
This is a repository copy of Predictive Evaluation of Partitioning Algorithms through
Runtime Modelling.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/135340/

Version: Accepted Version

Proceedings Paper:
Bunt, R. A., Wright, S. A. orcid.org/0000-0001-7133-8533, Jarvis, S. A. et al. (2 more
authors) (2017) Predictive Evaluation of Partitioning Algorithms through Runtime
Modelling. In: Proceedings - 23rd IEEE International Conference on High Performance
Computing, HiPC 2016. 23rd IEEE International Conference on High Performance
Computing, HiPC 2016, 19-22 Dec 2016 IEEE International Conference on High
Performance Computing . IEEE , IND , pp. 351-361.

https://doi.org/10.1109/HiPC.2016.048

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Predictive Evaluation of Partitioning Algorithms Through Runtime Modelling

R. A. Bunt, S. A. Wright and S. A. Jarvis

Department of Computer Science,

University of Warwick,

Coventry, United Kingdom

Email: rab@dcs.warwick.ac.uk

Y. K. Ho and M. J. Street

Design Systems Engineering,

Rolls-Royce plc,

Derby, United Kingdom

Abstract—Performance modelling unstructured mesh codes
is a challenging process, due to the difficulty of capturing their
memory access patterns, and their communication patterns at
varying scale. In this paper we first develop extensions to an
existing runtime performance model, aimed at overcoming the
former, which we validate on up to 1,024 cores of a Haswell-
based cluster, using both a geometric partitioning algorithm
and ParMETIS to partition the input deck, with a maximum
absolute runtime error of 12.63% and 11.55% respectively. To
overcome the latter, we develop an application representative of
the mesh partitioning process internal to an unstructured mesh
code. This application is able to generate partitioning data that
is usable with the performance model to produce predicted
application runtimes within 7.31% of those produced using
empirically collected data. We then demonstrate the use of the
performance model by undertaking a predictive comparison
among several partitioning algorithms on up to 30,000 cores.
Additionally, we correctly predict the ineffectiveness of the
geometric partitioning algorithm at 512 and 1024 cores.

Keywords-scientific computing; performance analysis; high
performance computing; modelling; fluid dynamics

I. INTRODUCTION

Supporting high-performance computing (HPC) resources

and applications is an expensive and complicated process.

The rise of petascale computing, and the push towards

exascale computing, has seen an increase not only in the

amount of intra-node parallelism, but also in the complexity

of interactions between hardware components. As a result

it is becoming increasingly difficult to relate the levels of

performance achieved by benchmark suites on small scale

evaluation hardware to that of production codes running on a

complete machine. Many HPC centres are therefore turning

to alternative tools and methodologies (e.g. predictive perfor-

mance modelling [1], [2], hardware simulation [3], [4] and

mini-applications [5], [6]) to facilitate system evaluation, to

aid in the comparison of multiple candidate machines, to

investigate optimisation strategies, and to act as a vehicle

for porting codes to novel architectures.

One use of high performance machines is to perform

computational fluid dynamics (CFD) simulations. These save

time, money and permit the fast exploration of design

spaces [7] without the cost of producing scale models and

purchasing wind tunnel time [8]. This class of code is

therefore vital to the aerospace industry. One such example

of this is HYDRA, a suite of applications in use by Rolls-

Royce to optimise engine designs (e.g. by reducing the

effects of high cycle fatigue [9]). The aim of our research

is to produce a suite of general tools that will support

Rolls-Royce with moving their applications onto new HPC

systems.

This paper builds upon previous work [10] – the devel-

opment of a performance model capable of predicting the

runtime of HYDRA. We focus on detailing extensions to this

model and the supporting suite of tools. While the existing

performance model was successful at identifying detrimental

communication behaviour, limitations prevented the model

from delivering runtime predictions across the desired range

of input parameters and scale: 1) the performance model

was lacking complete analytical support, which restricted

the set of tasks runtime predictions could be performed

for (e.g. different multigrid cycle types); 2) the dataset

coverage was limited due to the performance model only

being primed from a subset of HYDRA’s loops; and, 3) the

model was reliant on partitioning data, which could only be

collected empirically from HYDRA when running at scale.

Specifically, this paper makes the following contributions:

• We construct a general analytical runtime model for

multigrid applications. This model supports multiple

cycle types (e.g. V- and W-Cycles) and a variable

number of Runge-Kutta iterations;

• We identify and incorporate additional details in to the

performance model which are essential for modelling

the runtime of large unstructured mesh codes: buffer

pack/unpack costs, runtime costs from all 300+ loops

in the code base, and performance information for

different memory access patterns;

• We validate these additional details on up to 1,024

cores of a Haswell-based cluster, using both a geometric

partitioning algorithm and ParMETIS to partition the

NASA Rotor37 input deck, with a maximum absolute

error of 12.63% and 11.55% respectively. Additionally

we report the performance model’s accuracy on 1,008

cores of an Ivybridge-based cluster (ARCHER);

• We develop Moses, an application which is represen-

tative of the partitioning process internal to HYDRA.

This application is able to process the output from mul-

tiple partitioning algorithms/libraries (e.g. ParMETIS,

METIS and Scotch) at varying scale (up to 100,000

partitions) into data usable by our runtime performance

model. Runtime predictions made using this data have

an error in runtime of at most 7.31% over 512 pro-

cesses, when compared against predictions made with

empirically collected partitioning data;

• Finally, we demonstrate the use of Moses in conjunc-

tion with the runtime performance model to predictively

compare the relative effect on HYDRA’s runtime of

using Scotch, ParMETIS, METIS and a geometric

partitioning algorithm on up to 30,000 cores. We predict

and validate that the geometric partitioning algorithm

causes reduced performance in HYDRA at 512 and

1024 processes when compared with ParMETIS.

This paper is structured as follows: in Section II we briefly

discuss related work; in Section III we summarise the func-

tionality of HYDRA, OPlus (the proprietary library respon-

sible for abstracting communications) and the partitioning

libraries we use; in Section IV we show how the analytical

model presented previously is generalised; in Section V

we present the improvements to the performance model’s

dataset and cost coverage, and validate these changes; in

Section VI we describe our approach to collecting domain

size information at scale and we provide a demonstration of

how the data from Moses is used to compare partitioning

algorithms on up to 30,000 cores; finally, in Section VII we

summarise the work and discuss potential future work.

II. RELATED WORK

The use of analytical and simulation-based performance

models has previously been demonstrated in a wide range

of scientific and engineering application domains. The con-

struction of such models can augment many aspects of

performance engineering [2], including: comparing the ex-

pected performance of multiple candidate machines during

procurement [11]; improving the scheduling of jobs on a

shared machine, via walltime estimates [12]; identifying

bottlenecks and potential optimisations, and evaluating their

effect upon performance ahead-of-implementation [13]; and

post-installation machine validation [14].

One body of modelling work similar to our own is

described by Gahvari et al. [15]–[17], where an analytical

performance model is developed for algebraic multigrid ap-

plications executing on a range of architectures (including a

Blue Gene/P and a Blue Gene/Q). The focus of these papers

is on understanding the scalability of these applications

and the utility of hybrid OpenMP/MPI programming – in

this work we present a model of a geometric multigrid

application.

Another body of research which is similar to this work,

develops performance models of MPI-based wavefront [1]

and Adaptive Mesh Refinement (AMR) codes [18]. Despite

Term Parameter Definition

Dataset

ncyles Number of V- or W-Cycles.

nlevels Number of levels in the multigrid.
npre Number of pre-smoothing iterations.
npost Number of post-smoothing iterations.

nrk Number of Runge-Kutta iterations.
nstart Number of starting iterations.
ncrs Number of smoothing iterations to perform

at the coarsest level of the multigrid.

Table I: Description of dataset terms.

the similarities between these models and our own, sig-

nificant work would be required to prepare them for use

with geometric multigrid applications. Furthermore, we use

performance models to assess the suitability of different par-

titioning algorithms/libraries at varying scale, rather than to

examine different hardware and software configurations [1]

or to optimising AMR patch distribution [18].

Giles et al. have published several papers on the design

and performance of OPlus and its successor OP2 [19]–

[21]. One of these papers details the construction of an

analytical performance model of a simple airfoil benchmark

(≈2 K lines of code), executing on commodity clusters

containing CPU and GPU hardware [21]. The performance

model achieves high levels of accuracy, but does not support

multigrid execution. In this paper, we construct a perfor-

mance model for a significantly more complex production

application (≈45 K lines of code), and present model val-

idations for datasets with multiple grid levels and augment

the modelling process with data from a mini-application.

We additionally develop an application to be represen-

tative of the partitioning behaviours internal to HYDRA

using the experiences of mini-application developers. Our

approach differs from typical mini-applications which tend

to represent application behaviours when interacting with

hardware (e.g. computation, communication and synchroni-

sation) [22]–[24], rather than purely software behaviours. We

borrow the idea of creating a small but representative appli-

cation, but seek only to recreate the result of computation

to facilitate the collection of data for use with the runtime

performance model.

III. BACKGROUND

A. Multigrid

Multigrid methods are designed to increase the rate of

convergence for iterative solvers, and possess a useful com-

putational property – the amount of computational work

required is linear in the number of unknowns [25]. Multigrid

applications operate on a hierarchy of grid levels; in this

paper, we are concerned with geometric multigrid, wherein

each grid level has its own explicit mesh geometry, and the

coarse levels of the hierarchy are constructed based upon

the geometry of the finest level.

1 2 3 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

10

1 2
1

2
1 2

2
2

2

1 2
1

2
1 2

2
2

Multigrid Level

S
o
lv
er

It
er
a
ti
o
n
E
v
en
t

npre

npost

ncrs

nstart

additional

(a) V-Cycle

1 2 3 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10

1 2
1

2
1

2
2
1

2

22
1

2
1

2
2
1

2

2
2

2

1 2
1

2
1

2
2
1

2

22
1

2
1

2
2
1

2

2
2

Multigrid Level

S
o
lv
er

It
er
a
ti
o
n
E
v
en
t

(b) W-Cycle

Figure 1: Trace of solver iteration events (ncycles = 3).

Starting at the finest level, multigrid applications use

an iterative smoothing subroutine to reduce high frequency

errors. Low frequency errors are then transferred to the

next coarsest level (restriction), where they appear as high

frequency errors and can thus be more rapidly smoothed by

the same subroutine. Error corrections from the smoothing

of coarse levels are then transferred back to finer levels (pro-

longation). Before each invocation of a restrict or prolong

a varying number of smooth operations are performed; the

exact number is defined by nstart, npre, npost, ncrs and

additional which are described in Table I. The order in

which prolongations and restrictions are applied is known

as a cycle, of which this paper considers two types: V- and

W-Cycles as these are both available in HYDRA. Figure 1(a)

and Figure 1(b) visualise two V-Cycles and two W-Cycles

respectively, for a grid with four levels.

B. HYDRA

Rolls-Royce use CFD codes to simulate the flow of fluids in

and around some of their commercial products. One of the

main codes employed in such simulations is HYDRA [26],

a suite of nonlinear, linear and adjoint solvers developed

by Rolls-Royce in collaboration with many UK universities.

We refer the reader to previous works for more informa-

tion [27]–[31].

We focus on HYDRA’s nonlinear solver, which we refer

to henceforth as “HYDRA” for brevity. Specifically we

examine HYDRA’s smooth loop; a skeleton of this loop

is provided in Listing 1 along with a description of each

function call. This loop contains the six most expensive

functions in terms of runtime: vflux, iflux, srcsa,

Listing 1: Pseudo-code for HYDRA’s smooth loop.

1 f o r i t e r = 1 to n i t e r do

2 i f i t e r == 1 then

3 c a l l j a c o b // Jacobian preconditioning
4 end i f

5

6 f o r s t e p = 1 to 5 do

7 i f d i s s i p a t i v e f l u x u p d a t e then

8 c a l l g ra d // compute gradient
9 c a l l v f l u x // accumulate viscous fluxes

10 c a l l w f f l u x // modify viscous wall fluxes
11 c a l l wvflux
12 end i f

13

14 c a l l i f l u x // accumulate inviscid fluxes
15 c a l l s r c s a // Spalart-Allmaras source term
16 c a l l u p d a t e // update flow solution
17 end f o r

18 end f o r

Listing 2: A typical OPlus parallel loop.

1 do whi l e (p a r a l l e l l o o p (edges , i s t a r t ,
2 i f i n i s h))
3 c a l l a c c e s s (‘ read ’ , ewt , 3 ,
4 edges , 0 , 0 , . . .)
5 c a l l a c c e s s (‘ read ’ , x , 3 ,
6 nodes , ne , 2 , . . .)
7 . . .
8

9 c a l l a c c e s s (‘ upda te ’ , v r e s , 6 ,
10 nodes , ne , 2 , . . .)
11 do i e = i s t a r t , i f i n i s h
12 i 1 = ne (1 , i e)
13 i 2 = ne (2 , i e)
14 c a l l compute (ewt (1 , i e) ,
15 x (1 , i 1) , x (1 , i 2) ,
16 v r e s (1 , i 1) , v r e s (1 , i 2))
17 enddo

18 enddo

update, grad and jacob, along with wfflux and

wvflux; all of which are invoked approximately 1–5 times

per iteration. The smooth loop does not include the main

input/output (I/O) or setup routines.

C. OPlus

OPlus [19] was designed to allow a single source code to

be recompiled for serial or parallel execution, acting as a

middleware that completely hides other library calls and the

low-level implementation of a code’s parallel behaviour from

the programmer. Subroutines in the user source code (in this

case, HYDRA) are defined as operations over user-defined

data sets (e.g. nodes, edges, faces) and the OPlus library

schedules the computation accordingly. When running seri-

ally, OPlus uses a standard loop to execute the subroutine for

each set element; when running in parallel, the set elements

(and their computation) are partitioned over multiple nodes.

OPlus is also responsible for handling the halo exchanges

at the boundaries between processor domains, for which

it uses MPI. Due to these responsibilities, parts of OPlus

(e.g. buffer pack/unpack routines) must be captured in the

performance model. We note that as OPlus handles all inter-

node communication, there are no calls to MPI or any other

communication library within the HYDRA source code.

In order to schedule a loop for parallel execution, OPlus

requires that the programmer declare how each data array

will be accessed, via calls to access as demonstrated

in Listing 2. Firstly, they must declare an access type for

each array – read, write, or read/write (“update”). OPlus

then attaches a “dirty bit” to each array, based upon these

access modifiers; if an array is declared as being “write”

or “update”, then execution of the loop will invalidate any

copy of the data held on neighbouring processes. Secondly,

the programmer must specify whether the array is to be

accessed directly (i.e. the array index is the loop counter)

or indirectly (i.e. the array index is the result of a look-up,

based on the loop counter); such information allows OPlus to

reason about whether a given loop requires data only from

local set elements, or is likely to access data residing on

another processor.

When combined with the set partitioning, these access

descriptors permit OPlus to determine which iterations of

the inner loop:

1) Can be executed prior to communication;

2) Require communication with neighbouring processors

to ensure correctness; and

3) Should be executed redundantly on multiple proces-

sors to avoid additional communication steps.

The set elements corresponding to such iterations are re-

ferred to henceforth as independent, dependent and execute

set elements respectively.

The do while loop surrounding the computation en-

ables OPlus to iterate over the three distinct regions of

elements in a way that is transparent to the programmer. The

parallel_loop call returns true for a certain number of

calls (thus continuing the while loop) and sets the values

of istart and ifinish to different values each time

(thereby controlling the set elements executed by a given

iteration).

D. Experimental Setup

For the model validations in Sections V and VI we use the

Rotor37 dataset [32] (a mesh of ≈8 million nodes and ≈24.8

million edges representing an axial compressor rotor) as

the input deck. We collect the modelling data from Tinis,

a Haswell-based cluster (400×E5-2630 v3) with a QDR

Infiniband interconnect.

OPlus has been developed such that any unstructured

mesh partitioning algorithm can be integrated and used (e.g.

ParMETIS [33] and PT-Scotch [34]). In this paper we use

the geometric partitioning [35] algorithm built into OPlus

and ParMETIS 3.1 for all model validations; ParMETIS 3.1

Term Definition

Subscripts

g Grind time (loop time divided by total iterations)
p Process identifier
l Loop identifier
L Multigrid level
i Independent elements
h Dependent elements
e Redundant compute elements

Measured

Wg,p,l,L Grind-time per level, per set element in loop
Ni,p,l,L Number of independent set elements in loop.
Nh,p,l,L Number of dependent (halo) set elements in loop
Ne,p,l,L Number of redundant (execute) set elements in loop.

Derived

Rcalls Number of additional calls caused by restrict.
Pcalls Number of additional calls caused by prolong.

I
post
L

Calls caused by npost input parameter on level L.

I
pre
L

Calls caused by npre input parameter on level L.

Icrs
L

Calls caused by ncrs input parameter on level L.

Istart
L

Calls caused by nstart input parameter on level L.
Wp,l,L Walltime per process, per loop, per level.
Wmg Total runtime of the multigrid solver.
Cl,L Communication cost for loop l per level.

Table II: Description of model terms.

for the simulated partitioning; and, METIS 5.1.0 and Scotch

6.0.4 for all serial partitioning.

IV. RUNTIME MODEL FOR MULTIGRID APPLICATIONS

We first present the construction of further analytical

equations, which describe HYDRA’s function invocations.

We then show how these new equations operate with the

original model. Additionally, we show how the new analyti-

cal equations can easily be adapted to allow for runtime pre-

dictions when using other types of multgrid cycle, thereby

increasing the applicability of the model. The modelling

terms used throughout this section and others are defined

in Table II.

A. Model of Solver Steps

HYDRA’s smooth routine invokes a number of solver iter-

ations. These depend on HYDRA’s current position in the

multigrid cycle (labelled in Figure 1) and directly affect the

total number of solver steps. To parameterise the model, we

work through HYDRA’s source code from both the solver

and Runge-Kutta loop bounds to the input deck, and in doing

so we identify the following parameters ncrs, npre, npost,

ncycles (see Table I) as influencing the loop bounds.

To aid the development of equations for the number

of solver iterations (per multigrid level) in terms of these

parameters, we collect a trace of solver iteration events

and the multigrid level they originate from. We plot this

trace in Figure 1(a) and use it as a guide for further code

inspection, by creating a mapping between events in the trace

and HYDRA’s source code.

The first feature we discuss from Figure 1(a) are the

initial 11 iterations on the first level of the multigrid (solver

iteration events 1 and 2). Through experimentation with the

input deck and code inspection, it was found that the first

10 of these events can be attributed to the nstart parameter.

The extra event is a separate feature, in which an additional

iteration of the inner loop is performed only when restricting.

This leads directly to Equation 1, where nstart is simply

multiplied by the number of inner loop iterations (nrk), and

to this, a single addition iteration is added.

Istart
1

= nstart × nrk + 1 (1)

The second feature we discuss from Figure 1(a) is event

10. We single this feature out next as it does not appear

at the beginning of the previous V-Cycle (solver iteration

event 2). Code inspection reveals that these events are

dictated by npre. Given the information that these events

occur at the beginning of every V-Cycle, we can construct

Equation 2. The second half of the equation deals with

the single additional iteration while restricting – both ×1
terms, while unneeded, are left in to ensure a 1-to-1 mapping

between the two halves of Equation 2 for readability.

I
pre
1

= ((ncycles − 2)× npre × nrk)

+((ncycles − 2)× 1× 1)
(2)

Next we examine the events which occur on levels 2 and 3

of the V-Cycle, for both prolongation and restriction. Code

inspection reveals that the number of iterations are dictated

by npost and as is the case with Equations 1 and 2, the

additional iteration which occurs while prolonging must be

accounted for.

I
post
2,3 = (((ncycles − 1)× npost × 2)× nrk)

+(((ncycles − 1)× 1)× 1)
(3)

Finally, we examine those events which occur on the final

level of the multigrid: events 7 and 16 in Figure 1(a). These

occur once per V-Cycle, therefore the equation is:

Icrs
4

= (ncycles − 1)× ncrs × nrk (4)

It should be noted that Equations 1-4, given an input deck,

will predict the invocation count of iflux. The call count of

the other functions (e.g. vflux) is dealt with by modelling

their percentage of invocations relative to iflux.

B. Model Integration

We integrate Equations 1-4 bottom up, into the existing

model to provide a fully analytical description of HYDRA’s

computation. We refer the reader to the existing performance

modelling paper for the equations for communication time

(Cl,L), restrict (Rcalls) and prolong (Pcalls) as these equations

remain unchanged [10].

Equation 5 describes how the different types of compute

(independent, halo and execute) and the communication are

combined into a single walltime. To model communication-

computation overlap, the larger of the independent compute

and communication time is taken, and added to this, the

compute which cannot be overlapped at all. This equation

can easily be adjusted to produce a prediction where overlap

is not assumed to occur, by replacing the maximum function

with a summation.

Wp,l,L =max(Ni,p,l,L ×Wg,l,L, Cl,L)

+ (Nh,p,l,L +Ne,p,l,L)×Wg,p,l,L

(5)

Finally, the runtime of all the loops on each level of the

multigrid are summed to give the predicted runtime for the

solver (Equation 6).

Wmg =
X

l

X

L

max
p∈P

(Wp,l,L)× IL (6)

C. Generalisation to W-Cycles

V-Cycles are not the only pattern by which multigrid solvers

can transition between levels, and in this section we show

how to apply the process used in Section IV-A for W-Cycles,

lending weight to the processes applicability to arbitrary

cycle types. As before we plot a trace of the code, but while

performing W-Cycles (Figure 1(b)).

We first notice that the non-repeating features in Fig-

ure 1(b) (solver iteration event 1), and the frequency of

steps caused by npre are the same as for the V-Cycle case,

therefore we can reuse Equations 1 and 2. We then identify

where a single cycle terminates (solver iteration event 21 in

Figure 1(b) and construct equations for the remaining levels

of the multigrid.

We introduce Equations 7 and 8 which are similar to

Equations 3 and 4 but parameterised to allow operation with

multiple cycle types.

I
post
2,3 = (((ncycles − 1)×O

post
2,3 × npost)× nrk)

+(((ncycles − 1)×Oadditional
2,3 × 1)× 1)

(7)

Icrs
4

= (ncycles − 1)×Ocrs
4

× ncrs × nrk (8)

Where Ocrs
4

, O
post
2

, O
post
3

, Oadditional
2

and Oadditional
3

equal

4, 3, 6, 2 and 4 respectively for a W-Cycle and 1, 2, 2, 1 and

1 respectively for a V-Cycle. By making these improvements

to the model it can support multiple cycle types (e.g. W-

Cycle and V-Cycle) and a variable number of Runge-Kutta

iterations. As a side effect of creating analytical equations

representing the multigrid cycles rather than relying on a

code skeleton, the model’s time to prediction has improved

by ≈22× when predicting for 504 cores, and will likely

improve the time to prediction at much larger scale.

1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

1
0
2
4

0

1

2

3

4

·10
3

Number of Processes

R
u
n
ti

m
e

(s
ec

o
n
d
s)

Actual compute

Prediction with loops, separate Wg

Prediction without loops,separate Wg

Prediction with loops, with average Wg

Prediction without loops, average Wg

Figure 2: Comparison of actual and predicted compute time

(Rotor37, 8 million nodes; geometric partitioning).

1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

1
0
2
4

0

2

4

·10
3

Number of Processes

R
u
n
ti

m
e

(s
ec

o
n
d
s)

Actual runtime

Predicted runtime

Predicted runtime without pack+unpack costs

Figure 3: Comparison of actual and predicted runtime (Ro-

tor37, 8 million nodes; geometric partitioning).

V. ADDITIONAL PERFORMANCE MODEL DETAIL

We first identify and extend the performance model to

include three additional runtime costs: the compute and

communication time for all 300+ loops in the code base,

the time taken to pack/unpack data from the MPI buffers

in OPlus, and separate performance data for each region

of compute. Second, we validate these changes to the

performance model over 1,024 cores by presenting the effect

each adjustment has on the model’s error. We further validate

the performance model when using ParMETIS, rather than

a geometric partitioning algorithm to partition the Rotor37

input deck. Finally, we report the performance model’s

accuracy over 1,008 cores when using data collected from

an Ivybridge-based cluster (ARCHER).

1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

1
0
2
4

0

2

4

·10
3

Number of Processes

R
u
n
ti

m
e

(s
ec

o
n
d
s)

Actual Runtime

Predicted Rutime

Actual Max Compute

Predicted Max Compute

Actual Pack+Unpack Time

Predicted Pack+Unpack Time

Figure 4: Comparison of HYDRA’s actual and predicted

runtime (Rotor37, 8 million nodes; ParMETIS).

A. Region Grind-time Data

OPlus partitions HYDRA’s compute into three different

regions, independent, halo and execute. For each of these

element types the access pattern varies, which is reflected

in the timing information. The compute time (per element)

for dependent elements compared to independent elements

is 60.72% and 142.45% larger for vflux and iflux re-

spectively. Without using separate timing information for the

different regions a consistent under-prediction in compute

time is observed (average of 19.12%). However, when the

performance model is primed with separate timing infor-

mation for each region then the model error is reduced (see

Figure 2) to a consistent average under-prediction of 12.69%.

The analytical model is generalised to support these re-

gional grind times by introducing three new terms: Wg,i,l,L,

Wg,h,l,L and Wg,e,l,L for the independent, halo and execute

regions respectively. After making this adjustment Equa-

tion 5 becomes Equation 9.

Wp,l,L =max(Ni,p,l,L ×Wg,i,l,L, Cl,L)

+ (Nh,p,l,L ×Wg,h,l,L +Ne,p,l,L

×Wg,e,l,L)

(9)

B. Complete Loop Coverage

HYDRA consists of over 300 nested loops of which a subset

are used by any given dataset; due to this large number

of loops, using automated instrumentation tools is essential.

We developed such tools to cope with the specifics of the

code base which existing tools were unable to deal with

(e.g. FORTRAN77 and nested loops). Naturally, full code

coverage gives us increased model accuracy because we have

a more complete view of HYDRA’s performance. Also, it

future proofs the performance model against new datasets

which may exercise other regions of the code.

With the addition of performance data from all loops in

HYDRA the runtime performance model’s under-prediction

reduces from an average of 12.69% to 4.79% (see Figure 2).

Both the complete loop coverage and the use of detailed

compute data, reduces the compute error by approximately

10% at all measured scales in Figure 2. Even with complete

loop coverage there is still an error in compute time; we

suspect this is due to the modelling assumption that compute

time per edges/node is the same across all processes which

is not often the case.

Additionally we incorporate buffer pack/unpack cost into

the performance model, after which the model’s total under-

prediction is reduced from an average of 24.76% to 8.56%

and at most 12.63% (see Figure 3).

We additionally validated the runtime performance model

with the aforementioned details on up to 1,008 cores of

ARCHER, an Ivybridge-based (E5-2697 v2) Cray XC30,

with a Cray Aires interconnect. This demonstrates the

model’s applicability across multiple generations of hard-

ware. We observed a maximum error of 4.72% but for

brevity we do not present a detailed validation here.

C. Performance Model Validation (ParMETIS)

In Figure 4 we plot the total runtime, max compute time and

pack/unpack time for both predicted and actual executions

when using ParMETIS as the partitioning algorithm. The

errors for total runtime, max compute time and pack/unpack

costs are on average 8.65%, 4.09% and 5.23% respectively.

The compute error consistently under-predicts and the

error is neither increasing or decreasing with scale, but fluc-

tuates between under-predictions of 8.37% and 1.43%. This

under-prediction and fluctuation can be partially explained

by a deviation from one of our modelling assumptions: the

Wg values are similar across all processes for a given OPlus

loop, multigrid level and compute region. This is not true

as different processes have different access patterns, due to

the nature of unstructured mesh codes.

This broken assumption manifests itself as a problem

in the performance model when an average, maximum or

minimum Wg is used to approximate the compute cost,

as the model will always predict that the most expensive

processes is the one with the most elements to process.

From Figure 5 we can see that this assumption leads to an

under-prediction (except for at 320 processes) when using

the average Wg and an over-prediction when using the

maximum Wg . For the predictions in this paper we use an

average over the top 50% largest Wg values as this is more

representative of the compute costs on the critical path.

The pack and unpack error fluctuates between under-

predicting and over-predicting. However, for the most part

the absolute error is very low (less than 3 seconds for runs

larger than 128 processes). Further investigation is required

to identify the remaining sources of error, specifically at

1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

−20

−10

0

10

20

Number of Processes

P
er

ce
n
ta

g
e

er
ro

r
(%

)

Max Wg

Average Wg

Average top 50% Wg

Figure 5: Percentage error of Wg calculation techniques for

max edge compute.

lower core counts, where the runtime prediction is over-

predicting 50.32 seconds and under-predicting 23.32 seconds

for runs with 16 and 64 processes respectively.

The compute under-prediction leads to an under-

prediction of the total runtime as this is the dominant cost.

We observe errors between 2.68% and 11.55%. This vali-

dation demonstrates the performance model’s effectiveness

at predicting runtime when using alternative partitioning

algorithms.

VI. SET AND HALO SIZE GENERATION

Typically in order for an analytical model to provide a

runtime prediction, the size of the dataset (i.e. number of

nodes, edges, cells) and message sizes must be known for

a given process count. In the case of a structured mesh

these sizes can be obtained using basic algebra, but for

unstructured meshes these sizes depend on the partitioning

algorithm (e.g. ParMETIS) and halo exchange strategies.

Previously this data was collected empirically from

HYDRA, but this approach becomes impractical for large

process counts as vast amounts of hardware are required.

This limits the performance model’s capacity to predict

HYDRA’s scaling behaviour. We develop and validate two

applications to solve this limitation: one for driving the

partitioning algorithm, and one for computing the set and

halo sizes (the latter will henceforth be referred to as

“Moses”). With these applications we can more readily

explore different approaches (e.g. simulation, alternative

partitioning algorithms, serialisation of code) to collecting

partitioning information for use in runtime predictions.

We continue this section by describing the purpose of

these applications, followed by validating the partitioning

data generated from Moses. Finally we use the data gener-

ated by Moses to predictively compare the effect of different

partitioning algorithms on HYDRA’s runtime.

1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

0

2

4

·10
3

Number of Processes

R
u
n
ti

m
e

(s
ec

o
n
d
s)

Actual

Prediction using Empirical Data

Prediction using Data from Moses

Prediction using a Structured Mesh Approximation

Figure 6: Impact of partitioning data source on model.

A. Partitioning Mini-Driver and Mini-Application

We develop a mini-driver (a framework for running specific

application routines with test data), which exists to perform

four tasks: 1) read in the mesh files used by HYDRA for

each level of the multigrid; 2) manipulate the mesh files into

a form usable by the chosen partitioning algorithm; 3) invoke

the partitioning algorithm; and, 4) store the resultant parti-

tioning in a standard form, so Moses, which is responsible

for computing the halo and set sizes, can operate with any

chosen partitioning algorithm. This standard form is a set

of tuples, which map nodes to the identifier of the partition

they belong to.

To ensure the mini-driver’s correctness we compare the

arguments to our chosen partitioning library (in this case

ParMETIS) when called from HYDRA against the argu-

ments used in the mini-driver and ensure they are identical.

Collecting usable partition data is only the start of the halo

and set generation process; OPlus uses this data to partition

the remaining sets and form the halos.

We develop Moses which mimics the process by which

OPlus uses the partitioning data to generate all other size

data: the size of all sets in use by the CFD simulation

(e.g. edges, nodes, faces); the number of elements which

can be updated before and after communication; and, the

size of the halos to communicate. To develop a fully rep-

resentative version would be prohibitively time consuming,

so we choose build a simplified version adding only the

major detail; we select this detail based upon the largest

contributors to runtime.

Using Moses and the mini-driver we are able to generate

partitioning information for up to 100,000 cores, which is

usable by the runtime performance model.

B. Validation

We first quantify the level of detail included in Moses by

performing a comparison between actual runtime, runtime

predictions made using partitioning data generated by Moses

and predictions made using partitioning data collected em-

pirically from HYDRA (Figure 6). Additionally, we plot a

runtime prediction using a variant of the partitioning model

used by Mathis et al. [36], where the set and halo sizes are

approximated to the structured mesh case. We use this plot

as a baseline for runtime accuracy that can be achieved when

using a simple partitioning model.

From Figure 6 we can immediately see the large er-

ror (46.94%) in runtime that using the structured mesh

approximation induces compared to using the empirically

collected partitioning data. Whereas the runtime prediction

made using the partitioning data generated by Moses differs

by at most 7.31%. If we also examine the predicted parallel

efficiencies when using both the structured mesh approxi-

mation and the data generated from Moses we find that the

former indicates a near perfect efficiency across all ranks,

but the latter is in line with the empirically predicted effi-

ciency: an average parallel efficiency of 0.70 when using the

empirically collected partition data and a parallel efficiency

0.69 when using the partitioning data generated by Moses.

These results would indicate that using the data generated

by Moses affords more runtime performance model accuracy

than using the structured mesh data.

From the breakdown of predicted runtime costs (compute,

communication, synchronisation, pack and unpack time) we

identify the two reasons why the structured mesh approxima-

tion fails to give an accurate prediction: 1) it underpredicts

the amount of data to be sent between ranks, resulting in

a lower predicted communication time and lower pack and

unpack times; and 2) the lack of load imbalance reduces the

cost of synchronisation on each process.

While the data generated using Moses is more represen-

tative than that from the structured mesh approximation,

there are still sources of error. To identify these we compare

the set and halo sizes generated by HYDRA directly with

those generated by Moses. We find that while the set sizes

generated for the first level of the multigrid are of low error

(0% for edges and ≈6% for nodes) this error increases up

the multigrid to ≈24% and ≈35% for nodes and edges

respectively. However, the upper levels of the multigrid

account for a diminishing amount of the total runtime and

therefore these errors have a minimal effect on predicted

runtime error. We reserve combating this remaining error

for future work.

C. Predictive Analysis of Partitioning Algorithms

Next we demonstrate the use of the runtime performance

model in conjunction with Moses to perform a predictive

comparison of the effect varying partitioning algorithms

have on HYDRA’s runtime, for a given dataset (Rotor37)

at varying scales (16-30,000 processes). Specifically we are

considering the trade-off between load balancing the sets

present in HYDRA (nodes and edges) and the amount of

S
co

tc
h
(1

6
)

M
E

T
IS

(1
6
)

G
eo

m
et

ri
c(

1
6
)

P
ar

M
E

T
IS

(1
6
)

S
co

tc
h
(6

4
)

M
E

T
IS

(6
4
)

G
eo

m
et

ri
c(

6
4
)

P
ar

M
E

T
IS

(6
4
)

S
co

tc
h
(1

2
8
)

M
E

T
IS

(1
2
8
)

G
eo

m
et

ri
c(

1
2
8
)

P
ar

M
E

T
IS

(1
2
8
)

S
co

tc
h
(2

5
6
)

M
E

T
IS

(2
5
6
)

G
eo

m
et

ri
c(

2
5
6
)

P
ar

M
E

T
IS

(2
5
6
)

S
co

tc
h
(5

1
2
)

M
E

T
IS

(5
1
2
)

G
eo

m
et

ri
c(

5
1
2
)

P
ar

M
E

T
IS

(5
1
2
)

S
co

tc
h
(1

0
2
4
)

M
E

T
IS

(1
0
2
4
)

G
eo

m
et

ri
c(

1
0
2
4
)

P
ar

M
E

T
IS

(1
0
2
4
)

S
co

tc
h
(2

0
0
0
)

M
E

T
IS

(2
0
0
0
)

P
ar

M
E

T
IS

(2
0
0
0
)

S
co

tc
h
(4

0
0
0
)

M
E

T
IS

(4
0
0
0
)

S
co

tc
h
(6

0
0
0
)

M
E

T
IS

(6
0
0
0
)

S
co

tc
h
(8

0
0
0
)

M
E

T
IS

(8
0
0
0
)

S
co

tc
h
(1

0
0
0
0
)

M
E

T
IS

(1
0
0
0
0
)

S
co

tc
h
(2

0
0
0
0
)

M
E

T
IS

(2
0
0
0
0
)

S
co

tc
h
(3

0
0
0
0
)

10
1

10
2

10
3

10
4

Partitioning algorithm (Number of processes)

R
u
n
ti

m
e

(s
ec

o
n
d
s)

Max compute

Max pack

Comms+sync

−40

−30

−20

−10

0

S
p
ee

d
u
p

(%
)

Max Compute

Max Pack

Comms+Sync

Actual

Predicted

Figure 7: Predicted effect of partitioning algorithm on HYDRA’s runtime and the speedup from using ParMETIS over a

geometric partitioning.

communication/pack and unpack costs. We prime the per-

formance model with compute data from a single scale (16

processes), as we are not considering memory behaviours.

Figure 7 contains a comparison of partitioning algorithms,

however due to several current limitations we are not able

to collect the complete range (16-30,000) of data for all

partitioning algorithms used in this work. We are only able

to collect data for up to 1,024 partitions for the geometric

partitioning algorithm as we currently lack an implementa-

tion outside of HYDRA with which to prime the mini-driver.

Additionally we are only able to collect partitioning data

from ParMETIS for up to 2,000 partitions as simulations

take in the order of weeks to complete. Finally, METIS is

unable to partition the dataset into 30,000 parts.

From Figure 7, we can see that the geometric parti-

tioning algorithm is able to produce a partitioning with a

comparable or lower predicted maximum compute when

compared to the other partitioning algorithms, however it

makes no consideration as to the communication time. This

omission manifests itself primarily as increased time spent

packing and unpacking elements for communication – 1.35×

and 1.92× larger at 16 and 1,024 processes respectively

when compared to ParMETIS (the next worst performing

partitioning algorithm in terms of these costs). However,

both the Scotch and METIS partitioning libraries manage the

trade-off between costs as they take into account the number

of edges cut, which is a proxy for communication time.

This leads to predicted runtimes which are at most 1.2×

better (predicted speedup of using METIS over a geometric

partitioning at 1,024 cores).

Also from Figure 7, we can see that METIS consistently

performs better than its parallel variant (ParMETIS) across

all scales for both max compute time, and pack and unpack

cost, this leads to a predicted performance improvement of

up to 1.1× (at 512 cores). This performance improvement

does not appear to diminish with scale.

This predictive analysis has delivered three observations,

1) Scotch and METIS are the better choice of partitioning

algorithm when compared to ParMETIS and the geometric

partitioning algorithm; 2) the serial variant of ParMETIS

produces consistently better partitions than ParMETIS itself;

and, 3) the geometric partitioning invokes reduced perfor-

mance in HYDRA runs of greater than 512 processes due

to increasing buffer pack and unpack costs. These predictive

observations will direct the authors to invest the time to

integrate the feature to read in pre-generated partitions into

HYDRA. Especially those from Scotch and PT-Scotch, the

former to see if the performance improvements at small

scale hold and the latter to determine if PT-Scotch is out

performed by its serial variant.

We validate observation 3) in Figure 7 by plotting

the predicted and actual percentage runtime speedup of

HYDRA when using the geometric partitioning algorithm

over ParMETIS to partition the input deck. Figure 7 shows

that the runtime performance model in conjunction with

Moses accurately predicts the downfall of the geometric

partitioning algorithm at 512 and 1024 processes. Indicating

that this partitioning algorithm is not suitable for anything

but small scale runs when using the Rotor37 dataset.

VII. CONCLUSIONS

In this paper we have developed a general analytical model

for a multigrid code which supports multiple cycle types, a

variable number of Runge-Kutta iterations and an arbitrary

number of loops. These additions have increased the number

of input decks the performance model is applicable to.

We have validated additional performance costs on up

to 1,024 cores of a Haswell-based cluster, using both a

geometric partitioning algorithm and ParMETIS to partition

the input deck, with a maximum absolute error of 12.63%

and 11.55% respectively.

We have developed Moses, which is able to convert

partitioning data from multiple algorithms (Scotch, METIS,

ParMETIS) at varying scale (up to 30,000 cores) into data

usable by our runtime performance model. We show that

runtime predictions made using this data have a runtime

error of at most 7.31% over 512 processes, when compared

against predictions made with empirically collected parti-

tioning data.

Finally, we have demonstrated the use of Moses in con-

junction with the runtime performance model by comparing

the effect of several different partitioning algorithms on

HYDRA’s runtime. We concluded from this analysis that

priming HYDRA with partitioning data from Scotch is worth

investigating due its consistent predicted performance advan-

tage (maximum of 1.21×) over ParMETIS. Additionally, we

predicted and validated the result that the geometric parti-

tioning algorithm caused reduced performance in HYDRA

at 512 and 1024 processes when compared with ParMETIS.

A. Further Work

We will seek to improve Moses and the performance model

by 1) decreasing Moses’ error in runtime (7.31%) by im-

proving the accuracy of the set and halo size predictions on

the highest levels of the multigrid; 2) increasing the scale at

which Moses is able to generate set and halo data (beyond

100,000 and towards 1,000,000 partitions); 3) extending

Moses to support other unstructured mesh applications; and,

4) increasing the scale (past 1024 processes) at which the

performance model has been validated.

Next, we intend to act upon the results from the predictive

analysis of a partitioning algorithm’s effect on HYDRA’s

runtime. First we shall extend HYDRA’s partitioning process

such that it is able to read in the mesh partitioning data from

serial algorithms, and second run a performance analysis

to determine if the effect of these partitions on HYDRA’s

runtime matches the predicted effect.

Lastly, we intend to predictively and empirically analyse

the effect of different partitioning algorithms on HYDRA’s

runtime when using a variety of datasets, as we plan to use

the runtime performance model to examine the continued

effectiveness of these algorithms as new datasets are brought

into use.

ACKNOWLEDGEMENTS

This research is supported by both Rolls-Royce through the

Cleansky project and by Bull through their PhD sponsorship

programme. The authors would like to thank Rolls-Royce

plc for the provided support and for granting permission to

publish this work. Access to Tinis is provided by the Centre

for Scientific Computing at the University of Warwick.

Additionally this work used the ARCHER UK National

Supercomputing Service (http://www.archer.ac.uk).

REFERENCES

[1] G. R. Mudalige, M. K. Vernon, and S. A. Jarvis, “A Plug-
and-play Model for Evaluating Wavefront Computations on
Parallel Architectures,” in Proceedings of the 22nd Interna-
tional Parallel and Distributed Processing Symposium 2008
(IPDPS’08). Miami, Florida: IEEE Computer Society, Los
Alamitos, CA, April 2008, pp. 1–14.

[2] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang,
S. Pakin, and J. Sancho, “Using Performance Modeling to
Design Large-Scale Systems,” Computer, vol. 42, no. 10, pp.
0042–49, 2009.

[3] S. D. Hammond, G. R. Mudalige, J. A. Smith, S. A. Jarvis,
A. J. Herdman, and A. Vadgama, “WARPP: A Toolkit for
Simulating High-performance Parallel Scientific Codes,” in
Proceedings of the 2nd International Conference on Simula-
tion Tools and Techniques 2009 (ICSTT’09). Rome, Italy:
ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, Brussels, Belgium),
March 2009, pp. 1–10.

[4] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny,
A. Pinar, D. A. Evensky, and J. Mayo, “A Simulator for
Large-Scale Parallel Computer Architectures,” International
Journal of Distributed Systems and Technologies, vol. 1, no. 2,
pp. 57–73, 2010.

[5] M. Heroux and R. Barrett, “Mantevo Project,” https://
mantevo.org/ (accessed March 3, 2016), March 2016.

[6] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willen-
bring, H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,
H. K. Thornquist, and R. W. Numrich, “Improving Perfor-
mance via Mini-applications,” Sandia National Laboratories,
Albuquerque, NM, Tech. Rep. SAND2009-5574, 2009.

[7] D. M. Schuster, “NASA Perspective on Requirements for
Development of Advanced Methods Predicting Unsteady
Aerodynamics and Aeroelasticity,” NASA, Langley Research
Center, Tech. Rep. 20080018644, 2008.

[8] J. F. Wendt, Computational Fluid Dynamics: An Introduction.
New York City, New York: Springer, March 2013.

[9] M. C. Duta, M. B. Giles, and M. S. Campobasso, “The
Harmonic Adjoint Approach to Unsteady Turbomachinery
Design,” International Journal for Numerical Methods in
Fluids, vol. 40, no. 3-4, pp. 323–332, September 2002.

[10] R. A. Bunt, S. J. Pennycook, S. A. Jarvis, L. Lapworth, and
Y. K. Ho, “Model-led Optimisation of a Geometric Multigrid
Application,” in Proceedings of the 15th High Performance
Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing 2013
(HPCC&EUC’13). Zhang Jia Jie, China: IEEE Computer
Society, Los Alamitos, CA, November 2013, pp. 742–753.

[11] S. D. Hammond, G. R. Mudalige, J. A. Smith, A. B.
Mills, S. A. Jarvis, J. Holt, I. Miller, J. A. Herdman, and
A. Vadgama, “Performance Prediction and Procurement in
Practice: Assessing the Suitability of Commodity Cluster
Components for Wavefront Codes,” IET Software, vol. 3,
no. 6, pp. 509–521, December 2009.

[12] D. P. Spooner, S. A. Jarvis, J. Cao, S. Saini, and G. R.
Nudd, “Local Grid Scheduling Techniques using Performance
Prediction,” IEEE Proceedings – Computers and Digital
Techniques, vol. 2, no. 150, pp. 87–96, April 2003.

[13] G. R. Mudalige, S. D. Hammond, J. A. Smith, and S. A.
Jarvis, “Predictive Analysis and Optimisation of Pipelined
Wavefront Computations,” in Proceedings of the Workshop on
Advances in Parallel and Distributed Computational Models
2009 (APDCM’09). Rome, Italy: IEEE Computer Society,
Los Alamitos, CA, May 2009, pp. 1–8.

[14] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman, “Use of
Predictive Performance Modeling During Large-scale System
Installation,” Parallel Processing Letters, vol. 15, no. 4, pp.
387–395, December 2005.

[15] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E.
Jordan, and W. Gropp, “Modeling the Performance of an
Algebraic Multigrid Cycle on HPC Platforms,” in Proceed-
ings of the International Conference on Supercomputing 2011
(ISC’11). Tucson, AZ: ACM, New York, NY, June 2011,
pp. 172–181.

[16] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M.
Yang, “Modeling the Performance of an Algebraic Multigrid
Cycle Using Hybrid MPI/OpenMP,” in Proceedings of the
41st International Conference on Parallel Processing 2012
(ICPP’12). Pittsburgh, PA: IEEE Computer Society, Los
Alamitos, CA, September 2012, pp. 128–137.

[17] ——, “Performance Modeling of Algebraic Multigrid on Blue
Gene/Q: Lessons Learned,” in 2012 SC Companion: High
Performance Computing, Networking, Storage and Analysis
(SCC’12). Salt Lake City, Utah: IEEE Computer Society,
Los Alamitos, CA, November 2012, pp. 377–385.

[18] D. A. Beckingsale, O. F. J. Perks, W. P. Gaudin, J. A. Herd-
man, and S. A. Jarvis, “Optimisation of Patch Distribution
Strategies for AMR Applications,” Computer Performance
Engineering, vol. 7587, pp. 210–223, 2013.

[19] D. A. Burgess, P. I. Crumpton, and M. B. Giles, “A Parallel
Framework for Unstructured Grid Solvers,” in Proceedings of
the 2nd European Computational Fluid Dynamics Conference
1994. Stuttgart, Germany: Wiley & Sons, Hoboken, New
Jersey, September 1994, pp. 391–396.

[20] M. B. Giles, G. R. Mudalige, B. Spencer, C. Bertolli, and
I. Reguly, “Designing OP2 for GPU architectures,” Journal
of Parallel and Distributed Computing, vol. 73, no. 11, pp.
1451–1460, November 2013.

[21] G. R. Mudalige, M. B. Giles, C. Bertolli, and P. H. Kelly,
“Predictive Modeling and Analysis of OP2 on Distributed
Memory GPU Clusters,” SIGMETRICS Performance Evalua-
tion Review, vol. 40, no. 2, pp. 61–67, October 2012.

[22] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A.
Jarvis, “Exploring SIMD for Molecular Dynamics, Using

Intel R� Xeon R� Processors and Intel R� Xeon Phi Coproces-
sors,” in Proceedings of IEEE 27th International Parallel
and Distributed Processing Symposium 2013 (IPDPS’13).
Boston, MA: IEEE Computer Society, Los Alamitos, CA,
May 2013, pp. 1085–1097.

[23] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz,
“XSBench-the Development and Verification of a Perfor-
mance Abstraction for Monte Carlo Reactor Analysis,” in
Proceedings of The Role of Reactor Physics toward a Sustain-
able Future (PHYSOR’14), Kyoto, Japan, September 2014,
pp. 1–12.

[24] A. C. Mallinson, S. A. Jarvis, W. P. Gaudin, and A. J.
Herdman, “Experiences at Scale with PGAS Versions of a
Hydrodynamics Application,” in Proceedings of the 8th In-
ternational Conference on Partitioned Global Address Space
Programming Models 2014 (PGAS’14). Eugene, Oregon:
ACM, New York, NY, October 2014, pp. 9–20.

[25] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid.
Elsevier Academic Press, 2001.

[26] L. Lapworth, “HYDRA-CFD: A Framework for Collabora-
tive CFD Development,” in Proceedings of the International
Conference on Scientific and Engineering Computation 2004
(IC-SEC’04), Singapore, June 2004.

[27] M. S. Campobasso and M. B. Giles, “Stabilization of a Lin-
earized Navier-Stokes Solver for Turbomachinery Aeroelas-
ticity,” in Proceedings of the 2nd International Conference on
Computational Fluid Dynamics 2002 (ICCFD’02). Sydney,
Australia: Springer-Verlag, Berlin, July 2002, pp. 343–348.

[28] ——, “Effects of Flow Instabilities on the Linear Analysis of
Turbomachinery Aeroelasticity,” Journal of Propulsion and
Power, vol. 19, no. 2, pp. 250–259, March 2003.

[29] P. Moinier, J. Müller, and M. B. Giles, “Edge-based Multigrid
and Preconditioning for Hybrid Grids,” AIAA Journal, vol. 40,
no. 10, pp. 1945–1953, October 2002.

[30] M. C. Duta, M. B. Giles, and M. S. Campobasso, “The
Harmonic Adjoint Approach to Unsteady Turbomachinery
Design,” International Journal for Numerical Methods in
Fluids, vol. 40, no. 3–4, pp. 323–332, September 2002.

[31] M. B. Giles, M. C. Duta, J. Müller, and N. A. Pierce,
“Algorithm Developments for Discrete Adjoint Methods,”
AIAA Journal, vol. 41, no. 2, pp. 198–205, February 2003.

[32] L. Reid and R. D. Moore, “Design and Overall Performance
of Four Highly Loaded, High Speed Inlet Stages for an Ad-
vanced High-Pressure-Ratio Core Compressor,” NASA Lewis
Research Center, Cleveland, OH, Tech. Rep. NASA TP 1337,
1987.

[33] G. Karypis and V. Kumar, “A Parallel Algorithm for Multi-
level Graph Partitioning and Sparse Matrix Ordering,” Journal
of Parallel and Distributed Computing, vol. 48, no. 1, pp. 71–
95, January 1998.

[34] F. Pellegrini, “Scotch and PT-Scotch Graph Partitioning Soft-
ware: An Overview,” Combinatorial Scientific Computing, pp.
373–406, 2012.

[35] J. R. Gilbert, G. L. Miller, and S.-H. Teng, “Geometric
Mesh Partitioning: Implementation and Experiments,” SIAM
Journal on Scientific Computing, vol. 19, no. 6, pp. 2091–
2110, 1998.

[36] M. M. Mathis and D. J. Kerbyson, “A General Performance
Model of Structured and Unstructured Mesh Particle Trans-
port Computations,” The Journal of Supercomputing, vol. 34,
no. 2, pp. 181–199, November 2005.

