contradiction. Thus (2) holds.

Up to relabelling, let c1(w) = 1 and c2(w) = 2. By (1) w is not a free vertex,
so C1,2

1 (w) ∩K1 6= ∅ and C1,2
2 (w) ∩K1 6= ∅. Hence for some i ∈ {1, 2} there is

a path P = w-p1-· · · -pk-a in C1,2
1 (w), with k ≥ 1, p1 ∈ K3 ∪ L, p2, . . . , pk ∈ L

and a ∈ K1 with c1(a) = i; and for some i′ ∈ {1, 2} there is a path Q = w-q1-
· · · -qℓ-a

′ in C1,2
2 (w), with ℓ ≥ 1, q1 ∈ K3 ∪ R, q2, . . . , qℓ ∈ R and a′ ∈ K1 with

c2(a
′) = i′. It follows that at least one of the colors 1 and 2 appears in K1. We

claim that:

Exactly one of the colors 1 and 2 appears in K1. (3)
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For suppose that there are vertices a1, a2 ∈ K1 with c1(a1) = 1 and c1(a2) = 2.
We know that w is anticomplete to {a1, a2}. Since P is bicolored by c1, it cannot
contain a vertex complete to {a1, a2}; so, by assumption (iii), P does not meet
L. This implies that P = w-p1-a1 and p1 ∈ K3. Then c2(p1) 6= 2, because
c2(w) = 2, and so p1 ∈ B; but then (2) is contradicted since w is non-adjacent
to a1. Thus (3) holds.

By (3) we have i = i′ and a = a′. Let j = 3 − i. Note that if i = 1 then P
has even length and Q has odd length, and if i = 2 then P has odd length and
Q has even length. So P and Q have different parities. If p1 ∈ L and q1 ∈ R,
then V (P ) ∪ V (Q) induces an odd hole, a contradiction. Hence,

At least one of p1 and q1 is in K3. (4)

We claim that:

There is no vertex y in K3 such that c1(y) = 2 and c2(y) = 1. (5)

Suppose that there is such a vertex y. If p1 ∈ K3 and q1 ∈ K3, then p1 = y = q1
and (V (P ) ∪ V (Q)) \ {w} induces an odd hole, a contradiction. So, by (4),
exactly one of p1 and q1 is in K3. Suppose that p1 ∈ K3 and q1 ∈ R. So
p1 = y, and in particular p1a is not an edge. If p1 has no neighbor on Q \ w,
then V (P ) ∪ V (Q) induces an odd hole. So suppose that p1 has a neighbor on
Q \ w. Then there is a path Q′ from p1 to a′ with interior in Q \ w, and since
it is bicolored by c2 the parity of Q′ is different from the parity of Q. Then
(V (P ) \ {w}) ∪ V (Q′) induces an odd hole, a contradiction. When p1 ∈ L and
q1 ∈ K3 the proof is similar. Thus (5) holds.

p1 /∈ K3. (6)

For suppose that p1 ∈ K3. We have c2(p1) 6= 1 by (5) and c2(p1) 6= 2 because
c2(w) = 2. Hence let c2(p1) = 3. So color 3 does not appear in K2. Note that
every vertex in K3 \B has its color different from 1, 2, 3 because of w and p1.

Suppose that color 3 does not appear in K1. Then, by (3), Cj,3
2 (p1) ∩K1 =

∅. We swap colors j and 3 on Cj,3
2 (p1). We obtain a coloring c′2 of G2 such

that the color of all vertices in K1 ∪K2 is unchanged, so c′2 agrees with c1 on
K1 ∪K2. For every vertex v in K3 \ B we have c2(v) 6= 3, because c2(p1) = 3,
and c2(v) /∈ {1, 2}, because c2(v) = c1(v) and {1, 2} = {c1(w), c1(p1)}; so
c′2(v) = c2(v). Moreover, c′2(p1) = j. If j = 1, then c′2(w) = c2(w) and the pair
(c1, c

′

2), contradicts (5) (with y = p1). If j = 2, then c′2(p1) = c1(p1), so the pair
(c1, c

′

2) has strictly fewer bad vertices than (c1, c2). Therefore we may assume
that there is a vertex a3 in K1 with c1(a3) = 3.

Vertex p1 is not adjacent to a3 because c2(p1) = c2(a3), and p1 is not adjacent
to a by (2) and because w is not adjacent to a. This implies k ≥ 2, so the path
P \ w meets L. Assumption (iii) implies that P \ w contains a vertex that is
complete to {a, a3}, and since P is a path, that vertex is pk.

Suppose that a3 has a neighbor pg on P \ {w, pk}, and choose the smallest
such integer g. We know that g ≥ 2. The path p1-· · · -pg-a3 meets L, but it
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contains no vertex that is complete to {a, a3} because a has no neighbor on
P \ pk, so assumption (iii) is contradicted. Therefore a3 has no neighbor on
P \ {w, pk}.

Suppose that i = 1. Then P has even length, and by (3) color 2 does not
appear in K1. If w is adjacent to a3, then since k ≥ 2, we see that (V (P ) \
{a}) ∪ {a3} induces an odd hole. So w is non-adjacent to a3. Hence {a, a3} is
anticomplete to {w, p1}. Since, by (1), p1 is not a free vertex, and color 2 does
not appear inK1, there is a path S between p1 and a3 in C2,3

2 (p1), and S has even
length because c2(p1) = c2(a3). If w ∈ V (S), then V (S) ∪ {p1, . . . , pk} induces
an odd hole. If w /∈ V (S), then the interior of S is in R, and V (S)∪{p2, . . . , pk}
induces an odd hole.

Now suppose that i = 2. By (1), p1 is not a free vertex, so there is a path
T from p1 to {a, a3} in C2,3

1 (p1). Since T is bicolored by c1 it cannot contain a
vertex that is complete to {a, a3}, so assumption (iii) implies that T does not
meet L. So we have T = p1-x-a for some vertex x in K3 with c1(x) = 3. We
have c2(x) 6= 3 because c2(p1) = 3; so x ∈ B. But the fact that a is adjacent to
x and not to w contradicts (2). Thus (6) holds.

By (4) and (6) we have p1 6∈ K3 and q1 ∈ K3. In particular, P meets L. We
have c1(q1) 6= 1 because c1(w) = 1, and c1(q1) 6= 2 by (5). Hence let c1(q1) = 3.
Note that every vertex in K3 \ B has its color different from 1, 2, 3 because of
w and q1.

Color 3 appears in K1. (7)

Assume the contrary. Then, by (3), Cj,3
1 (q1) ∩K1 = ∅. We swap colors j and 3

on Cj,3
1 (q1). We obtain a coloring c′1 of G1 such that the color of every vertex

in K1 ∪K2 is unchanged, so c′1 agrees with c2 on K1 ∪K2. Also every vertex
v in K3 \ B satisfies c′1(v) = c1(v). Moreover, c′1(q1) = j. If j = 1, then
c′1(q1) = c2(q1), so the pair (c′1, c2) has strictly fewer bad vertices than (c1, c2).
If j = 2, then c′1(w) = c1(w) = 1, so the pair (c′1, c2) contradicts (5) (with
y = q1). Thus we may assume that (7) holds.

By (7) there is a vertex a3 in K1 with c1(a3) = 3. By (2), q1 is anticomplete
to {a, a3}. Vertex q1 has a neighbor in P \w, for otherwise V (P )∪V (Q) induces
an odd hole. So there is a path P ′ from q1 to a with interior in P \ w, and P ′

meets L because it contains pk. By assumption (iii), P ′ contains a vertex that
is complete to {a, a3}, and since P is a path that vertex is pk.

Suppose that Ci,3
1 (q1) ∩K1 = ∅. Then we swap colors i and 3 on Ci,3

1 (q1).
We obtain a coloring c′1 of G1 such that the color of every vertex in K1 ∪K2 is
unchanged, so c′1 agrees with c2 onK1∪K2. Also every vertex v inK3\B satisfies
c′1(v) = c1(v). Moreover, c′1(q1) = i. If i = 1, the pair (c′1, c2) has strictly
fewer bad vertices than (c1, c2). If i = 2, then c′1(w) = c1(w) = 1, so (c′1, c2)
contradicts (5) (with y = q1). Therefore we may assume that Ci,3

1 (q1)∩K1 6= ∅.

Let Z be a path from q1 to {a, a3} in Ci,3
1 (q1). Since Z is bicolored by c1,

no vertex of Z can be complete to {a, a3}, and so assumption (iii) implies that
Z does not meet L. This means that either i = 1 and Z = q1-w-a3, or i = 2
and Z = q1-z-a3 for some z in K3 with c1(z) = 2. In either case, K1 is not
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anticomplete to K3. Since pk is complete to K1, and no vertex of K3 is complete
to K1, assumption (iv) implies that pk is anticomplete to K3. In particular, pk
is non-adjacent to q1 and k ≥ 2.

If a3 has a neighbor in P \ {w, pk}, then (since q1 also has a neighbor in
P \ {w, pk}) there is a path from q1 to a3 with interior in V (P ) \ {w, pk}, so,
by (iii), that path must contain a vertex that is complete to {a, a3}; but this
is impossible because a has no neighbor in P \ pk. So a3 has no neighbor in
P \ {w, pk}.

Now if i = 1, then w is adjacent to a3, and P has even length, hence
(V (P )\{a})∪{a3} induces an odd hole. So i = 2, and Z = q1-z-a3 with z ∈ K3

and c1(z) = 2. Recall that pk is non-adjacent to z. The path z-w-P -pk has odd
length, and it is bicolored by c1, so it contains an odd path P ′′ from z to pk.
But then V (P ′′) ∪ {a3} induces an odd hole. This completes the proof. �

3 Prisms and hyperprisms

In a graph G let R1, R2, R3 be three paths that form a prism K with triangles
{a1, a2, a3} and {b1, b2, b3}, where each Ri has ends ai and bi. A vertex of
V (G)\K is a major neighbor of K if it has at least two neighbors in {a1, a2, a3}
and at least two neighbors in {b1, b2, b3}. A subset X of V (K) is local if either
X ⊆ {a1, a2, a3} or X ⊆ {b1, b2, b3} or X ⊆ V (Ri) for some i ∈ {1, 2, 3}.

If F,K are induced subgraphs of G with V (F )∩V (K) = ∅, any vertex in K
that has a neighbor in F is called an attachment of F in K, and whenever any
such vertex exists we say that F attaches to K.

Here are several theorems from the Strong Perfect Graph Theorem [7] that
we will use.

Theorem 3.1 ((7.4) in [7]) In a Berge graph G, let R1, R2, R3 be three paths,
of even lengths, that form a prism K with triangles {a1, a2, a3} and {b1, b2, b3},
where each Ri has ends ai and bi. Assume that R1, R2, R3 all have length at least
2. Let R′

1 be a path from a′1 to b1, such that R′

1, R2, R3 also form a prism. Let
y be a major neighbor of K. Then y has at least two neighbors in {a′1, a2, a3}.

Theorem 3.2 ((10.1) in [7]) In a Berge graph G, let R1, R2, R3 be three paths
that form a prism K with triangles {a1, a2, a3} and {b1, b2, b3}, where each Ri

has ends ai and bi. Let F ⊆ V (G) \ V (K) be connected, such that its set of
attachments in K is not local. Assume no vertex in F is major with respect to
K. Then there is a path f1-. . .-fn in F with n ≥ 1, such that (up to symmetry)
either:

1. f1 has two adjacent neighbors in R1, and fn has two adjacent neighbors
in R2, and there are no other edges between {f1, . . . , fn} and V (K), and
(therefore) G has an induced subgraph which is the line graph of a bipartite
subdivision of K4, or
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2. n ≥ 2, f1 is adjacent to a1, a2, a3, and fn is adjacent to b1, b2, b3, and
there are no other edges between {f1, . . . , fn} and V (K), or

3. n ≥ 2, f1 is adjacent to a1, a2, and fn is adjacent to b1, b2, and there are
no other edges between {f1, . . . , fn} and V (K), or

4. f1 is adjacent to a1, a2, and there is at least one edge between fn and
V (R3)\{a3}, and there are no other edges between {f1, . . . , fn} and V (K)\
{a3}.

Hyperprisms

A hyperprism is a graph H whose vertex-set can be partitioned into nine sets:

A1 C1 B1

A2 C2 B2

A3 C3 B3

with the following properties:

• Each of A1, A2, A3, B1, B2, B3 is non-empty.

• For distinct i, j ∈ {1, 2, 3}, Ai is complete to Aj , and Bi is complete to
Bj , and there are no other edges between Ai ∪Bi ∪Ci and Aj ∪Bj ∪Cj .

• For each i ∈ {1, 2, 3}, every vertex of Ai ∪ Bi ∪ Ci belongs to a path
between Ai and Bi with interior in Ci.

For each i ∈ {1, 2, 3}, any path from Ai to Bi with interior in Ci is called an
i-rung. The triple (Ai, Ci, Bi) is called a strip of the hyperprism. If we pick
any i-rung Ri for each i ∈ {1, 2, 3}, we see that R1, R2, R3 form a prism; any
such prism is called an instance of the hyperprism. If H contains no odd hole,
it is easy to see that all rungs have the same parity; then the hyperprism is
called even or odd accordingly. Note that if H is an even hyperprism, then Ai

is anticomplete to Bi for each i. On the other hand, if H is an odd hyperprism,
there may be edges between Ai and Bi for any i; however, if H is square-free
there is at most one integer i such that there is an edge between Ai and Bi.

Let G be a graph that contains a prism. Then G contains a hyperprism
H. Let (A1, . . . , B3) be a partition of V (H) as in the definition of a hyperprism
above. A subsetX ⊆ V (H) is local if eitherX ⊆ A1∪A2∪A3 orX ⊆ B1∪B2∪B3

or X ⊆ Ai∪Bi∪Ci for some i ∈ {1, 2, 3}. A vertex x in V (G)\V (H) is a major
neighbor of H if x is a major neighbor of some instance of H. The hyperprism
H is maximal if there is no hyperprism H ′ such that V (H) is strictly included
in V (H ′).

Lemma 3.3 Let G be a Berge graph, let H be a hyperprism in G, and let M be
the set of major neighbors of H in G. Let F be a component of G\ (V (H)∪M)
such that the set of attachments of F in H is not local. Then one can find in
polynomial time one of the following:
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• A path P , with ∅ 6= V (P ) ⊆ V (F ), such that V (H) ∪ V (P ) induces a
hyperprism (of the same parity as H).

• A path P , with ∅ 6= V (P ) ⊆ V (F ), and for each i ∈ {1, 2, 3} an i-rung Ri

of H, such that V (P ) ∪ V (R1) ∪ V (R2) ∪ V (R3) induces the line-graph of
a bipartite subdivision of K4.

Proof. When H is an even hyperprism, the proof of the lemma is identical to
the proof of Claim (2) in the proof of Theorem 10.6 in [7], and we omit it.
When H is an odd hyperprism, the proof of the lemma is similar to the proof
of Claim (2), with the following adjustments: the case when the integer n in
that proof is even and the case when n is odd are swapped, and the argument
on page 126 of [7], lines 16–18, is replaced with the following argument:

Suppose that fn is not adjacent to b1; so f1 is adjacent to b1, n ≥ 2,
and fn is adjacent to a2. Let R3 be any 3-rung, with ends a3 ∈ A3

and b3 ∈ B3. Then a1b1 is an edge, for otherwise f1-a1-R1-b1-f1 is
an odd hole; and f1 has no neighbor in {a3, b3}, for otherwise we
would have n = 1. Likewise, a2b2 is an edge, and fn has no neighbor
in {a3, b3}. But then V (R1)∪V (R2)∪V (R3)∪{f1, . . . , fn} induces
the line-graph of a bipartite subdivision of K4, a contradiction.

This completes the proof of the lemma. �

4 Even prisms

We need to analyze the behavior of major neighbors of an even hyperprism.
The reader may note that in the following theorem we are not assuming that
the graph is square-free.

Theorem 4.1 Let G be a Berge graph that contains an even prism and does
not contain the line-graph of a bipartite subdivision of K4. Let H be an even
hyperprism in G, with partition (A1, . . . , B3) as in the definition of a hyperprism,
and let x be a major neighbor of H. Then either:

• x is complete to at least two of A1, A2, A3 and at least two of B1, B2, B3,
or

• V (H) ∪ {x} induces a hyperprism.

Proof. Since x is a major neighbor of H, there exists for each i ∈ {1, 2, 3} an
i-rung Wi of H such that x is a major neighbor of the prism KW formed by
W1,W2,W3. Suppose that the first item does not hold; so, up to symmetry, x
has a non-neighbor u1 ∈ A1 and a non-neighbor u2 ∈ A2. For each i ∈ {1, 2} let
Ui be an i-rung with end ui, and let U3 be any 3-rung. Then x is not a major
neighbor of the prism KU formed by U1, U2, U3. We can turn KW into KU by
replacing the rungs one by one (one at each step). Along this sequence there are
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two consecutive prisms K and K ′ such that x is a major neighbor of K and not
a major neighbor of K ′. Since K and K ′ are consecutive they differ by exactly
one rung. Let K be formed by rungs R1, R2, R3, where each Ri has ends ai ∈ Ai

and bi ∈ Bi (i = 1, 2, 3), and let A = {a1, a2, a3} and B = {b1, b2, b3}; and let
K ′ be formed by P1, R2, R3 for some i-rung P1. Let P1 have ends a′1 ∈ A1 and
b′1 ∈ B1, and let A′ = {a′1, a2, a3} and B′ = {b′1, b2, b3}.

Let α = |N(x) ∩ A|, β = |N(x) ∩ B|, α′ = |N(x) ∩ A′|, β′ = |N(x) ∩
B′|. We know that α ≥ 2 and β ≥ 2 since x is a major neighbor of K, and
min{α′, β′} ≤ 1 since x is not a major neighbor of K ′. Moreover, α′ ≥ α − 1
and β′ ≥ β − 1 since K and K ′ differ by only one rung. Up to the symmetry
on A,B, these conditions imply that the vector (α, β, α′, β′) is equal to either
(3, 2, 3, 1), (3, 2, 2, 1), (2, 2, 2, 1) or (2, 2, 1, 1). In either case we have β = 2 and
β′ = 1, so x is adjacent to b1, non-adjacent to b′1, and adjacent to exactly one
of b2, b3, say to b3.
Suppose that (α′, β′) is equal to (3, 1) or (2, 1). We can apply Theorem 3.2
to K ′ and F = {x}, and it follows that x satisfies item 4 of that theorem, so
x is adjacent to a′1, a2, b3 and has no neighbor in V (K ′) \ ({a′1, a2} ∪ V (R3)).
But then V (R2) ∪ {x, b3} induces an odd hole, a contradiction. So we may
assume that (α, β, α′, β′) = (2, 2, 1, 1), which restores the symmetry between A
and B. Since α = 2 and α′ = 1, x is adjacent to a1, non-adjacent to a′1, and
adjacent to exactly one of a2, a3. If x is adjacent to a2, then K ′ and {x} violate
Theorem 3.2. So x is adjacent to a3 and not to a2, and Theorem 3.2 implies
that x is a local neighbor of K ′ with N(x)∩K ′ ⊆ V (R3), so x has no neighbor
in P1 or R2. Then we claim that:

For every 1-rung Q1, the ends of Q1 are either both adjacent to x
or both non-adjacent to x.

(1)

For suppose the contrary. Then x is not a major neighbor of the prism formed
by Q1, R2, R3, and consequently that prism and the set F = {x} violate Theo-
rem 3.2. So (1) holds.

Let A′

1 = A1 \ N(x) and A′′

1 = A1 ∩ N(x), and B′

1 = B1 \ N(x) and
B′′

1 = B1 ∩N(x). By (1), every 1-rung is either between A′

1 and B′

1 or between
A′′

1 and B′′

1 . Let C
′

1 be the set of vertices of C1 that lie on a 1-rung whose ends
are in A′

1 ∪ B′

1, and let C ′′

1 be the set of vertices of C1 that lie on a 1-rung
whose ends are in A′′

1 ∪B′′

1 . By (1), C ′

1 and C ′′

1 are disjoint and there is no edge
between A′

1 ∪ C ′

1 ∪B′

1 and C ′′

1 or between A′′

1 ∪ C ′′

1 ∪B′′

1 and C ′

1.
Pick any 1-rung P ′

1 with ends in A′

1 ∪ B′

1. Then Theorem 3.2 implies (just
like for P1) that x is a local neighbor of the prism formed by P ′

1, R2, R3, so x
has no neighbor in P ′

1. It follows that:

x has no neighbor in A′

1 ∪ C ′

1 ∪B′

1. (2)

Moreover, we claim that:

A′

1 is complete to A′′

1 , and B′

1 is complete to B′′

1 . (3)
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For suppose on the contrary, up to relabelling vertices and rungs, that a′1 and
a1 are non-adjacent. Then, by (2), V (P1) ∪ {x, a1, a2, b3} induces an odd hole.
Thus (3) holds.

Let A′

2 = A2 \N(x), A′′

2 = A2∩N(x), B′

2 = B2 \N(x) and B′′

2 = B2∩N(x).
Let C ′

2 be the set of vertices of C2 that lie on a 2-rung whose ends are in A′

2∪B
′

2,
and let C ′′

2 be the set of vertices of C2 that lie on a 1-rung whose ends are in
A′′

2 ∪B′′

2 . By the same arguments as for the 1-rungs, we see that every 2-rung is
either between A′

2 and B′

2 or between A′′

2 and B′′

2 , that C
′

2 and C ′′

2 are disjoint
and that there is no edge between A′

2∪C ′

2∪B′

2 and C ′′

2 or between A′′

2 ∪C ′′

2 ∪B′′

2

and C ′

2. Also x has no neighbor in A′

2 ∪C ′

2 ∪B′

2, and A′

2 is complete to A′′

2 , and
B′

2 is complete to B′′

2 . Note that, since xa′1 and xa2 are not edges, the sets A′

1,
B′

1, C
′

1, A
′

2, B
′

2, C
′

2 are all non-empty. It follows that the nine sets

A′

1 C ′

1 B′

1

A′

2 C ′

2 B′

2

A′′

1 ∪A′′

2 ∪A3 C ′′

1 ∪ C ′′

2 ∪ C3 ∪ {x} B′′

1 ∪B′′

2 ∪B3

form a hyperprism. So the second item of the theorem holds. �

Theorem 4.2 Let G be a square-free Berge graph that contains an even prism
and does not contain the line-graph of a bipartite subdivision of K4. Then G
has a good partition.

Proof. Let H be a maximal even hyperprism in G, with partition (A1, . . . , B3)
as in the definition of a hyperprism. Recall that, since H is an even hyperprism,
Ai is anticomplete to Bi for each i. Let M be the set of major neighbors of H.
Let Z be the set of vertices of the components of V (G) \ (V (H)∪M) that have
no attachment in H. By Lemma 3.3 every component of G \ (V (H) ∪M ∪ Z)
attaches locally to H. For each i = 1, 2, 3, let Fi be the union of the vertex-sets
of the components of G\ (V (H)∪M ∪Z) that attach to Ai∪Bi∪Ci. Let FA be
the union of the vertex-sets of the components of G\(V (H)∪M∪Z∪F1∪F2∪F3)
that attach to A1∪A2∪A3, and define FB similarly. By Lemma 3.3 the sets F1,
F2, F3, FA, FB are well-defined and are pairwise anticomplete to each other,
and V (G) = V (H) ∪M ∪ Z ∪ F1 ∪ F2 ∪ F3 ∪ FA ∪ FB .

By Theorem 4.1, every vertex in M is complete to at least two of A1, A2, A3

and at least two of B1, B2, B3.
Suppose that M contains non-adjacent vertices x, y. By Theorem 4.1, x

and y have a common neighbor a in A and a common neighbor b in B. Then
{x, y, a, b} induces a square, a contradiction. Therefore M is a clique. By
Lemma 1.3, M ∪Ai is a clique for at least two values of i, and similarly M ∪Bj

is a clique for at least two values of j. Hence we may assume that both M ∪A1

and M ∪B1 are cliques.
Define sets K1 = A1, K2 = M , K3 = B1, L = A2 ∪B2 ∪C2 ∪F2 ∪A3 ∪B3 ∪

C3 ∪F3 ∪ FA ∪ FB and R = V (G) \ (K1 ∪K2 ∪K3 ∪L). (So R = C1 ∪ F1 ∪Z.)
Every path from K3 to K1 that meets L contains a vertex from A2 ∪A3, which
is complete to K1. Moreover, since H is an even hyperprism, K1 is anticomplete
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to K3, and the sets C1, C2, C3 are non-empty, so, picking any vertex xi ∈ Ci for
each i ∈ {1, 2, 3}, we see that {x1, x2, x3} is a triad with a vertex in L and a
vertex in R. So (K1,K2,K3, L,R) is a good partition of V (G). �

5 Odd prisms

Now we analyze the behavior of major neighbors of an odd hyperprism. The fol-
lowing theorem is the analogue of Theorem 4.1, but here we need the assumption
that the graph is square-free, and there is an additional outcome.

Let H be an odd hyperprism in G, with partition (A1, . . . , B3) as in the
definition of a hyperprism. For i = 1, 2, 3, let A∗

i = {x ∈ Ai | x has a neighbor
in Bi} and B∗

i = {x ∈ Bi | x has a neighbor in Ai}. So A∗

i and B∗

i are either
both empty or both non-empty. Moreover, since G is square-free, A∗

i ∪ B∗

i is
non-empty for at most one value of i.

Theorem 5.1 Let G be a square-free Berge graph. Let H be a maximal odd
hyperprism in G, with partition (A1, . . . , B3) as in the definition of a hyperprism,
and let m ∈ V (G) \ V (H) be a major neighbor of H. Then either:

• m is complete to at least two of A1, A2, A3 and at least two of B1, B2, B3,
and for every i ∈ {1, 2, 3} m is complete to A∗

i ∪B∗

i , or

• A∗

1 and B∗

1 are non-empty, m is complete to A∗

1 ∪ B∗

1 , to at least one of
A2, A3 and to at least one of B2, B3. Further, suppose that m has a non-
neighbor in at least two of B1, B2, B3. For i ∈ {1, 2, 3}, let B1

i be the set of
non-neighbors of m in Bi, and C1

i be the set of all the vertices of Ci that
belong to rungs between B1

i and Ai, and let A1
i be the set of all vertices of

Ai that are in rungs whose other end is in B1
i . Then:

– A1
1 ⊆ A∗

1, and
– for every path P from B1

1 ∪C1
1 to (C1 \C

1
1 )∪ (A1 \A

1
1), some vertex

of V (H) \ (A1 ∪B1 ∪ C1) has a neighbor in P ∗.
– for every path P from m to B1

1 ∪ C1
1 some vertex of V (H) \ (A1 ∪

B1 ∪ C1) has a neighbor in P ∗.

– Let i ∈ {2, 3}.
– A1

i is complete to Ai \A
1
i , and B1

i is complete to Bi \B
1
i ,

– for every path P from C1
i to (Ai ∪Bi ∪Ci) \ (A

1
i ∪B1

i ∪C1
i ), some

vertex of V (H) \ (Ai ∪Bi ∪ Ci) has a neighbor in P ∗;
– for every path P from Ci \ C1

i to A1
i ∪ B1

i ∪ C1
i , some vertex of

V (H) \ (Ai ∪Bi ∪ Ci) has a neighbor in P ∗;
– m is complete to A1

i and for every path P from m to B1
i ∪C1

i some
vertex of V (H) \ (Ai ∪Bi ∪ Ci) has a neighbor in P ∗.

Proof. We first observe that:

Every rung of H contains a neighbor of m. (1)
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For suppose on the contrary, up to symmetry, that there is a 1-rung P1 that
contains no neighbor of m. Let P1 have ends a1 ∈ A1 and b1 ∈ B1. Suppose m
has neighbors p and q such that p ∈ A2∪A3, q ∈ B2∪B3, and p is non-adjacent
to q. Then p-a1-P1-b1-q-m-p is an odd hole, contradiction. Hence, since m is
major, we may assume that m is anticomplete to A3 ∪ B3 and has neighbors
a′1, b

′

1, a2, b2 such that a′1 ∈ A1, b
′

1 ∈ B1, a2 ∈ A2, b2 ∈ B2, and a2 and b2 are
adjacent. Note that A1∪A3 is anticomplete to B1∪B3 since A∗

2 ∪B∗

2 6= ∅. Pick
any a3 ∈ A3 and b3 ∈ B3. Suppose that both a′1, b

′

1 have a neighbor in P ∗

1 . Then
there is a 1-rung P ′

1 with ends a′1, b
′

1 and interior in P ∗

1 , and then V (P ′

1) ∪ {m}
induces an odd hole. Hence we may assume that b′1 has no neighbor in P ∗

1 . Then
b1b

′

1 is not an edge, for otherwise m-a2-a1-P1-b1-b
′

1-m is an odd hole. Suppose
that a′1 has a neighbor c1 in P ∗

1 , and choose c1 as close to b1 as possible along
P1. Then a′1-c1-P1-b1 is a 1-rung, so it is odd; but then m-a′1-c1-P1-b1-b3-b

′

1-m
is an odd hole. So a′1 is also anticomplete to P ∗

1 , and by symmetry a1a
′

1 is not
an edge. But then m-a′1-a3-a1-P1-b1-b3-b

′

1-m is an odd hole. This proves (1).

For each i, m is complete to A∗

i ∪B∗

i . (2)

For suppose the contrary. Then there are vertices ui ∈ A∗

i and vi ∈ B∗

i such
that uivi is an edge and m has a non-neighbor in {ui, vi}. Since m is a major
neighbor of H, it has a neighbor a in (A1 ∪ A2 ∪ A3) \ Ai and a neighbor b in
(B1 ∪ B2 ∪ B3) \ Bi. Then the subgraph induced by {m, a, b, ui, vi} contains a
square or a C5, a contradiction. Thus (2) holds.

In view of (2) we may assume that m does not satisfy the property of being
complete to at least two of B1, B2, B3 (for otherwise the first outcome of the
theorem holds). So we may assume that m is not complete to B1, not complete
to B2, and (possibly exchanging the roles of B2 and B3), that m has a neighbor
in B3. Let b2 ∈ B2 be a non-neighbor of m and b3 ∈ B3 be a neighbor of m.

Let b1 be a non-neighbor of m in B1, and let a1-P1-b1 be a rung
through b1. Then m is adjacent to a1 and anticomplete to V (P1) \
{a1}. Moreover, let P be a path from m to V (P1) \ {a1}. Then
some vertex of V (H) \ (A1 ∪B1 ∪ C1) has a neighbor in P ∗.

(3)

Let a2-P2-b2 be a rung through b2. If there is a path P violating (3), then by
(1) m has a neighbor in P2, and therefore we can link m to {b1, b2, b3} via P ,
P2 and m-b3, a contradiction to Lemma 1.4. Thus no such path exists, and in
particular m is anticomplete to V (P1) \ {a1}. Now it follows from (1) that m
is adjacent to a1. This proves (3). Note that the analogue of (3) also holds for
B2.
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For every symbol X in {A,B,C} there is a partition of X1 into two
sets X ′

1 and X ′′

1 such that:
– A′

1 is complete to A′′

1 , and B′

1 is complete to B′′

1 ;
– A′

1 is anticomplete to B′

1;
– for every path P from C ′

1 to A′′

1 ∪ B′′

1 ∪ C ′′

1 , some vertex of
V (H) \ (A1 ∪ B1 ∪ C1) has a neighbor in P ∗, and in particular
C ′

1 is anticomplete to A′′

1 ∪B′′

1 ∪ C ′′

1 ;
– for every path P from C ′′

1 to A′

1 ∪ B′

1 ∪ C ′

1, some vertex of
V (H) \ (A1 ∪ B1 ∪ C1) has a neighbor in P ∗, and in particular
C ′′

1 is anticomplete to A′

1 ∪B′

1 ∪ C ′

1;
– m is complete to A′

1 and for every path P from m to B′

1 ∪ C ′

1

some vertex of V (H) \ (A1 ∪B1 ∪C1) has a neighbor in P ∗, and in
particular m is anticomplete to B′

1 ∪ C ′

1.

(4)

Pick rungs a2-P2-b2 and a3-P3-b3 containing b2 and b3 respectively. By (3),
m is adjacent to a2.

Let B′

1 = {y ∈ B1 \B
∗

1 | y is non-adjacent to m and there exists a rung from
A1 \ A

∗

1 to y}, and let A′

1 = {x ∈ A1 \ A
∗

1 | there is a rung from x to B′

1}. Let
C ′

1 = {z ∈ C1 | z lies on a rung between B′

1 and A′

1}. So m is anticomplete to
B′

1 and, by (3), m is complete to A′

1 and anticomplete to C ′

1. Let B
′′

1 = B1 \B
′

1,
A′′

1 = A1 \ A′

1, and C ′′

1 = C1 \ C ′

1. Let Q be any rung with ends x ∈ A′

1 and
y ∈ B′

1. We prove five claims (a)–(e) as follows.

(a) For every path P from B′′

1 to A′

1∪C
′

1 some vertex of V (H)\(A1∪B1∪C1)
has a neighbor in P ∗.
We know that B′′

1 is anticomplete to A′

1 since A′

1 ⊆ A1 \ A∗

1. Suppose up, to
relabelling, that there is a path P from some vertex b1 in B′′

1 to a vertex of
Q \ {y}, contradicting (a). Then there is a path Q′ from x to b1 with interior in
P ∗ ∪Q∗. By the maximality of H, Q′∗ ⊆ C1, and Q′ has odd length at least 3.
By the definition of B′

1 and the existence of Q′ imply that b1 is adjacent to m.
Suppose m has a neighbor in P ∗. Since no vertex of V (H) \ (A1 ∪B1 ∪C1) has
a neighbor in P ∗, it follows from the second statement of (3) that P is a path
from b1 to a1, and P ∗ ∩ V (Q) = ∅, and that P ∗ is anticomplete to V (Q). If y
is adjacent to b1, then x − P − b1 − y −Q − x is an odd hole, a contradiction.
Thus b1 is non-adjacent to y, and so b1 − m − x − Q − y − b2 − b1, is an odd
hole, again a contradiction. This proves that m is anticomplete to P ∗. Recall
that m is adjacent to x and anticomplete to V (Q) \ {x}. It follows that m is
anticomplete to Q′∗. consequently V (Q′)∪{m} induces an odd hole. Since this
holds for all Q, claim (a) is established.

(b) B′′

1 is complete to B′

1.
Suppose, up to relabelling, that some b1 in B′′

1 is not adjacent to y. Recall that
m is anticomplete to V (Q) \ {x}. By (a) b1 has no neighbor in Q. Then b1 is
non-adjacent to m, for otherwise x-Q-y-b2-b1-m-x induces an odd hole. Pick a
rung a1-P1-b1. By (2), b1 /∈ B∗

1 , hence, by the definition of B′

1, we have a1 ∈ A∗

1,
and so a1 has a neighbor b∗1 ∈ B∗

1 . If b
∗

1 is not adjacent to y, then, by the same
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argument as for b1 it follows that b∗1 is not adjacent to m, which contradicts (2).
Therefore b∗1 is adjacent to y and, by (2), to m. By (a) b∗1 has no neighbor in
Q \ y. We know that a1 is not adjacent to y since y /∈ B∗

1 . Moreover a1 has no
neighbor in Q \ x, for otherwise we can link a1 to {b3, y, b

∗

1} via a3-P3-b3, Q \ x
and a1-b

∗

1, a contradiction to Lemma 1.4. Then xa1 is an edge, for otherwise
x-Q-y-b∗1-a1-a3-x is an odd hole. There is no edge between Q and P1 except
a1x, for otherwise there would be a rung from x to b1, implying b1 ∈ B′

1. But
then b1-P1-a1-x-Q-y-b3-b1 is an odd hole. Thus B′′

1 is complete to y, and since
this holds for all Q, the claim is established.

(c) For every path P from A′′

1 to B′

1, some vertex of V (H) \ (A1 ∪B1 ∪C1)
has a neighbor in P ∗.
For suppose up to relabelling that a1-P1-y is a path contradicting (c). By the
maximality of H, P1 is a rung of H. By the definition of B′

1 we have a1 ∈ A∗

1, so
a1 has a neighbor b∗1 ∈ B∗

1 . By (a) and (b), b∗1 is adjacent to y and anticomplete
to Q \ y. Since y 6∈ B∗

1 , it follows that a1 is not adjacent to y. Then a1 has
no neighbor in Q \ x, for otherwise we can link a1 to {y, b∗1, b2} via Q \ x, a1-b

∗

1

and a2-P2-b2. Moreover a1 is adjacent to x, for otherwise a1-b
∗

1-y-Q-x-a2-a1 is
an odd hole. Since V (Q)∪ V (P1) does not induce an odd hole, there is an edge
between Q \ y and P1 \ {a1, y}. Since b∗1-y-P1-a1-b

∗

1 cannot be an odd hole, b∗1
has a neighbor in P1 \ {a1, y}. But this implies the existence of a rung between
x and b∗1, which contradicts (a).

(d) A′′

1 is complete to A′

1.
Suppose on the contrary that some a1 in A′′

1 is non-adjacent to x. Let a1-P1-b1
be a rung. By (c), b1 ∈ B′′

1 , and by (a)–(c), the only edge between P1 and Q is
b1y. Then a1-P1-b1-y-Q-x-a3-a1 is an odd hole, a contradiction.

(e) For every path P from C ′

1 to A′′

1 ∪C ′′

1 ∪B′′

1 , some vertex of V (H) \ (A1 ∪
B1 ∪ C1) has a neighbor in P ∗, and for every path P from C ′′

1 to A′

1 ∪ C ′

1 ∪B′

1

some vertex of V (H) \ (A1 ∪B1 ∪ C1) has a neighbor in P ∗.
Indeed, in the opposite case there is a path that violates (a) or (c).

It follows from (3) and claims (a)–(e) that all the properties described in (4)
are satisfied. So (4) holds.

By (4), if B′

1 6= ∅, then (A1, C1, B1) is a strip such that m is complete to A′

1

and anticomplete to B′

1 ∪ C ′

1. Likewise, if B′

2 6= ∅, then (A′

2, C
′

2, B
′

2) is a strip
such that m is complete to A′

2 and anticomplete to B′

2 ∪C ′

2. So if both B′

1 6= ∅
and B′

2 6= ∅, using the properties described in (4), we obtain a hyperprism:

A′

1 C ′

1 B′

1

A′

2 C ′

2 B′

2

A3 ∪A′′

1 ∪A′′

2 ∪ {m} C3 ∪ C ′′

1 ∪ C ′′

2 B3 ∪B′′

1 ∪B′′

2 .

contrary to the maximality of H.
Thus we may assume that B′

1 = ∅, and consequently A∗

1, B
∗

1 are both non-
empty. We claim that the following holds:
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Let B1
1 be the set of non-neighbors of m in B1. Then every rung

with an end in B1
1 has its other end in A∗

1. Moreover, let C1
1 be the

set of all the vertices of C1 that belong to rungs between B1
1 and

A∗

1. Then for every path P from B1
1 ∪ C1

1 to (C1 \ C
1
1 ) ∪ (A1 \ A

∗

1)
some vertex of V (H) \ (A1 ∪B1 ∪ C1) has a neighbor in P ∗.

(5)

Since B′

1 = ∅, it follows that every rung of H with an end in B1
1 has its

other end in A∗

1. Next suppose that there is a path P from c ∈ B1
1 ∪ C1

1 to
d ∈ (C1 \C

1
1 )∪ (A1 \A

∗

1) violating (5). By the definition of a hyperprism, there
is a path Pc from c to b ∈ B1

1 with interior in C1, and a path Pd from d to
a ∈ A1 \ A

∗

1. Since P ∗ violates (5), no vertex of V (H) \ (A1 ∪ B1 ∪ C1) has a
neighbor in P ∗, and therefore P ∗ ∩ (A1 ∪ B1) = ∅. Since B1

1 is anticomplete
to A1, there is a path Q from a to b with non-empty interior contained in
V (P ) ∪ V (Pa) ∪ V (Pb) \ {a, b}. By the maximality of H, Q is a rung of H,
contrary to the fact that every rung with an end in B1

1 has its other end in A∗

1.
This proves (5).

Since A∗

1, B
∗

1 are non-empty, it follows that B′

2 6= ∅, and so (A′

2, C
′

2, B
′

2) is
a strip. By (2) m has a neighbor in B1. Suppose that m is not complete to
B3. Then there is symmetry between B1 and B3, and therefore B′

3 6= ∅ and
(A′

3, C
′

3, B
′

3) is a strip. Applying (4) to A2, B2, C2 and to A3, B3, C3, we obtain
a hyperprism:

A′

2 C ′

2 B′

2

A′

3 C ′

3 B′

3

A1 ∪A′′

2 ∪A′′

3 ∪ {m} C1 ∪ C ′′

2 ∪ C ′′

3 B1 ∪B′′

2 ∪B′′

3 .

contrary to the maximality of H.
Thus we may assume that m is complete to B3. Since m has a neighbor in

A∗

1 ⊆ A1, reversing the roles of A and B we may assume that m is complete
to at least one of A2, A3. Now by (3), (4) and (5), the second outcome of the
theorem holds. �

Theorem 5.2 Let G be a square-free Berge graph that contains an odd prism
and does not contain the line-graph of a bipartite subdivision of K4. Then G
admits a good partition.

Proof. Since G contains an odd prism, it contains a maximal odd hyperprism
(A1, C1, B1, A2, C2, B2, A3, C3, B3) which we call H. Let M be the set of major
neighbors of H. Let Mgood be the set of all the vertices of M that are complete
to at least two of A1, A2, A3 and to at least two of B1, B2, B3, and let Mbad

be the remaining major neighbors of H. Let Z be the set of vertices of the
components of V (G) \ (V (H) ∪M) that have no attachment in H. Since H is
maximal, by Lemma 3.3 there is a partition of V (G) \ (V (H)∪M ∪Z) into sets
F1, F2, F3, FA, FB such that:
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• For i = 1, 2, 3, N(Fi) ⊆ Ai ∪ Ci ∪Bi ∪M ;

• N(FA) ⊆ A1 ∪A2 ∪A3 ∪M and N(FB) ⊆ B1 ∪B2 ∪B3 ∪M ;

• The sets Z,F1, F2, F3, FA, FB are pairwise anticomplete to each other.

We observe that:

At least two of A1, A2, A3 are cliques, and at least two of B1, B2, B3

are cliques.
(1)

This follows directly from Lemma 1.3 (with K = ∅).

Since H is maximal, 5.1 implies that:

Let m ∈ M . For every i ∈ {1, 2, 3}, m is complete to A∗

i ∪ B∗

i .
Moreover, if i, j ∈ {1, 2, 3} are distinct and A∗

i = A∗

j = ∅, then m is
complete to at least one of Ai, Aj and to at least one of Bi, Bj .

(2)

We claim that:
M is a clique. (3)

Suppose that there are non-adjacent vertices m1,m2 in M . By (2), m1 and m2

have a common neighbor in A1∪A2∪A3. Therefore let a1 be a common neighbor
of m1 and m2 in A1. If m1 and m2 have a common neighbor b ∈ B2 ∪B3, then
{m1,m2, a1, b} induces a square, a contradiction. In view of (2), A∗

2 = A∗

3 = ∅,
and we may assume up to symmetry that m1 is not complete to B2, so it is
complete to B3, and consequently that m2 is not complete to B3, and so it is
complete to B2. Pick a non-neighbor b2 of m1 in B2 and a non-neighbor b3 of m2

in B3. Then {m1,m2, a1, b2, b3} induces a C5, a contradiction. This proves (3).

Mgood ∪ Ai is a clique for at least two values of i, and similarly
Mgood ∪Bj is a clique for at least two values of j.

(4)

This follows directly from (2), (3) and Lemma 1.3. Thus (4) holds.

Let j, k ∈ {1, 2, 3} be distinct and such that A∗

j = A∗

k = ∅. Then
either M ∪ Aj or M ∪ Ak is a clique, and similarly either M ∪ Bj

or M ∪Bk is a clique.
(5)

This follows directly from (2), (3) and Lemma 1.3 applied to M,Aj , Ak and to
M,Bj , Bk. Thus (5) holds.

Since G is square-free, we may assume, up to symmetry, that A1 is anticom-
plete to B1, and that A2 is anticomplete to B2, and so C1 6= ∅ and C2 6= ∅. Pick
any x1 ∈ C1, x2 ∈ C2 and a3 ∈ A3. So {x1, x2, a3} is a triad τ .

Suppose that both M ∪A1 and M ∪B1 are cliques. Set K1 = A1, K2 = M ,
K3 = B1, L = A2 ∪ B2 ∪ C2 ∪ F2 ∪ A3 ∪ B3 ∪ C3 ∪ F3 ∪ FA ∪ FB and R =
V (G) \ (K1 ∪ K2 ∪ K3 ∪ L). (So R = C1 ∪ F1 ∪ Z.) We observe that K1 is
anticomplete to K3, every path from K3 to K1 with interior in L contains a
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vertex from A2 ∪A3, which is complete to K1, and τ is a triad with a vertex in
L and a vertex in R. Thus (K1,K2,K3, L,R) is a good partition of V (G). The
same holds if both M ∪A2 and M ∪B2 are cliques.

By (5), we may assume that A∗

3 6= ∅, M ∪ A1 and M ∪ B2 are cliques, and
neither of M ∪A2 and M ∪B1 is a clique. Suppose that Mbad = ∅. Then by (4)
M ∪ A3 and M ∪ B3 are both cliques. Set K1 = A1, K2 = M , K3 = B2 ∪ B3,
L = A2 ∪ C2 ∪ F2 ∪ A3 ∪ C3 ∪ F3 ∪ FA and R = V (G) \ (K1 ∪ K2 ∪ K3 ∪ L).
(So R = C1 ∪ B1 ∪ F1 ∪ Z.) We observe that K1 is anticomplete to K3, every
path from K3 to K1 with interior in L contains a vertex from A2 ∪ A3, which
is complete to K1, and τ is a triad with a vertex in L and a vertex in R.
Thus (K1,K2,K3, L,R) is a good partition of V (G). Thus we may assume that
Mbad 6= ∅. Let MA be the set of vertices of M with a non-neighbor in both A2

and A3, and let MB be the set of vertices of M with a non-neighbor in both
B1 and B3. So Mbad = MA ∪MB . By Lemma 1.3 applied with K = M \MB ,
X1 = B1 and X2 = B3, we deduce that either (M \ MB) ∪ B3 is a clique, or
(M \MB) ∪B1 is a clique.

Suppose first that (M \ MB) ∪ B1 is a clique. Then, since M ∪ B1 is not
a clique, it follows that MB 6= ∅. Let m ∈ MB be chosen with N(m) ∩ B1

maximal; let B′

1 = B1 ∩N(m) and B′′

1 = B1 \B
′

1. Since B1,M are both cliques
and G has no C4, it follows from the choice of m that MB is anticomplete to
B′′

1 . Let C
′′

1 be the set of vertices of C1 that are in rungs with vertices of B′′

1 , let
A′′

1 be the set of vertices in A1 that are in rungs with vertices of B′′

1 , and let F ′′

1

be the set of vertices of F1 such that there is a path from them to B′′

1 ∪C ′′

1 with
interior in F ′′

1 . Recall that every vertex of MB has a non-neighbor in B1 and a
non-neighbor in B3, and so the second outcome of Theorem 5.1 holds. It follows
that the set C ′′

1 ∪F ′′

1 is anticomplete to MB ∪ (C1 \C
′′

1 )∪ (F1 \F
′′

1 ), and MB is
complete to A′′

1 . Now set K1 = A′′

1 , K2 = M \MB , K3 = B′′

1 , R = C ′′

1 ∪F ′′

1 and
L = V (G) \ (K1 ∪K2 ∪K3 ∪ R). By Theorem 5.1 the set L is anticomplete to
R. We know that K1 ∪K2 is a clique (because M ∪A1 is a clique) and K2 ∪K3

is a clique (because of the current assumption that (M \MB) ∪B1 is a clique).
Moreover, K1 is anticomplete to K3, and, again by Theorem 5.1, every path
from K3 to K1 with interior in L contains a vertex of A2∪A3∪ (A1 \A

′′

1)∪MB ,
which is complete to A′′

1 . We may assume that τ ∩ C1 ⊆ C ′′

1 , and thus τ is a
triad with a vertex in L and a vertex in R. Consequently, (K1,K2,K3, L,R) is
a good partition.

Hence we may assume that (M\MB)∪B1 is not a clique, and so (M\MB)∪B3

is a clique. By symmetry we may assume that (M \MA) ∪A3 is a clique.
Switching the roles of A and B if necessary, we may assume that MB 6= ∅.

Let B′′

1 be the set of vertices in B1 that are not complete to MB , and let
B′

1 = B1 \ B′′

1 . So B′′

1 6= ∅. Let C ′′

1 be the set of vertices of C1 that are in
rungs with vertices of B′′

1 , let A
′′

1 be the set of vertices in A1 that are in rungs
with vertices of B′′

1 , and let F ′′

1 be the set of vertices of F1 such that there is
a path from them to B′′

1 ∪ C ′′

1 with interior in F ′′

1 . By 5.1 the set C ′′

1 ∪ F ′′

1 is
anticomplete to (C1 \ C

′′

1 ) ∪ (F1 \ F
′′

1 ); recall that M ∪ A1 is a clique. Let A′′

3

be the set of vertices of A3 that are not complete to MA, and let A′

3 = A3 \A
′′

3 .
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Let C ′′

3 be the set of vertices of C3 in rungs with A′′

3 , and F ′′

3 the set of vertices
of F3 such that there is a path to them from A′′

3 ∪ C ′′

3 with interior in F ′′

3 . Let
C ′

3 = C3 \ C
′′

3 and F ′

3 = F3 \ F
′′

3 .
We claim that M \ MB is complete to B′

1. Suppose m′ ∈ M \ MB has a
non-neighbor in b′1 ∈ B′

1. Choose m ∈ MB . Since m ∈ MB , some b3 ∈ B3 is
non-adjacent to m. Now {m,m′, b′1, b3} induces a C4, a contradiction.

Let K1 = A′′

1 ∪A′

3, K2 = M , K3 = B′

1 ∪B2 ∪B∗

3 , R = B′′

1 ∪C ′′

1 ∪F ′′

1 ∪FB ∪
(B3 \B

∗

3) ∪ C ′

3 ∪ F ′

3 and L = V (G) \ (K1 ∪K2 ∪K3 ∪R). By Theorem 5.1 the
set L is anticomplete to R, and every rung of H with an end in A′′

3 has its other
end in B∗

3 . Since M ∪ A1 is a clique, A3 ∪ (M \MA) is a clique, and since by
the definition of A′

3, MA is complete to A′

3, it follows that K1 ∪K2 is a clique.
Since M ∪ B2 is a clique, M \ MB is complete to B′

1, by the definition of B′

1,
MB is complete to B′

1, B3 ∪ (M \MB) is a clique, and by Theorem 5.1 MB is
complete to B∗

3 , it follows that K2 ∪K3 is a clique.
We now check that condition (iii) in the definition of a good partition holds.

Suppose that P is a path from K3 to K1 with P ∗ 6= ∅ and P ∗ ⊆ L. We may
assume that V (P ) is disjoint from A2 ∪ A′′

3 ∪ (A1 \ A′′

1), which is complete to
A′′

1 ∪ A′

3 (recall that A1 and A3 are both cliques). It follows from Theorem 5.1
that the ends of P are in A′

3 and in B∗

3 , and P ∗ ⊆ C ′′

3 ∪ F ′′

3 . In particular,
A′′

3 6= ∅. We claim that some m ∈ MA is anticomplete to A′′

3 . Choose m ∈ MA

with N(m) ∩ A′′

3 minimal. We may assume that A′′

3 ∩ N(m) 6= ∅; let a ∈ A′′

3

be a neighbor of m. It follows from the definition of A′′

3 that some m′ ∈ MA is
non-adjacent to a. By the choice of m, there is a′ ∈ A′′

3 adjacent to m′ and not
to m. But now since A3 and MA are both cliques, {m,m′, a, a′} induces a C4,
a contradiction. This proves the claim; let m ∈ MA be anticomplete to A′′

3 . By
Theorem 5.1 m is anticomplete to C ′′

3 ∪ F ′′

3 , and so m is anticomplete to P ∗.
But now V (P ) ∪ {m} induces an odd hole, a contradiction. This proves that
condition (iii) holds.

Next we check that condition (iv) in the definition of a good partition is
satisfied. Suppose that some l ∈ L has a neighbor k1 ∈ K1 and a neighbor
k3 ∈ K3. Then l ∈ C ′′

3 ∪ F ′′

3 . Since H is an odd prism, k1-l-k3 is not a rung of
length two, and therefore k1 is adjacent to k3. This proves that condition (iv)
holds. Finally, we may assume that τ ∩ C1 ⊆ C ′′

1 , and thus τ is a triad with
a vertex in L and a vertex in R. This proves that (K1,K2,K3, L,R) is a good
partition, and completes the proof of the theorem. �

6 Line-graphs

The goal of this section will be to prove the following decomposition theorem.

Theorem 6.1 Let G be a square-free Berge graph, and assume that G contains
the line-graph of a bipartite subdivision of K4. Then G admits a good partition.

Before proving this theorem, we need some definitions from [7].
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In a graph H, a branch is a path whose interior vertices have degree 2 and
whose ends have degree at least 3. A branch-vertex is any vertex of degree at
least 3.

In a graph G, an appearance of a graph J is any induced subgraph of G
that is isomorphic to the line-graph L(H) of a bipartite subdivision H of J .
An appearance of J is degenerate if either (a) J = H = K3,3 (the complete
bipartite graph with three vertices on each side) or (b) J = K4 and the four
vertices of J form a square in H. Note that a degenerate appearance of a graph
contains a square since in either case (a) or (b) the graph H contains a square.
An appearance L(H) of J in G is overshadowed if there is a branch B of H, of
length at least 3, with ends b1, b2, such that some vertex of G is non-adjacent
in G to at most one vertex in δH(b1) and at most one in δH(b2), where δH(b)
denotes the set of edges of H (vertices of L(H)) of which b is an end.

An enlargement of a 3-connected graph J (also called a J-enlargement) is
any 3-connected graph J ′ such that there is a proper induced subgraph of J ′

that is isomorphic to a subdivision of J .
To obtain a decomposition theorem for graphs containing line graphs of

bipartite graphs, we first thicken the line graph into an object called a strip
system, and then study how the components of the rest of the graph attach to
the strip system.

Let J be a 3-connected graph, and let G be a Berge graph. A J-strip system
(S,N) in G means

• for each edge uv of J , a subset Suv = Svu of V (G),

• for each vertex v of J , a subset Nv of V (G),

• Nuv = Suv ∩Nu,

satisfying the following conditions (where for uv ∈ E(J), a uv-rung means a
path R of G with ends s, t, say, where V (R) ⊆ Suv, and s is the unique vertex
of R in Nu, and t is the unique vertex of R in Nv):

• The sets Suv (uv ∈ E(J)) are pairwise disjoint;

• For each u ∈ V (J), Nu ⊆
⋃

uv∈E(J) Suv;

• For each uv ∈ E(J), every vertex of Suv is in a uv-rung;

• For any two edges uv, wx of J with u, v, w, x all distinct, there are no
edges between Suv and Swx;

• If uv, uw in E(J) with v 6= w, then Nuv is complete to Nuw and there are
no other edges between Suv and Suw;

• For each uv ∈ E(J) there is a special uv-rung such that for every cycle C
of J , the sum of the lengths of the special uv-rungs for uv ∈ E(C) has the
same parity as |V (C)|.

21



The vertex set of (S,N), denoted by V (S,N), is the set
⋃

uv∈E(J) Suv.
Note that Nuv is in general different from Nvu. On the other hand, Suv and

Svu mean the same thing.
The following two properties follow from the definition of a strip system:

• For distinct u, v ∈ V (J), we have Nu ∩ Nv ⊆ Suv if uv ∈ E(J), and
Nu ∩Nv = ∅ if uv 6∈ E(J).

• For uv ∈ E(J) and w ∈ V (J), if w 6= u, v then Suv ∩Nw = ∅.

In 8.1 from [7] it is shown that for every uv ∈ E(J), all uv-rungs have lengths
of the same parity. It follows that the final axiom is equivalent to:

• For every cycle C of J and every choice of uv-rung for every uv ∈ E(C),
the sums of the lengths of the uv-rungs has the same parity as |V (C)|. In
particular, for each edge uv ∈ E(J), all uv-rungs have the same parity.

By a choice of rungs we mean the choice of one uv-rung for each edge uv of J .
It follows from the preceding points that for every choice of rungs the subgraph
of G induced by their union is the line-graph of a bipartite subdivision of J .

We say that a subset X of V (G) saturates the strip system if for every
u ∈ V (J) there is at most one neighbor v of u such that Nuv 6⊆ X. A vertex
v in V (G) \ V (S,N) is major with respect to the strip system if the set of its
neighbors saturates the strip system. A vertex v ∈ V (G) \ V (S,N) is major
with respect to some choice of rungs if the J-strip system defined by this choice
of rungs is saturated by the set of neighbors of v.

A subset X of V (S,N) is local with respect to the strip system if either
X ⊆ Nv for some v ∈ V (J) or X ⊆ Suv for some edge uv ∈ E(J).

Lemma 6.2 Let G be a Berge graph, let J be a 3-connected graph, and let
(S,N) be a J-strip system in G. Assume moreover that if J = K4 then (S,N)
is non-degenerate and that no vertex is major for some choice of rungs and
non-major for another choice of rungs. Let F ⊆ V (G) \ V (S,N) be connected
and such that no member of F is major with respect to (S,N). If the set of
attachments of F in V (S,N) is not local, then one can find in polynomial time
one of the following:

• A path P , with ∅ 6= V (P ) ⊆ V (F ), such that V (S,N) ∪ V (P ) induces a
J-strip system.

• A path P , with ∅ 6= V (P ) ⊆ V (F ), and for each edge uv ∈ E(J) a uv-
rung Ruv, such that V (P ) ∪

⋃
uv∈E(J) Ruv is the line-graph of a bipartite

subdivision of a J-enlargement.

Proof. The proof of this lemma is essentially the same as the proof of The-
orem 8.5 in [7]. In 8.5 there is an assumption that there is no overshadowed
appearance of J ; but all that is used is that no vertex is major for some choice
of rungs of (S,N) and non-major for another. �
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We say that a K4-strip system (S,N) in a graph G is special if it satisfies
the following properties, where for all i, j ∈ [4], Oij denotes the set of vertices
in V (G) \ V (S,N) that are complete to (Ni ∪ Nj) \ Sij and anticomplete to
V (S,N) \ (Ni ∪Nj ∪ Sij):

(a) N13 = N31 = S13 and N24 = N42 = S24.

(b) Every rung in S12 and S34 has even length at least 2, and every rung in
S14 and S23 has odd length at least 3.

(c) O12 and O34 are both non-empty and complete to each other.

(d) If some vertex of V (G) \ (V (S,N) ∪ O12 ∪ O34) is major with respect to
some choice of rungs in (S,N), then it is major with respect to (S,N).
In particular, there is no overshadowed appearance of (S,N) in G \ (M ∪
O12 ∪O34), where M is the set of vertices that are major with respect to
(S,N).

(e) There is no enlargement of (S,N) in G\(O12∪O34), and (S,N) is maximal
in G \ (O12 ∪O34).

Lemma 6.3 Let G be Berge and square-free, and let J be a 3-connected graph.
Let (S,N) be a J-strip system in G. Let m ∈ V (G) \ V (S,N). If m is major
for some choice of rungs in (S,N), then one of the following holds:

1. There is a J-enlargement with a non-degenerate appearance in G (and
such an appearance can be found in polynomial time).

2. There is a J-strip system (S′, N ′) such that V (S,N) ⊂ V (S′, N ′) with
strict inclusion (and (S′, N ′) can be found in polynomial time).

3. m is major with respect to (S,N).

4. G has a special K4-strip system.

Proof. Let m be major for some choice of rungs in (S,N). Suppose that there is
no J-enlargement with a non-degenerate appearance inG, and (S,N) is maximal
in G, and that m is not major with respect to (S,N). Let X be the set of
neighbors of m. Let M be the set of vertices of V (G) \ V (S,N) that are major
with respect to (S,N). Let M∗ be the set of vertices of V (G) \ V (S,N) that
are major with respect to some choice of rungs. So m ∈ M∗ \M .

As noted earlier, every degenerate appearance of any 3-connected graph
contains a square, so G contains no degenerate appearances of any 3-connected
graph. Hence, by 8.4 in [7], we must have J = K4. Let V (J) = {1, 2, 3, 4}. Since
m is major with respect to some choice of rungs and not major with respect to
the strip system, we may choose rungs Rij , R

′

ij (i 6= j ∈ {1, 2, 3, 4}) forming line
graphs L(H) and L(H ′) respectively, so that X saturates L(H) but not L(H ′).
Moreover, we may assume that Rij 6= R′

ij if and only if {i, j} = {1, 2}.
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Let the ends of each Rij be rij and rji, where {rij | j ∈ {1, 2, 3, 4} \ {i}} is
a triangle Ti for each i. Similarly, let the ends of each R′

ij be r′ij and r′ji, where
{r′ij | j ∈ {1, 2, 3, 4} \ {i}} is a triangle T ′

i for each i.
Since X saturates L(H), it has at least two members in each of T1, . . . , T4,

and since X does not saturate L(H ′), there is some T ′

i that contains at most
one member of X. Since T3 = T ′

3 and T4 = T ′

4 we may assume that |X ∩T1| = 2
and |X ∩ T ′

1| = 1, so r12 ∈ X, r′12 6∈ X, and exactly one of r13, r14 is in X, say
r13 ∈ X and r14 6∈ X. Also, at least two vertices of T3 are in X, and similarly for
T4, so there are at least two branch-vertices of H ′ incident in H ′ with more than
one edge in X. By 5.7 in [7] applied to H ′, we deduce that 5.7.5 in [7] holds,
so (since odd branches of H ′ correspond to even rungs in L(H ′) and vice-versa)
there is an edge ij of J such that

R′

ij is even and [X ∩ V (L(H ′))] \ V (R′

ij) = (T ′

i ∪ T ′

j) \ V (R′

ij). (1)

In particular, T ′

i and T ′

j both contain at least two vertices inX, so i, j ≥ 2. Since
r13 ∈ X, it follows that one of i, j is equal to 3, say j = 3, and so r13 = r31, in
other words R13 has length 0. Hence i ∈ {2, 4}. We claim that:

i = 4. (2)

For suppose that i = 2. By (1) R23 is even and [X ∩ V (L(H ′))] \ V (R23) =
{r′21, r24, r31, r34}. Since at least two vertices of T4 are in X it follows that
r42 = r24 and r43 = r34 (and r41 /∈ X). Hence R24 and R34 both have length 0,
and since R23 is even this is a contradiction to the last axiom in the definition
of a strip system. Thus (2) holds.

Therefore we have i = 4 and j = 3. So (1) translates to:

R34 is even and [X ∩ V (L(H ′))] \ V (R34) = {r31, r32, r41, r42}. (3)

This implies that V (R′

12) ∩ X = ∅; moreover, if r23 ∈ X then r23 = r32, and
similarly if r24 ∈ X then r24 = r42.

One of R23, R24 has length 0, the other has odd length, R14 has odd
length, and r21 ∈ X.

(4)

Since the path r32-R23-r23-r24-R24-r42 can be completed to a hole via r42-r43-
R34-r34-r32, the first path is even, and so exactly one of R23, R24 is odd. Since
the same path can be completed to a hole via r42-r41-R14-r14-r13-r32, it follows
that R14 is odd. Since one of R23, R24 is odd, they do not both have length 0,
and hence at most one of r23, r24 is in X. On the other hand, since X saturates
L(H), the triangle T2 has at least two vertices from X; it follows that r21 ∈ X
and that exactly one of r23, r24 is in X (in other words exactly one of R23, R24

has length 0). Thus (4) holds.

R12 has length 0. (5)

For suppose that r21 6= r12. If r21 has a neighbor in R′

12, then m can be linked
onto the triangle T ′

1 via R′

12, R14 and m-r13, a contradiction. Hence r21 has no
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neighbor in R′

12. Then from the hole m-r21-r24-r
′

21-R
′

1,2-r
′

12-r13-m, we deduce
that the rungs R12 and R′

12 are odd. But then either m-r21-r23-r
′

21-R
′

12-r
′

12-r14-
R14-r41-m or m-r21-r24-r

′

21-R
′

12-r
′

12-r14-R14-r41-m is an odd hole, contradiction.
Thus (5) holds. It follows that every 12-rung (in particular R′

12) has even length.

R24 has length 0 and R23 has odd length. (6)

For suppose the contrary. As shown above, this means that R23 has length 0
and R24 has odd length. Then R24, R12 and R14 contradict the last axiom
in the definition of a strip system (the parity condition). Thus (6) holds. So
r24 = r42 and r23 6= r32 (and hence r23 /∈ X).

Every 34-rung has non-zero even length. (7)

By (3) R34 has even length, so every 34-rung has even length. If some 34-rung
has length zero, then its unique vertex x is such that {x, r42, r21, r13} induces a
square, a contradiction. Thus (7) holds.

For i 6= j, let Oij be the set of vertices that are not major with respect
to L(H ′) and are complete to (T ′

i ∪ T ′

j) \ R′

ij . In particular, r12 (= r21) is in
O12 and m is in O34, so O12 and O34 are non-empty. Every vertex in M∗ \M
is complete to {r13, r32, r42, r41} and has no other neighbor outside of R34 in
L(H). Moreover, since G is square-free, every such vertex is adjacent to every
12-rung of length 0.

For {i, j} /∈ {{1, 2}, {3, 4}} and for every rung R in Sij let L(H1)
(resp. L(H ′

1)) be the graph obtained from L(H) (resp. L(H ′)) by
replacing Rij with R. Then m is major with respect to L(H1) and
non-major with respect to L(H ′

1).

(8)

Clearlym is non-major with respect to L(H ′

1). Suppose it is also non-major with
respect to L(H1). Then by symmetric argument applied to L(H) and L(H1),
it follows that R is of even length. So we may assume that {i, j} = {1, 3}. But
then R24 must be of non-zero length, a contradiction. Thus (8) holds.

By (8) all rungs in S13 and S24 have length 0, and all rungs in S23 and S14 are
odd. Also, M∗\M is complete to N13∪N32∪N42∪N41 and to every zero-length
rung in S12 and has no other neighbor in V (S,N) \ S34. Thus M∗ \M ⊆ O34;
and conversely, since O34 is complete to R12 (for otherwise O34 ∪ {r12, r24, r13}
would contain a square), we deduce that O34 = M∗ \ M . We observe that if
R is any 14-rung or 23-rung, then R has length at least 3, for otherwise R has
length 1 and V (R) ∪ {r21,m} induces a square.

Let (S′, N ′) be the strip system obtained from (S,N) by replacing S12 with
S12 \ O12. It follows from the definition of (S′, N ′) and the facts above that
items (a)–(c) of the definition of a special K4-strip system hold. Since only S12

and S34 have even non-zero rungs, we deduce that item (d) in that definition
also holds.
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Finally suppose that (S′, N ′) is not maximal in G \ (O12 ∪O34). Since there
is no J-enlargement of (S,N) and (S,N) is maximal, there exists an appear-
ance (S′′, N ′′) of J that contains (S′, N ′), and we may assume that (S′′, N ′′)
is obtained from (S′, N ′) by adding one rung R. If R ∈ S′′

12, then (S′′, N ′′) is
an enlargement of (S,N), a contradiction. So R 6∈ S′′

12, and we do not get a
J-enlargement by adding O12∩S12 to S′′

12. Therefore, there is r ∈ O12∩S12 such
that we do not get a J-enlargement or a larger strip by adding r to S′′

12. By 5.8
of [7], r is major with respect to an appearance of J using the new rung, and
non-major otherwise. So R ∈ S′′

34, |V (R)| = 1 and V (R) ⊆ O34, a contradiction.
Thus, (S,N) is a special K4-strip system in G, and outcome 4 of the theorem
holds. �

We now focus on the case of a special K4-strip system.

Lemma 6.4 Let G be a square-free Berge graph and (S,N) be a special K4-strip
system in G, with the same notation as in the definition. Let M be the set of
vertices that are major with respect to (S,N). Let X1 ∈ {N12, N1 \N12}, X2 ∈
{N21, N2\N21} and X = X1∪X2. Let A = S12\X and B = V (S,N)\(S12∪X).
Let F ⊆ V (G) \ (V (S,N)∪M ∪O12) be connected. Then F has attachments in
at most one of A and B.

Proof. Suppose for the sake of contradiction that F has attachments in both A
and B. We may assume that |F | is minimal under this condition. Then F forms
a path with ends f1, f2 such that f1 has attachments in A, f2 has attachments
in B, and there are no other edges between F and A ∪B.

Let Y be the set of attachments of F in V (S,N). Suppose that Y is local
with respect to (S,N). Then, as F has attachments in both A ⊆ S12 and
B ⊆ V (S,N) \ S12, it follows that either Y ⊆ N1 or Y ⊆ N2. We may assume
without loss of generality that Y ⊆ N1. Then N1∩A is non-empty, so N12 6⊆ X,
and N1 ∩ B is non-empty, so N1 \ N12 6⊆ X, a contradiction. Hence Y is not
local in (S,N).

Suppose that F ∩ O34 6= ∅. Then f2 ∈ O34. Let (S′, N ′) be the strip
system obtained from (S,N) by adding O34 to S34. Then F \{f2} has non-local
attachments in (S′, N ′), and no vertex of F \ {f2} has neighbors in B. Let
L(H) be the line graph formed by some choice of rungs in (S′, N ′), where f2 is
the rung chosen from S3,4, and the rung from S1,2 contains a neighbor of f1.
Apply 5.8 of [7]. Since no vertex of F \ {f2} has a neighbor in B \ {f2}, none of
the outcomes are possible, a contradiction. This proves that F ∩ O34 = ∅. So
F ⊆ V (G) \ (V (S,N) ∪M ∪ O12 ∪ O34). By Lemma 6.3, (S,N) is maximal in
G \ (O12 ∪ O34), and no vertex of V (G) \ (V (S,N) ∪M ∪ O12 ∪ O34) is major
or overshadowing with respect to (S,N), a contradiction to Lemma 6.2. This
proves the theorem. �

Lemma 6.5 Let G be a square-free Berge graph and (S,N) be a special K4-
strip system in G, with the same notation as in the definition. Let M be the set
of vertices that are major with respect to (S,N). Then:
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(1) O12 ∪M and O34 ∪M are cliques; and

(2) there is an integer k such that O12 ∪ M ∪ (N1 \ N1k) is a clique, and
similarly there is an integer ℓ such that O12 ∪M ∪ (N2 \N2ℓ) is a clique.

Proof. Suppose that (1) does not hold. Then there are non-adjacent vertices
x1, x2 in O12 ∪M , say. If x ∈ O12, then by Lemma 6.3 x is complete to N1k for
all k 6= 2, and complete to N2ℓ for all ℓ 6= 1. If x ∈ M , then x is complete to N1k

for all but at most one k, and complete to N2ℓ for all but at most one ℓ. Hence
there exist k, ℓ so that {x1, x2} is complete to N1k ∪N2ℓ, so for every u ∈ N1k

and v ∈ N2ℓ, {x1, u, x2, v} induces a square, contradiction. This proves (1).
By definition, for every x ∈ O12 ∪ M there are indices k and ℓ so that x

is complete to (N1 \N1k) ∪ (N2 \N2ℓ). Hence (2) follows from (1) by a direct
application of Lemma 1.3. �

Lemma 6.6 Let G be a square-free Berge graph. If G has a special K4-strip
system, then it has a good partition.

Proof. Let (S,N) be a special K4-strip system of G, with the same notation
as above. Let M be the set of vertices that are major with respect to (S,N).
There are vertices t12 ∈ S12 \ (N12 ∪N21), t34 ∈ S34 \ (N34 ∪N43) and t13 ∈ S13,
and hence {t12, t34, t13} is a triad τ .

Suppose that both (N1 \ N12) ∪ M ∪ O12 and (N2 \ N21) ∪ M ∪ O12 are
cliques. Let K1 = N1 \N12, K2 = O12∪M , and K3 = N2 \N21. By Lemma 6.4,
K1 ∪K2 ∪K3 is a cutset. Let L be the union of those components of G \ (K1 ∪
K2 ∪K3) that contain vertices of S12, and let R = V (G) \ (L ∪K1 ∪K2 ∪K3).
Then K1 is anticomplete to K3, and every path from K3 to K1 with interior in L
contains a vertex of N12, which is complete to K1, and τ is a triad that contains
a vertex of L and a vertex of R. So (K1,K2,K3, L,R) is a good partition of
V (G).

Now assume, up to symmetry, that (N1 \N12)∪M ∪O12 is not a clique. By
Lemma 6.5, N12 ∪M ∪O12 is a clique. Also, at least one of N21 ∪M ∪O12 and
(N2 \ N21) ∪ M ∪ O12 is a clique. If the former is a clique, let X = N21, and
otherwise let X = N2 \N21. Set K1 = N12, K2 = M ∪ O12, and K3 = X. By
Lemma 6.4,K1∪K2∪K3 is a cutset. Let L be the component ofG\(K1∪K2∪K3)
that contains N1 \N12 (note that N1 \N12 is connected because N13 is complete
to N14), and let R = V (G) \ (L ∪ K1 ∪ K2 ∪ K3). Then K1 is anticomplete
to K3, and every path from K3 to K1 with interior in L contains a vertex of
N1 \N12, which is complete to K1, and τ is a triad that contains a vertex of L
and a vertex of R. So (K1,K2,K3, L,R) is a good partition of V (G). �

Now we can give the proof of Theorem 6.1.
Proof. Since G contains the line-graph of a bipartite subdivision of K4, there
is a 3-connected graph J such that G contains an appearance of J , and we
choose J maximal with this property. Hence G contains the line-graph L(H)
of a bipartite subdivision H of J . Then there exists a J-strip system (S,N)
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such that V (S,N) ⊆ V (G), and we choose V (S,N) maximal. Let M be the set
of vertices in V (G) \ V (S,N) that are major with respect to the strip system
(S,N). We observe that:

M is a clique. (1)

Suppose that m,m′ are non-adjacent vertices in M . Let B be a branch of H,
and let u, v be its ends. Since there is no triangle in H, there exist a neighbor
u′ of u and a neighbor v′ of v in H such that Nuu′ and Nvv′ are complete to
M and anticomplete to each other. Then {m,m′, u′, v′} induces a square. This
proves (1).

For every branch vertex u in H, there is a branch vertex v in H
such that M ∪ (Nu \Nuv) is a clique.

(2)

It follows from (1) that M is a clique, and by the definition of major vertices,
for every m ∈ M and every branch vertex u there is a branch vertex v such
that m is complete to Nu \ Nuv. Hence (2) follows by a direct application of
Lemma 1.3.

If some vertex of V (G) \ V (S,N) is major with respect to some choice of
rungs but not with respect to the strip system, then by Lemma 6.3 G has a
special K4-strip system, and by Lemma 6.6 G has a good partition, so the
theorem holds. Therefore we may assume that every vertex of V (G) \ V (S,N)
that is major with respect to some choice of rungs is major with respect to the
strip system. By Lemma 6.2 (or Theorem 8.5 from [7]), every component of
V (G) \ (V (S,N) ∪M) attaches locally to V (S,N).

For every strip Suv there exists a triad {t, t′, t′′} in G such that
t ∈ Suv and t′, t′′ ∈ V (S,N) \ (Suv ∪Nu ∪Nv).

(3)

For every strip Sxy let Rxy be an xy-rung, with endvertices rxy ∈ Nxy and
ryx ∈ Nyx. Suppose that ruv 6= rvu. Since J is 3-connected, there is a cycle C
in J that contain u and not v. In G let C ′ =

⋃
xy∈E(C) Rxy. Then C ′ is a hole

of length at least 6, and it is even since G is Berge, so it has two non-adjacent
vertices t′, t′′ that are not in Nu. Then {rvu, t

′, t′′} is the desired triad. Now
suppose that ruv = rvu. There is a cycle C in J that contains u and v. In G
let C ′ =

⋃
xy∈E(C) Rxy. Then C ′ is an even hole, of length at least 6, so it has

three non-adjacent vertices including ruv. Then these vertices form the desired
triad. So (3) holds.

For every strip Suv, let S∗

uv denote the union of Suv with the components
of G \ V (S,N) that attach in Suv only, and let Tuv = Nu ∩Nv (= Nuv ∩Nvu).
Note that Tuv is complete to Nu \Nuv and to Nv \Nvu. Moreover we observe
that:

M ∪ Tuv is a clique. (4)

Suppose that M ∪ Tuv has two non-adjacent vertices a, b. By (2), and since
every branch vertex in H has degree at least 3, M is complete to at least one
vertex nu ∈ Nu \Nuv, and similarly to at least one vertex nv ∈ Nv \Nvu. By
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(1) at least one of a, b is in Tuv, say a ∈ Tuv. Since edges in H that correspond
to a, nu and nv cannot induce a triangle (as H is bipartite), it follows that nu

and nv are not adjacent. Then {a, b, nu, nv} induces a square, a contradiction.
So (4) holds.

Let us say that a strip Suv is rich if Suv \ Tuv 6= ∅.

If (S,N) has a rich strip, the theorem holds. (5)

Let Suv be a rich strip in (S,N). First suppose that both M ∪ (Nu \ Nuv)
and M ∪ (Nv \Nvu) are cliques. Hence, by (4) and the definition of Tuv, both
M ∪ (Nu \Nuv)∪Tuv and M ∪ (Nv \Nvu)∪Tuv are cliques. Let K1 = Nu \Nuv,
K2 = M ∪ Tuv, K3 = Nv \Nvu, let L consist of S∗

uv \ Tuv together with those
components of G\V (S,N) that attach only to Nu and those that attach only to
Nv, and let R = V (G)\(K1∪K2∪K3∪L). Then every path from K3 to K1 with
interior in L contains a vertex of Nuv, which is complete to K1, and no vertex
of L has both a neighbor in K1 and a neighbor in K3; moreover, by (3) there is
a triad {t, t′, t′′} with t ∈ Suv and t′, t′′ ∈ V (S,N) \ (Suv ∪Nu ∪Nv), so this is
a triad with a vertex (namely t) in L and a vertex in R; so (K1,K2,K3, L,R)
is a good partition of V (G).
Therefore we may assume that M ∪ (Nu \Nuv) is not a clique, and so M ∪Nuv

is a clique. If M ∪ (Nv \Nvu) is a clique, let K1 = Nuv \ Tuv, K2 = M ∪ Tuv,
K3 = Nv \ Nvu, let R consist of S∗

uv \ Nu together with those components of
G \ V (S,N) that attach only to Nv, and let L = V (G) \ (R ∪K1 ∪K2 ∪K3).
Then K1 is anticomplete to K3, and every path from K3 to K1 with interior in
L contains a vertex of Nu\Nuv, which is complete to K1; moreover, by (3) there
is a triad {t, t′, t′′} with t ∈ Suv and t′, t′′ ∈ V (S,N)\ (Suv ∪Nu∪Nv), so this is
a triad with a vertex in L and a vertex (namely t) in R; So (K1,K2,K3, L,R)
is a good partition of V (G).
Therefore we may assume that for every rich strip Sxy, both M ∪ Nxy and
M ∪ Nyx are cliques, and neither of M ∪ (Nx \ Nxy) and M ∪ (Ny \ Nyx) is
a clique. Hence, regarding Suv, there is an edge uw in J such that M ∪ Nuw

is not a clique. Then Suw is not rich, and hence Suw = Tuw = Nuw. By (4)
M ∪ Tuw = M ∪Nuw is a clique, a contradiction. So (5) holds.

By (5) we may assume that there is no rich strip in (S,N). It follows that
for every uv ∈ E(J) we have Suv = Tuv, which is a clique by (4). Consequently
Nu is a clique for every u, and by (4), M ∪ Nu is a clique for every u. Let
Suv be a strip. By (3) there is a triad {t, t′, t′′} with t ∈ Suv and t′, t′′ ∈
V (S,N) \ (Suv ∪ Nu ∪ Nv). Let K1 = Nu \ Suv, K2 = M , K3 = Nv \ Suv, let
L consist of S∗

uv together with the components of G \ V (S,N) that attach only
to Nu and only to Nv, and let R = V (G) \ (K1 ∪ K2 ∪ K3 ∪ L). Then K1 is
anticomplete to K3 (since there is no triangle in H), and every path from K3

to K1 with interior in L contains a vertex of Suv, which is complete to K1, and
{t, t′, t′′} is a triad with a vertex in L and a vertex in R. So (K1,K2,K3, L,R)
is a good partition of V (G). This concludes the proof. �
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7 Algorithmic aspects

Assume that we are given a graph G on n vertices. We want to know if G is
a square-free Berge graph and, if it is, we want to produce an ω(G)-coloring of
G. We can do that as follows, based on the method described in the preceding
sections. We can first test whether G is square-free in time O(n4). Therefore
let us assume that G is square-free.

Let A be the class of graphs that contain no odd hole, no antihole of length
at least 6, and no prism (sometimes called “Artemis” graphs). There is an algo-
rithm, “Algorithm 3” in [17], of time complexity O(n9), which decides whether
the graph G is in class A or not, and, if it is not, returns an induced subgraph of
G that is either an odd hole, an antihole of length at least 6, or a prism. If the
first outcome happens, then G is not Berge and we stop. The second outcome
cannot happen since G is square-free. Therefore we may assume that G is Berge
and that the algorithm has returned a prism K. We want to extend K either to
a maximal hyperprism or to the line-graph of a bipartite subdivision of K4. We
can do that as follows. Let K have rungs R1, R2, R3, where, for each i = 1, 2, 3,
Ri has ends ai, bi, such that {a1, a2, a3} and {b1, b2, b3} are triangles.

• Initially, for each i ∈ {1, 2, 3} let Ai = {ai}, Bi = {bi} and Ci = V (Ri) \
{ai, bi}. Let V (H) = V (K).

• Let M be the set of major neighbors of H.

• If there is a component F of G \ (H ∪M) whose set of attachments on H
is not local, then by Lemma 3.3, one of the following occurs (and can be
found in polynomial time):

(i) There is a path P in F such that V (H) ∪ V (P ) induces a larger
hyperprism H ′; or

(ii) There are three rungs R1, R2, R3 of H, one in each strip of H, and a
path P in F , such that V (R1) ∪ V (R2) ∪ V (R3) ∪ V (P ) induces the
line-graph of a bipartite subdivision of K4.

Assume that outcome (ii) never happens. Whenever outcome (i) happens, we
start again from the larger hyperprism that has been found. Note that outcome
(i) can happen only n times, because at each time we start again with a strictly
larger hyperprism. So the procedure finishes with a maximal hyperprism. Then
we can find a good partition of G as explained in Theorem 4.2 or 5.2, decompose
G along that partition, and color G using induction as explained in Lemma 2.2.

Remark: Since a hyperprism may have exponentially many rungs, we need
to show how we can determine in polynomial time the set M of major neighbors
of a hyperprism H in a graph G without listing all the rungs of H. It is easy to
see that a vertex x in V (G) \ V (H) is a major neighbor of H if and only if one
of the following two situations occurs:

• For at least two distinct values of i ∈ {1, 2, 3}, there exists an i-rung Ri

such that x is adjacent to both ends of Ri, or
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• For a permutation {i, j, k} of {1, 2, 3}, there exists an i-rung Ri such that
x adjacent to both ends of Ri and x has a neighbor in Aj and a neighbor
in Bk.

So it suffices to test, for each i ∈ {1, 2, 3}, whether there exists an i-rung such
that x is adjacent to both its ends. This can be done as follows. For every pair
ui ∈ Ai and vi ∈ Bi, test whether there is a path between ui and vi in the
subgraph induced by Ci ∪ {ui, vi}. If there is any such path Ri, then record it
for the pair {ui, vi}, and for every vertex x in V (G) \V (H) record whether x is
adjacent to both ui and vi or not. This takes time O(n4) (O(n2) for each pair
{ui, vi}). So the whole procedure of growing the hyperprism and determining
the set M of its major neighbors takes time O(n4).

Now assume that outcome (ii) happens, and so G contains the line-graph of
a bipartite subdivision of K4. So G contains the line-graph of a bipartite subdi-
vision of a 3-connected graph J , and we want to grow J and the corresponding
J-strip system (S,N) to maximality. We can do that as follows.

• Initially, let (S,N) be the strip system equal to the line-graph of a bipartite
subdivision of K4 found in outcome (ii).

• Let M be the set of vertices in V (G) \ V (S,N) that are major on some
choice of rungs of (S,N). (Determining M can be done with the same
arguments as in the remark above concerning the set of major neighbors
of a hyperprism, and we omit the details.)

• If there is a component F of G \ (V (S,N)∪M) whose set of attachments
on H is not local, then by Lemma 6.2, one of the following occurs (and
can be found in polynomial time):

– A path P , with ∅ 6= V (P ) ⊆ V (F ), such that V (S,N)∪V (P ) induces
a J-strip system, or

– A path P , with ∅ 6= V (P ) ⊆ V (F ), and for each edge uv ∈ E(J) a
uv-rung Ruv, such that V (P ) ∪

⋃
uv∈E(J) Ruv is the line-graph of a

bipartite subdivision of a J-enlargement.

• If some vertex in M is not major on some choice of rungs of (S,N), then,
by Lemma 6.3, we can either find a larger strip system or the special case
described in item (iv) of that lemma.

In either case, whenever we find a larger strip system we start again with
it. This will happen at most n times. So the procedure finishes with a
maximal strip system. Similarly to the case of the hyperprism, the whole
procedure of growing the strip system and determining the set M of its
major neighbors takes time O(n4). Then we can find a good partition of
G as explained in Theorem 6.1, decompose G along that partition, and
color G using induction as explained in Lemma 2.2.
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Complexity analysis. Whenever G contains a prism, we have shown that G
has a partition into sets K1, K2, K3, L, R such that K1 ∪ K2 and K2 ∪ K3

are cliques, with L and R non-empty, and L is anticomplete to R. Then G is
decomposed into the two proper induced subgraphs G \ L and G \ R. These
subgraphs themselves may be decomposed, etc. This can be represented by a
decomposition tree T , where G is the root, and the children of every non-leaf
node G′ are the two induced subgraphs into which G′ is decomposed. Every
leaf is a subgraph that contains no prism.

Let us consider the triads of G. By item (v) of a good partition, there exists
a triad τG that has at least one vertex from each of L,R; we label G with τG.
Since the cutset K1 ∪K2 ∪K3 is the union of two cliques it contains no triad,
and so no triad of G is in both G \ L and G \ R; moreover τG itself is in none
of these two subgraphs. Consequently every triad of G can be used as the label
of at most one non-leaf node of T . So T has at most n3 non-leaf nodes. Since
every node has at most two children, the number of leaves is at most 2n3, and
the total number of nodes of T is at most 3n3.

Testing if G is Berge takes time O(n9); this is done only once, at the first
step of the algorithm, as a subroutine of testing whether G is in class A. At any
decomposition node of T different from the root we already know that we have
a Berge graph (an induced subgraph of G), so we need only test whether the
graph contains a prism; this can be done in time O(n5) with “Algorithm 2” from
[17]. The complexity of coloring a leaf (which contains no prism) is O(n6) in
[17] and O(n4) in [14]. The coloring algorithm described in Lemma 2.2 involves
only a few bichromatic exchanges, so its complexity is small. The complexity
of growing a hyperprism (once a prism is known) or a strip structure is also
negligible in comparison with the rest. So the total complexity of the algorithm
is O(n9) + O(n3)×O(n4) = O(n9) (proving Theorem 1.1).
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