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Abstract: To investigate the relationship between micro defects in ceramic materials and macro mechanical properties and 

behaviours, a computational model of SiC ceramics with randomly oriented elliptical pores was established using the 

discrete element method (DEM). The effects of pore defect content and its aspect ratio on the failure mode, stress-strain 

curve and mechanical properties of specimen were investigated under uniaxial compression. The effective Young's 

modulus which was obtained from DEM simulations was compared with the predictions of Mori-Tanaka scheme (MTS) 

and Self-Consistent scheme (SCS) at various pore defect densities. The results showed that the compressive strength and 

crack initiation stress decrease nonlinearly as the pore defect content increases. Furthermore, the smaller the aspect ratio of 

the elliptical pore defects was, the more obvious the weakening trend was. As the pore defect content increases, the failure 

mode of the specimen changed from brittle fracture to tensile-shear mixing and then to axial splitting. The stress-strain 

curves showed a certain “softening” period during the loading process. The effective Young's modulus obtained from the 

DEM simulations coincides with the approximations of MTS and SCS at low pore densities. However, when the pore 

defect density became larger, the DEM simulation results were slightly lower than the theoretical results of the 

Mori-Tanaka scheme, which only considers the weak interaction between defects. 

 
Keywords˖Pore defect; Uniaxial compression; Mechanical properties; Discrete element method 
 
 

1  Introduction 

 

During the preparation process of ceramic materials, various random defects are introduced inevitably into the finished 

products due to unfavorable factors from materials and processes, such as excessive impurity content, uneven particle size 

distribution, unsatisfactory powder compaction and disappeared sintering-aid. Among those defects, the micropore defect 

is a typical and common type, as shown in Fig. 1 [1]. As a kind of hard and brittle material, ceramics are extremely 

sensitive to defects. The micropore defects with random orientation and distribution would affect the mechanical 

properties of the material and result in the dispersion of strength such that an unpredictable fracture failure could happen 
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easily under the external load [2]-3]. Therefore, it is important to reveal the relationship between macroscopic failure and 

damage evolution which both are caused by internal microdefects. 

Damage mechanics of brittle materials have been well developed in theory, such as Self-Consistent scheme [4], 

generalized Self-Consistent scheme [5], Differential scheme [6] and Mori-Tanaka scheme [7-8]. Although those methods 

can approximately calculate the effective modulus of specimen considering the interaction between defects, there is no 

agreement to decide which method is better unless the statistics of mutual positions of defects are specified. In addition, 

based on the manufacturing method of material defects, the effect of pre-existing artificial defects on the mechanical 

properties of specimen has also received extensive attention. How to prepare the specimen with controllable and 

quantifiable defects is usually crucial in experiment. In general, surface defects of brittle materials can be obtained easily 

by indentation [9] and laser processing [1], while the preparation of internal defects is relatively difficult to obtain. For 

instance, though the method of artificially pre-embedded carbon fiber can be used in internal defect preparation [10], the 

randomness problem of defect distribution yet cannot be solved accurately. Besides, X-ray computer tomography [11] and 

acoustic emission technology [12] can determine the location, size characteristics of defects and observe the cracking 

phenomenon. But it is difficult to record the micro-crack initiation, propagation and coalescence process between internal 

defects in real time. Meanwhile, it is easy to ignore the defect features because of the small size of defects in ceramic 

materials (micron level). 

Numerical simulations provide a powerful complement to the experimental researches of micro cracking and damage 

around defects. The common numerical simulation techniques include the finite element method (FEM) [13], the 

numerical manifold method (NMM) [14], the discontinuous deformation analysis (DDA) [15], the boundary element 

method (BEM) [16] and realistic failure process analysis (RFPA) [17]. Although the fracture criterion and application of 

these methods are distinct, the research of crack initiation and propagation has been developed to some extent. 

Nevertheless, the details of crack propagation and coalescence between the defects cannot be presented clearly and the 

influence of micro-defects on the mechanical properties of materials on account of the randomness among the shape, 

position, size and orientation of the internal defects are not well clarified in brittle materials. Therefore, it is necessary to 

find a suitable and reliable numerical simulation method to solve the above problems. In our previous work, the authors 

have studied the effects of randomly oriented crack defects on failure modes and mechanical properties of SiC ceramics 

using DEM simulations [19]. However, in addition to the study of pre-crack defects, it is equally important to study the 

influence of pore defects on the fracture and mechanical properties of ceramics. 

In this paper, a discrete element model of SiC ceramics is established and calibrated. Then, randomly oriented elliptical 

file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/


3 

 

pore defects are introduced into the model by deleting particles. The effect of pore defect content and pore aspect ratio on 

the failure mode and mechanical properties of specimen is investigated under uniaxial compression. Finally, the effective 

Young's modulus obtained from the DEM simulations is compared with the theoretical curves of the Mori-Tanaka scheme 

and the Self-Consistent scheme at different pore defect densities. 

 

2  Methodology 

 

2.1 Discrete element method 

 

In order to the study of the rock mechanics, the discrete element method was proposed by Cundall [20] in the 1970s. In 

DEM, the interaction between the contacting particles is a dynamic process. And the motion of the particles is governed by 

Newton's second law in any time step. The motion is divided into the translation and rotation. The corresponding equations 

of motion are as follow: 

Translation: i
i g i

v
F v m

t
 

 

˄1˅ 

Rotation: i
i g i

w
M w I

t
 

 

˄2˅ 

where i (= 1, 2, 3) denotes the three components in x-, y-, z- direction; Fi is the out-of-balance force component of the 

particle; vi is the translational velocity; m is the mass of the particle; Mi is the out-of-balance moment due to the contacts; 

wi is the rotational velocity; I is the rotational inertia of the particle; ȕg is the global damping coefficient; ǻt is the time 

step. 

In DEM, particles can be discrete free bodies [22], or bonded together at contact to form an assembly with arbitrary 

shapes, which can simulate bulk materials. The latter is called the BPM (bonded particle model) [23]. In the model, the 

particles are connected by parallel bonds, which can transfer the forces and moment between contacting particles, as 

shown in Figure 2. And the corresponding contact force Fc and the moment Mc are as follows: 

l d
c

c

F F F F

M M

   



˄3˅ 

where Fl is the linear force; Fd is the dashpot force; F is the parallel bond force; M is the parallel bond moment. 

The interaction force between the contacting particles includes a linear force Fl and a damping force Fd. The linear force 

is resolved into normal and shear components: 
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where (Fn
l)o and (Fs

l)o are the linear normal and shear force at the beginning of the time step, respectively; 
n and

s are 

the relative normal and shear displacement increment at the contact during a time step, respectively; ȝ is the friction 

coefficient; kn and ks are the normal and shear stiffness values of particles, which can be calculated by knowing the particle 

effective modulusE and the particle normal-to-shear stiffness ratio  . 

The parallel bond force is resolved into a normal and shear components. And the parallel bond moment is resolved into 

a twisting and bending moment: 

( 0 )

(2 model : 0)

n s nc

t b tc

F F n F F is tension

M M n M D M
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

  
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When a parallel bond is created, the parallel bond force and moment are zeroed. Each subsequent relative displacement 

and rotation increment at the contact results in an increment in the elastic force and moment, which is added to the current 

values. In 2D model, the updated force and moment occurring over a time step of ǻt are calculated as follows: 

parallel bond force: 
n n n n

s s s s

F F k A

F F k A





   


  
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parallel bond moment: bb n bM M k I   ˄7˅ 

where 
nk and 

sk are the bond normal and shear stiffness, which can calculated by E

and 


;

n and 
s are the relative 

normal and shear displacement increment respectively; A is the bond cross sectional area; I is the moment of inertia of the 

parallel bond cross-section; 
t  

is the relative twist-rotation increment. 

The maximum normal and shear stresses at the parallel bond periphery are calculated (via beam theory) as follows: 

bn

s

M RF

A I

F

A

 



   






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If the maximum tensile stress exceeds the normal strength (
bond  ) or the maximum shear stress exceeds the shear 

strength (
bond  , tanbond c     ), the parallel bond breaks. The relevant force, moment, and stiffness are then removed. 

When the parallel bonds break continually along a certain direction, microcracks formed between two particles will 



5 

 

propagate along that direction accordingly [19]. 

At present, the BPM, which can present visually the initiation and propagation of microcracks in block materials, has 

been implemented in the researches of fracture, failure and machining process of hard and brittle materials such as 

geomaterials [25], concrete [26] and ceramics [27-28]. 

 
2.2 Modeling and calibration 

 

In this paper, a BPM˄bonded-particle model˅ with non-uniform-sized and densely packed particles was generated by 

PFC2D 5.0 software. Then, in order to make the established DEM model reflect the main mechanical properties of the 

actual SiC ceramics, it was necessary to specify the relevant properties of the particles and contact in the model. 

However, microscopic parameters at particle level (such as particle stiffness, parallel bond strength) could not be obtained 

directly through experimental measurements and there is no robust theory to directly relate the macro-scale material 

properties to their micro-scale counterparts. Therefore, numerical simulation tests in DEM are an appropriate approach to 

establish and calibrate the correlation between the mechanical properties of the material and the microscopic parameters of 

the particles and parallel bonds. 

In the numerical tests, a uniaxial compression test (dimension of the model is 2 mm × 4 mm), a three-point bending test 

(dimension of the model is 3.6 mm × 0.75 mm, span is 3 mm) and a single edge notched beam test (dimension of the 

model is 3.6 mm × 0.75 mm, span is 3 mm, and incision height is 0.375 mm) were carried out, as shown in Fig. 3. Trial 

and error method was used to adjust the parameters in the model. When the results of DEM simulation test were close to 

the mechanical properties of the actual SiC ceramics, as shown in Table 1, it was considered that the microscopic 

parameters setting in the DEM model were reasonable. The microscopic parameters in discrete element model of SiC 

ceramic are listed in Table 2. 

Table 1 Main mechanical properties of SiC ceramics from experiments and in DEM simulations 

Mechanical properties Experimental results[28] DEM simulation 

Elastic modulus (GPa) 420 419 

Poisson's ratio 0.14 0.14 

Compressive strength (MPa) 2000 1974 

Bending strength (MPa) 500-800 639 

Fracture toughness (MPa/m1/2) 3.5 3.7 

 

Table 2 The microscopic parameters in DEM model of SiC ceramic 
Variable name(unit) Symbol Value 

Minimum radius of particles(m) [23,27] rmin 4.5e-6 
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Maximum-to-minimum radius ratio of particles n 1.5 

Density of particles(kg/m3) ȡ 2600 

Effective modulus of particles (Pa) E  211e9 

Normal-to-shear stiffness ratio of particles  
 1.21 

Bond effective modulus(Pa)  E

 211e9 

Bond normal-to-shear stiffness ratio 

 1.21 

Bond tensile strength(Pa) c  7.8e8 

Bond shear strength(Pa) c  50e8 

Friction coefficient ȝ 0.7 

Bond gap g 2e-7 

Initial porosity of model [28-29] p0 0.16 

 

3  DEM model of SiC ceramics containing random pore defects 

 

3.1 Pore defect content 

 

There are many microscale pore defects with various shapes in ceramic materials. In this paper, elliptical pores were 

considered in view of its common and representativeness. In the two-dimensional case, the pore defect content p is defined 

as follows: 

( )1
( ) kp ab

A
   ˄9˅ 

where a and b denote the semi-major axis and the semi-minor axis of the elliptical pore, respectively; A is the specimen 

area, and k is the serial number of pores in the specimen. 

For the case of the same size, the aspect ratio of elliptical pore may be different (the ratio of the semi-minor axis to the 

semi-major axis, defined as Ar=b/a). In view of this, the different aspect ratios (Ar=0.2, 0.5 and 1) were selected in this 

paper. And the size of each pore was the same in the generation process of pore. The corresponding calculation formulas of 

pore defect content p are presented in Table 3, where N is the number of pores. 

When the pore defect content are identical, ie: p1 = p2 = p3, the relationships between the values of semi-minor axis 

under different aspect ratios are as follows: 

1 2 3

10
2

5
b b b   ˄10˅  

Table 3 The corresponding calculation formulas of pore defect content under the different aspect ratios 

Aspect ratio Ar=0.2 Ar=0.5 Ar=1 

Pore defect content 2
1 1

5N
p b

A
  

2
2 2

2N
p b

A
  

2
3 3

N
p b

A
  
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   3.2 Random pore defects 

 

By removing particles, elliptical pore defects were introduced into the established DEM model. The size, aspect ratio 

and orientation of pores are represented by elliptical equation and rotational transformation equation:. 

Elliptical equation:  2 20 0( ) ( ) 1
x x y y

a b

 
  ˄11˅  

Rotational transformation equation:  
cos sin

sin cos

x x y

y x y

 
 

  
    

˄12˅  

where a and b are the semi-major axis and the semi-minor axis of the elliptical pore defect respectively; x0, y0 are the 

center coordinates of the defect; x, y are the coordinates of the initial equation; x', y' are the coordinates of the equation 

after rotation; ș is the inclination angle between the semi-major axis of defect and the positive direction of the x-axis. Fig. 

4 shows an example of the models containing elliptical pore defect with Ar  = 0.5. The centre coordinates (x0, y0) of the 

pores were randomly generated in the model. And the inclination angles ș were 180° multiplied by a random number 

ranging from [-1, 1]. 

Taking Ar=0.5 as an example, the numbers of pore N were set as 10, 20, 30, 40, 50 (interval of 10) and the semi-minor 

axis b2 were 20ȝm, 30ȝm, 40ȝm, 50ȝm; then, the corresponding relationships between the pore number N, the semi-minor 

axis b2 and the pore defect content p2 were established, as shown in Table 4. In addition, the cases where the aspect ratios 

Ar=0.2 and Ar=1 can also be obtained by the formula (10) and Table 3, which are not listed. 

 

Table 4 The crelationship between pore number N, the semi-minor axis b2 and pore defect content p2 

Pore Number N 
Semi-minor axis b2 

20ȝm 30ȝm 40ȝm 50ȝm 

10 0.0031 0.0071 0.0126 0.0196 

20 0.0063 0.0141 0.0251 0.0393 

30 0.0094 0.0212 0.0377 0.0589 

40 0.0126 0.0283 0.0503 0.0785 

50 0.0157 0.0353 0.0628 0.0982 

 
4  Results and discussion 

 

4.1 Effect of pore defect content on failure mode  
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In the uniaxial compression test, the compression loading obtained from two moving walls at the top and bottom of 

model was applied to the DEM model of the SiC ceramics with the random micropore defects. It was the criterion for 

loading stop and specimen failure that the current stress was lower than 80% of the peak stress in specimen. As illustrated 

in Fig. 5, the images of specimen failure are presented, in which the green lines represent the microcracks formed by the 

breakage of parallel bonds and the white parts are the elliptical pore defects. It can be observed that the increasing pore 

defect content results in obvious change on the type of macro-cracks in the failure specimen, presenting as different failure 

modes. 

As shown in Figs. 5(a)-(h), when the pore defect content was relative low, which meant the small area and low number 

of pore defects, the internal microcracks explosively generated along the 60°-70° direction to form the shear macrocracks 

with rough fracture surface in the failure specimen. The failure mode of the specimen was brittle failure, similar to that of 

intact specimen under compression. It indicated that there was almost no interaction between the micropore defects 

because of relative low pore defect content. 

As the pore defect content gradually increased (the area and the number of the internal pore defects increased 

accordingly), as shown in Figs. 5(i)-(o), there was an interaction between the adjacent pore defects under pressure. At the 

same time, except for the shear macroscopic crack formed by the large-scale explosion of microcracks, a new type of 

macroscopic crack was generated in failure specimen, which was evolved from the wing crack that initiated around the 

pore defect tips and propagated in the direction of the maximum principal stress (the axial loading direction in the text), as 

illustrated in Fig. 6. The failure mode of the specimen was the tensile-shear mixing. 

Then, as the pore defect content increased continuously, as shown in Figs. 5(p)-(t), the interaction between the pore 

defects became stronger and stronger, which could affect the stress concentration in the specimen. The strong interaction 

made the wing cracks around the pore defects tips propagate easily, and then resulted in eventually a large amount of 

tensile coalescence between the adjacent pore defects. The tensile macroscopic cracks in coalescence, evolved from the 

wing cracks, were mostly slender and their fracture surfaces were smooth. Meanwhile, the failure mode of the specimen 

was mainly the axial tensile splitting. The crack propagation and damage behaviour in specimen with random pore defects 

were similar to those in specimen with random microcrack defects that we observed before [19]. It can be concluded that 

for the type of defect (random microcrack or micro pore), the failure mode of the specimen with defects under pressure 

will change correspondingly with the increase of the defect content. 

 
4.2 Effect of aspect ratio on failure mode 
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In addition to the pore defect content, the influence of the pore shape on the failure mode cannot be ignored. Fig. 7 

presents the images of the failure specimen with three aspect ratios of pores (pore number N=30 and pore defect content 

p=0.0212 were chosen as a representative case). More DEM tests were performed with five random pore distributions so 

that the random effect of the established model can be eliminated as much as possible. It can be observed that the 

distribution of the pore defect exerts an effect on the propagation path of the macrocrack in the failure specimen. 

Meanwhile, with the same pore defect content, the smaller the aspect ratio of the pore defects is, the more easily for the 

macro failure mode of the specimen changes from the brittle fracture (Fig. 7(a)) to the axial splitting (Fig. 7(c)). The 

reason is that the pore with a smaller aspect ratio has small the curvature radius at the pore tips, which leads to strong 

stress concentration effect and interaction between the pore defects. As a result, the wing cracks around the pore propagate 

easily after the initiation to form the macroscopic tensile cracks. 

In summary, Table 5 shows the failure mode in the specimen with the different pore defect content and aspect ratio 

under uniaxial compression. With the increase of pore defect content p, the interaction between pore defects becomes 

stronger and stronger. The type of macroscopic crack in the failure specimen transfers from the original 60°-70° shear band 

to the tensile macrocrack, which direction is along the maximum principal stress (loading direction). The failure mode of 

the specimen changes from brittle fracture to tensile-shear mixing and finally to axial splitting. In addition, the change of 

the failure mode is related to the aspect ratio of the pore defects: the smaller the aspect ratio is, the easier the change is. 

 

Table 5 Failure mode of specimen with random pore defects under uniaxial compression 

Failure 

mode 
Brittle fracture Tensile-shear mix Axial splitting 

Pore 

defect 

content 

Ar=0.5, 0<p<0.0157 Ar=0.5, 0.0157<p<0.0393 Ar=0.5, 0.0393<p<0.0982 

Example 
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Aspect 

ratio 
Ar=1, p=0.0212 Ar=0.5, p=0.0212 Ar=0.2, p=0.0212 

Example 

   

 

It is not difficult to see from the above results that the failure mode of the specimen is greatly affected by the defect 

content and the aspect ratio. Combining Table 3 and Table 4, by shorting the interval of pores number and adding the 

aspect ratios (Ar=1/3 and 1/4), more DEM simulations have been carried out. Fig. 8 roughly gives simplified diagram of 

the failure mode in the specimen with different pore defect content and the aspect ratios. In the figure, the abscissa is the 

reciprocal of the aspect ratio; the ordinate is the pore defect content. The data points are the critical values of the 

corresponding pore defect content at different aspect ratios when the failure mode is changed (the numerical results with 

five random pore distributions have presented). It can be seen that with the increase of pore defect content, the macro 

failure modes of the specimen are divided into three regions: A, B and C in the figure, which correspond to three failure 

modes respectively: brittle fracture, tensile-shear mixing and axial splitting. 

When the pore defect content is low or high enough, the failure modes are brittle fracture or axial splitting accordingly 

and they are not affected by the aspect ratio of the pore. When the pore defect content is moderate, the flatter the pore 

defect is (the larger the 1/Ar  is), the more easily for the failure mode changes from brittle fracture to tensile-shear mixing, 

or from tensile-shear mixing to axial splitting. In the meantime, it is worth noting that when the pore defect content is in a 

certain interval, as shown in the gray rectangular area (region D in Fig. 8), with the decrease of the aspect ratio Ar  of the 

pore defects (the increase of the 1/Ar), the failure mode of the specimen could transfer from brittle fracture to tensile-shear 

mixing and finally to axial splitting. The interval has been confirmed in Fig. 7 (the interval should be around p = 0.0212). 

 

4.3 Analysis of mechanical properties 

 

The pore defects with random orientation and position would affect the stress distribution in the specimen under 

pressure and the macroscopic mechanical properties of the specimen. Fig. 9 shows the curves of stress and crack initiation 
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number with strain for aspect ratios: Ar=0.2, Ar=0.5 and Ar=1 at different pore defect content during loading. The crack 

initiation number is represented by the number of broken parallel bonds. It can be found from the figure that as the pore 

defect content increases, the slope of the stress-strain curve decreases continuously, which indicated the elastic modulus of 

the material decreased. Meanwhile, the value of peak stress and strain is also reduced correspondingly after the specimen 

failure and the bearing capacity of the specimen is greatly weakened. The crack initiation number has gradually increased 

from three stages during the loading: slow growth, rapid growth, exponential explosion growth. The larger pore defect 

content is prone to make the initiation and propagation of microcracks, which results in the failure specimen during the 

rapid growth stage. By comparison with previous studies, it can be found that the stress-strain curve and the crack 

initiation strain curve of the specimen with random pore defects are very similar to that of the specimen with microcrack 

defects [19]. In this process, the smaller the aspect ratio is, the more easily for the stress-strain curve change. 

A sketch is generalized from the above numerical results to further analyze the stress-strain curves of the brittle 

materials with random defects under uniaxial compression, as shown in Fig. 10. The curves OA1B1C1 and OA2B2C2 

represent the case of the specimen with low and high defect content respectively. During the initial loading, the 

stress-strain curves present the rising straight lines (section OA1 and OA2). The reason is that there is the linear elastic stage 

that is caused by the elastic deformation of the microdefects for the material. Besides, the strain in section OA1 and OA2: 

OİA1>OİA2. 

Then, the curve reached the point of crack initiation. The reason why the slope of the corresponding curve showed a 

slight decrease and fluctuation (curve A1B1 and A2B2) was that before arriving at peak stress, the micro-damage in 

specimen appeared and some of microcracks were initiated and propagated stably. This process is known as a nonlinear 

hardening stage, represented by the strain: İA1İB1>İA2İB2, which shows that the load bearing capacity of specimens with 

low defect content is stronger at this stage, compared with that of high defect content. 

Finally, the specimen reached the peak stress ım. The current stress of the specimen with low defect content decreases 

rapidly and the increasing microcracks exponentially make the specimen break down in an instant. This process is 

characterized by the rapid stress drop. However, the downtrend of current stress of the specimen with high defect content 

is slower and the strain is featured by certain “softening” (the downtrend of stress: section B1C1> section B2C2 and strain: 

İB1İC1<İB2İC2).The reason is that the tensile coalescence between the internal defects was formed in the specimen with high 

defect content during loading and the fracture energy was absorbed, which played a certain role of “toughening”. It was 

generally recognized that after the specimen reached the peak stress, the steeper the line segment BC was, the larger the 

brittleness of material was. During the loading, the stress-strain curve of the specimen with low defect content presented 
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the brittle fracture characteristics, while the stress-strain curve of the specimen with high defect content showed the plastic 

deformation characteristic because of axial tension splitting in the specimen. 

The results of compressive strength and crack initiation stress were presented against different pore defect content and 

pore aspect ratio in Figs. 11 and 12 (the average results from five DEM simulations are used, and the error bar represents 

the standard deviation of the relevant results). It can be found that with the increase of the pore defect content, the 

compressive strength and crack initiation stress of the specimen are reduced nonlinearly. And a fluctuation of the error bars 

means that the randomness of the defect distribution has an influence on the strength of the specimen. It was larger for the 

decreasing trend of the compressive strength and crack initiation stress of the specimens with smaller pore defect content, 

which conformed that the brittle materials such as ceramics are sensitive to defects. Besides, it indicated that the low 

content of defects has an obvious effect on the strength of specimen. In addition, the specimen with the smaller aspect ratio 

of the pore defects featured as the lower the compressive strength and the crack initiation stress. This is because the pores 

with smaller the aspect ratios have the large stress concentration factor which depends on the curvature radius of pore. It 

results in the obvious interaction between the pores and the weaken strength and bearing capacity of specimen. 

 

4.4 Comparison of effective Young's modulus 
 

With respect to the discussion of the mechanical properties of solid materials with microdefects, the calculation of 

effective Young's modulus plays a significant role in the theoretical analysis of damage of brittle materials. Taking the 

elliptical pores as an example, the same pores area may have different aspect ratios. Therefore, Kachanov [32] added the 

eccentricity q on the basis of pore defect content p for the choice of parameters of the pores density, and the formula is as 

follows: 

21
( )q a b

A
  ˄13˅

 

For the specimen with randomly oriented pores in the need of considering the defect interaction, the effective Young's 

modulus [32] in the Mori-Tanaka scheme and the Self-Consistent scheme are derived: 

Mori-Tanaka scheme: 
1

0

1

1 (3 )(1 )

E

E p q p 
  

˄14˅  

Self-Consistent scheme: 
0

1 (3 )
E

p q
E

   ˄15˅  

For the convenience, 3p+q is defined as the pore density [32]. Fig. 13 shows the comparison of effective Young's 
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modulus of the DEM simulation with the predictions of the Mori-Tanaka scheme and the Self-Consistent scheme (SCS) at 

different pore densities. It can be seen that the results of the DEM simulation are coincide with the approximations of the 

Mori-Tanaka scheme and the self-consistent method at low pore densities. But when the pores density 3p+q is high, the 

DEM results are slightly lower than the theoretical result of Mori-Tanaka scheme. Two possible reasons are: (1) the 

established discrete element specimen has an initial porosity p0, which derived from the gaps existed among the adjacent 

particles. And it may decrease the Young's modulus after the pore defects is introduced in specimen; (2) the strong 

interaction between the defects is considered in the DEM simulation at high defect densities, which resulted in the 

remarkable reduction of the effective modulus, while the Mori-Tanaka scheme, which only considered weak interaction 

between defects, has higher precision at low defect densities. 

 

5  Conclusions 

 

In this paper, a discrete element model of SiC ceramics with random micropore defects was established. The effects of 

pore defect content and aspect ratio on the failure modes and mechanical properties of SiC ceramic specimens were 

studied. Main conclusions are drawn as follow: 

(1) The pore defect content and aspect ratio have a significant influence on the failure mode of specimen with randomly 

oriented micropore. With the increase of pore defect content, except for the shear macroscopic crack generated along the 

60°-70° direction, a new type of macroscopic crack was generated in failure specimen, which is evolved from the wing 

crack that initiated around the pore defect tips and propagated in the direction of the axial loading. And the failure mode of 

specimen was changed from traditional brittle fracture to tensile-shear mixing, then to axial splitting. The smaller the 

aspect ratio was, the more easily for the failure mode changed. 

(2) The stress-strain characteristics of specimens with high defect content and low defect content are distinctly different. 

In linear elastic stage and nonlinear hardening stage, the stress-strain curve of specimen with low defect content has a 

higher slope and larger strain. And a rapid drop of stress which indicated the material brittleness will happen after 

specimen reaches peak stress. However, the downtrend of current stress of the specimen with high defect content is slower 

and the strain is featured by certain “softening” due to tensile coalescence between the internal defects  

(3) The compressive strength and crack initiation stress of the specimen decreased nonlinearly as the increase of pore 

defect content. And it was larger for above decreasing trend in the specimens with smaller pore defect content. The 

specimen with the smaller aspect ratio of the pore defects characterized as the lower the compressive strength and the 

crack initiation stress. 
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(4) The results of the effective Young's modulus obtained from discrete element simulation are fully consistent with that 

of the Mori-Tanaka scheme and the Self-Consistent scheme at low pore densities. But when the pores densities are large, 

the results of the discrete element simulation are slightly lower than that of the Mori-Tanaka scheme. 
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Fig. 1. SEM images of typical defects in SiC ceramics [1] 

 
 

 

 

Fig. 2. Parallel-bonded (ball-ball) contacts in BPM [24] 
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Fig. 3. Calibration tests of micro parameters in DEM 

 

 

 

 
Fig. 4. (a) Model with random pores (b) DEM model containing random pore defects 
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Fig. 5. Failure model of specimen (b2, N, p) with different pore defect content p 
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Fig. 6. Initiation and propagation of crack around the pore defect under pressure (revised in Ref. [30]) 

 

 

 

Fig. 7. Images of failure specimen with five random distribution of pore defects 

 (a)Ar=1, (b)Ar=0.5, (c)Ar=0.2. 
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Fig. 8. Schematic diagram of failure mode of specimen with random pore defects 

 

 

 

  

 

Fig. 9. Stress-strain curve and crack initiation number-strain curve under different pore defect content for three different 

aspect ratios, (a)Ar=0.2, (b)Ar=0.5, (c)Ar=1 
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Fig. 10. Stress-strain curves in the failure process of specimens with two types of defect contents (low defect content: 

OA1B1C1, high defect content: OA2B2C2) 

 

 

 

 

Fig. 11. Compressive strength vs. pore defect content for three aspect ratios 
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Fig. 12. Crack initiation stress vs. pore defect content for three aspect ratios 

 

 

 

 

  

 

Fig. 13. Comparison of DEM simulation with Mori-Tanaka scheme and Self-Consistent scheme for randomly oriented 

elliptical pores of different aspect ratios, (a)Ar=0.2, (b)Ar=0.5, (c)Ar=1 


